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Abstract
Introduction ‒ Practicing physical activity (PA) on a reg-
ular basis is an important support for people with type 1
diabetes (T1D). However, exercise may induce in them
hypoglycaemic events during or after it. One major conse-
quence of this is that, to limit this risk, many people with
T1D tend to avoid performing PA. The availability of
modern continuous glucose-monitoring (CGM) devices is
potentially a great asset for reducing the chances of hypo-
glycaemia (HP) due to PA. Several algorithms have already
been proposed to predict HP in subjects with T1D. However,
not many of them are specifically focused on HP induced by
exercise. Among those, many involve a large number of
covariates making the applicability more difficult, and
none uses CGM values available during the training session.
Objectives ‒ We study the problem of predicting hypogly-
caemia events in subjects with T1D during PA. The final
aim is to produce algorithms enabling a person with T1D to
perform a planned PA session without experiencing HP.
Method ‒ One of the two algorithms we developed uses
the CGM data in an initial part of a PA session. A para-
metric model is fitted to the data and then used to predict a
possible HP during the remaining part of the session. Our
second algorithm uses the CGM value at the start of a ses-
sion. It also relies on statistical information about the
average rate of decrease of the aforementioned model, as
derived from a previously measured CGM data during PA.
Then, the algorithm estimates the probability of HP during
the planned PA session. Both algorithms have a very simple
structure and therefore are of wide applicability.

Results ‒ The application of the two algorithms to a very
large dataset shows their very good ability to predict HP
during PA in people with T1D.

Keywords: physical activity, continuous glucose moni-
toring, type 1 diabetes, hypoglycaemia prediction, statis-
tical methods

Acronyms

PA Physical activity
T1D Type 1 diabetes
CGM Continuous glucose monitoring
HP Hypoglycaemia
ROC Receiver operating characteristic
AUC Area under the ROC curve

1 Introduction

Due to the needed insulin therapy, hypoglycaemia (HP)
events are not rare for subjects with type 1 diabetes
(T1D) when practicing physical activity (PA) [1,2]. Fear of
hypoglycaemic events represents one of the major limita-
tions for the practice of PA in people with T1D, although
performing PA is proved to be a great asset to reduce long-
term effects of high glucose concentration in tissues [3–5].
Several algorithms have been already developed to predict
hypoglycaemic events in subjects with T1D performing or
not PA. These algorithms use continuous glucose moni-
toring (CGM) data usually combined with some other cov-
ariates, e.g. carbohydrate intake and insulin on board. A
recent review describes the main different types of algo-
rithms that have been developed for this purpose [6]. How-
ever, among the 79 studies included in that review, only
two of them are related to the prediction of HP specifically
during PA [7,8]. Other interesting studies not included in
that review have been published by Romero-Ugalde and
colleagues [9] and by Bergford et al. [10]. Other possible
approaches are related to novel machine learning and
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deep learning methods, in particular neural network (NN)
[11–13]. However, most of these methods are not designed
to detect PA-induced hypoglycaemia and require a very
large quantity of data. Most important, they all use a
number of CGM measurements larger than 10, while our
algorithms at most use three measurements. Hence, these
kind of models are not suited to solve our problem.

The first of the two aforementioned cited studies
included in the review was published by Reddy and collea-
gues [7]. Here, the authors propose two different algorithms
to predict HP during an aerobic PA session or immediately
after it. The first algorithm is a decision tree classifier [14]
using a minimum set of two covariates so that it can be
widely applied. The two features used are the heart rate
during exercise and the CGM value at the beginning of the
session. To train the model, they use data previously col-
lected during 154 sessions from 43 adults with T1D. The
algorithm reaches an accuracy of about 80%. The second
algorithm is based on random forest [15]. It uses 10 covari-
ates, including the CGM value at the beginning of the PA
session, some anthropometric data (sex, height, weight and
BMI), heart rate and estimated energy expenditure during
exercise, insulin on board, average amount of insulin
injected per day, use of glucagon. Although the application
of this algorithm is limited in respect to the first one, its
accuracy is larger, reaching a value of about 87%. How-
ever, we notice that both algorithms do not use the CGM
values during exercise.

In the second study cited earlier, Tyler et al. [8] present
three different algorithms to predict glucose values and HP
following or during aerobic PA sessions for people with
T1D. In the first algorithm, the authors tailor a multivariate
adaptive regression spline model introduced in a study of
Friedman in 1991 [16]. This model is used to predict the
minimum values of glucose concentration during the ses-
sion and within 4 h after the end of it. The features used
are the glucose value at the beginning of the session, the
heart rate value 10 min before starting the exercise and
the trend of CGM values in the 25 min prior the exercise.
The model predicts HP during exercise with a sensitivity of
63% and an accuracy of 67%. For the prediction within the
4 h after the end of the session, the sensitivity decreases to
62%, while the accuracy reaches the 56%. The second algo-
rithm is based on the logistic regression model presented
by Breton [17] to predict HP during exercise. For this
model, the variables included are the CGM value at the
beginning of the session, the average CGM trend in the
hour preceding exercise, the insulin on board at the begin-
ning of the exercise and the total daily insulin requirement
of the participant. In this case, the sensitivity achieved is
64% and the accuracy is the 61%. The last of the three

algorithms is developed to predict the value of CGM at
the end of the PA session. The sessions considered have
an average duration of 40 min. The algorithm uses CGM
values at the beginning of the training and at two times, a
few tens of minutes before the start of the session. How-
ever, the used CGM values are obtained from the measured
one through smoothing by means of a first-order auto-
regressive model. The performance of this model are
higher than the other two algorithms considered by these
authors, with a sensitivity of 71% and an accuracy of 81%.
The authors also include results from a personalized ver-
sion, arriving at values of sensitivity and accuracy of about
76 and 83%, respectively. As mentioned earlier, these algo-
rithms do not use CGM data during the exercise. In addi-
tion, the performances of these three algorithms are lower
than those two proposed by Reddy and colleagues [7].

In the third cited study, Romero-Ugalde and colleagues
[9] developed an algorithm that, in its final form, estimates
the CGM at 30, 60 and 120 min after the start of a 30 min
training. It uses CGM data and three other covariates,
which are energy expenditure, insulin on board and car-
bohydrate on board, all the four up to 130 min before the
start of the training. To predict the CGM value at a given
time, an auto-regressive model of a certain order is used,
with a time step of 10 min. The regression also includes the
delayed effects of past sub-sequences of the three afore-
mentioned covariates, with length (order) and delay
depending on the covariate. To train and test the algo-
rithm proposed, two different types of data were col-
lected, denoted here as single PA protocol (SPA) and
four PA protocol (FPA). In the SPA dataset, 34 subject
performed a single PA session 3 h after lunch (happened
at 12:00). Instead, for FPA, each of the 35 individuals
enrolled trained for 3 consecutive days, 5 h after lunch
(happened at 12:00). For FPA, an additional session was
performed on the last day 3 h after the lunch, similarly as
in SPA, for a total of four PA sessions for each individual.
For each of the dataset, a sub-sample of 14 and 15 indivi-
duals, respectively, has been selected, which ensured a
good quality of the collected signals. To estimate the
model parameters, the prediction error has been mini-
mized. Orders and delays are selected once within certain
given intervals, by minimizing the Akaike final prediction
error using SPA [18,19]. The performance was evaluated
by estimating model parameters in two cases, at a popu-
lation level or individually, respectively. In the first case,
SPA data were used for training. Testing is then per-
formed applying the estimated model only to the first
session in the third day of the FPA data. However, best
performance was obtained by individually estimating
model parameters using the first, second and fourth
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sessions of FPA data and testing on the remaining third
one. We notice that, beside the low sample dimension, we
could not actually refer to prediction in this case. Indeed,
the testing is performed to a session happening before the
last one of the three used for parameter estimation.
Furthermore, when performing parameter estimation
only using one of the four FPA sessions available for
each individual, the mean prediction error significantly
increases.

The last study cited earlier is the most recent. Here,
Bergford and colleagues [10] developed a different algo-
rithm to predict HP during exercise for people with T1D.
The algorithm presented is applied to a dataset consisting
of around 500 subjects with several sessions each (total
sessions 8,827). The original dataset is divided into two
sub-samples to train the model (80% of participants) and
to quantify the prediction performance (20%). The PA ses-
sions last between 20 and 90 min and consist of aerobic,
resistance and interval training types. Two algorithms are
proposed, using two different sets of multiple predictors.
Among these, the most important for both are the CGM
value at start of training, rate of glucose change 15 min
before the session, percent time with glucose <70 mg/dL in
the last 24 h and insulin on board at start of exercise. The
first algorithm is based on random forest and uses 10 pre-
dictors. The value of the area under the receiver operating
characteristic (ROC) curve (AUC) for this first model is 0.83,
with a sensitivity of 70% and a specificity of 84%. The second
algorithm is based on logistic regression and includes nine
covariates. For this algorithm, the AUC estimated is 0.82,
with a sensitivity of 75% and a specificity of 78%. The overall
performance of the two models are good. However, we
notice that the value for the sensitivity, which is the most
important of the two features, is below 80%. Furthermore,
also here, the prediction is not based on the CGM values
during the exercise.

Our final goal here is to get people with T1D to perform
a planned session of PA (or a maximal part of it) with “safe”
values of CGM for the entire time, to prevent symptomatic
HP. We want to do that using only a few CGM data of the
current PA session. This is not the case with most of the
literature algorithms briefly described earlier, where
many covariates are used, making the algorithms applic-
able in a smaller number of cases. To produce an algo-
rithm that outperforms all known methods, in addition to
CGM data during a PA session, we also rely on an appro-
priate mathematical model in closed form to describe
them. This approach is not adopted in almost all the ear-
lier cited literature algorithms.

In this study, we develop two different algorithms.
Both algorithms approximate the unknown function

describing the CGM along time during PA by a low-order
polynomial. This choice relies mainly on the need of
using a small number of model parameters. In addition,
it is theoretically expected to be adequate to describe the
glucose consumption during a controlled session of PA
with constant strength (e.g. treadmill) lasting some tens
of min. Moreover, in our application of the proposed
algorithms to a large database, the adopted model has
been proven to perform well in describing the CGM data.
In the first algorithm, an initial sub-sequence of CGM
measured during PA is used to estimate individually
model parameters. The model is then used to extrapolate
the CGM values during the remaining part of the session.
Differently, the second algorithm uses information on
the initial CGM value of an individual performing PA
combined with the probability distribution of the rate
of CGM decrease during PA. A suitable parametric model
is assumed for this distribution whose parameters are
estimated in advance from a training set of PA sessions.
We apply the proposed methodology to a large dataset of
PA sessions [20,21]. Despite the great simplicity of the
two algorithms proposed, the results obtained show a
very good performance of predicting HP during PA in
people with T1D, both in terms of AUC, sensitivity and
specificity.

2 Methods

In the followings, we provide details of the two proposed
algorithms developed to forecast HP in people with T1D
during a PA session. In addition, we also illustrate the
procedures used to quantify algorithms performances.
Both these algorithms and the performance methodologies
have been implemented by us in Matlab.

2.1 Algorithms

In the first algorithm, that we refer as “Real-time PA” algo-
rithm, we use the CGM values measured in the first part of
a PA session to predict a possible HP during the remaining
part of it. The second one estimates the probability of HP
events for a new individual during a planned PA session
using only the initial CGM value. This last algorithm also
uses statistical information on the average rate of change
of CGM during exercise, as estimated from a set of sessions
previously measured in a reference population. We refer
to this algorithm as “Starting PA.” Before describing in
details each of the two algorithms, we introduce the model
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assumed in both of them to describe the unknown CGM
sequence during the PA session.

During an exercise session performed at an approxi-
mately constant exertion, we expect the glucose consump-
tion along time to happen at a constant rate. Therefore, we
can reasonably assume that the peripheral blood glucose
concentration, as measured by CGM, decreases linearly
during the session. However, in some cases, there may be
some phenomena in the first part of the session perturbing
this linear regime. Indeed, a concavity in the glucose curve
may appear, as we have experienced in our application. In
fact, at the beginning, energy can be produced not only
from sugar (downward concavity), or muscular efficiency
can be lower than in the rest of the session (upward con-
cavity). To better model these variations, it is reasonable to
approximate the unknown CGM time sequence ( )⋅g by a
quadratic polynomial ( )⋅P2 . In fact, it includes the linear
one as a special case and is flexible enough to describe
CGM data also in the presence of the aforementioned types
of perturbations. As the length of the PA session progres-
sively increases, other phenomena may occur. In these
cases, it could be useful to increase the order of the poly-
nomial to have a more adequate description of the ( )⋅g

function.
Our aim in the “Real-time PA” algorithm is to predict

an hypoglycaemic event in the last part of the session,
based on the available sub-sequence of CGM coming
from the first one. For each exercise, we divide the time
interval � [ ]= t0, 1 of the PA session into two sub-intervals
� [ ]= t0, f0 and � [ ]= t t,f1 1 . As said earlier, we model the
unknown time CGM sequence ( )⋅g in the whole time
interval � by means of a quadratic function over time

( ) = + ⋅ + ⋅P t a b t c t2
2. The model parameters a, b and c

are estimated from the measured values of the CGM in �0.
The values of the CGM in �1 are then extrapolated by the
estimated model. It may happen that the estimated model

( )⋅P2 has a first derivative greater than zero becoming
positive before the end of the session. This implies an
increase in CGM values in certain last part of the session,
which is inconsistent with energy expenditure during PA.
Therefore, for such sessions, we use a linear model ( )⋅P1 to
describe the CGM sequence. After estimation, from time tf ,
we extrapolate the CGM values after time tf , including the
value g

1
at time t1. In the case this value g

1
is smaller than

the chosen CGM threshold =g̃ 72 mg/dL , we predict HP
event during the session. We notice that the chosen value
is almost identical to the one of other studies already pre-
sent in literature (70 mg/dL ) [7,8, 10,22]. The motivation for
this choice is two-fold. First, in our sample, the number of
hypoglycaemic events drops importantly from 58 to 45,
when decreasing the threshold to 70 mg/dL . Second, this

choice allow us to work in a more conservative setting.
Moreover, since the time resolution of CGM data is
5 min, it is possible that the last CGM value during the
session is “too far” from the end of the session. Therefore,
the CGM value at time t1, which is used to predict HP, is
obtained by the convex combination of the two measure-
ments closest to that time, with weights equal to their
relative time distances from it. In Figure 1, we show the
flowchart of the “Real-time PA” algorithm.

For the “Starting PA” algorithm, we want to estimate
for any individual the probability �HP of experiencing HP
before the end of a planned session of length t1. This is done
based only on the initial CGM value g

0
at time =t 0 for that

individual. Let us assume for the moment that the CGM
sequence decreases linearly with (negative) rates of change

Figure 1: Flowchart of the “Real-time PA” algorithm.
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(slope) m. Then, with the value of m and the two quantities
mentioned earlier, we can compute the final CGM value

= + ⋅g g m t
1 0 1. From this equation, given g

0
and t1, we can

find the maximum value of the slope ( )= − ∕m g g t˜ ˜
0 1 such

that the final CGM value g
1
is below g̃ , i.e. we have HP

during the session. Of course, the rate of change for that
individual is unknown. Here, we assume m to be random,
with its value described by a suitable probability density
function ( )⋅f . Therefore, the probability that at the end of
the session we have HP is

� ( )∫=
−∞

f x xd .HP

m̃

(1)

To find the most suitable shape for the probability
density function ( )⋅f , we have experimented several pos-
sible alternatives, based on some main features of the
empirical distribution. The best choice corresponds to be
the skewed Gaussian distribution, whose density is

( ) ( )= ⋅ ⋅ ⎛
⎝

− ⎞
⎠f x ϕ x μ σ α

x μ

σ
2 ; , Φ . (2)

Here, the function ( )
( )

⎜ ⎟≔ ⎛
⎝
− ⎞

⎠
−

ϕ y μ σ; , exp
πσ

y μ

σ

1

2 22

2

2 is the

probability density function for a Gaussian random
variable with expected value μ and variance σ 2 and

( ) ∫ ⎜ ⎟≔ ⎛
⎝
− ⎞

⎠−∞y tΦ exp d
y

π

t
1

2 2

2

is the cumulative density func-

tion of a standard Gaussian random variable. The real
quantity α is a shape parameter. The values of the para-
meters for the model of ( )⋅f are then obtained by maxi-
mizing the likelihood of the whole set of values m̂ estimated
from a sample of previously measured sessions (model
training set). For each of these sessions, the parameters q

and m of the linear function ( ) = + ⋅P t q m t1 assumed for
the CGM sequence ( )⋅g are estimated by minimizing the
mean squared errors between the data and the model.

The same procedure can also be applied describing the
CGM function with a polynomial of degree two ( )⋅P2 , as
done in practice here. We then replace the slope by the
average rate of decrease ⟨ ⟩m of its instantaneous value
(derivative of the polynomial) in the time interval
considered

⟨ ⟩ ( )
( ) ( )∫= =

−
m

t
P x x

P t P

t

1
˙ d

0
.

t

1
0

2

2 1 2

1

1

(3)

The values of ⟨ ⟩m obtained from the sessions of the model
training set are then used, by the described procedure, to
estimate the parameters of the density function ( )⋅f . In
Figure 2, we report the flowchart for the “Starting PA”
algorithm.

2.2 Performance quantification procedures

To evaluate the prediction performance of the two pro-
posed algorithms, we proceed as follows. For the “Real-
time PA” algorithm, using the estimated model to extrapo-
late CGM data, we assess the occurrence of HP in �1 for
each of the PA sessions considered. We then calculate
the sensitivity (specificity) of the algorithm, which is
the number of correctly predicted sessions among those
that are really experiencing (not experiencing) HP. In
addition, we also compute two other indicators. The first
one is the accuracy value, which is here defined as the
arithmetic average of sensitivity and specificity. The
second indicator is the sample mean of the root-mean-
squared error (RMSE) between the last CGM data and the
corresponding theoretical values extrapolated by the
model in �1.

We turn now to the assessment of the “Starting PA”
algorithm. Let us first consider any partition of the whole
set of sessions into two disjoint sub-samples of about the
same size. One of these subsets is used for training, i.e. to
estimate the parameters of the model ( )⋅f . Now, for each
session of the remaining (testing) set, we calculate the
probability �HP described in the previous section. We pre-
dict HP if �HP is larger than a given threshold value p, fixed
by the user in [ ]0, 1 . As mentioned earlier, we compute
sensitivity and specificity, which in this case are curves
whose value depend on p. On this basis, we also build
the ROC curve as sensitivity against − specificity1 . From
the ROC curve, we estimate AUC [23–25], which quantifies
the global prediction ability of the algorithm. To account
for the variation of the results due to different sample
partitions, the procedure is applied to 300 random parti-
tions and the values of AUC are averaged.

In addition to the AUC, we also consider another global
performance indicator. Let us consider any partition of the
whole set of PA sessions. As commonly done, we introduce
the accuracy, defined as the arithmetic average between
sensitivity and specificity curves. We notice that empiri-
cally this curve presents a global maximum. Therefore, it
can be of interest to evaluate sensitivity and specificity
curves at the threshold value p

m
where this maximum is

reached. To find p
m

in an accurate way, we describe it
through a parametric model. The accuracy curve presents
two part, a first non-constant and a second constant one. To
describe the first part, we use a parametric theoretical
model, based on a Beta distribution density [26]:

( ) ( ) ( )= ⋅ ∕ ⋅ − ∕− −h x γ x κ x κ1 ,α β1 1 (4)
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where ≥κ γ, 0 and >α β, 1. We estimate the model para-
meters by minimizing the least squared errors between the
empirical data and the model. An example of such fit is
shown in Section 3. The values of sensitivity, specificity and
accuracy reported in Section 3 are the averages, with
respect to 300 random partitions, of the corresponding
obtained with the procedure above.

After performing the described validation study for
the “Starting PA” algorithm, when applying it to a new
individual, we wish to use the information about the dis-
tribution of the average rate of decrease of the CGM theo-
retical model, as derived from the whole set of considered
sessions. The situation closest to it, which still enables us to

assess the algorithm performance, is concerned with the
leave-one-out cross validation [27]. Following this scheme,
we select in turns each of the n sessions of the sample,
which are used to test the prediction performance. Each
time, the remaining −n 1 sessions are used to estimate the
model parameters. Then, on the basis of this the n results of
prediction, we compute the indicators presented above.

Finally, we report some results concerning with ses-
sions for which we properly predict HP. For the “Real-time
PA” algorithm, we compute the average of the difference
between the time tHP of HP occurrence and the time corre-
sponding to the value g

f
of the last measured CGM in �0.

For the “Starting PA” algorithm, we consider the average of

Figure 2: Flowchart of the “Starting PA” algorithm.
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the time tHP of HP occurrence. Moreover, for the same
sessions of the “Real-time PA” (“Starting PA”) algorithm,
we report the mean value of g

f
(g

0
).

3 Results

The following results are obtained applying the two meth-
odologies to the data from the T1DEXI study of the Jaeb
Center for Health Research [20,21]. The dataset contains
several information from 497 people with T1D between
18- and 70-years old performing controlled PA. The
majority of the subjects are between 26 and 44 years old
(51%), while the 22% is younger than 26 and the remaining
27% older. The database present an imbalance between
females and males, with the first group representing the
73% of the whole sample. Almost half of the sample have a
hybrid closed-loop system (45%), the 37% adopt a standard
insulin pump, while only the 18% uses multiple daily injec-
tions. More details can be found in Riddell et al. [20]. In that
study, the subjects were divided into three groups of about
the same size, and all individuals of each group were
assigned to a specific training type between resistance
(172 subjects), aerobic (163 subjects) and interval (167 sub-
jects). Each subject performed several PA sessions, recorded
in study videos, of variable length with a median value of
about 30 min. During each PA session, the glucose concen-
tration in peripheral blood was acquired by CGM device
every 5 min.

We now focus on the “Real-time PA” algorithm. To
quantify its performance, we select PA sessions, among
all those available, according to the following criteria.
We require at least three CGM readings in the interval

� [ ]= t0, f0 and a starting PA CGM value >72 mg/dL . In
addition, of the available PA sessions, we eliminate those
whose (average) slope of the fit in �0 is positive (equation
(3)). In fact, starting from an initial CGM level larger than
the hypoglycaemic threshold g̃ , in the presence of a posi-
tive slope of the fit, it is impossible to predict HP events.
The complete list of inclusion criteria is itemized in Table 1.
We notice that, considering only negative values of the
slope is not a limitation. In fact, as time goes by during
the PA, we can move forward the interval �0 and �1 and
apply the algorithm when, eventually, the slope becomes
negative.

Summarizing, for the “Real-time PA” algorithm, we
analyse a total sample of 1,022 sessions, 500 of which resis-
tance (RES), 337 aerobic (AER) and 185 interval (INT). The
algorithm is applied the same way to each CGM sequence
of the 1,022 sessions, irrespective of the type of training. In
Figure 3, we present two examples of the adopted theore-
tical model fitted to CGM data. In the left (right) panel, we
show a linear (non-linear) evolution of CGM data, both
well described by the quadratic theoretical model ( )⋅P2 .
In Table 2, we show the results obtained from the perfor-
mance evaluation. For the considered PA sessions, the
average length of the interval �1 is equal to 17.4 min (stan-
dard deviation 3.5). The length of the forecast interval

Table 1: Inclusion criteria. The three chosen criteria to include a training
session in the performance quantification of the “Real-time PA”
algorithm

Number of CGM readings in � [ ]= ≥t0, 3f0

Starting CGM value >g 72 mg/dL
0

Average slope of the fit ⟨ ⟩m in � ≤ 00

Figure 3: Examples of measured CGM sequence and theoretical model. The theoretical model (dashed line) corresponds to the ( )⋅P2 polynomial fitted
on the first sub-sequence of data (×) to predict the CGM on the rest of the time interval, in particular at the times of the measurements ( ∘ ). On the left
(right) panel, an example of linear (non linear) CGM evolution is shown.
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estimated is 10.7 min (standard deviation 5), and the mean
CGM value g

f
is to 89 mg/dL (standard deviation 15).

We now turn to the “Starting PA” algorithm. To test its
performance, some weaker constraints are imposed to
select PA sessions to be analyzed. We notice that the appli-
cation of this algorithm only needs the value g

0
of CGM at

the beginning of the session, for which we still require
>g g̃

0
. In addition, both to estimate model parameters

and to evaluate algorithm performance, we select sessions
lasting at least 20 min. Furthermore, we exclude cases with
missing values of CGM in the first or last 5 min of the PA
session. The final sample obtained contains 2643 PA ses-
sions, 890 of which of RES, 880 of AER and 873 of INT. The
number of sessions with HP is 105 (4%), 32 of which hap-
pened during RES, 45 during AER and 28 during INT. A
summary of the sample features is reported in Table 3.

Differently from the “Real-time PA” algorithm, the per-
formance here are evaluated separately for each of the
three types of sessions. This choice is motivated by the
fact that the empirical distributions of the average rate
of decrease of CGM are significantly different for the three
types of PA, as shown in Figure 4. However, for complete-
ness, the performances are also quantified by pooling the

sessions of the three types. We notice that, to produce the
results in the cited figure, for each type of PA, we have used
all the sessions available.

The average values of the optimal accuracy, sensitivity
and specificity on the same repeated random partitions are
reported in Table 4. As already explained, we also perform a
leave-one-out cross-validation. The performance obtained
from this approach differ in absolute value from those in
Table 4 at most of 0.02 for all combinations of indicators and
types of training. However, when considering all the ses-
sions together, irrespective of the type of training, the values
are identical for each of the four indicators.

On the left panel of Figure 5, we display an example of
ROC curve for one possible random partition of the whole
sample in training and testing set. On the right panel, the
corresponding accuracy curve is shown, together with the
parametric fit relative to equation (4).

Also in this case, we estimate the length of the forecast
interval for predicted HP events and the corresponding
starting CGM. The two values are equal to 19.7 min (stan-
dard deviation 1) and 93 mg/dL (standard deviation 1.7).

The aforementioned results are relative to the HP
threshold level of =g̃ 72 mg/dL . As explained in the pre-
vious section, differently from the “Real-time PA” algo-
rithm, here we can also choose the commonly used values
of 70 mg/dL . In fact, the number of positive events reduces
less in percentage, when comparing to “Real-time PA”, and
remains high enough dropping from 105 to 87. The perfor-
mance are almost identical both in the leave-one-out and in
the 50/50 sampling scheme. In particular, in the first case,
all the indicators increases by 0.01, except for the AUC,
which increases by 0.02. In the second case, we have that
the AUC does not change, the specificity decreases by 0.01,
while both sensitivity and accuracy increase by 0.01.

We consider now a modification of the method, repla-
cing the quadratic polynomial with a third order one. In
fact, the unknown CGM sequence can be fitted here to at
least four data points (average data points per PA session
5.6). For each of the three indicators and the different types
of training, the performance gain is always below 0.01. This
is also true for both the leave-one-out and 50/50 sampling
scheme. We note that, for these two variations, we only
evaluate the performance for all PA sessions pooled
together. In this way, we use the largest sample available
and we can assess the influence of these two factors,
avoiding to introduce possible effects given by a less accu-
rate estimation procedure.

To possibly improve the performance of the “Starting
PA” algorithm by considering other covariates, we proceed
as follows. To keep the nice feature of this method, i.e. its
simplicity, we only consider the case of a single covariate.

Table 2: Performance results for the proposed “Real-time PA” algorithm
applied to the whole set of 1,022 sessions of the three available types

Indicator Value Units

Sensitivity = ∕ ⋅95 55 58 100 %
Specificity = ∕ ⋅87 841 964 100 %
Accuracy 91 %
RMSE 12.41 (15.92) mg/dL

The percentage value of sensitivity and specificity are reported together
with the corresponding absolute numbers of sessions. The sample mean
of the RMSE between the CGM data and the theoretical values extra-
polated by the model in the prediction interval is also reported together
with its standard deviation.

Table 3: Summary of some main features of the sessions used for
performance quantification of the proposed “Starting PA” algorithm
separately for each of the three PA types. In the last two columns, some
information about the sessions with HP are also showed

Type of PA No. of
sessions

Mean ±± sd
duration
(minutes)

No. sessions
with HP

%

Resistance 890 ±31.73 3.86 32 3.6
Aerobic 880 ±27.22 6.25 45 5.1
Interval 873 ±23.66 4.35 28 3.2
Total 2,643 ±27.56 5.9 105 4.0
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Unlike other types of methods, here the covariate identifies
sub-samples of sessions with different distributions of the
average slope ⟨ ⟩m . Among the different choice made, the
best results are obtained by the following one. One sub-
population contains sessions (denoted Carb1) such that,
either the last meal was three or more hours before the
session, or the subject had a snack before it. The other sub-
population contains the remaining sessions (Carb2). We
consider the standard case of threshold level 72 mg/dL

and polynomial of degree two. We first notice that the
empirical frequency of HP drops to 3.1% for Carb1 and
increases to 5.4% for Carb2. In Figure 6, we show the esti-
mated theoretical probability density functions for the two
sub-populations. The mean values are −3.1 mg/dL/10 min
for Carb1 and −7.9 mg/dL/10 min for Carb2. The global
performance indicator increases correspondingly to

=AUC 0.89, =accuracy 0.82 for Carb2, and decreases to
=AUC 0.84, =accuracy 0.77 for Carb1. These values are

Figure 4: Empirical density functions of the average rate of decrease ⟨ ⟩m estimated from all the sessions of RES (left), AER (center) and INT (right), as
in Table 3. The corresponding theoretical density functions, estimated among the family in equation (2), are superimposed to the empirical data.

Table 4: Performance indicators for the “Starting PA” algorithm calculated for the three types of sessions

Type of training AUC Sensitivity Specificity Accuracy

RES 0.84 (0.76–0.91) 0.83 (0.69–1.00) 0.74 (0.66–0.80) 0.79 (0.72–0.86)
AER 0.85 (0.80–0.89) 0.83 (0.73–0.94) 0.68 (0.60–0.75) 0.77 (0.72–0.82)
INT 0.90 (0.84–0.95) 0.82 (0.69–1.00) 0.81 (0.74–0.87) 0.82 (0.75–0.89)
TOT 0.86 (0.83–0.89) 0.83 (0.76–0.90) 0.74 (0.70–0.78) 0.78 (0.75–0.82)

The results are obtained from 300 random selections of training and testing sets (50%/50%). The mean values of the indicators are reported together
with their 95% quantile intervals.

Figure 5: Example of curves of ROC (left panel) and accuracy (right panel) for a possible random choice of training and testing sets (50%/50%). For the
accuracy curve, the estimated theoretical model, as in the family in equation (4), is superimposed to the empirical data.
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relative to the sampling scheme 50/50. The values for
the leave-one-out scheme are identical, except for the
AUC of Carb1 which is equal to 0.85.

4 Discussion

The application of the two proposed algorithms to a large
database of PA sessions demonstrates their very good
ability to predict HP during exercise of people with T1D.
Results show higher performance of the “Real-time PA”
algorithm when compared to the “Starting PA” one.
Anyway, it is interesting to see how, for the “Starting PA”
algorithm, sensitivity, which represents the most impor-
tant indicator for the situation under study, remains larger
than 80%. This is true both for the three types of training
analyzed separately and for the whole set of sessions com-
bined together. We also notice that the two algorithms
could be applied in sequence, first applying the “Starting
PA” one.

The performance obtained by the “Starting PA” algo-
rithm for INT sessions are, for almost all conditions, higher
than the ones obtained from the other two types. This may
have two causes, likely related to each other. First, the
mean duration of the INT sessions is lower than for the
other two types, and consequently, this happens also for
the prediction interval. In fact, the INT sessions have a
mean duration of 23.7 min (standard deviation 4.4), while
RES sessions last in average 31.7 min (standard deviation
3.9), and AER 27.2 min (standard deviation 6.3). Second,
measured CGM data for INT sessions are better described
by the adopted polynomial function ( )⋅P2 than for the other

two types. Indeed, the mean absolute error between the
CGM data and the model in the whole interval � is the
lowest for the INT sessions. It is equal to 0.59 mg/dL, while
the RES and AER sessions present an error equal to 1 mg/dL
and 0.77 mg/dL, respectively.

The overall results show a very good performance of
the “Starting PA” algorithm to predict HP. In particular, as
mentioned, the sensitivity values remain quite high and
stable over the different type of applications (min sensi-
tivity 0.82) and result to be higher than those obtained in
Tyler’s [8] (max sensitivity 0.76) and Bergford’s [10] (max
sensitivity 0.75) studies. In fact, our methodology outper-
forms the latter also in terms of AUC (Bergford’s max AUC
0.83) and accuracy level, while presenting accuracy levels
comparable to those obtained from Tyler et al. The study of
Reddy and colleagues [7] is the one presenting the best
results among those presented in the Introduction. Unfor-
tunately, the highest performance values (sensitivity =

0.86, accuracy = 0.87) are reached by the most complex
methodology among the two proposed, which includes 10
covariates. The other algorithm is comparable with the
“Starting PA” both in terms of number of covariates and
of performance results (sensitivity = 0.82, accuracy =

0.80). In order to assess the adequacy of the mathematical
model in describing the CGM evolution during PA, we
replace the quadratic polynomial by a third order one. How-
ever, the gain in performance is very little. Indeed, for each
of the three indicators and the different types of training, it
remains below 0.01. This is true for both the leave-one-out
and for the other type of sampling setup. Regarding the
introduction of the adopted covariate, we first notice that
it well separates the two sub-populations. In fact, for Carb1

sessions, the estimated probability of HP drops to 3.1%,
while for the other type of sessions, it increases to 5.4%.
For the sub-population Carb2, the overall performance indi-
cators increase from 0.86 to 0.89 for AUC and from 0.78 to
0.82 for accuracy. For Carb1 sessions, we have AUC = 0.84
and accuracy = 0.77. Those results are for the sampling
scheme 50/50, almost identical results are obtained for the
leave-one-out scheme. We remark that the performance
gain for Carb2 is larger, although not big, than the loss for
Carb1. In addition, the relevance of the gain is higher than
for the loss, as the frequency of HP is higher for Carb2

sessions than for Carb1.
Despite its simplicity, the “Real-time PA” algorithm

reaches performance higher than all the algorithms pre-
sent in literature and briefly described in Section 1. In fact,
in the best of these studies, Reddy et al. [7] and Bergford
et al. [10] obtain values for both sensitivity, specificity and
accuracy lower than the “Real-time PA” algorithm, for PA
sessions similar to those considered here. This is also true

Figure 6: Probability density functions for the two sub-populations of
Carb1 and Carb2. The theoretical functions are obtained fitting the
model in equation (2) to the empirical values of the average slopes in the
two corresponding groups.
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for the results of the study from Tyler and colleagues [8]. As
far as it concerns the study of Romero-Ugalde [9], the pre-
diction error, when considering a model training proce-
dure similar to ours, is approximately 35% higher than
our. They also consider multiple training sessions (four
sessions in three days). In this case, our prediction error
is approximately 50% higher than the one obtained there.
However, in addition to the low dimension of the sample,
each session used as testing is the third one of the four
acquired, while the remaining three are used for training.
Therefore, we cannot actually speak about prediction.

Regarding the aforementioned comparison, we recall
that, for the “Real-time PA”, we use hypoglycaemic threshold
level of 72 mg/dL , which differs from the more common
70 mg/dL , seen in other studies [7,8, 10,22]. As written in
Section 3, the motivation for this is, first, a more conserva-
tive choice. More important, we prefer doing it to increase
the reliability of the performance. Indeed, for the choice of
70 mg/dL , the number of hypoglycaemic events happened
in the analyzed sessions drops significantly. This is not the
case for the “Starting PA” algorithm, which allows us to
perform the analysis also with an HP threshold level of
70 mg/dL . Luckily, the performance values increase or
decrease only by 0.01.

Potential problems or limitations may arise for the
application of the proposed algorithms to different sub-
populations of T1D subjects and/or to PA characteristics
different from those used here. This may involve quantities
related to the subject, e.g. age, sex and insulin modality, as
well as others related to PA, e.g. intensity and duration.
Other factors of the same type of the last ones that may
play a role are climate conditions, stress level and activity
environment (e.g. outdoor PA). We notice that, for the
“Real-time PA” algorithm, all these factors are implicitly
take into account, as the prediction is based on the CGM
data from an initial part of the PA session. However, for
both algorithms, testing of the methods with additional
data is needed to quantify the performance in a broader
set of conditions. If the amount and variety of data makes
it possible, the analysis could be performed separately
in groups depending on different types of conditions.
Unfortunately, at the moment, we do not have access to
such a rich dataset both in terms of size of the sample and
in variety of PA conditions. As a general observation, due
to the danger of possible events of HP, we think that the
use of controlled PA session should be advised in this
population.

The methods proposed here have been developed fol-
lowing a classical informative approach. Specifically, we
either use a parametric model to describe the glucose func-
tion, or we estimate statistical information on glucose rate

variation from a sample population and we use it to cal-
culate the probability of hypoglycaemia. Other possible
approaches are related to novel machine learning and
deep learning methods. The literature on glucose predic-
tion methods from CGM data using such approaches is
huge and many significant advances have been made in
recent years. Among those, some interesting and effective
methods have been developed, which use NN models
[11–13]. Li et al. [11] developed a framework based on
convolutional NN with the aim of performing persona-
lized prediction of glucose measurements, based on his-
torical CGM data. The method is applied to two clinical
datasets and trained on 90 or 10 days of historical data,
respectively. Prediction at 30 and 60 min is then per-
formed using a shifting window containing the 16 last
previous CGM measurements. In the best case, an RMSE
of 19.19 mg/dL is achieved for the 30 min prediction case.
De Paoli and colleagues [12] built a jump NN for predicting
glucose concentration, specifically trained on subjects
who regularly perform PA. The network is trained on at
least one day of historical data per subject and the 30 min
prediction is then performed using a window of the last 10
previous CGM measurements. Under the best conditions,
the RMSE reaches 20.8 mg/dL. A final interesting work is
from Allam [13], where a non-linear autoregressive model
with exogenous input is integrated with a NN to improve
performance for longer prediction horizons. The trained
model uses a window of the last 20 previous CGM readings
to predict glucose level at a future time ranging from 15 to
100 min. The RMSE for 30 min prediction is 0.91 mmol/L
(16.4 mg/dL). We notice that the proposed “Real-time PA”
algorithm outperforms all the above methods on the same
prediction horizon, in terms of RMSE. Of course, these
methods are developed to forecast glucose level in a more
general context. Moreover, most of them consider also
longer prediction horizons than ours. Nevertheless, despite
the good performance and general applicability of such
models, they suffer from two drawbacks. First, most of these
methods are not specifically designed to detect PA-induced
hypoglycaemia. Second, they require a huge amount of data
to be trained, which is difficult to obtain in the case we are
focusing on. Most important, in all the studies analyzed, the
minimum number of CGM readings used as input for the
future prediction is 10, whereas here we use only three CGM
measurements in the “Real-time PA” algorithm. Therefore,
these types of models cannot be applied in our specific
context.

The proposed “Real-time PA” algorithm is fully deter-
ministic. Instead, the “Starting PA” is of statistical type. Our
future work involves the combination of the two algo-
rithms to produce a Bayesian one. Indeed, when assuming
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a parametric model for the CGM data, we could combine
the data likelihood with an a priori probability on model
parameters. The a priori distribution could be estimated
based on previous measurements, in line with empirical
Bayes approach [28]. This can be applied dynamically as
soon as new data are acquired.

We notice that, after the measurement of the CGM data
during the initial part of the session, the “Real-time PA”
algorithm could be applied dynamically by shifting for-
ward the time intervals where parameter estimation and
prediction are performed. We plan to intensively apply
and test the two proposed algorithms, possibly improved,
as well as the introduced Bayesian one, to new real CGM
data from people with T1D performing PA. Indeed, we have
just started the acquisition of such data within the EU
Horizon 2020 WARIFA project [29] in relation to which
this study has been developed. This involves both retro-
spective and real-time data analysis. Finally, as soon as a
sufficiently large number of sessions of the same subject is
available, personalization also becomes possible. In fact,
the a priori information regarding the average slope can
be estimated from such data and then be used when
applying the Bayesian method to the data of a new PA
session.

The choice of adopting Matlab as framework to imple-
ment the developed methodologies has the advantages to
combine high numerical precision with user-friendly gra-
phical interface. Moreover, it allows us to produce a stand-
alone version of the codes, which have been incorporated
in a specific app within the WARIFA project. A subject
using the app can easily run one of the two algorithms
when performing PA. The system automatically acquires
the needed information, i.e. the initial CGM value at the
beginning of the session for the “Starting PA” algorithm, or
the CGM values in a first part of it for the “Real-time PA”
one. Then a visual or audio alarm will be activated, if HP is
predicted. This way, the subject can stop the training. A
pilot study involving some subjects with T1D within the
WARIFA project will allow to test the different functional-
ities of the current version of the app. When the WARIFA
app will be publicly available, subjects with T1D can down-
load and use it as a tool to help them to safely perform PA.
The presence of such app can be effective to overcome the
fear of subjects with T1D of experiencing HP when per-
forming PA [3–5]. In addition, healthcare providers may
also contribute to the spread of the app by encouraging
their patients to use it. This way, it could be possible to
progressively assess the performances of the algorithms on
a large base, eventually contributing to its modifications
for improving them.

5 Conclusions

Here, we have proposed two algorithms to predict HP
during exercise in individuals with T1D, and we have
applied them to a large database of PA sessions. They are
only using a few CGM data of the current PA session, which
allows them to be widely applied. The performances
obtained show a very good ability to predict HP of both
the algorithms. Although the “Real-time PA” algorithm
slightly outperforms the “Starting PA” one, this last main-
tains a high sensitivity value. Furthermore, the “Real-time
PA,” despite simple, shows better performances than any
of those described in the cited literature. When comparing
the “Starting PA” with related known methods, it either
outperforms them or these last are more complex and
involve the use of many covariates, making them applic-
able in a reduced set of cases. The “Real-time PA” algorithm
is fully deterministic, while the “Starting PA” is a statistical
one. However, they could be combined to produce a
Bayesian one. Once a large amount of data is available
for a given individual, personalization of the Bayesian
method is also possible. The two methods have been incor-
porated in a specific app within the WARIFA project [29],
which is now going to be tested through a pilot study. The
results of this study, which may suggest how to improve
the methods, hopefully will make it possible using the app
for a large number of people with T1D to perform a
planned PA session without experiencing HP.
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