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Abstract

Objectives: Dysregulation of RNA modifications has
emerged as a contributor to cancer, but the clinical impli-
cation of RNA modification-related genes remains largely
unclear. The study focused on well-studied RNA modification
modalities (m°A, m'A, m°C and m’G) in bladder cancer, and
proposed a machine learning-based integrative approach
for establishing a consensus RNA modification-based
signature.

Methods: Multiple publicly available bladder cancer
cohorts were enrolled. A novel RNA modification-based
classification was proposed via consensus clustering anal-
ysis. RNA modification-related genes were subsequently
selected through WGCNA. A machine learning-based inte-
grative framework was implemented for constructing a
consensus RNA modification-based signature.

Results: Most RNA modifiers were dysregulated in bladder
tumours at the multi-omics levels. Two RNA modification
clusters were identified, with diverse prognostic outcomes.
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A consensus RNA modification-based signature was estab-
lished, which displayed stable and powerful efficacy in
prognosis estimation. Notably, the signature was superior to
conventional clinical indicators. High-risk tumours pre-
sented the activation of tumourigenic pathways, with the
activation of metabolism pathways in low-risk tumours. The
low-risk group was more sensitive to immune-checkpoint
blockade, with the higher sensitivity of the high-risk group to
cisplatin and paclitaxel. Genes in the signature: AKR1BI,
ANXA1, CCNL2, OAS1, PTPN6, SPINK1 and TNFRSF14 were
specially expressed in distinct T lymphocytes of bladder
tumours at the single-cell level, potentially participating in T
cell-mediated antitumour immunity. They were transcrip-
tionally and post-transcriptionally modulated, and might
become potentially actionable therapeutic targets.
Conclusions: Altogether, the consensus RNA modification-
based signature may act as a reliable and hopeful tool for
improving clinical decision-making for individual bladder
cancer patients.

Keywords: bladder cancer; RNA modification; machine
learning; therapeutic strategy; prognosis

Introduction

Bladder cancer is among the most commonly diagnosed
malignant tumours of the urinary system [1]. It ranks higher
in men than in women and is the sixth most common cancer
and the ninth leading cause of cancer-related deaths among
men [2]. Bladder cancer has many associated risk factors,
among which cigarette smoking is the most common
contributor to the increased incidence of bladder cancer in
Western countries [3]. Bladder cancers are divided into
non-muscle-invasive and muscle-invasive types with het-
erogeneous clinical outcomes. Patients with non-muscle-
invasive cancers are mostly curable, and the 5-year overall
survival (OS) rate is nearly 90 %, whereas the 5-year OS rate
for patients with muscle-invasive cancers is approximately
60-70 % [4, 5]. Tumour-node-metastasis staging instituted by
the American Joint Committee on Cancer (AJCC) has a
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relatively high prognostic performance and acts as the basis
for clinical decision-making; however, it is insufficient to
cover the clinical characteristics of all patients [6].

Surgical resection, radiotherapy, and chemotherapy are
the primary treatments for bladder cancer. However, not all
patients benefit from these treatments; some may experi-
ence tumour recurrence or metastasis because of bladder
cancer cell muscle invasion and drug resistance [3]. Clini-
cally, immunotherapeutics, such as adoptive T cell transfer
and immune checkpoint blockade (ICB), can control cancer
through antigen-specific T cells [7]. Owing to off-target
effects and the limitations of a single target, the clinical
outcomes of immunotherapy approaches are far from
satisfactory [8]. Bladder cancer is a complex disease with
both inter- and intra-tumour heterogeneity, the clinical
outcomes of which may differ greatly among patients with
the same stage and treatment strategies [9]. Therefore, it is
important to ensure individualised treatment by identifying
reliable biomarkers to optimise the prognosis and benefit of
drug therapies for bladder cancer.

The NP°-methyladenosine (m°A) modification of
mammalian mRNAs was discovered in the 1970s and was
identified as the most abundant internal modification in
mRNA [10]. Subsequently, with the rapid development of
high-throughput technologies, research has focused on
epigenetic modifications. m°A influences many biological
processes, not only at the molecular level, such as pre-mRNA
splicing, mRNA degradation, and protein translation
initiation [11, 12], but also at the individual level, such as
development, metabolism, sex differentiation, and
tumourigenesis [13, 14]. With the discovery of the mA
demethylase fat mass- and obesity-associated protein,
studies on other RNA methylation modifications, such as
Nlmethyladenosine (m'A), C’-methylcytosine (m°C), and
N7—methylguanosine (m’G), have emerged [15, 16]. Recent
studies [17-20] have shown that modifications of m°A, m'A,
m°C, and m’G are involved in the initiation and development
of bladder cancer. Hence, the dysregulation of these
RNA modifications may contribute to bladder cancer
development.

In recent years, deep-learning-based models have
emerged and gained popularity among researchers owing to
their ability to automatically extract high-order information
[21]. With the development of bioinformatics technology, a
multitude of prognostic gene signatures, particularly those
derived from messenger RNA, long non-coding RNA, and
microRNAs (miRNA), have been discovered and validated as
potential biomarkers for bladder cancer [22-24]. In this
study, we propose a machine learning-based integrative
approach to establish a consensus RNA modification-based
signature in patients with bladder cancer from independent
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public datasets. This study may help optimise personalised
treatment and improve the clinical prognosis of patients
with bladder cancer.

Materials and methods
Data acquisition and curation

Known RNA modifiers (m°A, m'A, m°C, and m’G) were retrospectively
gathered from published literature and are listed in Supplementary
Table 1. Transcriptome data for 412 bladder cancer and 36 normal
tissues were acquired from The Cancer Genome Atlas Bladder Cancer
(TCGA-BLCA) (https://portal.gdc.cancer.gov/). Patients’ prognostic in-
formation was also curated. Four external validation cohorts,
GSE32548 (n=128) [25], GSE48075 (n=73) [26], GSE69795 (n=38) [27], and
GSE13507 (n=165) [28] were acquired from the Gene Expression
Omnibus (https://www.ncbinlm.nih.gov/geo/). RNA-seq raw read
count data from TCGA-BLCA were transformed into transcripts per
kilobase million with subsequent log-2 conversion. The detailed fea-
tures of the five enrolled cohorts are summarised in Supplementary
Table 2. Copy number variations (CNVs) and somatic mutation profiles
were obtained from the University of California Santa Cruz Xena
database (http://xena.ucsc.edu/).

Interaction analysis of RNA modifiers

The relationships between RNA modifiers at the mRNA level were
analysed using the Pearson correlation method. RNA modifiers were
imported into the STRING website (http://string-db.org/) [29]. Subse-
quently, a protein-protein interaction network combined with enriched
pathways was visualised.

Genetic alteration analysis

Copy number amplifications and deletions were analysed using GISTIC
(version 2.0, Cambridge, USA) [30]. The genomic locations of the CNV
were visualised using the RCircos package (http://www.r-project.org/)
[31]. The frequency of somatic mutations was estimated using the maf-
tools method (https://github.com/PoisonAlien/Maftools) [32].

Consensus clustering analysis

Based on the expression profiles of the prognostic RNA modifiers, a
resampling-based consensus clustering approach was performed on the
TCGA-BLCA cohort using the ConsensusClusterPlus package (http://
www.bioconductor.org/) [33]. The proportion of ambiguously clustered
(PAC) pairs, tracking plot, principal component analysis (PCA), and
consensus heatmap were used to estimate the optimal cluster number
&).

Weighted correlation network analysis (WGCNA)

A co-expression network of TCGA-BLCA samples was constructed using
the WGCNA package (http://www.genetics.ucla.edu/labs/horvath/
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CoexpressionNetwork/Rpackages/WGCNA) [34]. The appropriate soft-
threshold power was determined to satisfy the criteria for a scale-free
network. A weighted adjacency matrix was transformed into a topo-
logical overlap matrix, followed by the generation of the corresponding
dissimilarity. A dynamic tree-cutting method was adopted to merge the
co-expression modules. The module with the strongest association in the
Pearson correlation analysis was chosen as the RNA modification-
related module. Genes in the module with gene significance >0.4 and
module membership >0.6 were defined as RNA modification-related
genes.

Integrative machine learning algorithms for a consensus
signature

To develop a consensus signature with high accuracy and stable efficacy,
we integrated multiple machine-learning algorithms and their combi-
nations, as previously described [35]. Univariate Cox regression was
used to select prognostic RNA modification-related genes in TCGA-BLCA
samples (p<0.05). Subsequently, machine learning algorithms and their
combinations were implemented to fit the prediction signatures using
the leave-one-out cross-validation framework in TCGA-BLCA samples.
Each signature was then analysed in the four validation cohorts, and the
concordance (C)-index values for each signature as well as the mean
C-index of the whole cohort were computed. The signature with the
highest mean C-index was considered optimal.

Functional enrichment analysis

The enrichment levels of specific well-established pathways [36] were
quantified using the Gene Set Variation Analysis (GSVA) package
(http://biocc.hrbmu.edu.cn/TIP/) [37]. Based upon the “c2.cp.kegg.v7.4.
symbols” gene set from the Molecular Signatures Database (http://www.
broadinstitute.org/msigdb) [38], gene set enrichment analysis was per-
formed [37].

Tumour immunity analysis

Seven algorithms were adopted to estimate immune cell infiltration:
TIMER [39], CIBERSORT [40], CIBERSORT-ABS [40], quanTIseq [41],
MCP-counter [42], xCell [43], and EPIC [44]. Immunomodulators
categorised into chemokines, receptors, major histocompatibility
complex, immunoinhibitors, and stimulation factors were also
curated [45].

Immunotherapy response estimation

Homologous recombination deficiency (HRD), which is a common mo-
lecular feature of genomic instability [46], tumour mutational burden
(TMB), which refers to the number of somatic mutations per megabase
of genome sequences [47], single nucleotide variant (SNV) neoantigens
[48], and Tumour Immune Dysfunction and Exclusion (TIDE) [49] were
adopted to estimate ICB responsiveness. The cancer-immunity cycle
contains a series of steps required for the immune-based control of
tumour overgrowth [50]. The activity at each step was computed using
the GSVA package (http://biocc.hrbmu.edu.cn/TIP/) [37].
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Sensitivity analysis of chemotherapy drugs

By performing pRRophetic analysis [51], the half-maximal inhibitory
concentration (ICsp) of the chemotherapeutic drugs was calculated
based on the Genomics of Drug Sensitivity in Cancer cell line expression
spectra [52].

Single-cell transcriptome analysis

Single-cell RNA sequencing profiles of T cells from human bladder tu-
mours were acquired from GSE149652 (n=28) [53]. After quality control,
single cells with >20 % mitochondrial unique molecular identifiers were
removed using the Seurat package (https://cran.r-project.org/web/
packages/Seurat/index.html) [54]. The first 1,500 genes with high vari-
ability were selected for further analysis. T cell clusters were identified
using the FindClusters function, which was mapped onto UMAP. Next,
T cell types were annotated based on known cell markers from the
CellMarker database (http://bio-bigdata.hrbmu.edu.cn/CellMarker/) [55].

Prediction of transcription factors and microRNAs
(miRNAs)

Transcription factor-gene and miRNA interaction networks were
constructed using the NetworkAnalyst online tool (http:/www.
networkanalyst.ca) [56].

Statistical analysis

All of the analyses were conducted using the appropriate R package
(version 4.2.1, https://www.r-project.org/). Continuous data between two
groups were compared using the Student’s t-test or Wilcoxon rank-sum
test. Pearson’s or Spearman’s test was used for correlation analysis.
Survival analysis was conducted using the univariate Cox regression or
Kaplan-Meier method. The area under the curve (AUC) from the
receiver operating characteristic (ROC) curve and C-index were calcu-
lated. Statistical significance was set at p<0.05.

Results

Multi-omics landscape of RNA methylation
modifiers among bladder tumours

To elucidate the features and implications of RNA modifi-
cations in bladder cancer, we conducted a multi-omics
analysis of the RNA modifiers m°A, m'A, m°C, and m’G. Most
of the modifiers displayed remarkable differences in tran-
scriptional expression between normal and bladder cancer
tissues (Figure 1A). Several RNA modifiers occurred
frequently in somatic mutations in bladder cancer, including
TET1 (22.6 %), EIF4G1 (15.5%), ALYREF (13.1%), LRPPRC
(10.7 %), and GEMIN’ (10.7 %) (Figure 1B). Widespread CNVs
of RNA modifiers were also detected (Figure 1C and D). For
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instance, EIF4G1 and EIF4E2 showed the highest copy
number amplification and deletion frequencies, respec-
tively. We investigated the notable interactions between
RNA modifiers at both the mRNA and protein levels, for
example, the LRPPRC and GEMINS5 relationship and the
CYFIP1 and EIF4G1 relationship (Figure 1E and F). Addi-
tionally, RNA modifiers participated in the p53 signalling
pathway, spliceosome formation, and RNA transport,
revealing their importance in bladder cancer.

RNA modification-based consensus clusters
in bladder cancer

Based on the univariate Cox regression results of the tran-
scriptomes of prognostic RNA methylation modification
factors (p<0.05), we combined the SNP and CNV data of
corresponding genes (Figure 1G) to perform a consistent
clustering analysis of multi-omics data, and divided the
bladder cancer samples into categories 2-9. Consensus
clustering analysis was conducted with a similarity
threshold of 97 %. Two clusters had the lowest PAC values,
reflecting the near-perfect stable partitioning of the samples
at k=2 (Figure 1H). Moreover, the tracking plot, PCA, and
consensus heatmap displayed a relatively stable classifica-
tion of the samples at k=2 (Figure 1I1-K). Remarkable tran-
scriptional heterogeneity in prognostic RNA methylation
modifiers was observed in the two consensus clusters
(C1 and C2), with mostly higher expression in C2 than in C1
(Figure 1L). Hence, C2 tumours have more abundant RNA
modifications than C1 tumours. Additionally, the heteroge-
neity in prognosis was evaluated in the two clusters. As
illustrated in Figure 1M, the OS outcomes were poorer in C2
than in C1.

Establishment of an RNA modification-
related consensus signature

Before conducting the WGCNA analysis, we used a clus-
tering method to remove outlier sample points. We first
selected a cut tree height to remove the outlier sample
points, then set the cut tree height to 120,000 and used the
branches below this cut tree height. WGCNA was per-
formed to build a co-expression network (Figure 2A). The
soft-threshold power was selected as 15 (scale-free R?=0.85)
to meet scale-free network standards (Figure 2B). Next, the
five co-expression modules were merged (Figure 2C). Cor-
relation analysis of the modules with RNA modification
classification was performed. The turquoise module
showed the strongest association with the RNA
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modification classification (r=0.66 and p=9e-53) (Figure 2D).
In this module, the correlation coefficient of gene signifi-
cance with module membership was 0.86, suggesting the
excellent quality of the RNA modification-related
co-expression module establishment. Genes in the tur-
quoise module with gene significance >0.4 and module
membership >0.6 were regarded as RNA modification-
related genes (Figure 2E). Among them, 176 genes were
linked to patient prognosis (Supplementary Table 3), which
were then subjected to a machine learning integrative
procedure to construct a consensus signature. In this study,
74 predicted signatures were fitted using a leave-one-out
cross-validation framework. Next, the C-index of each
signature was computed for the four validation cohorts:
GSE13507, GSE32548, GSE48075, and GSE69795 (Figure 2F).
To screen the important features of the random forest al-
gorithm, we used a multi-factor Cox regression model to
construct a prognostic model. Intriguingly, the best pre-
diction signature was random survival forest (RSF) with
seven feature variables (PTPN6, AKR1B1, TNFRSF14, OAS1,
ANXA1, SPINK1, and CCNL2), achieving the highest C-index
of 0.656 in mean values of the four cohorts.

The RNA modification-related consensus
signature is superior to clinical variables in
estimating prognosis

The risk score for each patient with bladder cancer was
computed based on the expression of RSF-derived feature
variables, weighted by the corresponding regression
coefficients acquired from the Cox model. Subsequently,
patients were classified into low- or high-risk groups
according to the median risk score. Low-risk patients had
more favourable OS outcomes than high-risk patients in the
TCGA-BLCA cohort (Figure 3A), which was externally
confirmed in the four validation cohorts (Figure 3B-E). ROC
curves were plotted to assess the discrimination of the
consensus signature, with one-, three-, and five-year AUC
values exceeding 090 in the TCGA-BLCA cohort
(Figure 3F-H). Discrimination was confirmed in the valida-
tion cohorts. The C-index was >0.9 in the TCGA-BLCA cohort,
and >0.6 in all validation cohorts (Figure 3I). These indicators
demonstrated that the consensus signature had stable and
reliable efficacy in prognostication. Furthermore, we
compared the efficacy of the consensus signature with con-
ventional clinical parameters (age, sex, stage, and grade).
The detailed clinical features are displayed in Table 1. The
consensus signature presented notably superior accuracy in
prognosis estimation (Figure 3] and K).
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Figure 1: Multi-omics landscape of RNA modifiers in bladder cancer, and RNA modification-based consensus clusters. (A) Expression levels of RNA
modifiers in bladder cancer and normal specimens. (B) Somatic mutation of RNA modifiers across bladder cancers. Mutation frequency is shown in the
right panel, and mutation classification is marked by a unique colour. (C) Genomic location of RNA modifier copy number variations (CNVs). The numbers
in the outermost circle represent chromosomes, while the innermost circle displays RNA modifiers. (D) CNV frequency of RNA modifiers across bladder
cancers. Blue, copy number gain; green, copy number loss. (E) Correlation of RNA modifiers among samples. Red, positive association; blue, negative
association. (F) Protein-protein interaction network based on RNA modifiers, and enrichment of Kyoto Encyclopedia of Genes and Genomes pathways.
(G) Univariate Cox regression results of RNA modifiers with patient survival. Yellow, protective factor; blue, risk factor. (H) Ambiguously clustered pair
(PAC) values at diverse optimal cluster number (k) values. The lowest PAC indicates the optimal number of clusters. (I) Tracking plot of the classification of
samples under distinct k values. The smaller number of samples displaying different colours under distinct k values demonstrates relatively stable
clusters. (J) Principal component analysis for the transcriptional difference of two clusters. (K) Consensus heatmap at k=2. White to blue indicates no
clustering to always clustering. (L) Expression of prognostic RNA modifiers across the two clusters. (M) Survival probability of the two clusters.
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Figure 2: Integrative establishment of an RNA modification-related consensus signature. (A) Sample dendrogram (upper) and heatmap of the two RNA
modification clusters (lower). (B) Scale independence and mean connectivity values under a gradient of soft-threshold powers. (C) Gene dendrogram
(upper) and co-expression modules based on expression similarity of genes (lower). (D) Relationships of co-expression modules with RNA modification
classification. Correlation coefficient, and p-value are placed on box. (E) Relationships of module membership in the turquoise module with gene
significance for RNA modification classification. (F) Multiple prediction signatures using the leave-one-out cross-validation framework and calculation of
the concordance-index of each signature in the four validation cohorts.
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Figure 3: The RNA modification-related consensus signature shows superiority to clinical variables in prognosis estimation. (A-E) Overall survival
probability of low- and high-risk groups in the TCGA-BLCA, GSE32548, GSE48075, GSE69795, and GSE13507 cohorts. (F-H) One-, three- and five-year area
under the receiver operating characteristic curve values in the above cohorts. (I) Concordance (C)-indexes of the signature in the above cohorts. (J, K)
Comparison of C-indexes of the signature with those of traditional clinical parameters in the TCGA-BLCA, and GSE32548 cohorts.

Table 1: The comparison of clinical features between primary tumours Heterogeneity in genetic alterations, and
and normal tissues. . .
signalling pathways between low- and
Primary tumour  Solid tissue normal  p-Value high'riSk tumours

Rge (mean, SD) 68_10(10.45182) 69.52 (11.2203) 0531 Bladder cancer has been demonstrated to have wide-
Sex=male, % 304 (73.8) 12 (52.2) 0.043 Spread genomic instability arising from defectsin the DNA
Grade, % 0492 damage response and/or enhanced replication stress [57].
Unknown 3(0.7) 0(0.0) These alterations facilitate the clonal evolution of tumour
High grade 388 (94.2) 23(100.0 cells by accumulating driver aberrations, notably CNV
Low grade 21 (5.1) 0(0.0) .
stage, % 0.801 and mutation [58]. Molecular CNV profiles were notably
Unknown 2(0.5) 0(0.0) heterogeneous between high-risk tumours (98 aberra-
Stage I 2(0.5) 0(0.0) tions, comprising 60 amplifications covering 3795 genes
Stage II 131(31.8) 5(21.7) and 38 deletions covering 5255 genes) and low-risk tu-
Stage III 141(34.2) 8(348) mours (93 aberrations, comprising 49 amplifications
Stage IV 136(33.0) 10635 covering 2965 genes and 44 deletions covering 7163 genes)
0S=1, % 181 (43.9) 15(65.2) 0.075

(Figure 4A-D). Extensive heterogeneity in somatic
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mutations was also detected in the two groups; Figure 4E In addition to the molecular features, the link between
shows the most prevalent mutational signatures in the the signature and the pathways that are key drivers of
samples. bladder cancer was investigated. Strikingly, risk score
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presented on the rise with the increase of stromal activity
pathway, e.g., pan-fibroblast TGFB response signature
(Pan-F-TBRS) and epithelial-mesenchymal transition (EMT)
as well as DNA damage response pathways [59] (such as
homologous recombination, mismatch repair, and nucleo-
tide excision repair) (Figure 4F). Further investigation
revealed that multiple tumourigenic pathways (cell cycle,
extracellular matrix receptor interaction, focal adhesion,
pathways in cancer, and Wnt signalling pathways) were
remarkably enriched in high-risk tumours, with the notable
enrichment of metabolism pathways (arachidonic acid
metabolism, ascorbate and aldarate metabolism, drug
metabolism cytochrome P450, linoleic acid metabolism, and
porphyrin and chlorophyll metabolism) in low-risk tumours
(Figure 4G and H), establishing the heterogeneity in pathway
activity between low- and high-risk tumours. The signatures
were computed as follows:

Risksignature = Y (B; x exp;)

where B; denotes the coefficient of LASSO regression for the
ith gene and exp; denotes the expression value of the ith
candidate gene.

Heterogeneity in antitumour immunity
between low- and high-risk tumours

The immune cell infiltration was quantified using multiple
analytical algorithms to ensure unbiased results. Interest-
ingly, CD8+ T cells and activated natural killer (NK) cells
were relatively more abundant in low-than in high-risk
tumours (Figure 5A). In addition, a higher expression of
common immune checkpoints (e.g. PDCD1 [60] and CD96
[61]) and immunostimulators (e.g. TNFRSF14, TNFSF13, and
KLRK1) was detected in low-risk tumours (Figure 5B). These
data demonstrated a difference in antitumour immunity
between the two groups.

Distinct responses of low- and high-risk
groups to ICB and commonly applied
chemotherapeutic agents

In accordance with the lower HRD score and higher TMB and
SNV neoantigens (Figure 6A—C), it was predicted that low-
risk patients would exhibit greater responses to ICB than
high-risk patients. Interrupting one or more events within
the cancer-immunity cycle facilitates escape from immu-
nosurveillance. The RNA modification-related consensus
signature-derived risk score displayed positive connections
to several events, including the release of tumour antigens
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and the recruitment of basophils, eosinophils, neutrophils,
and Th17 cells, decreased as the recruitment of Th2 cells and
regulatory T (Treg) cells increased (Figure 6D), reflecting the
associations of the signature with tumour responsiveness to
ICB. The TIDE algorithm was also employed for ICB response
estimation. Low-risk samples had higher dysfunction scores
and lower exclusion and TIDE scores, indicating that this
population was more likely to respond to ICB (Figure 6E-H).
Together with the above-mentioned indicators, low-risk
patients may benefit from ICB therapy.

Additionally, the ICs, values of the commonly used
chemotherapeutic agents were estimated. High-risk tu-
mours presented remarkably lower ICs, values for cisplatin
and paclitaxel than low-risk tumours (Figure 6I and ]), sug-
gesting that high-risk patients are more likely to be suitable
for chemotherapy.

Specific expression of genes from the RNA
modification-related consensus signature in
distinct T lymphocytes of bladder tumours

Next, we focused on the expression of genes from the RNA
modification-related consensus signature in diverse intra-
tumoural T cells isolated from bladder tumours. In total,
30,604 T lymphocytes from seven patients with bladder
cancer were clustered into 18 cell clusters (Figure 7A). Six
T cell types were marked in accordance with known
marker genes: conventional CD4+ T (CD4Tconv), CD8+ T
(CD8T), exhausted CD8+ T (CD8Tex), NK, proliferative T and
Treg cells (Figure 7B and C). AKR1B1, ANXA1, CCNL2, OAS1,
PTPN6, and TNFRSF14 were expressed in all T cell types,
whereas SPINKI was specifically expressed in CD4Tconv,
CD8T, CD8Tex, and Treg cells (Figure 7D-]), indicating that
these genes may mediate T cell-based antitumour
immunity.

Transcriptional and post-transcriptional
control of genes from the RNA modification-
related consensus signature

The transcriptional and post-transcriptional regulation of
genes from the RNA modification-related consensus signa-
ture was further evaluated. Figure 8A illustrates transcrip-
tional factors that potentially regulate the expression of
AKR1B1, ANXA1, CCNL2, OAS1, PTPN6, SPINK1, and
TNFRSF14. In addition, AKRIB1, ANXA1, CCNL2, OAS1, and
PTPN6 were post-transcriptionally modulated by miRNAs
(Figure 8B-D).
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Figure 6: Distinct responses of low- and high-risk patients to immune checkpoint blockade and commonly used chemotherapeutic agents. (A-C)
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Figure 7: Evaluation of the expression of genes from the RNA modification-related consensus signature in distinct T cells of blader tumours. (A)
Clustering analysis of 30,604 T lymphocytes from seven patients with bladder cancer. (B) Identification of T cell types based on known marker genes. (C)
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Figure 8: Transcriptional and post-transcriptional control of genes from the RNA modification-related consensus signature. (A) Transcriptional factor-
gene network. Circle represents genes from the RNA modification-related consensus signature, while rhombus represents transcriptional factors. (B-D)
MicroRNA (miRNA)-gene networks. Circle indicates genes from the signature, while square indicates miRNAs.
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Discussion

To overcome the limitations of multigene signatures in
underutilised data, inappropriate machine learning
methods, and lack of rigorous validation in various cohorts
and clinical trials, we adopted integrated multiple machine
learning algorithms and their combinations to establish an
RNA modification-related consensus signature [35, 62]. In
this study, based on five independent cohorts, the best pre-
diction signature was RSF with seven feature variables
(PTPN6, AKR1B1, TNFRSF14, OAS1, ANXA1, SPINKI1, and
CCNL2), achieving the highest mean C-index of 0.656. This
signature had the highest C-index in mean values of the four
validation cohorts. Subsequently, according to the perfor-
mance of the RSF-derived feature variables weighted by the
corresponding regression coefficients acquired from a Cox
model, patients with bladder cancer were classified into
low- or high-risk groups according to the median risk score.
Low-risk patients exhibited more favourable OS outcomes,
ROC curves, and C-index than high-risk patients in the
in-house and validated cohorts, demonstrating that the
consensus signature had stable and reliable efficacy in
prognostication.

Several clinical parameters affect prognostic outcomes
in bladder cancer patients. While the incidence of bladder
cancer is more significant in men, women have higher
mortality than men, which results from disparate exposure
to risk factors and the difference in importance of the sex
steroid hormone pathway [63]. AJCC staging has long served
as a clinical guide in prognostic management and risk
assessment, but inevitable limitations due to the heteroge-
neity of bladder cancer may lead to potential undertreat-
ment or overtreatment [6]. This study compared the efficacy
of the consensus signature with that of conventional clinical
parameters (age, sex, stage, and grade). The consensus
signature presented notably superior accuracy in prognostic
estimation according to the C-index assessment, further
suggesting that it could act as a potential predictive marker
for evaluating the prognosis of bladder cancer in clinical
practice.

Over the last few decades, platinum-based chemo-
therapy has been regarded as the first-line treatment for
eligible patients with bladder cancer, and the objective
response rate of this therapeutic regimen is approximately
65-75 % [3]. ICBs, such as programmed death/programmed
death-ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associ-
ated protein 4, and indoleamine-2, 3-dioxygenase-1, can
promote the immune system to recognise and suppress the
basic molecular targets of tumour cells [64]. In the USA,
PD-1/PD-L1 targeted drugs including atezolizumab and

DE GRUYTER

pembrolizumab, have been approved as first-line therapy
for platinum-ineligible patients with bladder cancer and
serve as maintenance therapy for those who are responsive
to platinum [65]. However, only a small proportion of
patients with bladder cancer benefit from ICB therapy. In
this study, indicators such as HRD, TMB, SNV, and TIDE were
used to estimate ICB responsiveness. At the same time, ICsq
was used to evaluate the sensitivity to chemotherapy drugs.
The results showed that low-risk patients might benefit from
ICB, and high-risk patients are more likely to be suitable for
chemotherapy, demonstrating that the consensus signature
is an effective biomarker to predict patient responsiveness
to medication and is helpful in guiding clinical therapeutic
decision-making.

Based on multi-omics data, we further investigated the
mutation and CNV features of the RNA modification-related
consensus signature. Bladder cancer has been demonstrated
to have widespread genomic instability arising from defects
in the DNA damage response and/or enhanced replication
stress [57]. This study discovered that molecular CNV profiles
and somatic mutations were notably heterogeneous
between high- and low-risk tumours, which could account
for their different prognoses. In addition to the molecular
features, the link between the signature and the pathways
that are key drivers of bladder cancer was investigated. The
results showed that the risk score was positively correlated
with stromal activity pathways. The dysregulation of the
Pan-F-TBRS and EMT signalling systems is linked to the
pathogenesis of cancers, such as cancer progression, che-
moresistance, invasiveness, and metastasis [66, 67]. Further
investigation revealed that multiple tumourigenic pathways
were remarkably enriched in high-risk tumours, with a
notable enrichment of metabolic pathways in low-risk
tumours. These results may explain the poor prognosis in
high-risk patients.

CD8+ T and NK cells are components of the lymphoid
compartment in tumours [7]. A previous study demonstrated
that high CD8+ T cell infiltration generally predicts a better
immunotherapy response [68]. In this study, CD8+ T cells
and activated NK cells were relatively more abundant in
low-than in high-risk tumours. Additionally, a higher
expression of common immune checkpoints and immunos-
timulators was detected in low-risk tumours. These results
indicate that low-risk patients tend to have a better immune
response, which is consistent with our conclusions. The
results showed that the RNA modification-related consensus
signatures, including AKR1B1, ANXA1, CCNL2, OAS1, PTPNE,
SPINK1, and TNFRSF14, were specifically expressed in
distinct T lymphocytes of bladder tumours at the single-cell
level and were transcriptionally and post-transcriptionally
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modulated, indicating that these genes mediate T cell-based
antitumour immunity and may be potential targets of
immunotherapy.

This study has some limitations. First, our study was
retrospective; further prospective studies and basic research
are essential to supplement the relevant details of this study.
Second, biased results are inevitable because the data
analysis was based on public databases. Therefore, addi-
tional data from patients with bladder cancer are required
to verify the practicality and accuracy of the consensus
signature. Finally, the functions of most genes derived from
the consensus signature remain unclear and need to be
further explored through in vivo and in vitro experiments.

Conclusions

We established a robust and powerful consensus signature
for evaluating the prognosis and benefits of ICB and
chemotherapy, based on a multitude of bioinformatics and
machine learning algorithms. This consensus RNA
modification-based signature may be a reliable and useful
tool for improving clinical decision-making in patients with
bladder cancer.
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