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Abstract: The use of plant extracts as potent reducing
agents for the environmentally friendly production of
nanoparticles (NPs) has recently attracted the interest of
scientists. NPs have received high attention because of

their novel properties. The aim of the present study is to
biosynthesize zinc oxide nanoparticles (ZnO NPs) using
Raphanus sativus and study their effect as antibacterial,
anticancer, antiviral, and antidiabetic, agents, NLRP3
inflammasome inhibitors, and inducers of phagocytosis
and autophagy. The antibacterial, anticancer, and antiviral
activities of ZnO NPs were investigated using different
assays: well diffusion assay, MTT assay, reverse transcrip-
tion polymerase chain reaction, reactive oxygen species
generation, and apoptosis assay. Meanwhile, immunofluor-
escent assay, enzyme-linked immunosorbent assay, and
flow cytometry were used for detection of autophagy and
phagocytosis. Docking was also achieved to study their
binding mode as well as affinity within the target enzymes
(glucosamine-6-phosphate synthase) (PDB:1MOQ) active
site, estrogen receptor (PDB:3ERT) active site, and tubulin
receptor (PDB:4O2B) active site. The results demonstrated
that the ZnO NPs have an inhibitory role against bacteria
and the proliferation of lung cancer cells (A549). IC50 was
22.78 µg/mL for A549 cells. For MCF-10, was 272.24 µg/mL,
antiviral activity against influenza virus, and antidiabetic
agent. Conversely, the results showed the ability of ZnO
NPs to reduce inflammasome activity via induction of
autophagy. The study’s findings show that R. sativus can
be easily and effectively used to synthesize ZnO NPs, and
they also highlight the ZnO NPs’ considerable potential as
antibacterial, antiviral, anticancer, NLRP3 inflammasome
inhibitor, antidiabetic agent, and phagocytosis and autop-
hagy inducer. Based on our findings, the green synthesized
ZnO NPs could be used as promising therapeutic agents for
biomedical applications.
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1 Introduction

Nanotechnology is a hot spot research in recent material
sciences, providing numerous applications ranging from
innovative fabric compounds to sophisticated medical appli-
cations [1]. Nanotechnology involves synthesizing and
exploring molecules ranging from 1 to 100 nm nanoscale,
which correspond with the functional properties of anthro-
pogenic systems [2]. Nanoparticles (NPs) are manipulated
or controlled particles at the atomic level 1–100 nm with
distinct physiochemical properties from bulk materials [3].
NPs are regarded as larger than their counterparts. NP
drug delivery system has been used since the 1990s and
has evolved alongside advanced technological needs to
enhance the delivery of different therapeutics. Newer gen-
erations of NPs have been developed over the past few
decades to improve novel therapeutic modalities [3]. These
characteristics of NPs make them to be used in different
spectra, including nanomedicine. NPs of metal oxide have
important physiochemical and biological properties, making
them valuable in different applications. In NP synthesis,
many adverse effects develop due to toxic chemicals such
as capping and reductive agents. However, using natural,
mainly plant extracts in the synthesis of NPs is promising as
it is eco-friendly and time-saving [3]. NPs have unique metal
intrinsic properties such as zinc oxide (ZnO) and silver [4].
ZnO is a multipurpose and promising molecule with a wide
range of applications [5] due to heat stability, long dur-
ability, high selectivity, and high optical absorption, which
is essential for the detection of the antibacterial response
[6]. ZnO NPs can be synthesized from different natural
extracts. ZnO NPs have good biocompatibility than zinc
metal in biological tissues. Zinc metal is highly present in
different tissues, including skin, bone, brain, and muscles.
Therefore, non-toxic ZnO NPs are highly distributed in the
human body [6]. Different methods are used for the synth-
esis of ZnO NPs, e.g., spherical shape ZnO NPs are synthe-
sized by hydrothermic method [7]. Specific features of NPs
permit them to interact with numerous cell biomolecules
and facilitate transport into the inner cellular components
[8]. ZnO NPs have a higher atomic percentage and large
surface reactivity. Therefore, it can interact with living
organisms [9]. ZnO NPs can accumulate intracellularly,
leading to the inhibition of the growth of bacterial and
cancer cells due to their special physical and chemical char-
acteristics, ZnO NPs are among the most studied options

among all NPs for drug delivery, cancer diagnostics, and
therapeutic applications [10]. ZnO NPs are currently one of
the five zinc compounds that the US Food and Drug Admin-
istration lists as usually considered safe for both animals
and humans. ZnO was observed as one of the best metal
NPs in the world since it is affordable, hygroscopic, non-
toxic, and easily accessible. ZnO NPs are widely investigated
in both nanoscale and microscale formulations for their
antibacterial activity [11]. ZnO NPs exhibit bactericidal
effects through interaction with bacterial cell walls or bac-
terial nucleic acids by releasing Zn2+ and generating reac-
tive oxygen species (ROS) [12]. Fabrication of ZnO NPs with
desirable shapes and sizes protects the human body from
solar radiation and bacterial infections [13]. Moreover,
selective toxicity of ZnO NPs could be beneficial against
cancer cells [14]. Autophagy is a necessary process for
normal homeostasis and the health of the skin [15]. The
skin, which is made up of many cells and is the greatest
barrier in the body, protects organisms from infections
and regulates their metabolism and immune system to
keep them in a state of dynamic balance. However, a
number of issues impede the healing of skin wounds [16].
The healing of wounds is a very intricate biological process
that encompasses multiple cell types working in harmony
as well as joint involvement [17]. Inflammation, oxidative
stress, and bacterial infections are examples of health
issues that can hinder the healing of wounds and create
excruciating agony for the patient. Furthermore, extended
medical care strains the healthcare system and consumes
enormous quantities of medical resources [18]. Autophagy
is essential for skin repair because it encourages immuno-
logical and functional cells to help heal damaged skin more
quickly. According to a study by Birmingham’s group, resis-
tance to pathogenic infections and autophagy activation are
positively correlated. Additionally, Salmonella typhimurium
can induce autophagy, which stops it from multiplying in
cells and shields them from bacterial harm [19]. According
to a study by Das et al., vitamin D increased macrophage
autophagy, which in turn increased the expression of anti-
inflammatory proteins and decreased the inflammatory
response, thereby accelerating skin healing [20]. It has
been demonstrated that biomaterial-mediated autophagy
is crucial for cell phagocytosis and clearance, cellular func-
tion maintenance, cell differentiation, and immunological
stress in vitro and in vivo [21]. The incredibly intricate
homeostatic mechanism of living things can stop the aber-
rant materials, such as protein clumps, from accumulating
when breakdown processes are activated. As a result, bio-
materials that enter the body are quickly identified as alien
substances that trigger a number of cellular defense
responses, such as autophagy [22]. Biomaterials have a
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significant impact on how certain diseases proceed by con-
trolling autophagy [23], through controlling autophagy
during skin wound healing [24]. Clinicians are always faced
with more complex wound healing cases; hence, newmate-
rials and methods are highly sought after. Significant
advancements in nanotechnology, primarily in the areas
of nanochemistry and nanomanufacturing, have comple-
tely transformed the biotechnology and pharmaceutical
sectors. Because of their unique structures, nanomaterials
(NMs) (having at least one dimension smaller than 100 nm)
exhibit distinctive physicochemical features to surface,
macroscopic, and small-scale quantum tunneling phe-
nomena. Recently, because of their improved adsorption
ability, antibacterial qualities, and medication loading, NPs
are used in healing of wound [25]. Zinc oxide nanoparticles
(ZnO NPs) are widely used in medicinal product fillers
because of their antimicrobial, biosafety, and biocompa-
tible capacity [26]. The cytoplasm and surface of the bac-
terial cell absorb and accumulate ZnO NPs, respectively,
and impair the bacterial cell membrane, causing the bac-
terium to die. Previous research has indicated that the size
of ZnO NPs is crucial in inhibiting the growth of some
detrimental bacteria [27]. For instance, ZnO NPs are used
as bactericidal factor [28]. Aqueous solution of ZnO NP has
antibacterial action via induce a lot of ROS [29]. Addition-
ally, it was found that direct contact and strong ROS pro-
duction may greatly kill Mycobacterium using ZnO NPs.
Moreover, ZnO NPs, in a dose-dependent manner, prevent
the growth of P. aeruginosa and S. aureus biofilms. ZnO
NPs embedded in cellulose sheets [30], collagen dressing
[31], or chitosan hydrogel [32] demonstrated tissue regen-
eration as well as antibacterial action, making them appro-
priate for reducing the risk of infections during wound
healing [33]. Many factors could affect NPs’ biological
activity, such as size distribution, shape, surface charge,
surface chemistry, capping agents, and others. Researchers
have been interested in NMs for the past few years due to
their unique properties, such as physical, chemical, biolo-
gical, and nanoscale, which set them apart from bulk mate-
rials [34]. A recently published study examined the use of
NP-based formulations for colon cancer diagnostics and
treatment [35]. Meanwhile, Rehman et al. [36] demonstrated
that the Mn0.5Zn0.5DyxEuxFe1.8−2xO4 NPs have antibacterial
and anticancer potential roles. Nowadays, scientists are
able to encapsulate medication in virus-sized NPs. Because
the NPs can precisely locate damaged cells and transfer
the medication, they are suitable for the system of drug
delivery. Furthermore, advances in nanoscience and nano-
technology are driving the creation of increasingly
advanced instruments for neurosurgery and early disease
diagnosis, including cancer and atherosclerosis. The field of

using nanotechnology to diagnose diseases is expanding
quickly. These materials are outstanding and essential in
many applications because of their special size-dependent
characteristics [37]. Therefore, the aim of this study was to
evaluate the biomedical applications of bio-synthesized ZnO
NPs such as antimicrobial, anticancer, antioxidant, antidia-
betic, phagocytosis induction, and targeting NLRP3 inflam-
masome via augment autophagy.

2 Materials and methods

2.1 Green synthesis of ZnO NPs

This experiment was done according to Liu et al. [38].
Briefly, 1 gm of R. sativus red root was stirred and heated
at 80°C in 50 mL distilled water (DW) for 45 min; the pH of
the extract was 7.3. Then, Whatman filter paper was used
to filter the extract. After that, 2 mL of plant extract was
added to 2 mL of 0.5 M of zinc acetate dehydrate for 45 min.
The mixture was then centrifuged at 5,000 rpm for 30min
at 4°C. The mixture was stirred continuously while 2 M
NaOH was added dropwise to create a white precipitate.
After that, the reaction was completed by continuing to stir
for 2 h. Centrifuging the mixture at 4,000 rpm produced the
precipitate, which was then cleaned with DW until its pH
reached 7.2. In order to create pure ZnO NPs, the precipi-
tate was finally dried for 2 h at 80°C.

2.2 Characterization of NPs

The UV-vis absorbance of the NPs was determined by using
a UV-1700 Shimadzu spectrophotometer and measuring the
absorbance throughout a wavelength range of 200–800 nm.
Scanning electron microscopy (SEM) and transmission elec-
tron microscopy (TEM) were used to study the morphological
characteristics of the ZnO NPs. Finally, fourier transform
infrared spectroscopy (FTIR) was used to determine the func-
tional group of ZnO NPs [39–41].

2.3 Anticancer activity of ZnO NPs

2.3.1 MTT assay

The cytotoxicity assay of ZnO NPs was done. A549 (Passage
No. 17) andMCF-10 (Passage No. 12) cells (Gift from the Iraqi
Center for Cancer Research and Medical Genetics) were
cultured at a density of 1 × 104 cells per well using complete
RPMI-1640 tissue culture media. After 24 h, the cells were
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exposed to different concentrations of ZnO NPs for 72 h.
MTT solution was added to the cells for 3 h at a concentration
of 2mg/mL. Then, 100 µL of DMSO is added. At a wavelength
of 492 nm, the absorbance of each sample was evaluated
using a microplate reader [42–44].

2.3.2 Acridine orange/ethidium bromide (AO/EtBr)
staining

A549 and MCF-10 were plated on 12-well plates at a density of
1 × 106 cells/well. After 24 h, ZnONPs at IC50 were added. Then,
the cells were stained for 2min with 10 µg/mL AO/EtBr. A
fluorescence microscope was used to examine the cells [45].

2.3.3 Real-time PCR

This experiment was done to measure the expression of
P53, BAX, BCL-2, P53, and mRNA using PCR. The sequences
of primer sets used in this experiment within the quanti-
tative RT-PCR assay involved: BAX (forward: 5′-ATGAAGCT
GAGCGAGTGT-3′ (reverse: 5′-AGCTGGGATGATCCTCTG-3′),
BCL-2 (forward: 5′-CCTGCACAGCTGGATCCT) (reverse:
3′-GACAGAGCCAGCAGAAATCTAA), and P53 (forward′- CGG
TCG CAA GCT ATG GAT G-3′) (reverse: 5′-GAA GAT GAC ATT
GGC CAG CAG-3′). DNase treatment was used after the cells’
total RNA was extracted. On the other hand, Superscript II
reverse transcriptase (Invitrogen) was used in the product in
order to synthesize cDNA. The following ingredients were
added to each reaction for the quantitative reverse transcrip-
tion polymerase chain reaction (q RT-PCR): 1 μL cDNA, 7.5 µL
SYBR green, 0.3 µL ROX, and 0.3 µL relevant primers. The final
volume was increased to 15 µL by adding 5.6 µL of DW. Fast
SYBR A 7900HT rapid system was used to apply the green
master mix. Gene expression levels were normalized to
TATA-binding protein, and then their mean relative values
were computed using the established techniques (Livak and
Schmittgen) [46].

2.4 Antibacterial activity of ZnO NPs

The well-diffusion method was used to measure the antibac-
terial activity of ZnO NPs against S. pyogenes and P. aerugi-
nosa. The bacteria were cultured on theMueller Hinton agar
plates. Wells with diameters of about 6mm were made at
the surface of agar media. Then, ZnO NPs were added at
different concentrations into the wells. These plates were
kept in the incubator for 24 h. The antibacterial activity of
ZnO NPs was recorded by measuring the inhibition zone

diameters. The viability of bacterial strains was investigated
using AO/EtBr double staining assay [47,48]. SEM is used to
investigate morphological changes in bacterial strains
after being treated with ZnO NPs.

2.4.1 Crystal violet staining

ZnO NPs at 125 µg/mL were applied to bacterial strains cul-
tured in 24-well plates at a concentration of 1 × 106 CFU/mL
for a duration of 24 h. After three rinsing with DW, the
samples were then stained with crystal violet (0.1%,
Sigma) and cleaned with phosphate buffer saline (PBS).
Crystal violet-stained samples were filled with 0.2mL of
95% ethanol and agitated for 2 h to measure the growth of
biofilms. Next at 595 nm, the optical density was measured.

2.4.2 Antibiofilm activity of ZnO NPs

Filmtracer Live/Dead Biofilm Viability Kit was used to stain
biofilms that were grown on culture plates of Lysogeny
broth medium (HiMedia, India) or left untreated (control)
or treated with ZnO NPs at a concentration of 125 µg/mL for
24 h. Using a Leica TCS SP5 II confocal microscope, the
pictures were taken.

2.4.3 Biofilm metabolic activity investigation

In glass tubes, biofilms developed both bacterial strains in
the absence and presence of ZnO NPs. Following a 48-h
anaerobic incubation period at 37°C, the biofilm suspen-
sion was stained using a Live/Dead dye kit and subjected
to flow cytometry analysis. In summary, the samples were
washed twice by PBS and centrifuged at 2,000 rpm for 2
min. Syto 9 (30 µM) and propidium iodide (10 µM) were
added for 10 min. When the sample containing two stain
components was stimulated at 488 nm, the emission was
recorded using the propidium iodide (670/LP) channel and
the Syto 9 (530/30) channel on the fluorescein isothiocya-
nate (FITC) channel. The percentage of untreated control
cells was used to express the biofilm cell viability data.

2.5 Antiviral activity of ZnO NPs

2.5.1 Hemagglutination inhibition (HAI) test

The test detects the capacity of ZnO NPs to inhibit the for-
mation of hemagglutination caused by the H1N1 influenza
A virus.
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2.5.2 Embryonic inoculation assay

The HlNl virus sample was diluted with DW and ZnO NPs
for 4 h in 1.5 mL Eppendorf tubes. Fertile chicken embryos
that were 10 days old were individually injected with
100 µL of a sample that was obtained using the chorioal-
lantoic sac method. After being injected for 72 h at 37°C, the
eggs were refrigerated for 12 h at 4°C. As previously men-
tioned, the viral HAI titers of the chorioallantoic sac fluid
were assessed.

2.5.3 Cytotoxicity assay

To determine the cytotoxicity of ZnO NPs against MDCK
cells (Purchased from Sigma), the cells were cultured at a
density of 1 × 104 cells per well. After 24 h, the cells were
exposed to different concentrations of ZnO NPs for 3 h.
MTT solution was added to the cells for 3 h at a concentra-
tion of 2 mg/mL. Then, 100 µL of DMSO was added. At a
wavelength of 492 nm, the absorbance of each sample
was evaluated using a microplate reader.

2.5.4 ZnO NPs inhibit viral neuraminidase

Using the commercial kit Neuraminidase Assay Kit MAK121,
antiviral activity evaluation of ZnO NPs was carried out in
MDCK cells infected with Influenza A (H1N1) and compared
to Oseltamivir as positive experimental control.

2.5.5 Flow cytometry assay

To determine the ability of ZnO NPs as inhibitor of cell
apoptosis when induced by the H1N1 influenza A virus,
and to examine the MDCK cells’ early apoptotic activity, a
flow cytometry experiment was employed. There were
three groups in this test. In the first group, MDCK cells
were left untreated, in the second and third groups, viral
control is applied to MDCK cells, and ZnO NPs are used to
treat the virus for 3 h. After collecting, the cells were com-
bined with RNase A, rinsed three times in ice-cold PBS, and
incubated for 30 min at 37°C. After adding propidium
iodide (PI) to the mixture, the samples were left in the
dark for 30 min at 4°C. Finally, the binding buffer was
added to the cells. The results were analyzed with a flow
cytometry machine. The ROS level was monitored by ana-
lyzing the intensity of the ROS probe (DCFH-DA), which
was incubated for 45 min in complete darkness. A flow
cytometer was used to gather the cells and measure their
fluorescence intensity (BD Biosciences).

2.6 Antioxidant activity of ZnO NPs

2.6.1 DPPH assay

In summary, a 2.4mg methanolic DPPH solution was sup-
plied. After that, 3.995mL of the DPPH standard solution was
combined with 5 µL of ZnO NPs at various concentrations
(25, 50, 75, 100, and 125 µg/mL), and the mixture was incu-
bated for an additional 20min. The following equation was
used to record the DPPH radical absorbance at 515 nm, and
the COPD-NC radical scavenging activity was calculated.

=
−

×

Radical scavenging activity
Sample OD Control OD

Control OD

100.

2.6.2 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
(ABTS) activity

By supplying an ABTS solution with equal amounts of ABTS
(7 mM) and potassium persulfate (2.45 mM) solutions, the
activated radicals of ABTS were created. Following a 12 h
dark incubation period at 25°C, the diluted ABTS standard
solution was supplied, and the ABTS radical absorbance
(0.7) at 734 nm was recorded. Finally, 3.995 mL of the
ABTS standard solution was combined with 5 µL of the
produced ZnO NPs at various concentrations (25, 50, 75,
100, and 125 µg/mL) and incubated for an additional 20min.
The absorbance of ABTS radicals at 734 nm was used to
evaluate the radical scavenging activity of ZnO NPs.

2.7 Anti-diabetic activity of ZnO NPs

2.7.1 α-Amylase inhibition assay

About 0.5mg/mL α-amylase was incubated with and without
the sample for 10min at 25°C. A pH 6.9 solution of sodium
phosphate buffer (0.02M) was prepared. Following dilution
to a concentration of 100–300 µg/mL, the ZnO NP sample
was mixed with the buffer solution and incubated for
10min at 25°C. Following the previously indicated proce-
dures, the buffer solution was mixed with 1% starch solution
and incubated for 30min. Dinitrosalicylic acid was added to
halt the enzymatic reaction, and the mixture was subse-
quently heated to 100°C for 15min in a water bath. At
540 nm, the absorbance was measured. A positive control
was a solution containing acarbose. % α-Amylase inhibition
= [(A0 − Ai/A0)] × 100. Ai is the sample’s absorbance, while A0

is the absorbance of the control.
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2.7.2 Animal model

Fifteen male mice were weighed at the start and had an
average age of 8 weeks. Before the experiment started, all
the animals were kept in one house for 5 days. Three
groups of animals were randomly assigned; the first group
was used as a control, and the second group consisted of
five mice that received a single intraperitoneal dosage of
streptozotocin (50 mg/kg) to induce diabetes. For 25 conse-
cutive days, the third group – diabetic + ZnO NPs groups –
received an oral daily dosage of ZnO NPs at a dose of
5 mg/kg.

2.7.3 Induction of experimental diabetes

The 100mg/kg of streptozotocin (STZ) (Sigma Chemical Co.,
Poole, Dorset, UK) administered intraperitoneally once in
0.01 M sodium citrate buffer (pH = 4.5) was used to cause
experimental diabetes mellitus. The rats were fed a diet
heavy in fat and sugar (10% sucrose, 20% margarine, and
65.5% basal rat food). Freshly produced STZ was injected
into 40 rats. Following an injection of stem cells, fasting
blood glucose levels were measured. Rats exhibiting blood
glucose levels greater than 250mg/dL were classified as
diabetic and placed in diabetic groups.

2.7.4 Sampling protocol

Every experimental mouse had a tail vein used to draw
blood samples. After centrifugation, the serum (∼150 µL)
was isolated and kept at −20°C for further analysis to deter-
mine the blood glucose levels. The liver tissues were
extracted and then mixed to measure the amount of glu-
cokinase (GK).

2.7.5 Biochemical determinations

The glucose oxidase method was used to estimate blood
glucose levels (mg/dL). Blood glucose levels were assessed
in all experimental animals before the start of the procedure
and following injection of streptozotocin. Blood glucose
levels were regularly monitored in animals with targeted-
induced diabetes until diabetes was identified (animals with
blood glucose levels greater than 250mg/dL are considered
diabetics). Subsequently, blood glucose levels were tracked
for every experimental animal, and findings were acquired

at the conclusion of the trial. A rat insulin ELISA kit (Catalog
No. ezrmi-13kelisa, EMD Millipore, Billerica, MA, USA) was
used to quantify the serum insulin level and GK activity in
liver tissue.

2.7.6 Histopathological examinations

Pancreatic specimens were gathered, preserved in 10%
buffered neutral formalin solution, gradually dried out in
70–100% ethanol, cleaned in xylene, and embedded in par-
affin. Hematoxylin and eosin (HE) dyes were regularly
used to make 5 µm thick paraffin sections, which were
subsequently inspected under a microscope.

2.8 Induction of phagocytosis by ZnO NPs

2.8.1 Assessment of the phagocytic activity

Following their isolation, bone marrow-derived macro-
phages (BMDMs) were seeded in 6-well plates at a concen-
tration of 4 × 105. ZnO NPs were produced 24 h after cells
were treated with A. cepa extract at a dose of 25 µg/mL.
Methylene blue was used at a concentration of 0.5% to stain
Candida albicans that had been cultured with BMDMs at a
ratio of 1:5 for 60min. The transparent cells were regarded
as active, and the blue ones were inactive when the cells
were counted and observed. The results were presented as
an index of phagocytosis (PI).

2.8.2 Assay of phagosome/lysosome fusion

The BMDMs were separated and seeded at a density of 1 ×
105 cells/mL in RPMI-1640 medium onto 4-well chamber
slides. ZnO NPs were added to the BMDMs for 1 h at a
concentration of 25 µg/mL after 10 h. After loading the cells
with 25 nM of Lysotracker Red for 60 min at 37°C, the cells
were treated with E. coli conjugated with FITC at a multi-
plicity of 1:50 for 2 h. Lysotracker Red was added while the
infection was active. The cells were washed five times in
sterile, cold PBS before being fixed with 4% paraformal-
dehyde. The samples were viewed under a fluorescent
microscope (Olympus, Tokyo, Japan) after being mounted.
Phagosomes that were not fused and contained FITC-bac-
teria showed up as green stain, while lysosomes that had
Lysotracker labels showed up as red. Because of themerging
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of the two labeled fluorochromes, the phagosome and lyso-
some fusion appeared to be yellow.

2.8.3 Phagocytosis of pHrodo E. coli bioparticles by
BMDMs

In a 4-well plate, BMDMs were seeded with ZnO NPs at a
concentration of 25 µg/mL as a pretreatment. After adding
100 µL of pHrodo-E. coli particles, they were incubated for
2 h with 100 µL of buffer solution added. Following cell
fixation, the flow cytometry assay was performed to inter-
pret the data.

2.9 ZnO NPs induce autophagy

2.9.1 Immunofluorescent assay

Seeding of BMDM cells was achieved onto plastic Lab-tek
two-well slides. After that, the cells were either left untreated
or treated with the produced lipopolysaccharide (LPS) for
12 h at a concentration of 500 µg/mL and 5mM/mL of adino-
sine triphosphate (ATP) in the presence and absence of ZnO
NPs at a concentration of 25 µg/mL. The cells were then
following the standard protocol, which included three PBS
washes, fixation with 4% PFA for 30min at room tempera-
ture. Then, the samples were permeabilized by 0.5% Triton-
X for 30min at room temperature and blocked with 10%
normal goat serum for 60min. Primary and secondary anti-
bodies were added following the standard protocol. Finally,
a confocal microscope is used to visualize the results.

2.10 Anti-inflammation activity of ZnO NPs

2.10.1 Isolation of BMDMs

Primary BMDMs were isolated using male C57/BL6 mice
that were 8–10 weeks old. Following their isolation, the
BMDM cells were subjected to LPS for 12 h at concentra-
tions of 500 µg/mL and ATP for 30min at a concentration of
5mM, in the presence and absence of ZnO NPs at a concen-
tration of 25 µg/mL, to examine their capacity to decrease
NLRP3 inflammasome activation and IL-1 secretion.

2.10.2 ELISA assay

Using an enzyme-linked immunosorbent assay (ELISA) kit,
the cytokine concentration of mouse IL-1β and NLRP3

(Abcam, USA) was determined in accordance with the man-
ufacturer’s instructions. An ELISA plate reader set at 570 nm
was used to measure the absorbance.

2.11 In silico study (molecular docking study)

The crystal structures of glucosamine-6-phosphate
synthase (GlcN-6-P synthase [PDB code 1MOQ)), Estrogen
receptor (PDB code 3ERT), and colchicine in complex with
tubulin (PDB code: 4O2B) were obtained from RCSB PDB
(RCSB PDB: Homepage). The substrate or the inhibitor
inside the target enzyme or protein was removed, as well
as water molecules and modified amino acids. The crystal
structure of the macromolecules was processed by the Pyrx
AutoDock Vina software (0.8). Three-dimensional struc-
tures of selected three active components from the red
radish root were constructed using ChemDraw ultra 7.0
as mol file and converted into pdb format using Open
Babel. The three compounds were then molecularly
docked inside the binding. The determined dimensions
were X = 32.02, Y = 16.58, Z = − 2.64 with size equal to
27.01, 31.01, and 26.59 for the GlcN-6-P synthase, while the
dimension applied for the RE alpha target were X = 29.59,
Y = −0.20, and Z = 25.00 with size equal to 31.24, 27.04, and
28.90 as the grid spacing, respectively. The dimensions
applied for the tubulin target were X = 18.36, Y = 64.81,
and Z = 42.12, with sizes equal to 36.23, 35.24, and 32.05
as the grid spacing and the affinity (kcal/mol) value was
calculated. We, however, used optimal interactions and the
best Auto-Dock score for the interpretation of the best
conformation. Finally, the results were visualized and
analyzed using Discovery Studio 2021. The validity of
docking protocols was confirmed via redocking of crystal-
ized substrate or inhibitor within the target binding
pocket. Redocking of the medication (colchicine), 4-HYD-
ROXYTAMOXIFEN, and crystallized substrate (GlcN-6-P)
within the binding pocket of the corresponding target ver-
ified the validity of the docking protocols.

2.12 Statistical analysis

For statistical analysis, we used an unpaired t-test on the
collected data using Graph-Pad Prism 6. The data were
represented as mean ± SD of triplicate permanents [49].
A one-way ANOVA test was used to determine the statis-
tical significance levels *, **, and ***, which stand for
p-values less than 0.05, 0.01, and 0.001, respectively.
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Ethical approval: The Health Research Ethics Committee at
the University of Technology (ASDUOT/13052022) had reviewed
and deemed this study ethically feasible. Additionally, this
study adhered to the Declaration of Helsinki’s requirements.

3 Results

3.1 Characterization of ZnO NPs

A UV-1700 Shimadzu spectrophotometer characterized the
ZnO NPs to determine the UV-vis absorbance of the NPs, as
indicated in Figure 1a. SEM and TEM investigated the mor-
phology of ZnO NPs as shown in Figure 1b and c. Finally,
FTIR was used to determine the functional groups of pre-
pared ZnO NPs data that were not shown.

3.2 Anticancer activity of ZnO NPs

The upper panel of Figure 2 represents the anticancer
activity of ZnO NPs against lung cancer cells as well as
normal cell lines. The results demonstrated that the ZnO
NPs can inhibit the proliferation of cancer cell lines but not
normal ones. The ability of ZnO NPs to destroy cancer cells
is concentration-dependent. To investigate the ability of
ZnO NPs on the reduction of cancer cell growth A549
lung cancer cell lines were treated with higher concentra-
tions of ZnO NPs, as illustrated in Figure 2 (upper panel),
the number of treated cancer cells was considerably
decreased. The selective toxicity of ZnO NPs is indicated
by the lower IC50 concentration of the NPs for A549 cancer
cells as compared to MCF-10 cells. AO/EtBr staining assays
were performed to measure the viability of cancer and
normal cell lines. For the AO/EtBr assay, A549 cells were
exposed to ZnO NPs at IC50. The outcomes showed that the

Figure 1: Characterization of ZnO NPs. (a) UV-spectra, (b) SEM image, and (c) TEM image.
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Figure 2: Anti-cancer activity of ZnO NPs against A549 lung cell lines. Upper panel shows MTT assay results. Middle panel shows AO/EtBr double
staining assay. Lower panel shows RT-PCR results. The data were represented as the mean value ± standard deviation of three different experiments.
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untreated control A549 cells were stained with AO (Green),
indicating that they were living cells. As shown in Figure 2
(middle panel), the ZnO NP-treated cells were stained with
EtBr, a yellow-orange dye that denotes dead cells. No
changes were observed in the normal cell line after being
treated with ZnO NPs. To study the ability of ZnO NPs in
apoptosis gene expression, we investigated p53, BAX, and
BCL-2 levels. The results showed the ability of prepared
ZnO NPs to upregulate and downregulate the apoptosis
proteins, as shown in the lower panel of Figure 2.

3.3 Antibacterial activity of ZnO NPs

In the present study, the antibacterial activity of ZnO NPs
was evaluated against S. pyogenes, and P. aeruginosa. The
zones of inhibition were measured and reported. Taken
together, the inhibition zone of ZnO NPs is in a concentra-
tion-dependent manner, as shown in the upper panel of
Figure 3. The mechanism of bacterial inhibition by ZnO
NPs is dependent on multiple parameters and strongly
affected by the size and the morphology of NPs, in addition
to the kind of strain. Fluorescence microscopy was used to
distinguish between live and dead bacterial strains using
AO/EtBr double staining assay. AO is responsible for
staining live cells. While EtBr was responsible for the
staining of dead bacteria. For both bacterial strains, as in
the middle panel of Figure 3, all untreated bacterial strains
appeared green, and following treatment with ZnO NPs,
the bacterial strains appeared orange-red. SEM was uti-
lized to investigate how ZnO NPs affected the development
and structure of bacterial strains. The lower panels of
Figure 3 show the differences between the ZnO NPs treated
bacteria and control samples. The results show that an
untreated bacterial strain confirmed the cluster-form colo-
nies. SEM images show that S. pyogenes and P. aeruginosa
were destroyed by ZnO NP treatment, as shown in the
lower panel of Figure 3. The synthesized NPs under study
exhibit notable antimicrobial activity. Damaged colonies
have an impact on the bacterial strain. After the cells
were treated with the produced NPs, morphological altera-
tions, osmotic imbalance, and the integrity of the cell struc-
ture were all induced by an osmotic imbalance that resulted
in a leak of bacterial cells.

Figure 4 shows how ZnO NPs may prevent bacterial
strains from forming biofilms. One crucial stage in the
beginning of any infection was the creation of biofilms.
One crucial first stage in the creation of biofilms is the
adherence of bacterial strains to a surface, which can
happen through both specialized and nonspecific cell-

surface interactions. The attached bacterial cells can be
stained with crystal violet to identify these biofilms. Figure 4
(upper panel) illustrates how ZnO NPs inhibited the growth
of biofilms in this study. Confocal microscopy was utilized to
examine the impact of ZnO NPs on the suppression of bac-
terial biofilms. At 125 µg/mL, the antibiofilm activity of ZnO
NPs was confirmed by the confocal microscope images.
Based on membrane integrity, the biofilm viability kit’s
two-color fluorescent dye is utilized to identify living and
dead bacterial cells within the biofilm community. Bacteria
with intact cell membranes were stained fluorescent green,
while those with damaged membranes were stained fluor-
escent red, as shown in Figure 4 (middle panel). The bac-
terial strains with damaged membranes were penetrated
and stained with propidium iodide red fluorescence dye,
while the membranes in good condition were stained by
Syto 9 green fluorescence dye. Untreated control bacterial
strains assembled and formed a developed biofilm layer; the
ZnO NPs at concentration of 125 µg/mL had a less dense
biofilm coating and were less aggregated. The findings of
this investigation highlight the impacts of ZnO NPs, as well
as their ability to prepare ZnO NPs to suppress biofilm for-
mation. Using a flow cytometry technique, the biofilm meta-
bolic activity of bacterial strains was examined. The dot
plots of S. pyogenes and P. aeruginosa are displayed in
Figure 4 (lower panel). In this study, flow cytometry using
excitation/emission fluorescence Syto 9 and propidium
iodide staining helped distinguish between live and dead
cell populations. It measured the metabolic activity in the
S. pyogenes and P. aeruginosa biofilms formed over 48 h. As
illustrated in Figure 4 (lower panel), the percentage of live S.
pyogeneswas 93.2% in the untreated control bacterial strain.
In contrast, the percentage of live P. aeruginosa was 91.7%
following treatment with ZnO NPs at 125 µg/mL. These per-
centages dropped to 7.92 and 10.2%, respectively.

3.4 Antiviral activity of ZnO NPs

First of all, the cytotoxicity of ZnO NPs against MDCK cells
was measured by MTT assay, as indicated in Figure 5a. At
concentrations up to 100 µg/mL, cell viability was unal-
tered. The effects of pre-treatments with ZnO NPs were
measured by investigating the neuraminidase activity, as
shown in Figure 5b. The results showed that ZnO NPs
reduced neuraminidase activity in a concentration-depen-
dent manner. In this study, flow cytometry results indi-
cated that ZnO NPs are capable of reducing apoptosis
induced by the H1N1 influenza A virus in MDCK cells, as
shown in Figure 5c. These results present evidence for the
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Figure 3: ZnO NPs inhibit growth of S. pyogenes and P. aeruginosa. (A) Control untreated bacterial strain, (B)–(F) bacterial strain treated with ZnO NPs
at 31.25, 62.5, 125, 250, and 500 µg/mL, respectively (Upper panel). Data are shown as the mean value ± standard deviation of three different
experiments. p ≤ 0.01 **, p ≤ 0.001 ***, p ≤ 0.0001 ****. Middle panel represented live and dead bacterial strain using AO/EtBr staining. Lower panel
represented how ZnO NPs alter the morphology of bacteria. Red arrows indicate damaged bacterial strains.
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antiviral activity of silver ZnO NPs. The ROS generation
was measured using a flow cytometry assay, as indicated
in Figure 5d; the ROS generation by the H1N1 influenza
virus was significantly increased, and after being treated
with ZnO NPs, the ROS generation was inhibited. These
results show that ZnO NPs could downregulate the level
of ROS in the antiviral activity.

3.5 Antioxidant activity of ZnO NPs

The antioxidant activity of ZnO NPs is demonstrated in
Figure 5. The higher concentrations of ZnO NPs resulted
in an enhancement of both DPPH and ABTS radical scaven-
ging capabilities. At concentrations below 100 µg/mL, respec-
tively, the ZnO NPs scavenged more than 40% of the ABTS
and DPPH free radicals, as indicated in Figure 6. The ZnO
NPs have the ability to function as both an electron donor
and an acceptor.

3.6 ZnO NPs inhibits Type 2 diabetes

Using the amylase enzymatic inhibition assay, the antidia-
betic activity of the ZnO NPs was evaluated. As shown in
Figure 7 (upper left panel), these ZnO NPs showed excellent
inhibition when tested at various concentrations ranging
from 0 to 150 µg/mL. ZnO NPs proved almost 50% antidia-
betic effectiveness at a 50 µg/mL concentration. In the cur-
rent study, we assessed the potential therapeutic benefits
of zinc oxide on streptozotocin-induced diabetic mice.
According to our findings, the blood glucose levels of the
diabetic groups treated with ZnONPs, significantly decreased
by almost 150mg/dL, compared to the diabetic mice group
by almost 350mg/dL as indicated in Figure 7 (upper right
panel). The results showed the ability of ZnO NPs to induce
GK activity as in Figure 7 (lower left panel). For histopatho-
logical changes of spleen sections, the control group showed
a normal pancreas section. Meanwhile, the diabetic group
indicated damaged and destructed islets of Langerhans,
with damage in pancreas cells. In the diabetic + ZnO NP-
treated group, the pancreas was less destructed as shown in
Figure 7 (lower right panel). Therefore, ZnO NPs have excel-
lent antidiabetic potential and may effectively treat diabetic
wounds.

Figure 4: ZnO NPs reduce biofilm formation of S. pyogenes and P. aeru-
ginosa. (a) Control untreated S. pyogenes, (b) S. pyogenes treated with ZnO
NPs at 125 µg/mL, (c) control untreated P. aeruginosa, and (d) P. aerugi-
nosa treated with ZnO NPs at 125 µg/mL. Data are indicated as the mean
value ± standard deviation of three different experiments.
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3.7 ZnO NPs induce phagocytosis

BMDMs were isolated, and the ability of these phagocytic
cells to phagocytose Candida albicans was tested. The
results revealed that the ratio of BMDM cells that were
treated with ZnO NPs to phagocyte Candida albicans was

significantly higher than that in the BMDM cells untreated
with ZnO NPs (p < 0.001), as indicated in Figure 8 (left
panel). To study the effect of ZnO NPs in phagosome
maturation via evaluating the Lysotracker red, which labels
late endosomes and lysosomes specifically, additional
loading of BMDMs made it possible to examine the

Figure 5: Antiviral activity of ZnO NPs: (a) Cytotoxicity assay of ZnO NPs against MDCK cells, (b) neuraminidase inhibition assay, (c) apoptosis assay
using Annexin V, and (d) ROS generation assay using DCFH-AD. Data are indicated as the mean value ± standard deviation of three different
experiments.
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maturation activities of the S. aureus-FITC ingesting phago-
somes. Co-localization with Lysotracker Red over time cap-
abilities. The findings showed that this co-localization
occurred in BMDMs that had been pretreated with ZnO
NPs for 2 h. Simultaneously, in control BMDMs, the majority

of S. aureus-FITC entities had less co-localization with the
Lysotracker, as indicated in Figure 8 (right panel). The
ability of BMDMs to phagocytose bacteria was investigated
via the observation of the uptake of tagged E. coli, which was
unable to emit fluorescence until their transfer into the

Figure 6: Antioxidant activities of ZnO NPs. Data are indicated as the mean value ± standard deviation of three different experiments.

Figure 7: Anti-diabetic activity of ZnO NPs. Upper left panel shows the ability of ZnO NPs to inhibit the α-amylase activity. Upper right panel shows the
ability of ZnO NPs to reduce glucose level. Lower left panel shows the ability of ZnO NPs in induction of GK activity. Data are indicated as the mean
value ± standard deviation of three different experiments. While lower right panel showed histopathological changes in spleen sections. (a) Control.
(b) Diabetic group. (c) ZnO NP-treated diabetic group.

14  Hussam H. Kadhum et al.



lysosome (low pH), as indicated in Figure 9. Phagocytosis of
the pHrodo E. coli bioparticles was compared following
BMDM pre-treatment with ZnO NPs at a concentration of
25 µg/mL. The control untreated BMDM cells showed lower
phagocytotic activity as compared to pretreated with ZnO
NP BMDM cells. The results of the current study prove the
ability of ZnO NPs to enhance the treated BMDM cells to
phagocytose and kill the bacteria. This experiment aimed
to test how pre-treatment with ZnO NPs could stimulate
the ability of BMDMs to phagocytose pHrodo E. coli biopar-
ticles. We also aimed to test the mechanisms that could be
involved in this process. Taken together, the results demon-
strated that pre-treatment with ZnO NPs increases the
ability to produce phagocytosis. This suggests that the ability
of BMDMs to kill microorganisms could be enhanced.

3.8 ZnO NPs induce autophagy and inhibit
inflammasome (NLRP3) activity

We hypothesized that once BMDM cells were pretreated
with ZnO NPs following LPS and ATP, they would increase
autophagy. Using immunofluorescence tests, we investi-
gated the expression of LC3, a significant autophagy-related
protein, to ascertain whether BMDMs treated with ZnO NPs
trigger autophagy. Our findings showed that after treating
LPS + ATP, BMDMs showed autophagy LC3 marker. In cells
that had been pre-treated with ZnO NPs, the absolute
amount of LC3 increased. The localization of endogenous
LC3 to autophagy vacuoles was studied using immunofluor-
escence, as demonstrated in Figure 10 (upper panel). In the
current study, we hypothesized that ZnO NPs’ impact on

Figure 8: ZnO NPs enhanced phagocytosis ability against C. albicans and S. aureus. (a) Control BMDMs, (b) BMDMs in the presence of ZnO NPs.
Red arrows indicated C. albicans inside phagocytic cells. Data are indicated as the mean value ± standard deviation of three different experiments.
p ≤ 0.001 ***.

Figure 9: ZnO NPs enhanced the BMDMs to engulf pHrodo E. coli particles. (a) Control untreated BMDMs, (b) BMDMs treated pHrodo E. coli particles.
(c) BMDMs treated pHrodo E. coli particles in the presence of ZnO NPs. Data are indicated as the mean value ± standard deviation of three different
experiments.
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autophagy could modify the activation of NLRP3 inflamma-
some. The results showed that BMDMs pretreated with ZnO
NPs following treatment with 500 µg/mL LPS + 5mM ATP
exhibited significantly lower IL-1 and NLRP3 levels, as indi-
cated in Figure 11. Next we tested how ZnO NPs improved
NLRP3 degradation by autophagy. After BMDM cells were
treated with LPS + ATP, we assessed the amount of NLRP3

inflammasome, either with or without the addition of ZnO
NPs. The NLRP3 inflammasome was found to be reduced in
BMDM cells that were exposed to both ZnO NPs and LPS +

ATP combination therapy, as shown in Figure 10 (middle
panel). The results demonstrated the occurrence of signifi-
cant co-localization between LC3 and NLRP3 in the presence
of ZnO NPs. These results demonstrate that the ZnO NPs

Figure 10: ZnO NPs augmented autophagy and reduces NLRP3 inflammasome. (a) Control BMDMs, (b) BMDMs treated with LPS + ATP, (c) BMDMs
treated with LPS + ATP in the presence of ZnO NPs, and (d) BMDMs treated with LPS + ATP in the presence of ZnO NPs + 3-MA. Data are indicated as
the mean value ± standard deviation of three different experiments.
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caused the increase in autophagy and the NLRP3 inflamma-
some and IL-1 degradation. This study thus shows that in
LPS + ATP-treated BMDM cells, autophagy plays a crucial
role in regulating the release of NLRP3 and IL-1. In the cur-
rent work, we also investigated the effects of autophagy
suppression on inflammasome activation in cells that were
treated in combination with ZnO NPs and LPS + ATP. The use
of 3-methyladenine (3-MA) at a concentration of 10mM to
inhibit autophagy led to increased activation of inflamma-
somes in cells treated with both ZnO NPs and LPS + ATP
together. The results indicated that there was a significant
increase in NLRP3 and IL-1 levels, as indicated in Figure 10
(lower panel). These results show that after treatment with

LPS + ATP in the presence of ZnO NPs, a lack of autophagy
increases the activation of inflammasomes.

3.9 Docking study results

3.9.1 Docking against GlcN-6-P synthase

The active components extracted from the red radish,
rutin, sinigrin, and dihydrocaffeic acid 3-O-glucuronide,
were in silico docked inside the active site of GlcN-6-P
synthase (PDB:1MOQ) after the removal of the crystal

Figure 11: Binding the three bioactive compounds of red radish inside the GlcN-6-P synthase (PDB:1MOQ) active site. (a) Structure of GlcN-6-P
synthase, (b) rutin inside the binding site, (c) sinigrin inside the binding site, and (d) dihydrocaffeic acid 3-O-glucuronide.
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structure of glucosamine-6-phosphate to explain the inter-
action mode and the binding affinity toward the enzyme.
The docking outcomes indicate that rutin exhibited the
best binding energy equal to 8.4 kcal/mol. The other active
ingredients (sinigrin and dihydrocaffeic acid 3-O-glucuro-
nide) have binding energies of −7.7 and 8.1 kcal/mol, respec-
tively. The interaction types for the three active ingredients
within the binding pocket of the enzyme are shown in
Figure 11. As illustrated in Figure 11, there are several inter-
actions between the Rutin and the active site of the enzyme.
Rutin binds the GLU:488A residue with one hydrogen bond
and one non-classical hydrogen bond with SER:A:604. There
are three alkyl pi interactions between rutin and the
LEU:A:484 and LEU:A:601 residues. The last favored inter-
action was between the phenyl moiety of the rutin and
the LEU:A:601 residue as pi sigma interaction. The red
dashed line represents the unfavorable interactions.

3.9.2 Docking against estrogen receptor

The present study includes docking of the three bioactive
components in the red radish extracts inside the binding
pocket of ER alpha. The molecular docking was done to
analyze the selectivity of three ligands, rutin, sinigrin,
and dihydrocaffeic acid 3-O-glucuronide, toward the ER
alpha. The binding affinities for the best binding con-
former were −8.6, −7.0, and −6.9 kcal/mol for the rutin,
sinigrin, and dihydrocaffeic acid 3-O-glucuronide, respec-
tively. The rutin exhibited the best binding affinity com-
pared with the other compounds. The three compounds
bind the active site with several bonds, including H-bonds
and hydrophobic interactions. The rutin binds the active
site with four hydrogen bonds with the CYS350, MET522,
and MET528, while there are several hydrophobic interac-
tions, including the following residue: ALA350, LEU354,
TRP383, LEU525, and LEU536. Figure 12 shows the binding
of the three red radish components within the binding site
of ER alpha.

3.9.3 Docking against tubulin

Three active components of red radish, rutin, sinigrin, and
dihydrocaffeic acid 3-O-glucuronide were modeled as col-
chicine analogs based on the knowledge of the structure–
activity relationship between colchicine and tubulin.
Colchicine analogs have the ability to attach to tubulin
and prevent its polymerization, which can result in dis-
rupted mitosis, a sudden disruption of mitotic spindle
assembly, and interference with the cytoskeleton’s usual

function. Therefore, the current study also included the
molecular docking studies of rutin, sinigrin, and dihydro-
caffeic acid 3-O-glucuronide toward tubulin colchicine
binding site (4O2B) to study the action mechanism of this
new skeleton as anticancer agents. The binding affinities
for the best binding conformer were −9.8, −7.7, and −9.1
kcal/mol for the rutin, sinigrin, and dihydrocaffeic acid 3-
O-glucuronide, respectively. The rutin exhibited the best
binding affinity compared with the other compounds. The
three compounds bind the active site with several bonds,
including H-bonds and hydrophobic interactions. Rutin
binds the active site with three hydrogen bonds, including
the flowing residues: ASP:A:69, ASN:A206, and LYS:B254.
There are two hydrophobic interactions with ALA:B250
and LYS:B:254. Furthermore, rutin binds the GLN:A:11
and GLY:A:10 with a pi donor hydrogen bond and one
carbon-hydrogen bond, respectively. Figure 13 shows all
the interactions between the colchicine binding site of
tubulin and the two active components of red radish.

4 Discussion

Because ZnO NPs are inexpensive, biocompatible, and have
minimal toxicity, they are frequently utilized in a variety of
biological applications. It has been demonstrated that ZnO
NPs have antibacterial and anticancer properties. Notably,
synthesizing ZnO NPs from plant extracts is a good option
against bacterial growth and proliferation of cancer cells.
ZnO NPs of R. sativus could be a novel source of chemo-
preventive agents [50].

4.1 Anticancer effects

The present study revealed that ZnO NPs led to dose-depen-
dent cytotoxicity against cancer cell lines. The ZnO NPs had
a lower IC50 concentration for A549 cancer cells than MCF-
10 cells, which suggests that the NPs are selectively toxic
against cancer cell line rather than normal cell line. AO/
EtBr staining assays were done to measure the viability of
cancer and normal cell lines. For the AO/EtBr assay, A549
cells were exposed to ZnO NPs at a concentration of
22.78 µg/mL. The results exhibited that the untreated con-
trol A549 cells were stained with AO (Green), indicating
that they were living cells. As shown in Figure 2 (middle
panel), the ZnO NP-treated A549 cells were stained with
EtBr, a yellow-orange dye that denotes dead cells. No
changes were observed in the normal cell line (MCF-10)
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after being treated with ZnO NPs. To study the ability of
ZnO NPs in apoptosis gene expression, we investigated p53,
BAX, and BCL-2 levels. The outcomes showed the ability of
prepared ZnO NPs to upregulate and downregulate apop-
tosis proteins, as shown in the lower panel of Figure 2. The
cytotoxicity of ZnO NPs has been demonstrated in previous
published study on diverse cancer cell lines through
increased oxidative stress, intracellular Ca2+ level, and
decreased membrane permeability transition (MPT) [51].
This cytotoxicity was caused by the ability of NPs to increase
intracellular Ca2+ levels. ZnO NPs excite an increase in inter-
leukin (IL-8) production in both the BEAS-2B bronchial
epithelial cells and the A549 alveolar adenocarcinoma cells

[52–54]. In addition, the MPT, the loss of membrane integ-
rity, and the activation of the p53 pathway are all reduced in
RAW264.7 cells when ZnO NPs are present [55]. Further-
more, ZnO NPs can produce a wide array of proinflamma-
tory indicators in the mononuclear cells of the peripheral
blood [56]. These mediators include interferon-c, tumor
necrosis factor-α (TNF-α), and IL-12. Furthermore, murine
RAW264.7 macrophages and murine dendritic cells (DCs)
produced from bone marrow have increased IL-1 and the
chemokine CXCL9 expression in response to ZnO NPs [57]. In
addition to cytotoxicity, ZnO NPs also cause a range of gen-
otoxicity in different cell types. For example, they cause
DNA damage in human epidermal cells A431, micronuclei

Figure 12: Binding the three bioactive compounds of red radish inside the estrogen receptor (PDB:3ERT) active site. (a) Structure of estrogen receptor,
(b) rutin inside the binding site, (c) sinigrin inside the binding site, and (d) dihydrocaffeic acid 3-O-glucuronide.
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formation, phosphorylation of H2AX, and DNA damage in
human SHSY5Y neuronal cells [58]. Likewise, ZnO NPs cause
damage to A431 cells’ DNA [59]. Several investigations have
demonstrated the participation of many signaling pathways,
including p38 mitogen-activated protein kinase, extracel-
lular signal-related kinase, and c-Jun N-terminal kinase, in
the oxidative stress-specific apoptosis produced by ZnO NPs
[60]. This conclusion was reached because ZnO NPs induced
apoptosis [61]. These findings indicated that ZnO NPs could
activate proapoptotic proteins, which led to the induction of
the mitochondrial apoptotic pathway [62]. ZnO NPs display
higher anti-tumor and anti-proliferative activity against

cancer cells through the induction of ROS, which causes
oxidative stress and eventually leads to cell death [63].
This property distinguishes ZnO NPs from other types of
metal NPs. Oxygen metabolites, or ROS, are highly potent
oxidative adulterants that can be applied to biological
macromolecules like proteins, lipids, and polynucleotides.
When there is an imbalance between ROS production and
the cell’s antioxidant system, cellular redox homeostasis
cannot be maintained [64,65]. This is because indiscrimi-
nate oxidation can occur when there is an imbalance,
resulting in “oxidative stress.” ROS production must be
kept in check to maintain this balance [66]. Several

Figure 13: Binding the three bioactive compounds of red radish inside the tubulin receptor (PDB:4O2B) active site. (a) Structure of tubulin receptor, (b)
rutin inside the binding site, (c) sinigrin inside the binding site, and (d) dihydrocaffeic acid 3-O-glucuronide.
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studies demonstrated that an abnormally high level of
oxidative stress is hazardous to the cell and results in
severe cytotoxicity [67,68]. In a cell, ROS is produced in
the mitochondria. ROS seriously harms macromolecules
in cells, especially DNA. The loss of mitochondrial mem-
brane potential (MPT), which exposes cytochrome c to the
intermembrane gap, triggers the activation of caspases
[69]. Cytochrome c leaks as a result of exposure, and
this triggers the activation of caspases [70]. As a result,
ROS plays a significant and vital role in the processes that
lead to cell death, apoptosis, and autophagy [71]. Cell
death may ultimately ensue from an overabundance of
autophagy and cellular self-consumption resulting from
cellular damage. Notably, ROS has bidirectional effects on
cancer cells, promoting apoptosis or enhancing tumori-
genesis [71]. During cancer progression and metastasis,
cancer cells adapt to the effect of high oxidative stress
by increasing NADPH expression and reducing folate
metabolism. Arfin et al. [70] demonstrated that high oxi-
dative stress promotes the expression of pro-tumorigenic
signaling, leading to DNA injury and genetic instability.
Higher oxidative stress reduces rather than increase the
proliferation of cancer cells. Therefore, ZnO NP-induced
ROS might be the potential mechanism for cytotoxicity
against cancer cells.

4.2 Antibacterial effects

In the current work, the effect of ZnO NPs as antibacterial
agent has been evaluated against S. pyogenes and P. aeru-
ginosa. Taken together, ZnO NPs inhibit bacterial growth in
a concentration-dependent manner, as shown in Figure 3,
upper panel. Bacterial stains could be killed and destroyed
by ZnO NPs via many factors like size and the morphology
of NPs, and also based on the kind of bacterial strains.
Fluorescence microscopy was used to distinguish between
live and dead bacterial strains using AO/EtBr double
staining assay. AO is responsible for staining live cells.
While EtBr was responsible for the stain of dead bacterial
strains. For both bacterial strains, as in Figure 2 lower
panel, all untreated bacterial stains appeared green, and
following treatment with ZnO NPs, the bacterial strain
appeared orange-red. SEM was utilized to investigate how
ZnO NPs affected the development and structure of bacterial
strains. Figure 3 lower panels show differences between the
ZnO NP-treated bacteria and control samples. The results
show that a control untreated bacterial strain displayed
cluster-form colonies. SEM images show that S. pyogenes
and P. aeruginosawould be destroyed by ZnO NP treatment,

as shown in Figure 3, lower panel. The synthesized NPs
under study exhibit notable antimicrobial activity. Damaged
colonies have an impact on the bacterial strains. The bac-
terial strains with damaged membranes were penetrated
and stained with PI stain fluorescence dye, while the mem-
branes in good condition were stained by Syto 9 green fluor-
escence dye. Untreated control bacterial strains assembled
and formed a developed biofilm layer; the ZnO NPs at a
concentration of 125 µg/mL had a less dense biofilm coating
and were less aggregated. The results of the current study
highlight the impacts of ZnO NPs, as well as their ability to
prepare ZnO NPs to suppress biofilm formation. Using a
flow cytometry technique, the biofilm metabolic activity of
bacterial strains was examined as indicated in Figure 4.
Findings of the present study demonstrated that ZnO NPs
were effective against S. pyogenes and P. aeruginosa in a
concentration-dependent manner but were powerfully
affected by the size and the topology of ZnO NPs. It has
been shown that ZnO NPs were effective against Escheri-
chia coli in a concentration-dependent manner through
ROS-induced membrane lipid peroxidation [72]. Besides,
da Silva et al. [73] reported that the size and surface mod-
ification affected the antibacterial activity of ZnO NPs.
Decreasing the size of ZnO NPs increases their antibacterial
activity against E. coli and S. aureus. Therefore, smaller
ZnO NPs <5 nm have bactericidal effects, while larger ZnO
NPs have bacteriostatic effects [74]. Therefore, smaller
ZnO NPs have better antimicrobial properties than the
larger ones. Besides, the synthesis of spherical ZnO NPs
by the precipitated method had more potent antibacterial
activity than commercial ZnO NPs. Remarkably, chronic
exposure of E. coli to a low concentration of ZnO NPs
induces a robust antibacterial activity compared to a
single higher concentration of ZnO NPs [74]. In vitro study
demonstrated that exposure of E. coli to 0.06 mg/mL of
ZnO NPs led to two-fold inhibition of bacterial growth
compared to the single higher concentration of ZnO NPs
0.30 mg/mL [75]. The antibacterial activity of ZnO NPs is
related to the generation of ROS and lipid peroxidation
of bacterial cell walls. Jiang et al. [76] observed that ZnO
NPs exert bactericidal activity against Gram-positive and
Gram-negative by inducing membrane dysregulation via
the release of zinc and hydrogen peroxide. Numerous
investigations used SEM and FESEM to analyze the morpho-
logical changes in bacteria treated with NPs, such as ZnO
NPs. ZnO NPs’ antimicrobial activity relies on ZnO-NPs
making direct contact with the cell walls, which destroys
the integrity of the bacterial cell [77]. SEM analysis was
used to examine the morphological changes in the bacterial
strains before and after they were treated with nanorods. α-
Mn2O3 NPs were investigated as antimicrobial agent.
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significant morphological changes were showed in all exam-
ined bacterial strains. Naskar et al. produced Ni + 2-doped
ZnO NPs for their study. A. baumannii ATCC 19606, S. aureus
ATCC 25923, S. epidermidis ATCC 12228, and E. coli ATCC 25922
were used to investigate the produced NPs’ antibacterial
activity [78]. According to the results, the growth of micro-
biological strains was strongly inhibited by ZnO NPs. These
decreases in the development of biofilms could be connected
to the process that produces ROS. These ROS have the power
to peroxide and oxidize lipids and proteins, weakening the
membrane of Gram-negative cells, altering fluid permeability
and ion transport, and interrupting metabolic activities.
Moreover, direct or electrostatic interaction between the bac-
teria and the NPs may damage the outer membrane of Gram
+ve and Gram −ve bacteria. In sum, these findings, together
with the present study’s findings, indicated that ZnONPs have
potent antibacterial activity.

4.3 Antiviral activity of ZnO NPs

These results of the current study indicate the antiviral
activity of ZnO NPs. The ROS generation was measured
using a flow cytometry assay, as shown in Figure 5; the
ROS generation by the H1N1 influenza virus was signifi-
cantly increased, and after exposure to ZnO NPs, the ROS
generation was inhibited. The present study’s findings illu-
strated that ZnO NPs reduced neuraminidase activity in a
concentration-dependentmanner, reducing apoptosis induced
by the H1N1 influenza A virus in MDCK cells. Notoriously,
the present study revealed that ZnO NPs downregulate the
level of ROS in their antiviral activity. Many preclinical stu-
dies have shown that ZnO NPs have potent antiviral activity
[79–81]. ZnO NPs from the alcoholic extract of Plumbago
indica L. showed antiviral activity against herpes simplex
virus 1 (HSV-1) in a concentration-dependent manner [82].
Likewise, an in silico study demonstrated that hesperidin
ZnO NPs have a significant antiviral effect against hepatitis
A virus (HAV) [83]. Cotton fabrics ZnO NPs have antiviral
activity against HSV-1, adenovirus, and coxsackie B virus
about the antiviral acyclovir. Supporting the present study,
Ghaffari and his colleagues demonstrated that PEGylated
ZnO NPs are effective and novel antiviral in managing
H1N1 influenza viral infection [84]. The viricidal mechanism
of ZnO NPs is mediated by the release of zinc and various
types of ROS. In addition, ZnO NPs modulate virus transcrip-
tion and alter membrane polarity prompted by the negative
charge of ZnO and positive charge of virus capsid protein.
Furthermore, ZnO NPs inhibit viral RNA transcription of the
chikungunya virus [85]. Notoriously, ZnO NPs can interfere
with the replication and entry of SARS-CoV-2.

4.4 Antioxidant effects

Antioxidant functionalization does not alter the intrinsic
antioxidant properties of many NMs; instead, their quali-
ties depend on their surface features. The most widely
employed antioxidant NMs are inorganic metal NPs, espe-
cially those made using the green synthesis methods [86].
Eucalyptus globulus produces antioxidant ZnO NPs as cap-
ping and reducing agents for photocatalytic uses. The cap-
ping of natural compounds on the ZnO surface and smaller
particle size can increase the antioxidant activity of these
materials compared to those generated by standard che-
mical methods. Aldehyde with cuminic acid and Euca-
lyptus globulus’s sitosterol significantly affected ZnO NPs
antioxidant activity [87].

4.5 Antidiabetic activity of ZnO NPs

ZnO NPs as antidiabetic agent was investigated. As shown
in Figure 7, these ZnO NPs showed excellent inhibition
when tested at different doses from 0 to 150 µg/mL. ZnO
NPs proved to be almost 50% antidiabetic effective at a
50 µg/mL concentration. The blood glucose levels of the
diabetic groups treated with ZnONPs, significantly decreased
by almost 150mg/dL, compared to the diabetic mice group
by almost 350mg/dL as indicated in Figure 7 (upper right
panel). The results showed the ability of ZnO NPs to promote
GK activity as shown in Figure 7 (lower left panel). For
histopathological changes of spleen sections, the control
group showed a normal pancreas section. Meanwhile, the
diabetic group indicated damaged Langerhans islets, with
damage in pancreas cells. In the diabetic and ZnO NP-
treated group, the pancreas was less destructed as shown
in Figure 7 (lower right panel). Therefore, ZnO NPs have
excellent antidiabetic potential and may effectively treat
diabetic wounds. In the current work, we assessed the
potential therapeutic benefit of ZnO NPs on streptozotocin-
induced diabetic mice. The blood glucose levels in the dia-
betic groups treated with ZnO NPs (150mg/dL) significantly
decreased, according to our findings. This demonstrated the
powerful anti-diabetic effects of those NPs. ZnO NPs, on the
other hand, cause a decrease in blood glucose levels and are
a powerful metal that enhances hepatic glycogenesis by
acting on the insulin signaling system, thus improving glu-
cose use and metabolism [88]. In addition to being essential
for insulin production, secretion, and storage, zinc is also in
charge of preserving the structure of insulin [89,90]. Studies
have indicated that several zinc transporters, including zinc
transporter-8, are essential for the secretion of insulin from
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beta cells of the pancreas. Through several mechanisms,
such as increased insulin receptor phosphorylation, increased
phosphoinositide 3-kinase activity, and suppression of gly-
cogen synthase kinase-3, ZnO NPs may also improve insulin
signaling [91]. ZnO NPs can also reverse the effects of diabetes
on pancreatic tissue. Diabetes-related pancreatic damage was
restored by ZnO NPs, as demonstrated by structural and
ultrastructural alterations, and confirmed by mean biochem-
ical stability around blood sugar and serum insulin [92].

4.6 Role of ZnO NPs in induction of
phagocytosis

In addition to circulating plasma proteins, the innate immune
system is made up of basophils, mast cells, eosinophils, pha-
gocytic cells (monocyte/macrophages, DCs, and polymorpho-
nuclear leukocytes), physical epithelial barriers, and natural
killer cells, sometimes referred to as complement and con-
sistently found in body fluids such as tissues, lymph, and
blood. The binding of opsonins triggers the innate immune
system’s rapid and non-specific reaction to any threat, even-
tually resulting in phagocytosis and clearance. Findings of
the present study verify the ability of ZnO NPs to enhance
treated BMDM cells to phagocytose and kill the bacteria.
This experiment aimed to test how pre-treatment with
ZnO NPs could stimulate the ability of BMDMs to phagocy-
tose pHrodo E. coli bioparticles. We also aimed to test the
mechanisms that could be involved in this process. Taken
together, the results demonstrated that pre-treatment with
ZnO NPs increases the ability to produce phagocytosis. This
suggests that the ability of BMDMs to kill microorganisms
could be enhanced. This experiment aimed to test how pre-
treatment with ZnO NPs could stimulate the ability of BMDMs
in phagocytosis. We also aimed to test the mechanisms that
could be involved in this process. Following internalization,
NPs may go through several phagocyte processing stages.
When endosomes or phagosomes internalize, they can com-
bine with lysosomes to neutralize the NPs by lowering pH
levels or by enzymatic digestion [93]; cell-free antimicrobial
defense mechanisms since autophagy might exacerbate cell
death through mitochondrial dysregulationand be harmful
in the case of bio-persistent NPs [94]. However, harmful
effects can be minimized if the cell can compartmentalize
NPs into autophagosomes, separating them from addi-
tional interactions. This is advantageous for the cell as a
stress-reduction strategy [94]. In the process of binding
molecules and facilitating their absorption, the NP’s cur-
vature and size play a crucial role. Bigger NPs typically
adsorb bigger proteins, including complement components

and immunoglobulins. For instance, opsonin C3b takes up
about 40 nm2 of space. Even tiny NPs do not provide enough
space for binding [95]. Additionally, absorption processes
vary according to the size of the particles. Smaller particles
(less than 200 nm) are internalized through clathrin- or
caveolar-mediated endocytosis, whereas bigger particles
are more frequently taken up by phagocytosis, which is
more impacted by opsonin adsorption [96]. Different NP
kinds have distinct effects on the polarization and repro-
graming of macrophages [97]. The attention of the domains
of nanotoxicology and other medical applications was
drawn to the interaction between the NPs and these phago-
cytic cells in different states, as well as the other related
nobodies [98]. To successfullymodulate the in vivo biological
effects of NPs and develop NP-based therapeutics and ther-
apeutic regimes, a more profound comprehension of the
functions these nanoscale particles play in macrophage
polarization is necessary [99]. When ZnO NPs were added
to the phagocytic cells, phagocytic cell activity was shown to
significantly induce. ZnO NPs could induce or stimulate the
ROS and NOX2 pathway to enhance phagocytosis activity. A
reasonable explanation for the increased immune response
and phagocytosis activity is likely due to the presence of
immune-modulator entities that contribute to increased
levels of phagocytic cells, as well as the presence of ZnO
NPs that cause phagocytic cell maturation and involvement
of the NOX2 pathway. This information could be used to
improve antibacterial preparation and designs. Taken
together, the current study also suggested that the che-
mical components of ZnO NPs may function as immunolo-
gical enhancers, improving the activity of phagocytic cells
to take up bacteria and other xenobiotics. Nevertheless,
further studies are required to determine the precise che-
mical roles of the NPs.

4.7 Role of ZnO NPs in autophagy induction

The remarkable mechanical qualities, chemical stability,
and biocompatibility of metallic NPs, one of the most thor-
oughly investigated biomaterials demonstrating autophagy
induction, have garnered significant attention recently for
potential uses in tissue regeneration. Because silver nano-
particles (AgNPs) have been shown to have antibacterial
properties, they have proven helpful in clinical treatment.
Autophagy has been shown to serve as a link between
metallic NPs and wound healing. We hypothesized that
once BMDM cells were pretreated with ZnO NPs following
LPS and ATP, they would increase autophagy process mar-
kers. Using immunofluorescence tests, we investigated the
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expression of LC3, a significant autophagy-related protein,
to ascertain whether BMDMs treated with ZnO NPs trigger
autophagy. Our findings showed that after treating LPS +

ATP, BMDMs showed autophagy LC3 marker. In cells that
had been pre-treated with ZnO NPs, the absolute amount of
LC3 increased. AgNPs inhibited HO-1 and ROS formation in
NIH-3T3 cells by upregulating LC3, which triggered autop-
hagy and inhibited apoptosis [100]. By triggering autop-
hagy and averting microbial infection, superparamagnetic
iron oxide NPs dramatically reduced sepsis brought on by
LPS [101]. Previous studies have been published on how
NPs affect autophagy modulation. It had been thought
that NP-induced autophagy served as a defense mechanism
against toxicity generated by NMs as well as a mechanism
of nontoxicity [102]. NPs are promising materials for initi-
ating autophagy because of their inherent capacity to
control the autophagy process at different stages. When
lysosomes absorb and break down polymeric NPs, like
poly(lactic-co-glycolic acid) NPs, there is an increase in
acidity in the lysosomes, which causes an increase in
autophagic flux and a decrease in SQSTM1/p62 [103]. ZnO
NPs also cause autophagy flux, through inhibiting the
MTOR signaling pathway or by causing the BCL2-family
and autophagy-related proteins expressed [104]. Other stu-
dies demonstrated the ability of CuO, TiO2, nitrogen-doped
TiO2, cerium dioxide, iron oxide, and neodymium (III) oxide
(Nd2O3) NPs to increase autophagy flux by producing ROS
or by employing other processes that significantly control
lung, cervix, and breast cancer cell proliferation [105,106].
In summary, NMs have distinct impacts on wound regen-
eration and repair and induce autophagy through diverse
signaling pathways. Consequently, studying autophagy
triggered by NMs sheds light on skin wound healing while
also clarifying the molecular mechanism of autophagy.

4.8 Docking study

GlcN-6-P synthase, referred to by the trivial name of
L-Glutamine: D-fructose-6-phosphate amidotransferase, repre-
sents the active target of antibacterial chemotherapy. This
enzyme plays a critical role in constructing bacterial cell
walls through the biosynthesis of sugar-containing macro-
molecules. This enzyme catalyzes two reactions: first, it
forms GlcN-6-P from D-fructose 6-phosphate (Fru-6-P);
second, it forms uridine-5-diphospho-N-acetyl-D-glucosa-
mine (UDP-GlcNAc), which is crucial for the building of
bacterial cell walls [107]. ER alpha regulates neural, ske-
letal, cardiovascular, and reproductive tissue differentia-
tion and maintenance. Compounds modulating ER alpha

transcriptional activity are currently used to treat osteo-
porosis, cardiovascular disease, and breast cancer. 4-
Hydroxytamoxifen, the synthetic inhibitor for ER alpha,
acts as a valuable agent for the treatment of breast cancer
[108,109]. Tubulin is a dimeric protein comprising two
subunits, α and β, that are related but not identical.
Almost 30 years have passed since chalcones were initi-
ally identified as antimitotic agents [110]. Three active
components of red radish, rutin, sinigrin, and dihydrocaf-
feic acid 3-O-glucuronide were modeled as colchicine ana-
logs based on the knowledge of the structure–activity
relationship between colchicine and tubulin. A rapid dis-
ruption of mitotic spindle assembly, interference with the
cytoskeleton’s function, and disrupted mitosis can be
caused by colchicine analogs binding to tubulin and inhi-
biting its polymerization [111]. In silico docking explored
the virtual affinity and the binding mode of the three
active components extracted from the red radish inside
three target macromolecules related to antimicrobial (GlcN-
6-P synthase) and anticancer agents (Estrogen Receptor and
Tubulin Receptor). The docking investigation revealed that
the active compounds attach to the enzyme or protein’s
active site similar to the substrate or inhibitor. The results
of the binding study confirmed this.

5 Conclusion

ZnO NPs are widely used in various biological applications
due to their affordability, biocompatibility, and low toxi-
city. ZnO NPs have been shown to produce antibacterial
and anticancer effects. Notably, synthesizing ZnO NPs from
plant extracts is a good option against bacterial growth and
proliferation of cancer cells. ZnO NP-mediated R. sativus
(Red radish) exhibited anticancer activity against lung
cancer cells through apoptosis proteins. The present study’s
findings demonstrated that ZnO NPs have anticancer, anti-
bacterial, and antiviral effects. The molecular mechanisms
demonstrated that ZnO NPs inhibit MDCK cell apoptosis by
decreasing the level of ROS. Molecular docking studies the
affinity within the target enzymes GlcN-6-P synthase
(PDB:1MOQ) active site, Estrogen Receptor (PDB:3ERT) active
site, and Tubulin Receptor (PDB:4O2B) active site. The
results showed that the ZnO NPs have an inhibitory activity
against pathogenic bacteria, inhibits proliferation of lung
cancer cell lines, antiviral activity against influenza virus,
and antidiabetic agent. Conversely, the results showed the
ability of ZnO NPs to reduce inflammasome activity via aug-
mented of autophagy. The docking investigation revealed
that the active compounds attach to the enzyme or protein’s
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active site similar to the substrate or inhibitor. The results
of the binding study confirmed this. Therefore, ZnO NPs
mediated R. sativus have anticancer, antibacterial, and anti-
viral activities and could be a novel therapeutic strategy
against cancer and associated viral and bacterial infections.
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