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Abstract

Purpose: Social conformity theory emphasizes normative pressure as a drive of
collective behavior. However, how these dynamics operatewithinweak-tie networks
on social media remains underexplored. Platform-specific affordances such as X’s
(formerly Twitter) network structures may reshape these dynamics in public health
communication. Using COVID-19 vaccine-related discussions on X (formerly Twitter),
this study investigates how networked influence reconfigures the informational and
normative social influence during health crises.
Design/methodology/approach: Integrating computational methods, Latent
Dirichlet Allocation (LDA) topic modeling, sentiment analysis, and network analysis,
this study analyzes 5.5 million tweets about COVID-19 vaccines, collected worldwide
via the Twitter Academic API betweenNovember 3, 2021, andMay 5, 2022, to examine
how user roles (influencers vs. general users), tie strength, and content type (factual
vs. opinion-based) shape retweet patterns. Latent Dirichlet Allocation (LDA) was
applied to uncover thematic structures in vaccine-related discussions, while
TextBlob sentiment analysis quantified the subjectivity of tweets to differentiate
factual from opinion-based content. Network analysis using iGraph identified
influencers based on degree and betweenness centrality, enabling the classification
of “authoritarians,” “accelerators,” and “connectors.”
Findings: Weak-tie connections drive information diffusion, with general users’
factual tweets shared more frequently than influencers’. Normative social influence
from accelerators, connectors, or authoritarian accounts is constrained by X’s
character limits and decentralized network structure. Opinion-based content,
regardless of author status, receives fewer retweets, indicating users prioritize
accuracy over subjective narratives.
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Practical implications: Public health campaigns should prioritize concise, evidence-
based messaging tailored to X’s decentralized networks. Leveraging general users as
“fact-checking” nodes and minimizing opinion-laden content can amplify reach.
Strategies to counter misinformation must account for platform-specific limitations
on normative influence.
Social implications: The findings underscore how digital platforms democratize
health communication by empowering non-expert users to shape discourse, while
challenging top-down public health messaging. This duality highlights opportunities
to bridge information gaps in underserved communities throughweak-tie networks.
Originality/value: The first study to dissect social conformity mechanisms on X
through a tripartite computational lens, revealing how platform affordances disrupt
traditional hierarchies of influence. It redefines “influencer” roles in public health
contexts, demonstrating that weak ties and factual content supersede normative
pressure in driving engagement.

Keywords: large-scale data; X/Twitter; informational social influence; normative
social influence; social conformity; public health communication

1 Introduction

Vaccine hesitancy, defined as the “delay in acceptance or refusal of vaccines despite
availability” (MacDonald 2015, 4163), remains a persistent public health challenge
worldwide (Dodd et al. 2021; Kreps et al. 2020; Webb Hooper et al. 2021). Social media
has become a primary source of health information and a critical channel for
disseminating prevention guidelines (Neely et al. 2021). Among these platforms,
Twitter (now X) stands out as a major conduit for individuals to access and interact
with weak ties, acquaintances, colleagues, and distant peers, while sharing opinions
and experiences about vaccines (Valenzuela et al. 2018). These weak-tie interactions
often provide novel information not readily available through strong ties, such as
family and close friends (Krämer et al. 2021; Valenzuela et al. 2018). Although weak
ties are typically perceived as offering less emotional and informational support
compared to strong ties (Krämer et al. 2021; Putnam 2000), research by Bakshy et al.
(2012), Gray et al. (2013) and Ellison et al. (2014) suggests weak ties can be particularly
effective in facilitating informational support. This contrast raises important ques-
tions about how influence operates in large, loosely connected online networks.

Social conformity, a process by which individuals adjust their beliefs or
behaviors to alignwith group norms (Asch 1951; Deutsch andGerard 1955), provides a
theoretical lens for examining these dynamics. Traditional conformity research has
focused on the role of strong ties groups, where norms are reinforced through close,
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repeated interactions. However, digital platforms like X (formerly Twitter) amplify
weak-tie communications through open networks, algorithmic amplification, and
rapid information flows (Granovetter 1973; Krämer et al. 2021; Valenzuela et al. 2018).
This structural environment may alter the way normative and informational
influence shape public attitudes, particularly in relation to vaccine hesitancy (Dodd
et al. 2021; Kreps et al. 2020; Webb Hooper et al. 2021).

Despite this insight, our understanding of the normative influence of weak ties
remains limited. This study has two primary aims. First, at a general level, it seeks to
advance understanding of how weak-tie digital networks reconfigure the mecha-
nisms of social conformity, contributing to broader theories of online influence.
Second, at a specific level, it uses vaccine hesitancy as a case study to investigate
how normative and informational influences operate in weakly connected online
ecosystems. By focusing on weak-tie ecosystems on Twitter during a period when
vaccine debates were highly visible, this study provides empirical insights into how
digital social influence contributes to the diffusion of health-related norms and
behaviors.

2 Literature review

2.1 Weak ties and network centrality in social networks

In social networks, weak ties, defined as social contacts with looser connections
(Kadushin 2012), serve as bridges connecting separate clusters of actors, enabling
novel information to spread across communities (Granovetter 1973), and under-
pinning bridging social capital in social networks (Putnam 2000). Network centrality
metrics formalize these roles: out-degree centrality (the number of outgoing
connections a node has) reflects a user’s broadcast capacity, while betweenness
centrality (how often a node lies on shortest paths between others) identifies its role
as a bridge between groups (J. Zhang and Luo 2017). For example, a user with high
out-degree (an “accelerator”) can share content to many contacts, and one with high
betweenness (a “bridger” or “connector”) links otherwise disconnected audiences.
Empirical studies confirm that high-degree nodes tend to be influential in infor-
mation diffusion: one analysis of Twitter data found users with high degree
centrality were more likely to spread information widely (Gupta et al. 2023; Hansen
et al. 2020). In public health contexts, these weak-tie bridge roles can overcome echo
chambers by carrying messages across social divides (Cava et al. 2023; Valenzuela
et al. 2018).

During the COVID-19 pandemic, studies of vaccine discourse illustrate these
network dynamics. For example, one multilayer Twitter network analysis found
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distinct pro- and anti-vaccine communities with very different structures: anti-
vaccination users had much denser, more cohesive ego-networks than pro-vaccine
users (Bonifazi et al. 2022). Similarly, a study of COVID-19 vaccine discussions on
Weibo (a Twitter-like platform in China) found low overall echo-chamber effects:
identified opinion leaders and “structural hole spanners” (bridging nodes) acted as
bridgers connecting diverse vaccine topics and attitudes (Wang et al. 2022). These
users linked disparate groups of users and vaccine viewpoints, exemplifying the
Granovetter (1973) hypothesis that weak ties facilitate novel information flow. In line
with this, research on Japanese Twitter data showed that a user’s community
membership strongly predicted their opinion shift: users embedded in a pro-vaccine
community were significantly more likely to adopt pro-vaccine stances over time,
and similarly for anti-vaccine communities (Q. Wu et al. 2025).

This study integrates these frameworks to examine the role ofweak-tie networks
in shaping health communication dynamics on Twitter. Using public health
discourse –vaccine-related discussions during the COVID-19 crises, this research
explores how weak-tie power, which is measured through network centrality met-
rics, shapes the mechanisms of informational and normative social influence in
health-related information dissemination.

Based on the literature review, it was hypothesized that weak ties (e.g.,
acquaintances, colleagues, or distant connections) enable more efficient informa-
tion diffusion and bridging across communities compared to strong ties (e.g.,
family, close friends). Specifically, users with high out-degree centrality (acceler-
ators or amplifiers) and high betweenness centrality (bridgers) are theorized to
leverage weak-tie networks to accelerate the spread of information and connect
fragmented subgroups, thereby overcoming echo chambers and expanding the
reach of critical messaging (Rodrigues 2019). High out-degree centrality reflects a
user’s capacity to amplify reach and distribute information widely, which aligns
with the characteristics of weak ties as bridges for information (Granovetter 1973).
This bridging function exemplifies weak-tie power, enabling novel information to
traverse disconnected networks, which is consistent with Granovetter’s (1973)
theory. Therefore, the following hypotheses were proposed:

H1: Tweets by Twitter users with greater weak-tie power (as measured by network
centrality) were retweeted more frequently than tweets by Twitter users with smaller
weak-tie power.

H1a: Tweets by Twitter users with greater accelerating weak-tie power were retweeted
more frequently than tweets by Twitter users with smaller weak-tie accelerating
power.
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H1b: Tweets by Twitter users with greater bridging weak-tie power were retweeted
more frequently than tweets by Twitter users with smaller weak-tie bridging power.

2.2 Social influence and conformity on social media

Conformity theory, proposed by Solomon Asch based on a series of conformity
experiments (Asch 1951, 1955), refers to individuals yielding their beliefs and be-
haviors to a group due to two different types of pressures (Crutchfield 1955).
Normative social influence involves conforming to fit in and gain social acceptance
(Sherif 1936; Sumner 1906) while informational social influence involves conforming
because others are presumed to have accurate information (Festinger et al. 1950;
Hardin and Higgins 1996).

On social media, these social pressures aremade explicit through visible cues. In
normative social influence, users retweet or like content to enhance their social
image or avoid rejection by their peers (Ajzen and Fishbein 1980), aiming to mitigate
risks tied to deviating from perceivedmajority behaviors (Latané andWolf 1981). For
instance, trending hashtags and high retweet counts signal majority norms, nudging
users to adopt prevailing opinions or behaviors. This process amplifies specific
narratives, reinforces (or challenges) existing social norms, as well as lays the
foundation for the formation of new ones (Young and Jordan 2013). The visibility of
these norms creates a feedback loop that further drives their adoption (Khasawneh
et al. 2021; McGraw 2020; Samet 2020). Consequently, widely shared content, even if
unverified, gains perceived validity through sheer exposure, as users interpret
popularity as a proxy for credibility (H. Lee and Oh 2017). This dynamic extends to
information-sharing behaviors (Yoo et al. 2014). In informational influence, users
share what they perceive as credible or useful information, often relying on infor-
mational cues from perceived experts, opinion leaders, or popular figures (Cialdini
and Goldstein 2004; Sherif 1936).

Research shows that on Twitter, many users primarily use the platform to see
“what others are saying”, indicating the importance of observing social norms
(McClain et al. 2021, 9). As a result, tweets with higher retweet volumes are perceived
as more influential, reinforcing their propagation (Kapidzic et al. 2022). In light of
previous literature on social conformity, and informational and social normative
influence, the following hypothesis was proposed:

H2: Tweets emphasizing informational content (perceived credibility) will be more
likely to be retweeted than opinion-based content (alignment with dominant norms).
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Social conformity theory emphasizes the role of group identity and social
comparison in shaping influence. Individuals tend to conform to peers they perceive
as similar (Deutsch and Gerard 1955), seeking validation by aligning their opinions or
behaviors with those of others (Festinger et al. 1950; Hardin and Higgins 1996). On
Twitter, these mechanisms operate at scale: the platform facilitates collaborative
information-seeking and norm negotiation, particularly in health-related contexts
where users collectively construct shared understandings (Samet 2020). During
public health crises, hashtags like #PublicHealth aggregate discussions at unprece-
dented scales, amplifying both evidence-based guidance and contested narratives.
Such dynamics highlight the interplay of informational (evidence-driven) and
normative (approval-seeking) social forces in shaping health-related perceptions
(McGraw 2020). However, Twitter’s structural features – its character limits, open
networks, and immediacy – tend to privilege concise, factual content over nuanced
opinions, suggesting that informational influence may dominate in health contexts.
At the same time, opinion-driven tweets may align more closely with normative
pressures, appealing to users’ desire to fit in with group norms rather than to verify
facts. Therefore, extending H2 and informed by conformity theory, the utility of
Twitter, and the usage patterns of U.S. adult users, the following hypotheses were
formulated:

H2a: Tweets emphasizing informational content will exert stronger informational
social influence and will be retweeted more frequently than opinion-based tweets.

H2b: Tweets emphasizing opinion-based content will exert stronger normative social
influence and be retweeted less frequently than informational tweets.

2.3 Influencers and networked social influence

Social media influencers, distinct from traditional opinion leaders who derive
authority from institutional credentials (Rogers and Cartano 1962), leverage
platform-specific strategies like curated self-presentation and parasocial engage-
ment to shape public discourse (Archer et al. 2021; Kamiński et al. 2021). In the context
of health topics, influencers range from medically trained communicators to
celebrities discussing health. Those who incorporate factual, evidence-based
messaging can exert strong informational influence, while those acting as “cura-
tors” of norms may reinforce social norms around behaviors by weaving health into
personal narratives (Thorson and Wells 2016). Bridging scientific information and
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public audiences, influencers shape perceptions of both credibility and acceptability
through the reinforcement of communal values (Pöyry et al. 2022).

Network centrality further amplifies influencers’ impact. They often occupy the
high-centrality roles: an influencer with many followers (high out-degree) or one
who bridges multiple interest groups (high betweenness) can disseminate content
widely across the network (Rodrigues 2019). Because of these positions, influencers
are likely to amplify both types of social influence, as they control information flow
and decision-making in fragmented networks (Hanneman and Riddle 2005; J. Lee et
al. 2013). Research has shown that users with many outgoing links indeed have more
power to spread information (Mochalova and Nanopoulos 2013), and highly con-
nected “third-party” accounts can connect disparate Twitter communities (Enke and
Borchers 2019). Retweets, often interpreted as signals of credibility, reflect this dy-
namic, where users disproportionately share concise, factual content over opinion-
based narratives (Saito et al. 2015).

Given the substantial body of previous literature highlighting the powerful
impact of influencers in disseminating (or promoting) scientific information on so-
cial media, it was posited that influencers possess stronger weak-tie power capa-
bilities, and consequently, exert a heightened degree of social influence upon other
Twitter users. Considering their unique capacity to merge informational authority
with networked reach, the following hypotheses were formulated:

H3: Influencers’ tweets characterized by greater informational content and weak-tie
bridging power, will be retweeted more frequently than those by regular users.

Zhang et al. (2017) demonstrated that a small fraction of highly engaged users,
with a significant “user engine” value, can wield substantial influence on Twitter.
Four categories of Twitter users were identified: information creators (professional
or non-professional mass media accounts), information promoters (famous or vital
individuals), information supporters (ordinary users whose values of user engine
are large and focus on the event all the time), and information consumers (passive
users who consume and retweet messages). Wu (2024) classified Twitter influencers
as “initiators” who create original tweets; “accelerators” who provide “ignition po-
wer” through likes, retweets, and comments (based on degree of centrality); and
“connectors”who serve as connective communicative tissues (based on betweenness
centrality). While informational influence is widespread, Promoters (Accelerators
and Bridgers or Connectors) uniquely shape normative dynamics by curating and
legitimizing health-related norms through networked visibility. Their structural
positions – bridging fragmented audiences or amplifying content to broad net-
works – enable them to reinforce scientific consensus or challenge misinformation
(Saito et al. 2015; Nisbet and Kotcher 2009). Connectors, in particular, leverage weak-
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tie power to disseminate norms across disconnected communities, aligning with
Granovetter’s (1973) theory of weak ties as conduits for novel information.

Even though informational influence is common among social media influ-
encers, information creators (initiators) and information promoters (accelerators
and connectors), may play a crucial role in curating social norms and are more
powerful in normative social influence. Specifically, information promoters (or
accelerators and connectors) are the most active Twitter users in curating social
norms. Therefore, the following hypotheses were proposed:

H3a: Tweets by information promoters – famous or vital individuals who provide
ignition power through likes, retweets, and comments – will exert stronger informa-
tional social influence and will be retweeted more than tweets by other Twitter users.

H4: Tweets by influencers will contain more opinion-based narratives and exert
stronger normative social influence than tweets by regular users.

H4a: Tweets of users with greater weak-tie power will exert stronger normative social
influence than those of other Twitter users and will be retweeted more (Figure 1).

Figure 1: User, tweet type, and social influence on Twitter.
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3 Methods

3.1 Data collection

APython script utilizing the “Requests” library (Reitz et al. 2014) collected a sample of
the Twitter stream posts around the COVID-19 vaccine via the Twitter search aca-
demic Application Programming Interfaces (API) v2. The Twitter API enabled the
extraction of tweets thatmatch search criteria such as keywords, hashtags, locations,
and named places, among others. To gather relevant tweets on the public’s attitudes
toward the COVID-19 vaccination, hashtags such as “pfizervaccine”, “modern-
avaccine”, “Johnson&Johnsonvaccine”, and “COVID-19 vaccine” were used as search
terms in the crawler. A total of 5,554,372 tweets were collected from November 3,
2021, to May 5, 2022.

For the purpose of this study, the analysis focused exclusively on retweets rather
than quote tweets, original tweets, or replies. Retweets provide a direct and quan-
titative indicator of social influence, as they reflect a user’s decision to endorse,
propagate or conform to a message shared by another user. Prior research shows
that retweet counts serve as a visible social cue that signals both informational and
normative social influence (Kapidzic et al. 2022). Non-English tweets were removed
using the Python package “Langdetect” (Rodrigues 2019), resulting in a final sample
of 4,625,086 English retweets from users worldwide for analysis. Users’ locations
were not filtered, as many did not provide this information.

3.2 Data analysis

First, Latent Dirichlet Allocation (LDA), a three-level hierarchical Bayesian unsu-
pervised machine learning model, was utilized to uncover the hidden thematic
structures –main topics – within the sampled tweets discussing COVID-19 vaccines.
Each topic was modeled as an infinite mixture of underlying topic probabilities (Blei
et al. 2003). The processing involved processing steps such as stop word removal,
lemmatization, and tokenization. A dictionary was then created to catalog words
frequencies, and text data were converted into a document-term matrix. The Lda-
Model from the Gensim Python package was selected for accuracy in identifying ten
distinct topics (Tijare and Rani 2020).

In the next step, to identify influencers and measure users’ capacity for social
influence, network analysis was executed using the igraph library in Python
(Hermida 2010; Himelboim 2017; Kolaczyk and Csárdi 2014). Network analysis is a
valuable tool for identifying influencers in large, loosely organized groups of users
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and verifying truthful and reliable information in social network communication
(Hermida 2010; Himelboim 2017). For this study, network analysis was executed to
measure users’ index of influence (degree of centrality and betweenness central-
ity), which are widely recognized measurements for social networks (J. Zhang and
Luo 2017). Degree centrality counts a node’s neighbors in a network, to measure
individuals’ capacity to connect with a network (Gupta et al. 2023; Hansen et al.
2020). No weights were added in the index of influence computation.

The top 1,000 Twitter users with the top in-degree, out-degree, and betweenness
centrality were identified as influencers and categorized into three categories:
“authoritarians”, who received the most attention and gained popularity; “acceler-
ators”, who provided accelerating weak-tie power through likes, retweets, and
comments (based on the degree of centrality); and “connectors”, who acted as con-
nective communicative tissues and provided bridging weak-tie power (based on
betweenness centrality) (Nisbet and Kotcher 2009; Saito et al. 2015). The descriptive
analysis of the 94 sample prominent influencers revealed that half of the sample are
news media users, while public health and government accounts made up 36.17 %,
and personal accounts 8.51 %. These influencers were highly connected, averaging
2,506,147 followers and following 3,103 others, which suggests their central role in
vaccine-related discussions (Appendix: Tables 1 and 2).

To evaluate the weak-tie power, two centrality metrics, out-degree centrality,
and betweenness centrality, were calculated for the 1,728,543 Twitter users, with
average values of 3.88 and 641,557.36 respectively. Out-degree centrality captures the
extent to which a user actively initiates connections and disseminates information,
indicating greater accelerating weak-tie power because such users can rapidly
broadcast information to diverse audiences. Betweenness centrality, on the other
hand, identifies users who act as bridges between communities, facilitating

Table : Influencer Twitter profile ( users in top , in-degree, out-degree, and betweenness
centrality).

Category Count Percentage

. News media  .
. Politicians  .
. Public health and government  .
. Science communicators  .
. Brand influencers and celebrities  .
. News media professionals  .
. Other  .
Total 
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communication and information exchange across different groups. This bridging
role enables novel information to flow across network clusters and overcome echo
chambers (Granovetter 1973). Together, these metrics provide a robust measure of
weak-tie power in social networks and these values served as criteria for evaluating
ties or connections between users. Among these users, 320,374 (19 %) had above-
average out-degree centrality, indicating significant accelerating weak-tie power,
while 1,408,169 (81 %) had below-average values. Additionally, 54,254 (3 %) users had
above-average betweenness centrality, signifying strong bridging weak-tie power,
whereas 1,674,289 (97 %) had below-average values.

Finally, sentiment analysis using Natural Language Processing (NLP) was
executed through crowd coding, a method shown to be as reliable as trained coders
but more cost-effective, transparent, and replicable (van Atteveldt et al. 2021). This
analysis determined the prevalence of informational versus opinion-based content
in each tweet by evaluating the text of all tweets.

Sentiment analysis of all tweets was performed using the TextBlob Python li-
brary, which offers a standardized API for various NLP tasks, including tagging,
classification, and sentiment analysis (Loria 2021). TextBlob utilizes a Naïve Bayes
classifier trained with unigram features (Araque et al. 2017; Loria 2021), to calculate
sentiment scores, specifically the subjectivity score, using the pattern library (Giat-
soglou et al. 2017). Subjectivity quantifies the amount of personal opinion and factual
information contained in the text. The subjectivity score ranges from 0 to 1, where
0 denotes high objectivity and 1 denotes high subjectivity. The higher subjectivity
means that the text contains personal opinion rather than factual information. For
example, both ‘great’ and ‘not great’ have a subjectivity score of 0.75. This score
reflects the balance of personal opinion (expressing of opinions, feelings, or sub-
jective judgments) versus factual information in a tweet, with higher values indi-
cating greater subjectivity (opinions) and lower values indicating greater objectivity
(factual information) (Shah 2020).

To evaluate the reliability of TextBlob’s sentiment scoring, an intercoder
reliability test was conducted using the Pattern sentiment library (Rodríguez López
and de Jesús Hoyos Rivera 2019) as an independent automated coder. A random 10 %
sample of the dataset (n = 462,288 tweets) was analyzed separately with Pattern, and
the sentiment outputs (polarity and subjectivity) from the two tools were compared.
The agreement between TextBlob and Pattern was assessed using Cronbach’s alpha,
yielding α = 0.70 for both polarity and subjectivity. These values demonstrate a high
level of consistency between the two sentiment analysis tools, supporting the
robustness of TextBlob’s measures for large-scale analysis.
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4 Results

In this section, the results of the thematic analysis were presented, highlighting the
top ten common themes identified in the sample tweets. The most popular topics
include health and safety concerns, vaccine administration and distribution, media
coverage and public perception, data and scientific insights, public figures and
authorities, local efforts and community events, legal challenges and rights, social
media and public discourse, as well as technology and innovations regarding
COVID-19 vaccines (Appendix: Table 3).

In the next step, two negative binomial mixed-effects models were constructed,
which took into account the skewed distribution of retweeting, were created to
predict the number of retweets a given tweet by (1) tweet content (information vs
opinion; positivity vs negativity), (2) user’sweak-tie power (accelerating and bridging
weak-tie power); (3) user category (influencer vs regular user); and (4) the moder-
ating effects of weak-tie power and user category. Additional covariates such as
number of followers, number of followings, and a user’s in-degree, out-degree, and
betweenness centrality in the discussions regarding COVID-19 vaccines on Twitter
were also included.

To test hypothesis 1, Twitter users were categorized into two categories based on
their out-degree centrality (acceleratingweak-tie power) and betweenness centrality
(bridging weak-tie power).

A complex negative binomial regression model was built to test the predictive
power of retweets by users with small and big accelerating and bridging weak-tie
power. The results (Pseudo R-squ. (CS): 0.77) showed number of followers, number of
followings, in-degree centrality, out-degree centrality, and betweenness centrality,
number of tweets created of a user did not predict number of retweets. Additionally,
ANOVA tests showed significant differences in the retweet count of tweets posted by
users with small and big accelerating weak-tie power (F (1, 4,602,103) = 138,668.81,
p < 0.001); and small and big bridging weak-tie power (F (1, 4,602,103) = 31,238.49,
p < 0.001). Moreover, big accelerating (out-degree) weak-tie power significantly in-
crease retweet counts, [out-degree weak-tie power, (IRR) = 1.25, 95 % confidence
interval (CI): 0.22-(0.23)]; However, big bridging (betweenness) weak-tie power
significantly decrease the number of retweet, [betweenness weak-tie power,
(IRR) = 0.64, 95 % confidence interval (CI): −0.45-(0.45)] (Tables 4 and 5). Hence,
hypothesis 1a was supported, confirming weak ties’ role in information diffusion.
However, hypothesis 1bwas not supported, suggesting connectors prioritize curation
over virality. Hypothesis 1 was partially supported by the data.

To test hypothesis 2, tweetswere categorized into three categories based on their
content: tweets that were dominated by informational, opinioned, and balanced
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content. The ANOVA test indicated that there were significant differences in tweet
content (information and opinions) among the three aforementioned tweet types, (F
(2, 4,602,102) = 10,013.93, p < 0.001). The complex model indicated tweets with more
informational content received more retweets than tweets contain more opinions,
showed an Incidence Rate Ratios (IRR) of 0.85 [information versus opinion,

Table : Complex model: negative binomial regression on number of retweets.

(Pseudo R-squ. (CS): .

b(SE) IRR[% CI] p-Value

(Intercept) .(.) .[., .] <.***

Individual level predictors

User predictors
Followers count .(.) .[−., .] .
Following count .(.) .[., .] <.***
Tweet count .(.) .[., .] <.***
In-degree centrality −.(.) .[−., .] <.***
Out-degree centrality .(.) .[., .] <.***
Betweenness centrality −.(.) .[−., −.] <.***
Accelerating weak-tie power .(.) .[., .] <.***
Bridging weak-tie power −.(.) .[−., −.] <.***
Influencer .(.) .[., .] <.***
Content predictors
Information vs opinion −.(.) .[−., −.] <.***
Polarity .(.) .[., .] <.***

Group level predictors

Weak-tie power −.(.) .[−., −.] <.***
Influencer .(.) .[−., −.] <.***

Moderating effects

Followers count and influencer .(.) .[., .] <.***
Following count and influencer .(.) .[., .] <.***
Tweet count and influencer −.(.) .[−., −.] <.***
In-degree centrality and influencer .(.) .[., .] <.***
Out-degree centrality and influencer −.(.) .[−., −.] <.***
Betweenness centrality and influencer .(.) .[., .] <.***
Information vs. opinion and influencer .(.) .[., .] <.***
Polarity and influencer −.(.) .[−., −.] <.***

**p < ., ***p < ..
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(IRR) = 0.85, 95 % confidence interval (CI): −0.16-(-0.16)]. Therefore, the data sup-
ported hypothesis 2 (See Tables 4 and 5).

To test hypothesis 3 and hypothesis 4, Twitter users were categorized based on
the degree of centrality into four categories: general users, authoritarians, acceler-
ators, and connectors.

Based on the results of the complex model, factors without predicting power were
removed, a simplified negative binomial model was constructed (Pseudo R-squ.
(CS):0.77). The simplemodel demonstrated that influencerwas a significant predictor of
retweets [influencer, (IRR) = 0.50, 95%confidence interval (CI):−0.71-(-0.69)]. Influencer
moderated the effect of subjectivity (information vs opinion) on retweet rate [subjec-
tivity and influencer, (IRR) = 1.01, 95 % confidence interval (CI): 0.00 − (0.01)]. Influ-
encers significantly moderated the effects of acceleratingweak-tie power [accelerating
weak-tie power and influencer, (IRR) = 0.33, 95% confidence interval (CI): −1.12-(-1.12)]
and bridging weak-tie power on retweet counts [bridging weak-tie power and influ-
encer, (IRR) = 1.23, 95% confidence interval (CI): 0.20-(0.21)] (Table 5). This demonstrated
that while influencers overall suffer a retweet penalty, those with high bridging power
received more retweets. This suggests influencers uniquely leverage their position to

Table : Simple model: negative binomial regression on number of retweets.

(Pseudo R-squ. (CS): .

b(SE) IRR[% CI] p value

(Intercept) .(.) .[., .] <.***

Individual level predictors

User predictors
User category .(.) .[., .] <.***
Content predictors
Information vs opinion −.(.) .[−., −.] <.***
Polarity .(.) .[., .] <.***

Group level predictors

Weak-tie power −.(.) .[−., −.] <.***
Influencer −.(.) .[−., −.] <.***

Moderating effects

Accelerating weak-tie power and influencer −.(.) .[−., −.] <.***
Bridging weak-tie power and influencer .(.) .[., .] <.***
Information vs opinion and influencer .(.) .[., .] <.***
Polarity and influencer −.(.) .[−., −.] <.***

**p < ., ***p < ..
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transform structural brokerage into visibility, likely by connecting polarized commu-
nities that regular users cannot bridge effectively.

For H3, the ANOVA test showed significant differences existed between the tweet
content (F (3, 4,602,101) = 483.14, p < 0.001) and retweet count (F (3, 4,602,101) = 113,789.85,
p < 0.001) of general users’, authoritarians’, accelerators’, and connectors’ tweets.
Therefore, hypothesis 3 was supported by the data.

For H4, the ANOVA test indicated significant differences between influencers’
and general users’ tweets in terms of the tweet content (F (1, 4,602,103) = 1,274.14,
p < 0.001) and retweet count (F (1, 4,602,103) = 288,687.74, p < 0.001). Therefore,
hypothesis 4 was supported by the data. This demonstrated influencers amplified
informational content more effectively and curate more norms by propagating
opinion-based narratives.

5 Discussion

This study illuminates howweak-tie networks and social conformity dynamics shape
critical health information diffusion on Twitter during crises. While grounded in
COVID-19 vaccine discourse, the mechanisms, particularly the dominance of infor-
mational influence over normative pressures, reflect platform-driven dynamics that
likely extend to other public health communication crises.

Thematic analysis revealed that weak-tie networks amplify accuracy-seeking
conformity while restricting approval-seeking conformity due to low accountability.
A pronounced preference for amplifying concise, data-driven content, such as sta-
tistical updates on public health initiatives, policy measures, and scientific de-
velopments, shared by authoritative entities (e.g., institutions, verified experts) was
recognized. In contrast, anecdotal narratives or opinion-based posts from general
users were less widely disseminated. This pattern underscores the platform’s
structural dynamics: its weakly connected network architecture prioritizes rapid,
large-scale information diffusion rather than fostering nuanced dialogue. This
pattern suggests that users tend to amplify content from authoritative sources,
aligning with theories of weak-tie influence, whereminimally connected users act as
bridges for factual, broadly relevant content. However, normative trust-buildingwas
inhibited due to Twitter’s character limits. On Twitter, this manifests as a preference
for easily shareable, institutionally endorsed messaging that aligns with public
information-seeking behaviors during health crises. This also supports Khasawneh
et al.’s (2021) findings that weak-tie networks drive the circulation of institutional
messaging during crises. Consequently, Twitter functions less as a space for collec-
tive norm-building and more as a catalyst for “informational broadcasting,” with
content design and algorithmic engagement further reinforcing this trend.
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5.1 Theoretical implications

This study reinforces Granovetter’s (1973) theory of weak ties as conduits for rapid
information diffusion. Weak ties, characterized by a loosely connected network
structure with minimal social overlap, prioritize content that is factual, concise, and
broadly applicable over nuanced debates. This structure inherently favors updates
such as vaccine distribution statistics, highlighting the tension between reach (broad
dissemination) and depth (in-depth discussion) in digital ecosystems. Contextual
trust-building, for which social conformity is relied on, is inhibited within Twitter’s
virtual communities. This underscores Twitter’s role as a megaphone for institu-
tional messaging, amplifying authoritative sources while marginalizing subjective
perspectives. These findings extend Granovetter’s (1973) framework to health
communication on social media, illustrating how weak-tie networks, particularly
bridging weak-tie power, facilitate public health messaging during crises while
limiting opportunities for norm curation.

The study advances the theoretical understanding of social influence by
demonstrating that accelerating and bridging weak-tie power are stronger pre-
dictors of retweetability than follower count or tweet volume. This directly chal-
lenges Suh et al.’s (2010) study, which emphasizes follower metrics, indicating a
positive association between a user’s follower and following counts and retweet-
ability. Instead, this current study resonated with Cha et al. (2010) assertion that
network structure and tie strength, not the number of followers, drive engagement.

In addition, the findings’ alignment with Liu and Zheng’s (2024) conclusion that
the informative value of content critically shapes parasocial relationships between
influencers and followers, highlights a key mechanism driving user engagement on
Twitter. Influencers who disseminate evidence-based updates enhance trust and
credibility, driving retweetability. This dynamic further distinguishes social media
influencers from traditional opinion leaders, as their influence stems not from
institutional authority but from digital attributes such as platform-specific social ties
and curated relatability (Cheung et al. 2022; Kim and Kim 2022). For instance,
influencers leveraging weak-tie connections can transcend traditional hierarchies,
embracing Katz’s (1957) assertion that influence in fragmented networks depends
more on “whom one knows” (weak-tie reach) than “who one is” (institutional
authority).

The limited retweetability of opinion-based posts suggests that normative in-
fluence (conforming to shared group values) is constrained by the platform’s
structure. Unlike long-form platforms (e.g., YouTube), where community interaction
fosters norm curation, Twitter’s design favors central-route processing of factual
information (Cho et al. 2024). For instance, connectors drove over half of retweets by
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disseminating factual updates, while authoritarians (e.g., institutional accounts) had
limited reach. This supports Zhang et al.’s (2017) finding that ordinary active users,
not traditional elites, often wield the greatest influence in digital networks. As a
result, Twitter’s network design constraints limit the potential for subjective nar-
ratives to shape collective behavior (McClain et al. 2021) and heighten engagement
during the COVID-19 pandemic (Samet 2020). The minimal impact of opinion-based
content further underscores Twitter’s role as a real-time information hub rather
than a space for norm formation. This reinforces the idea that follower counts signal
popularity but not credibility, reinforcing that conformity on Twitter is driven more
by informational influence (adherence to credible sources) than by normative in-
fluence (adherence to group values).

5.2 Practical implications

The findings of this study offer actionable strategies for public health communica-
tors. Social conformity models must account for platform-driven dissociation of
informational and normative influence. Health campaigns on Twitter should pri-
oritize concise, evidence-based data messaging (but not opinions) tailored to the
platform’s rapid diffusion dynamics. Moreover, the non-significant role of follower
count suggests that investing in accounts solely for their large audiences may be
inefficient. Instead, strategies should focus on identifying users with high weak-tie
bridging or accelerating power, even if they have modest followings. Accelerators,
often science communicators or local healthcare workers, can broadcast informa-
tion to broad audiences, while connectors, such as community leaders, help bridge
polarized subgroups, ensuring messages reach ideologically diverse communities.
Authoritarians like institutional accounts may rely on their credibility to propagate
accurate information, but require collaboration with connectors to penetrate frag-
mented audiences. Furthermore, public health campaigns should adopt a cross-
platform strategy, reserving nuanced, emotion-driven narratives for platforms like
YouTube, where long-form content fosters communal validation and norm curation.

5.3 Limitations

While this study provides critical insights into Twitter’s role in health communica-
tion, several limitations must be acknowledged. First, the exclusion of retweets from
suspended or deleted accounts may introduce bias, potentially overrepresenting
persistent institutional voices while undercounting transient or dissenting users.
Second, reliance on automated natural language processing (NLP) for sentiment
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analysis risks misclassifying nuanced content. Finally, the dynamics observed may
not fully generalize to non-crisis health topics or less polarized issues.

5.4 Future research

Future studies should expand on these findings by exploring how platform-specific
affordances shape health communication across diverse contexts. Comparative an-
alyses of weak-tie dynamics on video-centric platforms (e.g., TikTok) versus closed
networks (e.g., WhatsApp groups) could reveal how content format and network
structure interact to drive engagement. Additionally, investigating the mediating
role of issue valence such as contentious topics versus neutral ones, could clarify how
controversy amplifies or diminishes weak-tie influence. Longitudinal research
tracking shifts in influencer roles during public health crises versus routine advo-
cacy periods would further illuminate the stability of network-driven leadership.
Finally, integratingmixed-method approaches (e.g., NLPwith qualitative interviews)
would deepenunderstanding of howusers interpret and act on health information in
fragmented digital ecosystems.
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