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Abstract

Purpose: Guided by the Crisis and Emergency Risk Communication model (CERC,
Reynolds and Seeger 2005. Crisis and emergency risk communication as an integrative
model. Journal of Health Communication 10(1). 43-55.), the present study aimed to study
how X (formerly Twitter) users sensemaking and efficacy based message. Additionally,
the study also aimed to understand how the World Health Organization (WHO)
responded to the emerging conversation.

Methods: Unsupervised machine learning was conducted on 6.1 million tweets
between January and March 2020 to understand sensemaking about COVID-19
among X users. Additionally, content analysis was used to examine if the World
Health Organization (WHO) responded to popular emerging conversations via
content on their own X handle.

Findings: The majority of dominant topics in COVID-19 tweets from January to
March 2020 related to understanding the virus and the crisis it caused. X users tried
to make sense of their surroundings and re-create their familiar world by framing
events. Content analysis revealed that WHO engaged in effective social listening and
responded quickly to dominant X conversations to help people make sense of the
situation.
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Practical Implications: The initial stage of COVID-19 pandemic was marked with
uncertainty. However, WHO had a robust communication strategy and addressed the
dominant conversation during the time frame including debunking misinformation.
Originality/Value: The present study fills the research gap by situating the themes
in the context of the health crisis and extending the CERC model to user-generated
content via the lens of sensemaking and efficacy messages during the COVID-19
pandemic. Additionally, the study segmented the timelines into smaller time intervals
to understand how sensemaking evolved over time.

Keywords: CERC model; machine learning; social listening; big data; COVID-19; social
media

1 Introduction

On December 31, 2019, the World Health Organization received reports of several
pneumonia-like cases in Wuhan, China. Since then, a global health threat has
grappled the world. During a health crisis, effective communication is critical to
helping people understand the situation and take appropriate action to reduce risk
(e.g., Vos and Buckner 2016). Social media has become a popular way to exchange
messages, especially about health (e.g., Park et al. 2016; Tan and Datta 2023; Thyge-
sen et al. 2021). During a health crisis, users seek real-time health information
(Lachlan et al. 2016). Providers and health organizations can use social media to
share real-time health information (Kullar et al. 2020). Given the dynamic nature of
the COVID-19 pandemic, social media was vital in keeping people informed and
helping them make sense of the uncertainty (Tan and Datta 2023; Thygesen et al.
2021). Vos and Buckner (2016) found that during the H7N9 bird flu outbreak, X
(formerly Twitter) became a primary channel for messages that helped users with
the process of sensemaking during the public health emergency. Given that a crisis
event typically involves fear, anxiety, uncertainty and panic (Kayes 2004), previous
crisis communication research (Veil et al. 2008) highlights the need for messages
that allow people to make sense, comprehend and enhance understanding of the
crisis (Weick et al. 2005) as well as encourage individuals to take appropriate action
(Colville et al. 2013).

In fact, the Crisis and Emergency Risk Communication model (CERC; Reynolds
and Seeger 2005) from the U.S. Centers for Disease Control and Prevention states that
early in a health crisis, messages should help with sensemaking as well as raise
awareness of ongoing risks and prepare people to take appropriate measures to
mitigate them. The CERC is an important theoretical framework in the realm of
health and crisis communication that adopts a stage-model approach (Reynolds and
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Seeger 2005), helping to identify, understand, and address the different types of
information and communication strategies relevant to the discrete phases and
stages of a crisis or risk event (Sellnow and Seeger 2013; Troy et al. 2022). Previous
research of public health emergencies (e.g., Kieh et al. 2017; Lwin et al. 2018; Vos and
Buckner 2016) have utilized the CERC model for examining communication efforts.
For example, Lwin et al. (2018) used CERC to thematically analyze the strategic use of
Facebook posts related to the Zika virus in Singapore.

The first objective of this study was to examine COVID-19 pandemic tweets
during the initial stage using the CERC model (Reynolds and Seeger 2005) to better
understand the sensemaking of X users. Specifically, we used unsupervised
machine learning techniques to understand how a global audience was making
sense of the unfolding crisis and sharing information about COVID-19 on X. Prior
studies (e.g., Abd-Alrazaq et al. 2020; Xue et al. 2020) have examined dominant
topics on X using unsupervised machine learning. The present study is building on
previous literature by situating the themes in the context of the health crisis and
extending the CERC model to user-generated content via the lens of sensemaking
and efficacy messages in context of the COVID-19 pandemic. The CERC model’s
structured framework, along with its emphasis on principles like timely, accurate,
credible, and empathetic communication, as well as promoting action (U.S.
Department of Health and Human Services and Centers for Disease Control and
Prevention 2018), aligns well with the characteristics of the social media and social
listening, making it a suitable lens for this analysis. Additionally, the study
segmented the timelines into smaller time intervals to understand how sense-
making evolved over time.

The researchers also sought to explore how WHO addressed popular topics dis-
cussed on X to help people make sense of and disseminate self-efficacy messages and
when WHO shared messages with the public. According to Weick and Sutcliffe (2006),
lack of attention and focus can hinder sensemaking, especially when dealing with large
amounts of information. Timing is especially important as fake news gets seen far more
than the information correcting the falsehood (Vosoughi et al. 2018). Additionally,
another problem observed during the COVID-19 pandemic was the spread of “info-
demic”- an overabundance of information which can pose challenges for the public
(Erku et al. 2021). One of the ways to counter this problem is via social listening and
use of machine learning (Eysenbach 2020). Notably absent from prior research is the
understanding of the role and the use of machine learning tools for social listening
by health organizations during a major health crisis. We chose WHO as the main
health organization because it is a trusted source of health information and regularly
communicates with its stakeholders via X (Honings et al. 2022). In health emergencies,
the World Health Organization also serves a prominent role in helping countries
organize assistance and responses, especially in terms of helping craft “press releases”
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and “talking points” (Medford-Davis and Kapur 2014: 3). Additionally, WHO had also
stated that the organization had proactively developed analytical tools using artificial
intelligence to detect emerging narratives gaining traction in online discussions during
the COVID-19 (World Health Organization 2021). Overall, the current study builds up on
the existing research and fills a critical gap, extending the utility of the CERC framework
to examine communication surrounding infectious disease pandemics like COVID-19
and understand how WHO effectively used social listening to detect and respond to
emerging online discussions.

2 Literature review
2.1 CERC framework, sensemaking, and self-efficacy

Health crises occur in myriad formats, places, etc., and so institutions need effective
methods for communicating key information to the public (e.g., Seeger et al. 2020).
One such communication model is Crisis and Emergency Risk Communication
model, developed by the U.S. Centers for Disease Control and Prevention to “educate
and equip public health professionals for expanding public health communication
responsibilities in emergency situations” (Veil et al. 2008: 26). The CERC model has
been used in prior public health crisis research such as influenza (Vos and Buckner
2016), Ebola (Kieh et al. 2017), Zika outbreak (Lwin et al. 2018), etc. to analyze
communication strategies and their impact on public perception and behavior.
The findings demonstrated the adaptability of the CERC model for effective
communication across various stages of disease outbreak (pre-outbreak, during and
post outbreak). However, the researchers (Lwin et al. 2018) assert the need for
further testing and refinement of the CERC model to understand health outbreak
communication on other social media platforms such as X (formerly Twitter), as
well as for other infectious diseases.

CERC views any crisis as an ongoing event that progresses through stages
with specific and unique communication needs and strategies (Miller et al. 2021;
Reynolds and Seeger 2005; Veil et al. 2008). Pre-crisis, initial event, maintenance,
resolution, and evaluation are the CERC’s five stages of crisis progression. This study
focuses on the first two stages: pre-crisis and initial event. We focused on the first phase
of the pandemic, from December 31, 2019 (when a Chinese doctor alerted WHO to the
virus) to April 1, 2020 (a few weeks into the pandemic when the majority of the world
was experiencing quarantine).

Pre-crisis is an incubation stage where a threat has emerged but the crisis has
not yet unfolded (Seeger et al. 2020). Because crises are unpredictable, messages
distributed at this stage include warnings to educate the public about the risks and
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information to help them monitor and prepare in case the threat becomes a crisis
(Seeger et al. 2020).

The initial event stage of the crisis is the triggering event that indicates the crisis is
underway. At this stage, the crisis is fast developing, often eliciting a strong sense
of threat, panic, and ambiguity among publics because information about the crisis
remains scattered, incomplete, or even contradictory (Reynolds and Seeger 2014).
Aiming to reduce uncertainty and reassure the public about the various measures
taken to improve the situation, CERC advises communicators to provide timely
updates. Messages should include statements that are sympathetic and reassuring to
the affected groups. The messages should also be simple and provide general
information about immediate risks, the crisis, expected outcomes, and appropriate
actions including self-efficacy promotion (Reynolds and Seeger 2014; Seeger, Reynolds
& Day 2020). Sensemaking and self-efficacy are key processes at this stage of CERC.

2.1.1 Sensemaking

The CERC sensemaking concept comes from Karl Weick’s seminal work (1988, 1995).
Making sense of an event that is “novel, ambiguous, confusing, or in some other way
violates expectations” is called sensemaking (Maitlis and Christianson 2014: 57).
Negative events or situations often create ambiguity and uncertainty in a crisis. To
restore or renew their understanding of the world they have always known, people
tend to take explicit steps to make sense of events based on personal experience
(Festila et al. 2021; Weick 1988). They may or may not be fact-based in their efforts to
find meaning, order, and reduce the uncertainty during a crisis (Weick et al. 2005).
Action, comprehension and evaluation of potential responses, identifying patterns,
and informing future interpretations are all possible through sensemaking (Festila
et al. 2021; Weick 1995).

In a global health crisis (e.g., COVID-19) where normal life operations, functions,
and routines break down, people feel compelled to make sense of things and ask
themselves and others questions like “what’s the story?” “Now what?” Within crisis
communication, Vos and Buckner (2016) found that spreading information about the
H7N9 virus on X promoted sensemaking by informing the public about the crisis.
Sensemaking occurred by putting the emerging crisis into context, educating the
public (e.g., virus spread and case count), accommodating the unexpected, and
identifying patterns. Dailey and Starbird (2015) discovered that people used X for
collective sensemaking of the 2010 Deepwater Horizon oil spill by understanding
how to interpret the complexities of the technical and scientific crisis.
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2.1.2 Self-efficacy

Moving from the pre-crisis stage to the initial event, instilling a sense of
self-efficacy — in addition to facilitating sensemaking — becomes paramount
(Reynolds and Seeger 2005). Self-efficacy is confidence in one’s ability to change
behavior and respond to specific situations (Bandura 1997). In a crisis, self-efficacy
encourages people to believe that the suggested crisis response is feasible and
worth adopting. More importantly, self-efficacy empowers people to take action
because it fosters self-belief that they can perform the recommended behavior
to reduce risk (Coombs 2009). A sense of control in a crisis reduces uncertainty,
confusion, and ambiguity. Reynolds and Quinn (2008) recommended dissemi-
nating information that can reduce the spread of infectious diseases. These
messages included frequent handwashing, avoiding touching one’s face, social
distance, wearing a mask, avoiding places with poor ventilation, and cleaning and
disinfecting touched surfaces (Centers for Disease Control and Prevention 2023b).

Thus, the first goal of the current study was to address the following research
question:

RQ1: During the pre-pandemic period, which types of (a) sense-making messages and
(b) self-efficacy messages appeared on X?

2.2 Social media, infodemic, and social listening

During the COVID-19 crisis, social media became a source of infodemic, an epidemic
of information that may or may not be accurate (Lu et al. 2021; Tangcharoensathien
et al. 2020; Zarocostas 2020). Eysenbach (2020) described the COVID-19 infodemic
using the “informational cake model,” according to which the volume of information
has four levels: (a) science, (b) policy and practice, (c) news media, and (d) social
media. The social media platforms constitute the largest portion of the cake,
containing the largest amount of unfiltered information.

An infodemic can hinder sensemaking. In the context of COVID-19, a flood of
inconsistent, inconclusive, and contradictory information on social media can
confuse the public. Instead of helping people comprehend what is happening, an
infodemic can “pose concerns for the public to distinguish fact from fiction and, for
government agencies to conduct evidence-based policy making” (Erku et al. 2021:
1955). Previous research has connected various infodemics to misinformation
(e.g., Chowdhury et al. 2023; Do Nascimento et al. 2022), and misinformation
impacted COVID-19 (Chowdhury et al. 2023). Misinformation in health
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communication could be fatal to people (Cheng and Nishikawa 2022), especially
considering that COVID-19 contributed to the deaths of 6.7 million people as of
January 2023 (World Health Organization n.d.). Social media users lacking medical
expertise engaged in messaging to delegitimize public health officials, too (Chen et al.
2023). Eysenbach (2020) proposed several infodemic management strategies. One
was constant social media monitoring or listening (i.e., “infovigilance”).

Social listening is the practice of monitoring social media data and discussions
(Stewart and Young 2018). At one point during the COVID-19 pandemic, tweets about
COVID-19 were circulated every 45 ms (Josephson and Lambe 2020). Since social media
permits rapid diffusion of pandemic-related health information, the role of social
listening warrants further attention. Real-time monitoring of COVID-19 conversations
on social media can help cut through the noise and help affected communities respond
effectively to threats. Public often uses social media platforms, including X, for
sensemaking during crisis, such as COVID-19 (Thygesen et al. 2021; Valiavska and
Smith-Frigerio 2023). Incorporating social listening into public health messaging helps
people understand the disease and its scope, potentially reducing the effects of an
infodemic and providing direct access to accurate information. However, organiza-
tions are limited in their effectiveness in combating misinformation (e.g., Bode and
Vraga 2018; Liu et al. 2022; Vraga and Bode 2018). Liu et al. (2022) found that people with
close connections can help stem the flow of misinformation, but sometimes efforts to
fact check can actually have the reverse effect and strengthen some people’s belief
in inaccurate information. Thus, experts do have limitations in their ability to cor-
rect already formed narratives.

Because of the volume and complexity of data collected from social media
and UGC platforms, machine learning is an appropriate tool for social listening.
Machine learning encompasses a wide range of computer-based data mining
techniques designed to uncover complex patterns inlarge datasets and potentially
inform decision-making. Previous research suggests that machine learning can
highlight conversations during epidemics like the Zika virus (e.g., Miller et al.
2017). WHO emphasized/described the usage of AI and machine learning tools
for social listening and infodemic management during the COVID-19 pandemic
(World Health Organization 2021). Understanding social media conversations
is important, but so is understanding how WHO used that vast amount of
data to identify emerging trends, and address those trends swiftly. Therefore,
the second goal of the current study was to address the following research
question:

RQ2: During the initial phase of COVID-19, how did WHO address dominant message
categories on X (a) to help with sensemaking and (b) to formulate self-efficacy
messages (c) help address misinformation?
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3 Methods
3.1 Study design

To analyze the large dataset and answer the research questions, we used three
methods. First, we used unsupervised machine learning to analyze content called
Latent Dirichlet Allocations (LDA). LDA is a well-known unsupervised machine
learning technique that uses Bayesian statistics to identify themes or patterns in
unstructured text (Blei 2012; Kabir 2022). Scholars previously used this method to
analyze COVID-19-related X data (Abd-Alrazaq et al. 2020; Xue et al. 2020). Emergent
topics are not labeled by the LDA and need human interpretation. So, once the topics
emerged, we used thematic analysis (Braun and Clarke 2006; Kumble et al. 2022)
to interpret the tweets. After identifying themes, we used content analysis to see if
WHO used X to address dominant conversations.

3.2 Data collection

We scraped relevant data using “Tweepy” and “GetOldTweets” (Henrique, n.d)

libraries on Python for dates ranging (December 31, 2019-March 31, 2020) while

the situation was unfolding and on-going. Some of the notable events (Centers for

Disease Control and Prevention 2023a) during this time period were as follows:

— China’s WHO office was “informed of several cases of a pneumonia of unknown
etiology” on December 31, 2019.

—  WHO declared the virus a “Public Health Emergency of International Concern”
on January 31, 2020.

— WHO named the virus COVID-19 on February 11, 2020.

— WHO labeled “COVID-19 a pandemic” on March 11, 2020.

Additionally, this data was collected before the academic license for X existed.
Some of the previous studies (e.g., Bacsu et al. 2021) have also used the same library
to get X data. Search queries included “#2019nCov,” “#coronavirus,” “4Wuhan,”
(for the first month in the date range), and “4COVID-19.” After cleaning the data for
duplicates and removing WHO tweets from the main dataset, we analyzed
6,168,274 user-generated tweets in English. We conducted a second search using
“Tweepy” to collect tweets sent by WHO (n = 2086).
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3.3 Latent Dirichlet allocation

LDA uses probabilistic calculations to infer topics from a document (e.g., tweets)
using a bag of words approach (Blei 2012; Kabir 2022; Wheeler et al. 2024). Given that
the initial stages of the pandemic were unprecedented, and information was
unfolding (the study authors did a thorough read of the WHO’s tweets during that
timeframe to notice the change of information), the dataset was divided into
smaller time ranges based on the timeline of events that unfolded and the volume
of tweets generated. January and February 2020 had relatively fewer tweets
(i.e., less than one million). Therefore, the authors did bi-weekly LDA models
during those months. Since the number of tweets increased to over one million
per week in March 2020, the authors conducted LDA analysis weekly, running a
total of eight (8) LDA analyses using the following steps.

3.3.1 Data cleaning

The first step involved a thorough cleaning of the textual data and removing
non-relevant components as those can hinder the coherence of the LDA model.
Data cleaning for each LDA model was similar and is listed in Table 1 in the order
in which each step was performed.

3.3.2 Topic determination

LDA models need researchers to enter the number of topics (k) that the model
should generate. For this step, we performed tuning runs with LDA over a number
of topics (k = 2-10) for each of the data. Additionally, LDA hyper-tuning
parametersi.e., topic density within tweets (a) and word density within a topic ()
were also varied. We tested each k with a and p values ranging from 0.01-1.0 for
each of the eight LDA models. For each combination of k, o, and B we calculated a
coherence value measure (Cv), developed by Roder et al. (2015). A higher Cv value
indicates better text-to-topic model coherence. A combination of k, a, and B that
resulted in Cv >= 95 % of max Cv underwent further evaluation via topic visual-
ization for the final model run and implementation.

3.3.3 Model selection and visualization

After identifying the highest Cv for each of the eight LDA models, the authors ran
each one based on specific combinations of a and B, visualizing each of the results
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using the package LDAvis (Sievert and Shirley 2014). These visualizations provided
specific insight into the discreteness (or lack of discreteness) of the topics.

3.3.4 Topic classification

The next step involved understanding topic distribution across the tweets
(i.e., identifying which tweets belonged to which topics). Feature vector classification
was conducted using the Gensim library Rehurek and Sojka (2011) in Python to
determine this. Feature vector classification assigns a probabilistic ratio for each of
the topics based on word weightage for each tweet and assigns the appropriate topic
number to the tweet. To make the results more stringent, this study excluded tweets
below 50 % probability which was assigned to topics.

3.4 Thematic analysis

After the machine learning algorithm identified the topics, it was time to identify the
labels. Topic labels were created using thematic analysis (e.g., Braun and Clarke 2006;
Kumble et al. 2022). Data-driven thematic analysis can be inductive (data-driven) or
deductive (theory-driven), where the coding is done with the study’s main theory in
mind (Braun and Clarke 2006; Lee and Barnett 2020). This study employed deductive
coding to code the tweets for themes of sensemaking, efficacy, and misinformation.
The authors looked at only the top two or three topics generated by the LDA model
for each date range.

Braun and Clarke (2006) recommend six steps to generate themes from the
dataset. The first step involves becoming familiar with the data. For this step, the
authors became familiar with the top words in each topic. Next, based on the data,
we generated initial codes. For this step, we randomly selected 1-4% of the tweets
from each topic generated by the LDA model, depending on the sample size for the
week and each author read the tweets to come up with the basic codes and also
took down notes. The third step involves collating the codes and searching for
themes within the data. For this step, the authors discussed the data and compared
their notes, tweets, and co-occurring words to help determine topic labels. The
fourth step involves reviewing potential themes. During this step, the authors
resolved conflicts with the themes by discussing them further. For some topics, the
authors went back to the previous step re-read the tweets and the collated codes to
ensure hoth the authors agreed on the theme. The fifth step involves naming the
themes from the codes (i.e., topics). In this step, once we identified the codes, we
assigned them to 4 themes: sensemaking, efficacy, misinformation, and other.
Sensemaking, and efficacy messages codes were adapted from previous research
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by Vos and Buckner’s (2016) coding scheme. Sensemaking codes involved themes
of placing the emerging crisis into frameworks, enabling the public to compre-
hend what is going on (e.g., information about the spread of the virus and the
number of cases), accommodating the unexpected, and identifying patterns in the
crisis. Codes that indicated tweets containing non-verifiable messages were put
under misinformation theme. The final step involves final analysis to ensure the
themes are coherent and guided by the CERC model and picking out vivid and
compelling tweets that best describe the codes, and the themes.

3.5 Content analysis of WHO’s tweets

In order to examine whether WHO addressed the dominant conversations that
emerged on X during the specified time frame, content analysis was used. The
authors manually checked the dominant topics for the computational models for the
target weeks against the tweets that WHO posted during the corresponding period.
Three coders independently reviewed tweets posted by WHO to see whether the
dominant themes were present or absent and calculated the number of tweets that
corresponded to the topic. The three coders reached a 98 % agreement.

4 Research findings
4.1 LDA topics by period

To address RQ1 and understand how publics on X made sense of the health crisis and

shared self-efficacy messages, eight LDA analyses were conducted, one for each time

period. Figure 1 presents the word cloud generated for the top topics during each
period. The sections below detail the analysis of the top two or three topics for each
period.

1. January 1-January 24. The authors analyzed 56,760 tweets from the first three
weeks of January. The highest coherence score (Cv) was 0.35, corresponding to
k = 6 discrete topics on LDAvis. A thematic analysis revealed that the top two
topics for the time period were “number of cases of people suffering from
nCOV-19” and “origins of the virus.”

2. January 25-January 31. Next 262,818 tweets from the last week of January were
analyzed. The highest Cv was 0.36, corresponding to k = 8 discrete topics on
LDAvis. After completing the thematic analysis, the top two topics for the time
period were “outbreak and spread of the virus including blaming China” and
“cases emerging outside of China and around the world.”
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3. February 1-February 14. The authors analyzed 341,312 tweets from the first two
weeks of February. The highest Cv was 0.34, corresponding to k = 6 discrete
topics on LDAvis. After completing the thematic analysis, it was found that during
this time period, the Twitterverse continued blaming China and the Chinese
government and continued discussing the cases. Another dominant topic from
this week was sharing scientific evidence about the novel virus and its spread.

4. February 15-February 29. A total of 477,628 tweets from the last two weeks of
February were examined. The highest Cv was 0.37, corresponding to k = 6 discrete
topics on LDAvis. Based on the thematic analysis, dominant conversations
revolved around certain leaked Chinese videos (mostly misinformation videos)
that fueled negative sentiment towards the Chinese government (20.42% of
the tweets). According to the thematic analysis, several tweets also flagged
the content and corrected the misinformation. The next dominant theme was
messages about quarantining cruise ship passengers. The third most popular
topic was COVID-19 protection. Wearing masks, protecting eyes, and using natural
remedies like lemon, garlic, and ginger to boost immunity were mentioned.

5. March 1-March 7. The authors analyzed 473,013 tweets from the first week
of March. The highest Cv was 0.37, corresponding to k = 8 discrete topics on
LDAvis. After completing the thematic analysis one of the dominant topics for
this week was the impact of COVID-19, including cancellation of events and
travel restrictions. The next most dominant topic was questioning the severity
of COVID-19 and whataboutism vis-a-vis death rates and fatalities from other
diseases like the flu.

6. March 8-March 13. Next 960,566 tweets from the second week of March
were analyzed. The highest coherence score was 0.37, corresponding to k = 10
discrete topics on LDAvis. During this period, WHO declared COVID-19 a global
pandemic. The results from the thematic analysis indicated that one of the
dominant topics for this week was this declaration and the shift to online
delivery (e.g., work and education). The next most dominant topic was new
cases and fatalities related to COVID-19.

7. March 14-March 21. There was alarge increase in tweets as 1,860,130 tweets from
the third week of March were examined. The highest coherence score was 0.37,
corresponding to k = 8 discrete topics on LDAvis. With the declaration of the
pandemic and stay-at-home orders issued in several countries around the world,
one of the dominant topics that emerged during this week was life indoors.
Another dominant topic was government response (or lack thereof), particularly
in the United States and the United Kingdom. The next most dominant topic
was COVID-19 mitigation behaviors.

8. March 22-March 31. A total of 1,694,047 tweets from the final 10 days of March
were analyzed. The highest coherence score was 0.34, corresponding to k = 6



DE GRUYTER MOUTON

Sensemaking and WHO =—— 355

Jan1-Jan 24
Topic 1 Topic 2
new
case virus
health city ""utbreak
public, o)
persofedth o infect
confirm spread o
chinese
official deadl;
Jan 25 — Jan 31
Topic 1 Topic 2
die let
Virus country patidegatth
deadly case
stop infect infect update
spread neo ficial - confirm
world  person number
Feb1—Feb 14
Topic 1 Topic 2 Topic 3
g ot MM e work  Chinese
sfe e infection en travelcoyntry — due
vi r'l.IdSeadl sympton government
ov
Fead den:jxl N outbreaksPread
expert virus eaf‘umber medical call
Feb 15— Feb 29
Tim.ic. }1< Topic 2 Topic 3
00 quarantine plan . i
try video kill lé/tlrus
.- test u
watch due cancel sick parT'acSk
life ) ) 1
. tworld public hospital handk
live j2c¢ travel look eep
chinese health vaccine
March 1 — March 7
Topic 1 Topic 2
stop bad g ead cancel face
flu world que hand
fearspread safe
Q1e much workwash
virus panic protect  keep

March 8 — March 13

Topic 1

Topic 2
case covid e
pandemic
work :
N school
test close
March 14 — March 21
Topic 1 Topic 2
government live
help . watch
pandemic keep safe
Crisis response  covid MelP
. love thank
health Cﬁx}g quarantinelife
)n‘cr’n’a!l(}n‘wp
March 22 — March 31
Topic 1 Topic 2
world bad amp test id
t could covi
rump late positive
. f
realdonalfﬁtrumpdle ne-‘lrseeup(‘a‘e
covid life serv

virus

friend

information synptom

Topic 3
spread
pandemic safe
follow d

covidp,
protect

han
outbreak

fight

Topic 3
virus

testing Petient

spread

positive

Figure 1: Topic word clouds with
dominant co-occurring words for
each topic mentioned in Table 2.

coronauplate

coronalockdown

covid
coromn tast



356 —— Kumbleetal. DE GRUYTER MOUTON

discrete topics on LDAvis. One of the dominant topics that emerged during this
week was the politicization of the virus, primarily in the United States, and the
upcoming stimulus bill. Another dominant topic was government response
(or lack thereof), particularly in the United States and the United Kingdom.
Another dominant topic was the lack of testing. The next most dominant topic
was the call to support essential workers, including healthcare workers.

4.2 WHO tweets and social listening

A content analysis was conducted to address RQ2 as to whether WHO sent tweets
addressing the dominant topics on X, potentially helping make sense of the health
crisis. Three coders (including the two of the three study authors) independently
looked at the dominant topics and compared them to determine whether WHO had
addressed the topics during the respective periods. Results indicated that WHO
disseminated tweets to address most of the topics in a timely manner. Table 2
indicates examples of tweets sent by WHO that addressed dominant topics, along
with the date of the first tweet sent by WHO on that topic. Some topics (e.g., lack
of effective leadership by the U.S. and U.K. governments) did not fall under the
purview of WHO. Figure 2 indicates the number of tweets that WHO sent during
each of the periods to address the dominant topics on X (Figure 2).

Number of Tweets Sent by WHO
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Figure 2: The number of tweets sent by WHO to address the dominant topics.
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5 Conclusion and discussion

The current study had two objectives. First, the researchers used unsupervised
machine learning LDA to analyze X trends and explore how X users interpreted a
health crisis that turned into a pandemic. The study’s second goal was to see how
WHO addressed popular topics on X to help with sensemaking and self-efficacy
messages early in the pandemic.

5.1 X and sensemaking

The majority of dominant topics in COVID-19 tweets from January to March 2020
related to understanding the virus, and the crisis it caused. Twitter users tried to
make sense of their surroundings and re-create their familiar world by framing
events. Content analysis revealed that WHO engaged in effective social listening and
responded quickly to dominant X conversations to help people make sense of the
situation.

During January 2020, most X conversations focused on the number of reported
cases, the virus’s origins and transmission, and blaming China. Attempts to frame
the virus indicate an effort to reduce uncertainty and fill knowledge gaps about
the unfolding health crisis. Throughout January, WHO sent out several tweets
containing information that helped people understand what was going on,
including the number of cases that arose both within and outside China. WHO
also helped people prepare for the unexpected by providing timely information
about the virus’s origins. For example, in mid-January the organization reported
that an animal may have spread pneumonia-like symptoms in Wuhan, China,
helping reduce ambiguity. WHO also tweeted messages expressing confidence in
China, stating that China was investigating the virus, sequencing its genome, and
sharing information with WHO. This type of information helped people under-
stand the crisis.

As more information about the novel coronavirus emerged in February 2020, X
users continued with the sensemaking process. During the first two weeks of
February, one of the main topics of discussion was China’s role and transparency.
Despite WHO’s efforts to reduce hostility, suspicion remained. Despite WHO’s efforts
to promote scientific terminology, influential people and politicians kept calling
COVID-19 the “Chinese Virus.” Because social media platforms thrive on message
redistribution, more influential accounts than WHO could reach a larger audience
and diffuse more stigma-laden tweets within the network. Towards the end of
February, another dominant conversation focused on a video with misinformation
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about Chinese authorities mistreating COVID-19 patients. WHO began sharing
information to encourage people to reduce stigma, hate, and to support those
affected. WHO also enlisted the help of social media and technology companies
(e.g., Google, X, Facebook) to track down misinformation.

By March 2020, the virus had gone global. By mid-March, WHO had declared
COVID-19 a pandemic, and people were grappling with the new normal and how to
manage quarantine. WHO addressed the issue by providing messages to promote
physical and mental health. It even planned live online concerts on its X handle.
Other major themes were fatality and case count. WHO assured the public that they
were tracking and disseminating data promptly. The US and UK governments’
perceived inaction and the virus’s politicization were other themes (predominantly
in the United States). Such topics would be difficult for any organization, let alone
WHO. However, WHO did urge governments to keep citizens informed and assist
those in need.

5.2 X and self-efficacy

While the X conversations were heavy on sensemaking, the results show that self-
efficacy was mentioned frequently during a few of the periods. These messages
helped people respond appropriately to the crisis (e.g., protective behaviors and
preventive measures). Self-efficacy emerged as a dominant theme in late February.
Several mentions of eye protection and masks were also noted. However, terms like
“handwashing,” “six feet distance,” and “staying homesick” were not popular until
March. CERC stresses the importance of self-efficacy messages early on. When a virus
is new, non-vaccine self-efficacy is critical. Lack of self-efficacy messages on X was
not a good sign, as previous research suggests the general public is unaware of their
role in disease spread (Vos and Buckner 2016). However, the virus did not become
truly global until mid-March, which could explain the delay. Additionally, this study
may have missed self-efficacy tweets in other languages from people living near
China because it examined English-language tweets only.

WHO began tweeting self-efficacy messages to educate the public about
preventive behaviors on January 9, 2020. But this important topic fully emerge
until late February. WHO’s self-efficacy messages may not have received enough
retweets because social media users were not sufficiently engaged with the topic.
WHO should consider partnering with social media influencers and celebrities to
help spread the message. Actors and businessmen from all over the world are
among the UN’s goodwill ambassadors. These influential people could help WHO
spread messages by sharing those messages and setting agendas for social media
users.
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5.3 Misinformation in messages

This study also found messages that promoted sensemaking and self-efficacy
simultaneously. Many of the tweets containing self-efficacy messages were not
backed by scientific evidence. For example, by mid-February, some messages were
promoting the use of garlic and lemon as preventive measures to boost immunity.
Other messages suggested the use of ginger to boost immunity. Other messages
suggested avoiding “foreign food” and “packages from China” in order to curtail the
spread of the virus.

It is to be noted that WHO did tweet information debunking the misinformation
and the myths. However, an infodemic was inevitable given the global scope of the
health crisis. Concerns about the infodemic had been raised by WHO online by
February 15, 2020, and subsequently, WHO organized an online conference to
crowdsource on infodemic management (Tangcharoensathien et al. 2020). However,
recent epidemics (Ebola, Zika, H7N9) show the prevalence of health misinformation
and conspiracy theories (Chen et al. 2018; Oyeyemi et al. 2014; Vijaykumar et al. 2018).

5.4 Theoretical and practical implications

The study offers important theoretical implications. It expands the utility and
adaptability of the CERC model by examining user generated content on social
media platforms such as X. While bulk of research on CERC centers on the
organization’s perspective (Tomasi et al. 2023) and communication strategies and
tactics appropriate for the distinct phase of the evolving crisis, this study addi-
tionally demonstrates how the CERC framework examines how public processes
and evaluates crisis information during the early stages of the outbreak in the
digital age. Building on prior research (Lwin et al. 2018; Vos and Buckner 2016)
consistent with CERC, the current study highlights the crucial role of social media
platforms in disseminating public sensemaking and efficacy messages during the
initial phases of a public health crisis. The findings revealed the presence of the
two core CERC tenets-sensemaking and efficacy in the social media messages
shared by users during the early stages of COVID-19 pandemic. These messages
reflected the change in people’s awareness, understanding and sensemaking of
the crisis, as well as their efforts to build self-efficacy in navigating the crisis. Such
sensemaking and efficacy efforts play a key role in helping the public manage the
uncertainty that arises from the crisis and assuage the anxiety that is triggered by
unprecedented long-term, evolving public health crises like the pandemic.
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The findings have practical implications. The study provides a case study on the
understanding of the implementation of WHO’s social listening strategies to
effectively address public concerns via sensemaking process and promoted protec-
tive behaviors during a global pandemic. While social listening can help experts
understand dominant conversations, it can also help them infer missing ones. Health
organizations can draw on these insights to refine their communication strategies,
ensuring that they are not only reactive but also proactive in managing public
discourse for future pandemics. Akin to previous findings on health crises (Lu et al.
2021; Tangcharoensathien et al. 2020; Zarocostas 2020), this study found people
utilized social media to engage in sensemaking regarding COVID-19. However,
WHO’s reactive approach to dominant conversations could be a suboptimal strategy
if misinformation is prominent because fake news gets disseminated faster than
information correcting the misinformation (Vosoughi et al. 2018). Additionally,
health experts and organizations should explore amplifying the prosocial and
accurate health messages from opinion leaders from various communities and
constituencies (Liu et al. 2022). In some cases, these opinion leaders could also be
more effective in correcting misinformation (Liu et al. 2022) than WHO itself.

5.5 Limitations and future direction

While the current study was robust, it has several limitations. First, we only analyzed
English-language tweets. The results might not be replicable in other languages.
Second, our search terms contained only certain relevant keywords. We certainly
expect that our search results did not include all possible tweets about COVID-19.
Finally, machine learning strategies have limitations. For example, LDA uses a “bag
of words” approach, estimating the probability of certain words occurring together;
furthermore, topic interpretation largely depends on human coding. Another
challenge associated with machine learning is that online content can fit into
multiple categories (Salminen et al. 2019). In addition, the algorithms for machine
learning are not necessarily interchangeable across channels, potentially raising
issues with labeling. Finally, we used only one social media platform, potentially
limiting the generalizability of the results. While the results showed that WHO made
every effort.

Future research should look into how health organizations use social media as
part of their strategy and look at understanding the benefits and the drawback
of implementation of use of latest Al tools and chatbots in combating misinforma-
tion. Additionally, scholars should focus on the diffusion speed/rate of health
organizations’ messages to better understand the social listening strategies these
organizations employ for future health crisis. While the current study employed a
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content analysis, future studies could use computational methods to calculate
diffusion size and speed, in order to understand how quickly sensemaking messages
are diffused within the network and better examine health organization’s real-time
engagement with the public. This could be done by monitoring and mining analytic
data hourly to obtain relative values (see Zhu et al. 2020 for mathematical
calculations).

Research funding: This research was supported in part by MCOM Summer Research
Grant received by the first author.
Competing interests: We have no conflicts of interest to disclose.

Availability of data and material: Will be provided upon request.
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Appendix

See Table 1 and Table 2.

Table 1: Text-processing steps for conducting LDA.

Steps Descriptions

Tokenization First, we split tweets into tokens i.e. breaking the tweets into individual
coherent symbols that make up the human language (like words,
numbers, etc.). We used the package TweetTokinizer and used Natural
Language Toolkit (NLTK) library to tokenize the tweets.

Removing punctuation Next, we removed punctuations from all the text.

Text conversion For this step, we converted all the uppercase letters into lower case letters.

Removal of web and Since tweets often contain web links, we removed the weblinks i.e., http,

shortened links https, bit.ly along with the website address. Having such irrelevant details
can hinder the machine learning process.

Stop-word removal For this step, we took out a list of irrelevant words and symbols within the

dataset that might hinder the LDA process. These include articles,
pronounces, symbols like @ or hashtags.

Lemmatization This is a process of unification, wherein the words are returned to their
base form. For example, the word difficulty would be returned to
‘difficult,” the word breathing is transformed to “breathe.”

Relative pruning In order to improve the quality of the LDA model, we removed frequently
occurring words (i.e., words occurring in more than 75 % of the messages)
and rare words (i.e., words occurring less than 10 times per data set) as it
might affect the probabilistic model and the clustering of topics.
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