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Abstract: The rapid expansion of nanotechnology has
transformed numerous sectors, with nanoproducts now ubi-
quitous in everyday life, electronics, healthcare, and phar-
maceuticals. Despite their widespread adoption, concerns
persist regarding potential adverse effects, necessitating vigi-
lant risk management. This systematic literature review advo-
cates for leveraging artificial intelligence (AI) and machine
learning (ML) methodologies to enhance simulations and
refine safety assessments for nanomaterials (NMs). Through
a comprehensive examination of the existing literature, this
study seeks to explain the pivotal role of AI in boosting NMs
sustainability efforts across six key research themes. It

explores their significance in advancing sustainability, hazard
identification, and their diverse applications in this field. In
addition, it evaluates the past sustainability strategies for NMs
while proposing innovative avenues for future exploration. By
conducting this comprehensive analysis, the research aims to
illuminate the current landscape, identify challenges, and out-
line potential pathways for integrating AI and ML to promote
sustainable practices within nanotechnology. Furthermore, it
advocates for extending these technologies to monitor the
real-world behaviour of NMs delivery. Through its thorough
investigation, this systematic literature review endeavours to
address current obstacles and pave the way for the safe and
sustainable utilization of nanotechnology, thereby minimizing
associated risks.

Keywords: nanomaterial, machine learning, artificial intel-
ligence, nanosafety, nanomaterial sustainability

1 Introduction

Nanomaterials (NMs) are a significant breakthrough in
global science and technology, typically ranging from 1 to
100 nm in size and exhibiting exceptional chemical, phy-
sical, and biological properties. These characteristics make
NMs crucial across various fields [1]. According to Market-
sandMarkets, the global market for NMs is expected to
reach $75.64 billion by 2025, with a strong annual growth
rate of 13.2% from 2020 to 2025 [2]. NMs are integrated into
everyday products such as cosmetics, sunscreen, food packa-
ging, medicines, water filtration systems, and energy
production. The development of nanomedicines and
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nanotechnology has brought numerous benefits to humanity,
a trend likely to continue. However, it is increasingly impor-
tant to address the potential negative effects associated with
their use. Currently, many diseases arise from regular expo-
sure to harmful chemicals or materials, whose risks are often
hidden by their perceived benefits [3]. NMs enter our lives
through food additives, industrial processes, processed foods,
packaging materials, cigarettes, cosmetics, medications,
paints, and propellants. These substances can threaten
human health, causing diseases like Parkinson’s, cancer,
Alzheimer’s, asthma, bronchitis, emphysema, arrhythmia,
urticaria, vasculitis, dermatitis, Crohn’s disease, podoco-
niosis, thrombosis, and hypertension [4].

To ensure safety and well-being, comprehensive nanotox-
icological testing is crucial. The rapid growth of the nanopar-
ticle (NP) market poses significant challenges for regulatory
oversight and safety assessment using traditional in vitro and
in vivo techniques. The increasing speed and volume of data
make it difficult to evaluate chemicals with conventional
methods, particularly given the numerous chemical toxicolo-
gical endpoints [5]. Therefore, a shift towards computational
modelling methods is needed to assess and predict the risks
associated with these particles. Such approaches can expedite
assessments, save resources, and help develop a framework
for better health outcomes. The growing importance, com-
plexity, and versatility of machine learning (ML)-based infor-
mation techniques have brought them to the forefront of
various fields [6–10]. However, acquiring substantial data
for these techniques is increasingly challenging [7,10]. Typi-
cally, educational data devices are used to create broadly
applicable patterns but often have lower predictive accuracy
in specific scenarios [11]. This trend has significantly impacted
nanotechnologies and NMs, and this influence is expected to
continue [10]. High-throughput NM manufacturing and char-
acterization have received relatively less attention despite
their potential for thorough analysis using inspectionmethods
[10]. Future advancements in high-throughput synthesis, char-
acterization, and ML modelling are anticipated to significantly
enhance the chemical industry workforce [12].

It is essential to monitor recent advancements in ML
reported by scientists dedicated to developing safer NMs
[10]. These advancements should be adopted by those fol-
lowing in their footsteps [10]. Furxhi et al. [13] demonstrate
a growing preference for nonlinear modelling techniques,
moving away from the prevalent use of linear regression
[14]. While these methods often confirm quantitative rela-
tionships between shape and properties, there is a notice-
able shift towards understanding nanospecific capabilities
through physicochemical interpretations rather than purely
theoretical descriptors [10].

Despite ongoing debates and the lack of widespread
consensus on statistical preprocessing strategies, regulatory

guidelines and validation strategies for modelling sets are
underused, despite their common application in quantita-
tive structure–activity relationship (QSAR) studies [10]. Tem-
plates for reporting versions in regulatory risk analyses of
engineered NMs are suggested to provide well-defined and
organized model descriptions [14]. These templates cover
QSAR model reporting and are relevant to physiologically
based kinetic (PBK) and environmental exposure models for
NMs, offering a comprehensive overview of the computational
model landscape for hazard assessment [10]. The absence of
effective analytical methods complicates the verification of
models and the assessment of their application and identity
in risk evaluations [10]. Recent research from the EU has
explored algorithms for measuring the residence times of engi-
neered NMs, providing guidance in the REACH regulation [14].

Various sources have extensively discussed trends in
partial and widespread automation relevant to nanotech-
nology, highlighting the automation of nanoscience, inves-
tigation of additives, and the development of self-contained
experimental devices [10]. Techniques like pulsed laser
deposition, chemical vapour deposition, biomolecular tem-
plating, and electrodeposition have been utilized for the
automated or semi-automated synthesis of inorganic NMs
[15]. Notably, the application of flow chemistry showcases
the potential for automating the generation of assemblies
for colloidal NP solutions, challenging previously held
beliefs [16]. Interestingly, the article discussing NPs designed
for medicinal purposes intentionally excludes references to
automation, informatics, or ML modelling. The use of ML to
assess potential negative consequences of NM datasets, fol-
lowing a “safe by design” approach, is gaining momentum,
particularly with the collaboration of NM regulators [17].
Similarly, ML is used to model the toxicological properties
of NMs by leveraging omics data. Recent reviews have high-
lighted the potential of combining integrative omics with
ML to profile NMs and model their biological impacts for
safety and risk assessments [18–20]. Over the past decade,
various computational models and ML techniques have
been developed to predict the toxicological properties and
adverse effects of NPs [21]. Among these, QSARs and quanti-
tative structure–property relationships (QSPRs) are the most
commonly used methods [22]. Recently, the European Com-
mission has launched several projects to explore the poten-
tial of modelling NP toxicity and properties [23,24].

The novelty of this article lies in its thorough sys-
tematic literature review (SLR) review of existing research
on using ML and artificial intelligence (AI) to improve the
sustainability and safety of NMs (NMs). Unlike other reviews,
this study covers almost all relevant literature, showcasing
the significant progress and potential of ML and AI in making
NMs more sustainable. It also tackles interdisciplinary chal-
lenges and suggests new research directions, highlighting the
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role of these technologies in creating safer and more sustain-
able nanotechnology applications. In addition, the article
offers detailed recommendations for future research at the
intersection of nanotechnology and ML.

Up to the author’s knowledge, the present study possesses
unique characteristics that distinguish it from earlier surveys:
1) Comprehensive SLR: Unlike previous studies, this article

conducts an extensive SLR, covering nearly all existing
literature on the use of AI and ML for evaluating the
sustainability of NMs.

2) Rigorous methodology: It employs a predefined method
for searching, selecting, and extracting data from articles,
which reduces bias and ensures a thorough and sys-
tematic review process.

3) In-depth analysis: The article offers a detailed exami-
nation of the significance and application of AI and ML
in enhancing the sustainability of NMs, highlighting
key advancements and the potential benefits of these
technologies.

4) Interdisciplinary challenges and future research: It
addresses interdisciplinary challenges and suggests inno-
vative future research directions, underscoring the
essential role of AI and ML in fostering safer and more
sustainable nanotechnology practices.

5) Detailed recommendations: The article provides spe-
cific recommendations for future research at the inter-
section of nanotechnology and ML, offering guidance
for upcoming studies and progress in this field.

1.1 Research goals

This research aims to comprehensively investigate and
analyze existing studies concerning the application of AI
and ML in the realm of sustainability for NMs. This study is
centred around six distinct research questions.

RQ1: What is the importance of AI and ML techniques
in NM sustainability?

RQ2: What is the role of AI and ML tools in the identi-
fication of hazards associated with NMs?

RQ3: What are the applications of AI and ML in NM
sustainability?

RQ4: What are the past NM sustainability roadmaps?
RQ5:What are the future NM sustainability roadmaps?
RQ6: What are the recommendations for future research

in the intersection of nanotechnology and ML?

1.2 Contribution and design

In this SLR, we aimed to contribute to ongoing research on
the sustainability of NMs and to enhance understanding of

their applications across various scientific domains. Our
key findings are as follows:
1) We conducted an SLR focusing on the sustainability of

NMs, where we pinpointed 180 primary research arti-
cles from a pool of 395 pertinent studies.

2) We highlighted the significance of AI and ML techni-
ques in NM sustainability.

3) We outlined the applications of AI and ML in enhancing
NM sustainability.

4) We discussed both past and future roadmaps for NM
sustainability.

5) We presented a detailed examination of the role of ML
in assessment processes related to NM sustainability.

6) We provided specific recommendations for future research
in the intersection of nanotechnology and ML.

Table 1 presents a comparison between our systematic
literature review (SLR) and existing relevant surveys, con-
sidering four key criteria: methodology, number of data-
base sources searched, time interval, and study focus. As
shown in the table, our study is unique as it is the first to
conduct a comprehensive SLR specifically focused on the
integration of AI and ML in the sustainability and safety
assessment of NMs. This highlights the novelty and thor-
oughness of our research approach, which stands out from
previous surveys that either did not follow a systematic
methodology, searched a limited number of databases, cov-
ered shorter time spans, or addressed broader, less specific
topics.

This research aims to aid scholars in expanding their
knowledge of NM sustainability. Moreover, by exploring
the use of advanced technologies like AI and ML in this
context and thoroughly assessing their pros and cons, we
hope to lay the groundwork for further advancements in
the field.

The article is organized as follows: Section 2 describes
the research methodology. Section 3.3 presents the
results of the study, Section 4 discusses future research
recommendations, and finally, Section 5 presents the
conclusion.

2 Research methodology

The research methodology employed in this study is the
SLR, which is a well-established and commonly used approach
[29]. This method involves systematically analyzing existing
literature by following a predetermined set of steps to identify,
assess, and interpret relevant research related to the research
questions [29,30]. Figure 1 illustrates the entire process of
the SLR.

A comprehensive SLR of ML in nanotechnology  3



Ta
bl
e
1:

Co
m
pa

ris
on

of
th
e
pr
op

os
ed

SL
R
w
ith

ex
is
tin

g
re
vi
ew

s

Re
fe
re
nc

e
Ti
tl
e

Ye
ar

M
et
ho

do
lo
gy

D
at
ab

as
es

se
ar
ch

ed
Ti
m
e
in
te
rv
al

St
ud

y
fo
cu

s

[2
5 ]

A
M
L
ex
am

in
at
io
n
of

N
M

sa
fe
ty

20
20

O
rd
in
ar
y
re
vi
ew

Sc
ie
nc
eD

ire
ct
,W

eb
of

Sc
ie
nc
e,

G
oo

gl
e
Sc
ho

la
r
an

d
Pu

bM
ed

20
10
–2
01
9

M
L
m
et
ho

do
lo
gi
es

us
ed

to
pr
ed

ic
tt
ox
ic
ol
og

ic
al

ou
tc
om

es
[2
2 ]

Pr
ac
tic
es

an
d
tr
en

ds
of

M
L
ap

pl
ic
at
io
n
in

na
no

to
xi
co
lo
gy

20
20

O
rd
in
ar
y
re
vi
ew

G
oo

gl
e
Sc
ho

la
r,
El
se
vi
er

(S
co
pu

s
an

d
Sc
ie
nc
eD

ire
ct
),
W
eb

of
sc
ie
nc
e
an

d
Pu

bM
ed

20
13
–2
02
2

M
L
ap

pl
ic
at
io
n
in

na
no

to
xi
co
lo
gy

[1
1 ]

Ro
le

of
AI

an
d
M
L
in

na
no

sa
fe
ty

20
20

O
rd
in
ar
y
re
vi
ew

—
—

Ro
ad

bl
oc
ks

to
th
e
ap

pl
ic
at
io
n
of

M
L
to

pr
ed

ic
t

po
te
nt
ia
lly

ad
ve
rs
e
eff

ec
ts

of
N
M
s

[2
6 ]

N
an

ot
ec
hn

ol
og

y
fo
r
a
su
st
ai
na

bl
e
fu
tu
re
:

ad
dr
es
si
ng

gl
ob

al
ch
al
le
ng

es
w
ith

th
e

in
te
rn
at
io
na

ln
et
w
or
k4
su
st
ai
na

bl
e

na
no

te
ch
no

lo
gy

20
21

O
rd
in
ar
y
re
vi
ew

—
—

G
lo
ba

lc
ha

lle
ng

es
to

su
st
ai
na

bl
e
na

no
te
ch
no

lo
gy

[2
7]

O
ve
rc
om

in
g
ro
ad

bl
oc
ks

in
co
m
pu

ta
tio

na
l

ro
ad

m
ap

s
to

th
e
fu
tu
re

20
21

O
rd
in
ar
y
re
vi
ew

—
20
00

–2
02
0

Ro
ad

m
ap

s
fo
r
th
e
fu
tu
re

of
sa
fe

na
no

te
ch
no

lo
gy

[1
9 ]

M
L-
in
te
gr
at
ed

om
ic
s
fo
r
th
e
ris
k
an

d
sa
fe
ty

as
se
ss
m
en

t
of

N
M
s

20
21

O
rd
in
ar
y
re
vi
ew

—
—

M
L
in

ris
k
an

d
sa
fe
ty

as
se
ss
m
en

t
of

N
M
s

[1
0 ]

M
L
al
go

rit
hm

s
ar
e
ap

pl
ie
d
in

N
M

pr
op

er
tie

s
fo
r

na
no

se
cu
rit
y

20
22

O
rd
in
ar
y
re
vi
ew

—
—

Ro
ad

bl
oc
ks

to
M
L
in

na
no

sa
fe
ty

[2
8 ]

U
si
ng

M
L
to

m
ak
e
N
M
s
su
st
ai
na

bl
e

20
23

O
rd
in
ar
y
re
vi
ew

—
20
01
–2
02
2

M
L
te
ch
ni
qu

es
fo
r
en

vi
ro
nm

en
ta
lr
is
k
as
se
ss
m
en

t
to

en
su
re

su
st
ai
na

bi
lit
y

O
ur

pr
op

os
ed

SL
R

A
co
m
pr
eh

en
si
ve

sy
st
em

at
ic
lit
er
at
ur
e
re
vi
ew

of
M
L
in

na
no

te
ch
no

lo
gy

fo
r
su
st
ai
na

bl
e

de
ve
lo
pm

en
t

20
24

Sy
st
em

at
ic

lit
er
at
ur
e
re
vi
ew

Sp
rin

ge
r,
IE
EE

Xp
lo
re
,A

CM
,

Sc
ie
nc
e
D
ire

ct
,W

ile
y,
an

d
G
oo

gl
e

Sc
ho

la
r

20
13
–2
02
3

Si
gn

ifi
ca
nc
e
of

M
L
in

ad
va
nc
in
g
su
st
ai
na

bi
lit
y,

ha
za
rd

id
en

tifi
ca
tio

n,
an

d
th
ei
rd

iv
er
se

ap
pl
ic
at
io
ns

in
N
M
s,
ev
al
ua

te
s
pa

st
su
st
ai
na

bi
lit
y
st
ra
te
gi
es

fo
r

N
M
s
w
hi
le
pr
op

os
in
g
in
no

va
tiv
e
av
en

ue
sf
or

fu
tu
re

ex
pl
or
at
io
n,

an
d
re
co
m
m
en

da
tio

ns
fo
r
fu
tu
re

re
se
ar
ch

4  Inam Ur Rehman et al.



2.1 Data analysis tools and methods

To ensure a robust and reproducible analysis of the col-
lected data, a variety of statistical tools and methods were
employed. The approach involved several key steps:

2.1.1 Software utilized

Microsoft access: This software was used for database
management, enabling efficient storage, retrieval, andmanip-
ulation of large datasets. Custom queries were created to filter
and aggregate data as needed.

draw.io: This tool was employed to create detailed
diagrams and flowcharts, which helped visualize data rela-
tionships, processes, and analytical workflows. This enhanced
the clarity and understanding of the analysis steps.

2.1.2 Visualization

Data visualizations were generated using draw.io, to high-
light key findings and trends. draw.io was specifically uti-
lized to design flowcharts and diagrams that mapped out
the data analysis process, providing a clear visual repre-
sentation of the steps and methodologies used.

By integrating these statistical tools and methods, the
analysis aimed to extract meaningful insights from the
data, ensuring the results were accurate, reliable, and

reproducible. The use of Microsoft Access for effective
data management and draw.io for clear visualization of
processes further enhanced the transparency and replic-
ability of the study.

2.2 Searching article

Conducting searches in online repositories stands as an
essential phase in conducting an SLR. It involves the initial
formulation of a search string, which was made based on
the recommendations provided for the SLR process [29].
This procedure entailed generating a search query invol-
ving key terms and their appropriate alternatives, applying
different Boolean operators. Below is the whole search
query used to choose the article.

((NM sustainability OR NM safety OR nanosafety) AND (artificial
intelligence OR AI) AND (machine learning OR ML))

To locate relevant articles based on the stated search cri-
teria, we performed searches on six distinct online digital data-
bases: Springer, IEEE Xplore, ACM, Science Direct, Wiley, and
Google Scholar (Table 2). These widely recognized online repo-
sitories are expected to provide extensive literature coverage
on the subject matter. In addition, we employed manual
searching and the snowballing technique, as described by
Alzoubi et al. [30], to uncover additional pertinent articles. By
using this search approach, we located a sum of 840 articles
within the stated online repositories.

Figure 1: The entire process of selecting articles for the SLR.

A comprehensive SLR of ML in nanotechnology  5



2.3 Criteria for article selection

Various filters were used to select pertinent research arti-
cles (Table 3). Initially, a set of predetermined search terms
was used to query particular online digital databases for
research articles, leading to the discovery of 840 articles
across six databases. Afterwards, during the second stage,
an in-depth review of these articles took place focusing on
the significance of the article title, abstract, and keywords.
A total of 185 articles were picked in this stage, with others
being excluded. Finally, in the third stage, complete articles
were read, following the specific inclusion and exclusion
conditions:
1) The research articles related to the sustainability

of NMs.
2) The research articles were relevant to AI and ML

techniques.
3) We included research articles that underwent peer

review and were written in English.
4) We incorporated the latest editions of research studies.
5) Duplicate articles were excluded from the analysis.

We selected 145 most relevant articles at the current
stage. Subsequently, in the fourth stage, thirty-five articles
were identified through manual and snowballing methods.
In conclusion, a complete set of 180 relevant articles was
finally selected for inclusion in this study (Figure 2). The
search processes were performed on Oct 25, 2023, and all
relevant research up to that date was incorporated.

3 Results

3.1 RQ1: What is the importance of AI and
ML techniques in NM sustainability?

The process of exploring the biological characteristics of
NMs involves several steps. First, the materials are synthe-
sized and then subjected to relevant biological assays,
generating a dataset used to train ML models [11]. Physico-
chemical attributes of NMs are transformed into mathema-
tical descriptors, which are selected features from a pool and
used in ML methods to build predictive models for desired
properties [31]. These models are validated by predicting

Table 2: Results of the articles search

Databases First filtration Second filtration Third filtration Final selection Selected articles (%)

IEEE Xplore 28 21 5 1 0.56
Google Scholar 184 48 29 42 23.33
Science Direct 175 91 78 45 25.00
ACM 138 89 45 16 8.89
Springer 149 52 35 14 7.78
Wiley 166 94 72 27 15.00
Snowballing 0 25 13.89
Manual search 10 5.56
Total 840 395 264 180 100

Table 3: Stages of article filtering

Filtration Technique Criteria for evaluation

Filtration 1 Finding pertinent research articles from an online database Keywords
Filtration 2 Excluding research solely relying on the title, abstract, and keywords Title, abstract, and keywords
Filtration 3 Including papers based on their complete content Full paper
Final filtration Final chosen articles Final selected papers

Figure 2: Number of articles reference to each year.

6  Inam Ur Rehman et al.



results for separate materials not involved in the model-
building process.

In the realm of AI, AI encompasses tasks demon-
strating human intellectual characteristics, while ML, as
a subset of AI, accesses data, identifies patterns, and gen-
erates insights [11,32,33]. ML’s appeal lies in its versatility
and platform technology functionality. Unlike traditional
software, ML methods offer a more flexible approach,
where the same algorithm and software program can be
applied in various modelling situations, covering different
materials and outcomes [34,35]. ML algorithms learn pat-
terns from data similarly to human learning but with
faster speed and an enhanced capacity to manage data
with higher dimensions [36].

3.1.1 Traditional ML methods

Traditional ML methods encompass a variety of techni-
ques, including regression, Bayesian networks, artificial
neural networks (ANNs), genetic algorithms, decision trees,
and support vector machines (SVMs) [37,38]. These techni-
ques have been crucial in generating valuable models elu-
cidating the biological properties of NMs, as extensively
documented in the literature. While specific examples are
discussed below, detailed explanations of these methods
are omitted here due to their widespread usage and famil-
iarity. For a thorough understanding, recent reviews and
references specific to each method are recommended. Most
computational models in the literature, illuminating the

correlation between NM properties and biological end-
points, have predominantly utilized traditional statistical
techniques. Particularly, conventional ML techniques with
simple architectures, have been prominently featured in
these models [39]. However, MLmodels [35] often lack aware-
ness of complex environmental factors that can limit their
operational effectiveness. With the increasing prominence of
ANNs in broader scientific and technological fields, there is
renewed interest in their application across various domains,
including nanosafety and drug discovery [40]. This resur-
gence underscores a heightened recognition of the potential
and versatility of ANNs, representing a notable evolution in
their application within specialized domains.

3.1.2 Deep learning (DL) techniques

DL methods involve neural networks with multiple hidden
layers and complex architectures. They have significantly
impacted various fields of science and technology, particu-
larly excelling in recognizing features in speech, images,
and decision-making processes [41]. Unlike earlier sim-
plistic approaches, contemporary DL methods have the
advantage of automatically producing valuable descriptors
during modelling. Researchers suggested in DL studies that
deep and attention-based DL networks can achieve excel-
lent performances [42–44]. Common DL-driven approaches
are based on convolutional neural networks (CNNs) [45,46],
recurrent neural networks (RNNs) [47], transformer models
[36], generative adversarial networks (GANs) [48], and

Extracting
Data

Nano Clean
Data

Feature
Extraction

Robust Feature
Selection Modeling Output

Machine Learning

Deep Learning

Preprocessing
Data Clean Data Discriminative Feature

Extraction & Modeling Output

Figure 3: The traditional ML techniques need feature engineering (top). The DL techniques automatically perform feature extraction and analysis
(bottom).

A comprehensive SLR of ML in nanotechnology  7



autoencoders [49]. CNNs, a type of supervised ML, are adept
at identifying image features based on spatial correlations,
focusing on local relationships in data and exhibiting resi-
lience to minor alterations [12] (Figure 3).

A cascade of deep neural networks (DNNs) comprises
two distinct networks: the first matches each material with
an outcome, while the second links the outcome to one or
more materials. This configuration, often referred to as an
autoencoder, serves to both reduce dataset dimensionality
and predict materials with specific properties based on
the trained ML model. Generative adversarial networks
GANs address the inverse mapping problem in materials
design. GANs consist of a generator that produces trial
structure–property models and a discriminator that eval-
uates the quality of these models against available unla-
belled data. Originally designed to generate structures
autonomously, GANs have proven effective in this capacity
[12]. Similarly, active learning employs ML to select experi-
ments efficiently to achieve predetermined goals, akin to
directed evolution processes involving sequential genera-
tions of contestant structures undergoing selection, modi-
fication, and testing [12].

3.2 RQ2: What is the role of AI and ML tools
in the identification of hazards
associated with NMs?

ML techniques have become increasingly important for
identifying hazards linked to NMs, with a strong emphasis
on methods enabling thorough analysis, especially for mana-
ging large datasets and detailed content. This includes
studying coronas of the protein around NMs when they
interact with bodily liquids. ML shows significant promise in
addressing read-across challenges, particularly in swift in vitro
studies related to material properties, as indicated by a
notable increase in attention (Table 4). The growing emphasis
on computationally intensive network analysis further under-
scores its importance [50–53].

3.2.1 In vitro approaches

In vitro systems have traditionally been employed primarily
in human health studies, but there is a growing trend in
their application in environmental research is also domi-
nant [28]. ML can optimize the process of learning new
concentration-response curves through the use of nonlinear
methodologies, potentially enhancing efficiency and accuracy
in this aspect of research. Moreover, in hazard assessment, Ta
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test platforms are often selected with the aid of integrated
approaches to testing and assessment (IATA) or intelligent
testing strategies (ITS) [54]. However, one notable limitation
of ITS and IATA is their independence from the surrounding
system, overlooking potentially crucial additional factors. The
continuous evolution of sophisticated models suggests that
future approaches may involve integrative ML multitasking
methods. These methods could predict multiple toxicities
simultaneously, mitigating the overfitting and employing
techniques such as network analysis or forest trees [55,56].
Understanding mechanisms of action is crucial for compre-
hending hazards and facilitating risk evaluation. Omics
data, including transcriptomics, metabolomics, and proteo-
mics, serve this purpose but pose challenges due to their
extensive variables [57,58]. ML offers an attractive approach
to address the complexity and difficulty in identifying causal
relationships within omics datasets [59–62]. While ML tech-
niques find extensive application in omics, their application
to materials and environmental risk is limited. Clustering
techniques in omics analysis, while effective in finding pat-
terns, lack explanatory power for mechanisms. Refined
techniques like model-based approaches, especially when
structured with known classes, provide more information
on potential mechanisms [59,63]. The challenge lies in iden-
tifying causal relationships between omics expression levels
and phenotypic outcomes, which ML techniques, mechanism-
based or employing logic networks, can address, led by
training data for causality verification [64–68]. The use of
ML should align either with a highly mechanistic approach
for identifying mechanisms or as a means to verify consis-
tency with existing mechanistic understanding. In another
method, ML approaches are utilized as supplementary inves-
tigative instruments rather than definitive identifiers [69–73].
Special attention must be given to the input data in dealing
with complex omics data, as biases in input data can propa-
gate through automated algorithms, impacting the final
output and posing challenges when employing ML methods.
This challenge is not limited to ML techniques alone; rather,
it is crucial to confront them to guarantee impartial and
dependable outcomes. In addition to omics approaches dedi-
cated to the inner workings of cells, various other omics
methodologies play an important role in environmental
research, such as genetic barcoding for species diversity ana-
lysis, provide ideal datasets for ML applications [74–76]. In
summary, environmental omics generates extensive data neces-
sitating automated analysis to consistently identify underlying
mechanisms of action.

In environmental studies, particularly those involving
(smart-)NMs, in vitro techniques are gaining prominence
[77]. ML approaches effectively enhance the usefulness of
in vitro techniques by swiftly producing large datasets

using high-content and high-throughput methods. This cap-
ability allows for the concurrent investigation of multiple
materials under comparable circumstances [78,79]. ML
approaches such as NNs and RF algorithms can be used
with the obtained datasets to find similarities between
materials by detecting patterns [80–82].

ML techniques for image analysis are also applicable
to these datasets, enabling the quantification of processes
during experiments, such as agglomeration, which signifi-
cantly influences exposure [83–86]. However, ML image
evaluations require a large and well-labelled dataset for
training. Furthermore, in vitro studies can be used to deter-
mine the makeup of NMs protein coronas (PCs) [87]. For
instance, Findlay et al. [88] employed existing data on bac-
teria and yeast to assess the effectiveness of different ML
methods in foreseeing the formation of PC on basic Ag NPs,
and how it correlates with the NPs’ chemical and physical
attributes. Their research revealed that ML approaches
allow the prediction of PC composition through conven-
tional experimental data and readily available details about
the biophysical behaviours of proteins. In summary, ML
plays a vital role in uncovering attributes in in vitro analysis,
and automation can contribute to enhancing repeatability.

3.2.2 In vivo approaches

In environmental hazard identification, initial tests typi-
cally involve in vivo experiments, which are considered a
key aspect in many testing guidelines [28]. While ML tech-
niques have been widely used to assess the toxicity of tradi-
tional chemicals and address environmental concerns, their
application to smart NMs has been limited. Notable studies
in this area include Karatzas et al. [89], who used an ML
approach to automatically detect abnormalities and classify
affected Daphnia organisms after exposure to silver and
titanium NMs. To et al. [90] developed an ML technique
using RF for predicting the harmful effects of metal-con-
taining NMs on zebrafish embryos based on their physical
and chemical properties. Similarly, Gomes et al. [91]
employed ML to establish a link between various para-
meters of NMs and the toxicity experienced by soil organ-
isms when exposed to different types of titanium dioxide
(TiO2) materials infused with iron (Fe).

A range of ML methods is used to forecast the potential
toxicity of traditional chemicals within living organisms.
For instance, ML-driven graph theory has been employed
to anticipate severe ecotoxicity, drawing insights from
datasets such as AIST-MeRAM and ECTOX for estimation
and assessment purposes [92]. In a different context, Ji
et al. [93] implemented an ANN-based recurrent self-
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organizing map to examine the locomotion patterns of
earthworms after their exposure to copper sulphate (CuSO4).
This method holds significance in assessing the behavioural
responses of worms following exposure to various copper-
based (smart-)NMs. Trophic transfer and bioaccumulation,
essential endpoints in environmental risk assessment, have
been studied using linearmodels andML techniques for tradi-
tional chemicals in invertebrates and fish [94]. Although ML
has not been extensively applied to these endpoints in NMs, its
potential is evident. In addition, ML models like random for-
ests have been successful in predicting hazard concentration
levels (HC50) for traditional chemical materials, suggesting the
possibility of extending these models to NMs [95].

Environmental species distribution models, crucial for
identifying potential effects, can be enhanced using ML tech-
niques, as demonstrated by studies using evolutionary/
genetic algorithms [96]. ML can also aid in understanding
the effects of nanotoxicity, drawing insights from studies on
conventional chemicals [97]. A significant source of NM
emissions called “Sewage sludge,” could benefit from
ML applications in identifying important contaminants
and understanding their impact on soil and crops [98].
While previous studies focused on conventional chemicals,
similar ML methods could be applied to smart NMs. Beyond
direct applications to current environmental risk assess-
ment practices, ML shows promise in handling larger data-
sets and integrating more complex tests [28]. Examples
include using ML in animal species classification, predicting
avian field biodiversity, and using DL for continuous camera
monitoring to identify invertebrate species [28]. It is widely
applicable in real-time analysis like in surveillance applica-
tions [99]. They suggest that ML can facilitate the combina-
tion of diverse datasets and predict NM toxicity under various
scenarios, highlighting its relevance in hazard assessment
and risk management [28].

3.2.3 Exposure analysis

Critical components of analyzing the fate and exposure of
substances include evaluating environmental releases, fore-
casting substance levels in the environment, and under-
standing accumulation in organisms, which can be done at
various scales [28]. The soil compartment is highlighted as
the main sink for (smart-)NMs [28]. Various statistical and
logical models have been utilized for predicting environ-
mental concentrations, often requiring intensive data cal-
culations [28]. Studies like Wigger et al. [100] have shown
that combining various modelling techniques with ML can
significantly improve the effectiveness of these models.
Wikle employed ML, particularly NNs and deep hierarchical

models, to predict changes in soil moisture in large geo-
graphic areas [101].

Moreover, ML has been utilized to a restricted degree
in simulating the destiny and potential exposure of NMs
[28]. Notably, Goldberg et al. [102] pioneered the use of ML
to develop advanced fate models for NMs. Their work
demonstrated that decision trees, including RF regression
and classification, proved effective in identifying previously
concealed key descriptors crucial for huge models. The
authors highlighted the advantage of ML approaches,
emphasizing their relative lack of restrictions due to the
absence of prior linearity assumptions. However, a signifi-
cant hurdle reported by the authors was the scarcity of data,
encompassing both quantity and quality concerns. Subse-
quent studies, such as that by Babakhani et al. [103], lever-
aged ANN to investigate the transport of NMs in porous
media. The study revealed that the ANN-based correlation
technique outperformed existing empirical approaches in
forecasting continuum model attributes and breakthrough
models. These approaches hold promise in supporting other
NM-specific fate models like Simplebox. Developing ML-
based models specific to NM species becomes crucial, par-
ticularly because (smart-)NMs deviate from the fate and
exposure models applied to traditional chemicals. Unlike
chemicals assuming a steady-state condition, NMs exhibit
characteristics like agglomeration/aggregation influenced
by surface properties [104].

Fazeli-Sangani et al. [105] examined the effect of var-
ious features of soil and experimental variables on the
movement of TiO2 in actual soil environments using data
analysis techniques. Several methods such as multiple
linear regression, random forest, classification and regres-
sion trees, and ANN were utilized for this purpose. Their
results showed that ANN outperformed RF in predicting
TiO2 transport, despite RF needing less input data. MLR
techniques generally performed poorly, and CART had
good calibration but poor validation. In addition, various
researchers have used ML to predict environmental para-
meters important for fate and exposure modelling, espe-
cially in studies on soil carbon and nitrogen distributions.
Pinheiro et al. [106] utilized ML, specifically regression
trees, to predict soil texture through digital soil mapping,
with applications in remote sensing data. These environ-
mental ML techniques are crucial for developing local and
regional predicted environmental concentration models,
essential for environmental risk assessment. In addition,
ML has potential to predict exposure and toxicity throughout
a material’s life cycle, though this application remains under-
explored. Furthermore, since organisms in nature are mostly
exposed to mixtures of chemicals and materials, mixture
modelling is another vital area in risk assessment where
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computational methods, including ML, could provide valu-
able insights.

3.2.4 Risk classification

During the risk assessment phase of an environmental risk
assessment, the primary objective is to systematically amal-
gamate data related to material features, exposure, and
hazards to establish a robust environmental evaluation
[28]. Traditionally, this process employs tools featuring deci-
sion points based on material description, exposure, uti-
lizing fate, and hazard data, often incorporating IATA [28].
Consequently, decisions are required regarding data selec-
tion and integration, frequently employing simple decision
trees with predefined structures and binary decisions. The
risk measuring paradigm aligns with ML approaches; how-
ever, ML presents the possibility of employing more intri-
cate decision tree structures to substitute traditional IATAs
[28]. In other domains, ML-based methodologies have been
explored for risk assessments, such as the evaluation of
flooding risks [107] and soil quality based on polycyclic aro-
matic hydrocarbon (PAH) pollution [108].

As highlighted earlier, the pursuit of automation is a
crucial objective in risk assessment, driven by the need for
efficiency and cognitive relief for human risk assessors
facing time constraints and cognitive overload due to
numerous assignments requiring critical decisions without
sufficient time for exhaustive data review [109–111]. In a
real risk assessment where the combination of exposure,
fate, and hazard data significantly influences the outcome,
the choice of data and data treatment techniques, such as
ranking, logical choice, ranking, or statistical techniques,
play a crucial role [112]. Some ML-based methods opt for
predictive approaches, sidestepping conventional explaining
statistics [112]. The potential incorporation of various data
and possibly new methods implies that upcoming risk assess-
ment experts and scientists will need to navigate and select
from diverse analytical frameworks, leading to varying
approaches in evaluating statistical significance and impor-
tance [113–116]. This holds relevance in both the middle and
ultimate phases of a risk assessment [117]. Considering the
likelihood of future risk assessment methods incorporating
network analysis [118], it becomes clear that risk assessors
may face increasingly complex situations. In these cases,
despite using advanced DL techniques, it may be not easy
for anyone to fully understand the entire data processing
and its outcomes, effectively making the assessment a black-
box system. This challenge, familiar to those assessing con-
ventional chemicals, is expected to intensify with the added
complexity of smart-NMs [28]. This issue is particularly

evident when data-intensive models, such as most ML/AI
models, are applied to smaller datasets, even with validated
background models [28].

However, by using appropriate data and a well-designed
model-flow, new automated models are expected to deliver
faster and more standardized calculations, enabling more
comprehensive risk analyses than previously possible
[119–121]. These models can, for example, connect exposure
and toxicity parameters to global weather patterns, sea cur-
rents, soil–water flow models, and known biodiversity distri-
butions using local/global models [122,123]. This advancement
could enable the rapid integration of additional data, allowing
chemometric, biometric, and risk data to be collaboratively
processed with ML techniques [124]. Employing various ML
techniques, such as symbolic regression, may also uncover
additional biological or ecological “laws” [125].

Nonetheless, it is important to note that ML methods
may encounter reproducibility challenges, especially when
handling highly complex data and models [28]. A funda-
mental concern underlying environmental risk assessment
involves the uncertainty and sensitivity associated with the
outcome, represented as a value with related statistics [28].
Uncertainty arises from various sources, such as the lack of
adequate input data or the selection of potentially “incor-
rect” input data, hindering the models from effectively
addressing the risk [126]. Incorporating M does not alle-
viate this problem; in fact, it may further obscure the issue,
particularly when using hidden layers, making it less cer-
tain which data influences the outcome. ML is generally
acknowledged as data-hungry, emphasizing the heightened
importance of acquiring sufficient data of high quality [28].
Sensitivity, a crucial aspect of ERA concerning how well it
can capture a true effect, is also relevant to ML techniques,
encompassing features like specificity and accuracy, integral
to predictiveness training through training sets [28]. How-
ever, determining how an ML model is derived, especially
when using deep or reinforcement learning methods invol-
ving temporary virtual nodes, can be challenging [28]. This
issue can be partially addressed by employing robust adver-
sarial controls [127]. It is also important to recognize that
correlations are often misinterpreted as causality in tradi-
tional data analysis.

In the context of risk management, Hino et al. [128]
presented that ML techniques can enhance the effective-
ness of public agencies in meeting regulatory objectives.
They trained a regression forest model to predict which
facilities were at risk of failing inspections and used the
model’s risk scores to propose alternative allocations of
Clean Water Act inspections. These alternative strategies
nearly doubled the detection rate of violations during
inspections, with an increase of over 600% under the
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most aggressive reallocation scheme. In addition, Duan
et al. [129] applied ML within a multimedia system to com-
pare traditional environmental chemistry with ML meth-
odologies. Forest et al. [130] highlighted the importance
of selecting the appropriate endpoint in ML systems for
assessing human health hazards. These studies underscore
the potential for ML-based techniques from a regulatory
perspective. A widely discussed topic in nano environ-
mental health and safety (nano EHS) revolves around
the potential of current ML techniques, such as read-
across, classification, or ranking tools, to facilitate the
grouping of materials that would otherwise be challen-
ging to classify [111,131]. As previously mentioned, these
techniques also hold promise for identifying new mate-
rials with specific properties [132,133].

ML tools must be designed to seamlessly interface with
the Internet of Things (IoT) to be effectively applicable in
various contexts [134]. The integration of IoT with ML
applications in environmental settings [135] has the poten-
tial to facilitate comprehensive online risk management,
such as precision agriculture and farming practices uti-
lizing drone technologies [136]. This encompasses tasks like
automatic regulation and enhancement of production sites,
machinery, agricultural robots, and irrigation systems for
the implementation of water quality measures, soil moisture
control [137], and promotion of behavioural changes [138].
Nevertheless, the extensive capabilities afforded by such inte-
gration pose significant legal and ethical challenges [139] and
carry the risk of potential large-scale misuse, such as through
hacking. The integration of IoT remains a crucial considera-
tion in contemporary ML implementations, enabling ML
systems confined in virtual spaces to directly influence the
physical world on a significant scale without human inter-
vention [28].

3.3 RQ3: What are the applications of AI and
ML in NM sustainability?

NMs are ubiquitous in modern life, present in food addi-
tives, industrial processes, cosmetics, medications, and more,
with the potential to cause a range of health issues from
Parkinson’s disease to cancer (Figure 4) [2,4,141]. However,
evaluating their safety through conventional methods is chal-
lenging due to the rapid proliferation of NPs and the com-
plexity of the data involved. To address this, a shift towards
computational modelling methods is crucial, offering the pro-
mise of faster assessments, resource conservation, and the
establishment of a unified framework for promoting better
health outcomes.

Numerous reviews on the use of ML techniques in
nanotoxicology were conducted over the past decade, as
evidenced by various sources [142]. We present key exam-
ples of published research to illustrate the diverse ML
approaches utilized for modelling NM properties across
various applications (Table 5). Our selection aims to show-
case the breadth of ML applications in predicting NM
hazards and outcomes in “safe-by-design” projects, empha-
sizing technologies that hold promise in achieving prede-
fined milestones.

Puzyn et al. [143] demonstrated the utilization of ML
and statistical techniques to forecast the adverse charac-
teristics of NMs. They developed a simple linear regression
model with a single parameter to forecast the cytotoxicity
of 17 distinct metal oxide NPs against Escherichia coli. The
model used descriptors acquired from quantum chemical
calculations. Similarly, Epa et al. [144] employed Bayesian
regularized neural networks and linear regression for the
prediction of biological effects associated with 51 metal
oxide NPs including different 109 metal oxide NPs and
metal cores having distinct cores but differing surface
modifiers. These models assisted numerical forecasts con-
cerning the apoptosis of flat muscle cells and the uptake of
NP concentration by human pancreatic cancer cells and
umbilical vein epithelial cells during in vitro experiments.
They exhibited predictive accuracy in a separate test batch
of NMs, with an error of <3 for apoptosis and within a
twofold range for cellular uptake in the specified cell lines.
Fourches et al. [145] utilized SVM classification and k-
nearest neighbours (kNNs) regression to characterize the
identical dataset. Their models proved an external prediction
accuracy of up to 73% on classification while attaining an r

2

value of 0.72 for regression models predicting corresponding
properties. Liu et al. [146] presented ML techniques to assess
the impacts of 44 iron oxide core NPs, frequently used in
molecular imaging, across four different cell types, com-
prising aortic endothelial cells, vascular smooth muscle cells,
macrophages/monocytes, and hepatocytes. Self-organizing
map-based clustering was applied to characterize types by
employing four different biological analyses and adjusting
NP concentrations. The classification involved the applica-
tion of a logistic regression, Bayesian classifier, and NN clas-
sifiers. These classifiers were trained based on descriptors
such as size, spin-spin, zeta potential, and spin-lattice relax-
ivity. Remarkably, the two class models showed compara-
tively best accuracies, surpassing 78%.

Papa et al. [147] analyzed the ZnO and TiO2 NPs’ cyto-
toxicity, utilizing experimental descriptors and testing dif-
ferent concentrations to assess their impact on disrupting
lipid membranes in cells, measured through lactate dehy-
drogenase (LDH) levels. They developed models employing
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SVMs, linear regression, and neural networks. These models
exhibited accurate predictions of LDH levels in the testing
while errors ranged from 8 to 17% compared to control cells.
Notably, the nonlinear ML techniques surpassed the perfor-
mance of the near-regression models. To overcome the lim-
itation of available toxicity data, Chen et al. [148] used ML
techniques for the classification of NM ecotoxicity. They
applied read-across attributes calculated from various sources
of ecotoxicity data to develop models tailored to specific spe-
cies and a joined model capable of predicting toxicity across
various species. Employing various tree algorithms, including
decision tree, functional tree, and random tree techniques,
they achieved accurate classifications for LC50 global models,
correctly identifying over 70% samples in training and testing.
Remarkably, the functional tree demonstrated high accuracies
of 93 and 100% for predicting the toxicity of metallic NPs to
Danio rerio in training and testing, respectively.

Gernand et al. [149] conducted an investigation uti-
lizing classification and regression techniques (regression
trees and random forest) to forecast the pulmonary toxicity
of 17 varieties of carbon nanotubes. The utilized model
incorporated descriptors associated with the nanotubes’
categories and dimensions, coverage time and dose, con-
centrations of metallic impurities, and features of the
visible rodents. The pulmonary toxicity measures con-
sisted of assessing the levels of macrophages and neutro-
phils, as well as concentrations of LDH and the total
number of proteins. The models exhibited strong predictive
capabilities for the four pulmonary endpoints, achieving r

2

values in the range of 0.88 and 0.96. Key attributes influencing
carbon nanotube pulmonary toxicity encompassed metallic
impurity quantities and identities, nanotube surface area,
length and diameter, and cumulative size. To address NP
agglomeration, a pivotal factor in NM biological effects, surface

Figure 4: The potential origins (inner circle) and the resultant health effects (outer circle) stemming from exposure to NMs [2].
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charge effects on dispersed NPs were considered to prevent
cohesion. In a separate study, Mikolajczyk et al. [150] utilized
ML techniques to estimate the zeta potential, which indicates
surface charge, for a set of 15 metal oxide NPs, using both
computed descriptors and image based. Despite the application
of linear regression methods, their models demonstrated zeta
potential predictions with a root-mean-square error (RMSE) of
1.25 mV in the test dataset and an r

2 coefficient of determina-
tion of 0.87.

A revolutionary study by Fourches et al. [39] imple-
mented the principles of “safe-by-design” by employing
ML techniques to assess biological outcomes. The investi-
gation centred on an 83-member library of surface-modi-
fied carbon nanotubes having consistent dimensions. Various
biological activities, including carbonic anhydrase, bovine
serum albumin, chymotrypsin, hemoglobin activity, and in vitro
analyses for immune toxicity and acute toxicity, were meticu-
lously examined. By leveraging conventional ML models such
as kNNs, SVM, and random forest, they achieved impressive
predictive accuracies, reaching 75% for protein binding and
77% for acute toxicity outcomes. The study revealed chemical
surface features associated with specific biological actions,
leading to the virtual screening of a huge library having
240,000 impending carbon nanotubes’ surface ligands.
Experimental validations of these predictions demon-
strated remarkable accuracy. This systematic approach,
involving the modification of physicochemical properties,
comprehensive biological evaluation, and computational
examination, aligns seamlessly to forecast nanotoxicology
outcomes and the principle of designing safety into NMs. It
significantly contributes to advancing the automated com-
prehension of nanobio interactions and aids the develop-
ment of quantitatively predictive and vigorous models for
NM characteristics within applicable domains [151].

In a similar context, Le et al. [152] investigated 45 ZnO
NPs, systematically altering particle dimensions, doping
type, shape proportions, dopant density, and surface fin-
ishing. The biological response data resulting from this
experimentation was modelled using Bayesian regularized
NN and linear regression ML techniques. The biological
analyses encompassed evaluations of membrane integrity,
cell viability, and oxidative stress, describing the damage
caused to human liver carcinoma cells (HepG2) or human
umbilical vein endothelial cells by ZnO NPs. The nonlinear
ML models demonstrated superior performance compared
to the linear counterparts, offering predictions for an
external test set with remarkable r

2 values and low stan-
dard errors.

Oksel et al. [153] introduced a new strategy employing a
genetic programming-based decision tree (GPTree) to depict
NM properties. This method, known for its robustness andTa
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automation, excels in constructing precise nanostructure–
activity relationship (nanoSAR) models, especially when
confronted with limited datasets. GPTree autonomously
identifies relevant descriptors, confirming model accuracy
while improving interpretability. Indicating its adaptability,
the approach effectively developed precise nanoSAR models
for four different datasets. Particularly, these models showed
parsimony by utilizing solely thirteen (13) predictors from a
wide collection of descriptors, attaining high accuracies going
from 98 to 100% during training and 86 to 100% during
testing, correspondingly. The decision trees generated by
GPTree provided visually intuitive representations of deci-
sion thresholds associated with each descriptor, consider-
ably improving the interpretability of models predicting
the structure–activity link of NPs.

Concu et al. [154] conducted an extensive study invol-
ving 260 silica, metal, and metal oxide NPs encompassing
31 chemical compositions from various literature sources.
Their investigation included measurements of ecotoxicity
and cytotoxicity across a spectrum of organisms, and bac-
teria, spanning algae, fungi, plants, fishes, crustaceans, and
mammalian cell lines. Through random combinations, they
generated 54,371 pairs of NPs, with training (40,804 pairs) and
test sets (13,567 pairs) formed randomly. Employing linear
NNs, radial basis functions, multilayer perceptrons, and prob-
abilistic NNs, the models demonstrated outstanding predictive
precision, achieving an area in the receiver operator charac-
teristic (ROC) curve values of 0.99 and 0.998 for the training
and testing, respectively. The two-class accuracy for the test set
reached 98%. These models also provided insights into the
descriptors influencing adverse biological responses. Despite
employing Y-scrambling to assess overfitting, the authors
noted the challenge posed by unrealistically improved accu-
racy and ROC values, raising concerns about potential chance
correlation problems in the models.

Wang et al. [155] analyzed NPs of gold, exploring var-
iations in size, surface modifications, and surface coverage.
Their NP collection comprised 34 particles, and by employing
29 descriptors along with the kNN algorithm, they created
predictive models for the absorption of substances by human
kidney cells and lungs, the capacity to activate oxidative stress
and hydrophobicity. Both models, incorporating 11 or fewer
descriptors, demonstrated excellent predictability during
cross-validation, with r

2 values of 0.99, 1.0, 0.99, and
0.97, respectively, evaluated through tenfold cross-valida-
tion. This study showcased the efficacy of their approach
in predicting various NP properties for small descrip-
tors set.

Kovalishyn et al. [156] compiled a dataset from 128 litera-
ture sources, incorporating 964 data points for inorganic NMs.
Their analysis encompassed toxicological/ecotoxicological

properties (EC50, MIC, LC50, and mortality rate) as well as
physicochemical characteristics for metal and metal oxide
NPs within the size range of 1–90,000 nm. Utilizing random
forest, kNN, and NN techniques, models were developed for
these endpoints across various species. Evaluation of model
predictive power through cross-validation and test sets
yielded q

2 values of 0.58–0.80 for cross-validated regression
techniques and r

2 values of 0.49–0.78 for test sets. However,
the encoding method for species within the models remains
unclear.

Hataminia et al. [157] utilized an NN to simulate the
nephrotoxicity induced by iron oxide NPs on kidney cells.
The model, which underwent training based on NP size,
concentration, incubation duration, and surface charge,
demonstrated high predictability, although specific statis-
tical values were not provided in the graphs. The study
extensively analyzed the impact of these four input factors
on the viability of kidney cells. While DL algorithms have
made a substantial impact in various fields, including
materials science, their application to modelling NM prop-
erties relevant to nanosafety has been limited [158]. The
DNNs can automatically produce higher features for ML
models. Surprisingly, this capability has not been widely
explored in predictive nanotoxicology, likely due to the
shortage of nanospecific descriptors hindering progress.

Most applications of DL algorithms involve utilizing
their image recognition capabilities for extracting micro-
scopy image data of NPs/cells. Similarly, Coquelin et al.
[159] used CNNs to estimate particle size distribution from
scanning electron microscopy (SEM) images of aggregated
TiO2 particles, aiming to automate SEM measurements. Con-
text encoding was introduced to forecast absent components
of combined NPs. Rusk et al. [160] applied the CNNs techni-
ques for the segmentation of transmission electron micro-
scopy images for different reliable size distribution calcula-
tions. Ilet et al. [161] employed image analysis utilizing open-
source software tools, CellProfiler, along with a CNN algo-
rithm named ilastik, to study NP distributions.

Lazerovits et al. [67] presented a significant utilization
of ML in the area of nanosafety. Their study examined how
blood proteins adhere to NPs after intravenous injection.
Through the employment of data from protein mass spec-
trometry as inputs and correlating them with blood clear-
ance and organ accumulation as outputs, they effectively
trained a supervised DNN. The results from the network
accurately anticipated the accumulation of NPs in the liver
and spleen, revealing the considerable impact of the intri-
cate protein pattern on the NP surface on organ uptake.
This valuable insight has delivered a basis for the advance
of NPs with obviously reduced accumulation in the liver
and spleen.
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3.4 RQ4: What are the past NM sustainability
roadmaps?

Over the past decade, several significant roadmaps for the
safe utilization of NMs have been proposed. The primary
comprehensive set of milestones was established at a
workshop sponsored by COST (European Cooperation in
Science and Technology) in 2011, focusing on Quantitative
Nanostructure Toxicity Relationships held in Maastricht
[162]. The milestones acknowledged in this roadmap and
subsequent reviews emphasized crucial aspects for advan-
cing NM research, including:
– Improved material characterization for biological activity

trials.
– Creation of NM-oriented descriptors.
– Development of high output in vitro methods.
– Enhanced tracking techniques for NPs in the body.
– Improved data storage/sharing.
– Production of in vivo data.
– Development of models for predicting NP behaviour.

These milestones, originally research-driven, have sig-
nificantly influenced research agendas in Europe and the
United States. The Maastricht roadmap, in particular, played
a pivotal role in securing European Union funding and was
used in governmental policies on NM safety, including the
UK Parliamentary Office of Science and Technology [162].
The roadmap’s impact is further reflected in the funding
of numerous associated COST Actions, as well as nowHorizon
projects (2020) focusing on nanosafety [52,86,109,163,164,165].
Despite the passage of time, many milestones from the initial
Maastricht workshop remain pertinent due to slower-than-
expected progress in achieving them. Factors contributing to
this slower progress include the delayed adoption of high-
throughput characterization and synthesis technologies,
resulting in a scarcity of big and robust datasets for ML
model training and a lack of interpretable and efficient
NMs descriptors.

To address these challenges, Worth et al. [166] pro-
posed a recent US and EU Roadmap of nanoinformatics up
to 2030, with a specific emphasis on using computational
methods to predict potential adverse effects of NMs. This
roadmap aligns with the previously identified milestones
and emphasizes the need for continued efforts in nanosafety
research. Different milestones of 2-, 5-, and 10-year duration
have not been fulfilled, emphasizing the importance of
ongoing efforts. To tackle these challenges, significant initia-
tives financed by the EU Horizon 2020 program aim to establish
joint networks of scientists dedicated to crafting computational
solutions for predicting nanosafety. These projects focus on gen-
erating relevant data, implementing nanoinformatics-driven

decision-support strategies, and developing methodologies for
safe-by-design NMs.

Challenges faced by regulators include adapting to a
fast-varying system of industrial NMs. The NanoReg2 initia-
tive deals with this problem by linking structure-based
design to the regulatory procedure, verifying newNMs through
established grouping methods. NanoSolveIT employs a nanoin-
formatics-centred decision-support methodology, utilizing
advanced in silico techniques to recognize key features of
NMs accountable for unfavourable effects.

Horizon 2020 includes 67 toxicology-related projects,
including 11 focused on NM toxicity, underscoring the com-
mitment to advancing research in this field [www.fabiodisconzi.
com/open-h2020/per-topic/toxicology/list/index.html]. Recent lit-
erature also emphasizes the need for sustainable nanotech-
nology system governance for European society [167], aligning
with the efforts of regulatory and standardization communities,
such as FDA, EPA, ECHA, ISO, andOECD, in developing approved
techniques for measuring inherent and external attributes
of NMs.

3.4.1 Data

ML techniques hold significant potential for modelling and
predicting both advantageous and detrimental character-
istics of NMs. Their appeal arises from their rapid proces-
sing, independence from intricate mechanistic models,
utilization of open-source and accessible technologies, and
demonstrated effectiveness in discerning patterns within
intricate datasets across various domains [168]. As methods
grounded in data-driven principles, their efficacy is inher-
ently tied to the information employed in their creation. The
abundance, quality, diversity, and scope of data play pivotal
roles in crafting resilient and anticipatory ML models that
can be widely applied across diverse domains.

3.4.2 Quantity of data

The progress of nanosafety research projects faces signifi-
cant challenges due to the scarcity of substantial datasets,
primarily attributed to the time, expenses, and ethical con-
cerns related to collecting data involving animals and
humans. Unlike the assessment of properties in isolated,
well-defined organic pristine or molecules NMs unaffected
by biological environments, evaluating the NMs features
that exhibit variations with time or in diverse biological
fluids lacks standardization and poses technical complex-
ities [169]. To address these limitations, read-across techni-
ques computational models and computational models are
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employed to bridge data gaps [167]. However, the optimal
approach is unquestionably the expansion of available
datasets. In the past, advancements have been made in
the high-throughput synthesis of NMs [170], accelerated
physicochemical features [171], and swift in vitro toxicity
screening [172,173]. The ongoing development, widespread
practice, and use of these high-throughput approaches hold
great promise for substantially augmenting the volume of
NMs in the upcoming years.

3.4.3 Quality of data

In addition to challenges associated with the scale of data-
sets, similar to other material types, issues frequently arise
regarding the data reliability of experiments on the biolo-
gical and physicochemical impacts of NMs. Constraints
related to time, cost, and ethical considerations not only
limit the quantity of available data but also impact the
feasibility of conducting multiple experimental replicates.
These constraints have repercussions on the quality of
data, signal-to-noise ratio, and the identification and handling
of outliers. The reproducibility of scientificfindings has emerged
as a critical concern in recent years, with specific attention
directed towards NMs. Various research groups have contrib-
uted methodologies aimed at enhancing the reproducibility of
NM synthesis [174–177]. Addressing the reproducibility of
NM bioassays, Petersen et al. [178] have made significant
contributions, while Baer et al. [179] have explored the influ-
ence of materials provenance on reproducibility.

Accompanying experiments on NMs offers greater chal-
lenges as compared to small organic molecules, mainly due
to intrinsic differences in their shape and size, tendencies to
agglomerate, and the creation of corona. Identifying the
complexity of these features, researchers are actively
striving to improve experimental duplicability. Baer
et al. [179] and Petersen et al. [178] have explored dif-
ferent features of NM bioassays and the impact of mate-
rial sources on reproducibility, respectively. Notably,
Galmarini et al. [180] studied the sophisticated effects
of corona formation on experimental reproducibility.

3.4.4 Diversity

In conclusion, it is imperative to develop broadly applic-
able models for predicting potential negative characteristics
of NMs. These models should be trained using data obtained
from a diverse array of NMs and encompass a comprehen-
sive range of relevant biological endpoints. Recent papers
have underscored the importance of conducting systematic

studies that explore various NM morphologies, types, and
endpoints [151,181].

3.4.5 Description

NPs exhibit various attributes, such as agglomeration, dis-
solution, photocatalytic properties, and the formation of
persistent complexities with biological ions. These charac-
teristics significantly impact the biological behaviour of NMs
[126,182,183], although advancements have been achieved in
discerning the location, timing, and methodology for char-
acterizing NMs, it remains challenging due to the dynamic
nature of NM characteristics, which can vary considerably
under various circumstances and with time. Further, these
varying characteristics are highly responsive to the environ-
ment, with interactions among properties adding complexity
to the characterization process.

Ideally, it is preferable to evaluate the physicochem-
ical features of NMs within comparable biological situa-
tions, as the original characteristics of NMs tend to vary
when they come into connection with biological liquids
[184]. NM surfaces rapidly develop a biological layer,
making a bio-corona that modifies material properties like
surface charge, particle dimensions, and aggregation status
quickly [185]. The corona experiences dynamic changes over
time, with primarily attached macromolecules being gradu-
ally replaced by those with stronger affinities. Additional
investigation is essential to fully recognize how NMs’ physi-
cochemical properties, including surface chemistry, size,
aggregation, and dissolution, are adapted in different biolo-
gical settings. It is crucial to determine whether these mod-
ifications make NMs more or less toxic compared to their
original state. This information is crucial for regulators to
more accurately measure the risks posed by NMs to human/
environmental health.

Encouragingly, advancements are being achieved in
the characterization of the NP corona based on the physi-
cochemical properties of NMs and the surrounding envir-
onment. Recent research has presented a range of mass
spectrometric, spectroscopic, and chromatographic techni-
ques aimed at evaluating NP coronas. Among these methods
are some that allow the analysis of the evolving properties
of biocoronas over time (Figure 5) [186–194]. These results in
the creation of descriptive and potentially predictive models
for the conformation of NP corona [129,195–197] and its
active behaviour. These models lay the basis for the rational
design and progress of NMs aimed at reducing or fully
avoiding corona formation [198].

Considering solubility and biopersistence is paramount
in the assessment of nanosafety, as these factors directly
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impact internal exposure to NMs. The main source of biolo-
gical activity in soluble NMs may arise primarily from the
liquefied substance rather than the NP itself, as exemplified
by ZnO. The dissolution rate is subjective to various physical
characteristics of NPs (size, particle shape, coating, shape,
core doping), allowing potential opportunities for rationally
controlling dissolution to reduce hostile biological effects
[152]. Regardless of its critical significance, there remains
uncertainty regarding which features of NMs impact solubi-
lity and, more specifically, biopersistence [199]. Further
research is needed to comprehend how the dissolution of
NMs in biological liquids or their perseverance in the body
influences biodistribution and biological effects, and how
these processes can be improved through formulations,
coatings, or other approaches.

3.4.6 Descriptors

Molecular descriptors, capturing the necessary structural
and physicochemical qualities of NMs, are pivotal compo-
nents in computational modelling studies across various
scientific domains, including environmental/medicinal chem-
istry, pharmacology, toxicology, genomics, and drug design
[200,201]. These descriptors can be created either through
theoretical techniques or standard experiments. Theoretical
descriptors offer diverse chemical property sources and wide
coverage of the chemical features space, providing an exten-
sive representation of NMs. However, experimentally derived
descriptors, such as shape, size, solubility, and agglomeration,
have limited applicability in ML models for biological effects
due to their resource-intensive nature and unavailability for
hypothetical materials [202]. Numerous theoretically sound
descriptors can be calculated directly from molecular struc-
tures using different software packages [203]. Nevertheless,
existing molecular descriptors and fingerprints primarily

result from pharmaceuticals specifically designed for organic
small molecules, lacking specificity for NMs. The unique chal-
lenges posed by NMs, such as polydispersity, complex inter-
actions, and incomplete characterization, necessitate the
development of nanospecific descriptors. DL, coupled with
imaging methods, offers a promising avenue for generating
such descriptors. Russo et al. [204] utilized CNNs to digitize
complex nanostructures, allowing the training of predictive
models for NP biological properties.

The interpretability of NM descriptors is crucial for
understanding the mechanisms behind biological responses
and for the rational design of improvedmaterials. Traditional
descriptors often lack interpretability, prompting the need for
descriptors that are easily related to chemically recognizable
features. De et al. [205] and Sizochenko et al. [206] proposed
efficient and interpretable methods for encoding NM proper-
ties. De et al. [205] utilized 23 descriptors derived from the
periodic table, while Sizochenko employed a “liquid drop”
model and a simple representation of molecular structure
for NPs.

3.4.7 Domain

ML models are essential tools in predicting NM properties,
yet their efficacy is constrained by the limited datasets
available, covering only a limited range of biological and
physicochemical attributes [207]. The scarcity of diverse
and large datasets represents a major impediment to the
widespread adoption of ML techniques for NMs’ biological
characteristics [208]. Computational models determine
greater efficacy when operating within the multidimen-
sional space described by different descriptors and biolo-
gical reactions contained in the training data, and their
reliability diminishes as predictions move further from
this domain [37].

Figure 5: Fluorescence levels to correlate with the number of associated proteins in the corona of various NMs.
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Novel modelling techniques, such as nearest neighbor
Gaussian processes [37], and current ML approaches lever-
aging Bayesian statistics [208], offer avenues to estimate
the prediction reliability. As larger and more diverse data-
sets become available, coupled with the adoption of ML
methods that better gauge prediction uncertainties, the
challenges associated with “out of domain” predictions
are expected to decrease [37]. The prediction associated
with in vivo responses to NMs remains a persistent chal-
lenge, primarily due to ethical, time, and cost constraints
limiting experimental in vivo data generation [209,210]. By
employing effective design of experiment techniques to
minimize in vivo experiments and leveraging ML models,
predictions within the models’ domains of applicability can
be made. However, constraints on experimental in vivo
testing are likely to persist, prompting the exploration of
surrogate bioassays like toxicogenomics or new pheno-
typic assays [209,210].

The rapid advancement of high-throughput “omics”
techniques, encompassing proteomics, transcriptomics,
and metabolomics, allows for the generation of extensive
datasets on cellular or organism responses to NM expo-
sure [209,210]. ML modelling methods can exploit these
data by using expression profiles as descriptors to
enhance predictions of in vivo responses and by employing
measured nanodescriptors to model associations between
NM omics signatures or pathways and physicochemical
properties identified using expression profiling [211]. Furxhi
et al. [211] employed physicochemical descriptors alongside
experimental conditions to model biological results from
genome-wide studies, demonstrating the potential of Baye-
sian networks. The integration of omics data with ML
further contributes to modelling toxicological properties
of NMs for risk assessment and safety [18–20]. Metabolo-
mics, offering insights into metabolic dysregulation
caused by NM exposure, is a valuable tool for risk
assessment [212]. Metabolic and genomic fingerprints,
coupled with sparse attribute selection and feature
importance techniques, facilitate the training of predic-
tive ML models for evaluating potential adverse biolo-
gical characteristics of NMs.

Hybrid ML modelling techniques, combining in vitro
analysis results and nanodescriptors to model limited in
vivo data, hold promise [212]. Lee et al. [213] demonstrated
the success of merging molecular descriptors for medica-
tions with basal cytotoxicity analyses in vitro to better pre-
dict human critical toxicity compared to relying only on
descriptors or in vitro outcomes. Recent reviews by Collins
et al. [172] comprehensively cover advancements in high-
throughput alternative techniques for evaluating the toxi-
city of NMs.

3.5 RQ5: What are the future NM
sustainability roadmaps?

The removal or reduction of the aforementioned chal-
lenges above in nontoxicity research would provide access
to a substantial and diverse array of pertinent datasets, along
with a set of efficient nanospecific descriptors. Numerous well-
validatedML algorithms are available for training on such data
and descriptors, enabling the development of robust models
for critical toxicological endpoints. Recent assessments have
underscored the significance of particular ML methodologies
in the modelling of nanotoxicity information [5,11,13,40,214,215].
Brown et al. [12] conducted a review highlighting ML’s applica-
tion in analyzing large nanoscience datasets, accelerating mate-
rial discovery, and exploring the science behind memristive
devices for ML hardware implementation. Ahmad et al. [19]
reviewed the use of DL techniques in modelling NM properties
relevant to nanosafety. However, there is a shortage of scientists
with the necessary multidisciplinary knowledge to apply new
technological advancements to computational nanotoxicology.
The training of researchers in the skills required to create
robust models for potential negative effects of NMs and probe
mechanistic aspects of NM-biology interactions is still limited.
The dominant paradigm in many scientific areas, including
nanosafety, involves large multidisciplinary teams. Initiatives
like the H2020 projects in the EU and similar efforts in the
United States and Asia are working to build critical mass in
this field [216].

Advancements in accurately detecting little particles in
intricate samples have unveiled that several procedures and
instruments produce NPs in the environment. Although cer-
tain NPs can traverse biological membranes, presenting
novel opportunities in diagnostics and therapies, concerns
regarding potential risks to human health from exposure to
NMs have gained heightened importance. Experimental
nanotoxicology, alongside its computational counterpart,
contributes significantly to understanding NM interactions
with biological systems, predicting potential adverse effects,
developing safe-by-design techniques for industry, and deli-
vering data and models for regulatory decisions.

Making predictions, particularly about the future, is
challenging, especially considering the inability to achieve
the milestones set almost a decade ago. Despite these chal-
lenges, it is plausible to develop a roadmap within the next
ten years that effectively addresses the existing challenges
in NMs research [27]. Notably, the advancements in ML
methods, particularly in DL, hold promise in overcoming
some of the obstacles outlined in the review. While these
methods demand substantial data, they have the potential
to simplify the creation of nanospecific descriptors and
may introduce innovative ways of utilizing raw data.
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Critical to the progress is the transparent sharing of nega-
tive outcomes from toxicological studies, as this contributes
significantly to the cumulative knowledge in nanoscience
[27]. Recognizing that a lack of adverse effects is a positive
outcome in nanosafety, models need to discern which NP fea-
tures lead to adverse effects and which do not. This approach
aligns with the vision of achieving rational “safe-by-design”
NMs. The speed at which these promising solutions to compu-
tational nanotoxicology challenges are adopted remains spec-
ulative, raising the intriguing possibility of a forthcoming
decade marked by a golden age of safe nanotechnology use
that enhances the quality of life for all [27].

3.6 Latest findings and their novelty in AI
and ML integration for NM sustainability

Table 6 presents a collection of the most recent discoveries
and their importance in the integration of AI and ML for
the sustainability of NMs.

These findings underscore the pivotal role of AI and
ML in advancing nanotechnology, particularly in enhan-
cing the safety and sustainability of NMs. The integration
of these technologies offers significant potential to improve
predictive modelling, risk assessment, and the overall
management of NMs, thereby addressing key concerns
related to their use and impact.

4 Future research
recommendations

4.1 RQ6: What are the recommendations for
future research in the intersection of
nanotechnology and ML?

Below are some specific suggestions for future research at
the intersection of nanotechnology and ML:

4.1.1 Advanced predictive models development

– Utilize ML algorithms to forecast properties and beha-
viours of novel NMs based on their atomic structure,
composition, and synthesis methods.

– Explore DL techniques to effectively handle complex
datasets and nonlinear relationships.

4.1.2 Enhanced NM design

– Investigate ML-driven approaches for crafting NMs with
customized properties for specific applications like drug
delivery, catalysis, and energy storage.

– Integrate multi-objective optimization techniques to bal-
ance conflicting material properties.

Table 6: Latest findings and their significance in AI and ML integration for NM sustainability

Research theme Latest findings Significance

Toxicological modelling Utilized ML to model the toxicological properties of NMs
using omics data; reviewed potential of combining omics
with ML for safety assessment

Enhanced predictive accuracy in safety evaluations of
NMs, crucial for risk management and regulatory
compliance

Predictive modelling
techniques

Developed various computational models, including QSARs
and QSPRs, to predict NP toxicity

Facilitates the early identification of potentially
hazardous NMs, streamlining safety testing
procedures

European commission
initiatives

Launched several projects to explore modelling NP toxicity
and properties

Demonstrates institutional support for advancing
NM safety research using AI/ML methodologies

Integration with
omics data

Explored integrative omics combined with ML to profile NMs
for biological impact modelling

Provides comprehensive insights into the biological
interactions and impacts of NMs, improving risk
assessments

Advancements in ML
techniques

Reviewed various advanced ML techniques for improving the
prediction of NM behaviour and properties

Highlights the ongoing evolution and refinement of
ML techniques to enhance the reliability of NM
assessments

Safety and risk
assessment

Emphasized the use of AI/ML to enhance simulations and
safety checks for NMs

Promotes the development of more robust and
accurate safety protocols for NM usage in various
applications
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4.1.3 Toxicity prediction and risk assessment

– Create ML models for predicting NM toxicity and eval-
uating their environmental and biological impacts.

– Explore integrative methods that merge experimental
data with computational predictions to enhance accu-
racy and reliability.

4.1.4 Nanomedicine and therapeutics

– Utilize ML algorithms to personalize medicine by ana-
lyzing patient data to design targeted nanotherapeutics
and optimize drug delivery systems.

– Investigate reinforcement learning for adaptive drug
delivery and treatment optimization.

4.1.5 NM characterization and imaging

– Develop ML-based techniques to interpret data from
advanced imaging and characterization methods like
electron microscopy and spectroscopy.

– Explore unsupervised learning for automated feature
extraction and classification.

4.1.6 Smart nanodevices and sensors

– Investigate ML approaches to design intelligent nanode-
vices and sensors capable of real-time monitoring and
feedback across various applications.

4.1.7 Materials discovery and exploration

– Employ ML algorithms to expedite the discovery of
novel NMs with desired properties such as high strength
and conductivity.

– Explore generative models for automated materials synth-
esis and virtual screening.

4.1.8 Interdisciplinary collaboration

– Foster collaboration among nanotechnologists, mate-
rials scientists, chemists, biologists, and computer scien-
tists to address complex challenges.

4.1.9 Ethical and societal implications

– Consider ethical, societal, and regulatory implications
including data privacy, security, environmental impact,
and equitable access to technology.

5 Conclusion

The combination of nanotechnology and AI marks a crucial
point in addressing safety and toxicity concerns associated
with nanoproducts. As nanotechnology progresses across
various industries, the need for strong safety assessments
becomes increasingly clear. Although nanoproducts are
widely used, worries about their potential harmful effects
remain, necessitating careful risk management. This SLR
advocates using AI and ML to enhance simulations and
improve safety checks for NMs. By thoroughly examining
existing research, the study highlights how AI and ML can
promote sustainability in NMs in five key areas. It dis-
cusses how these technologies can help identify issues,
innovate new applications for NMs, and improve their
management. The review also assesses past efforts to
ensure the safety of NMs and suggests new ideas for the
future. By doing this detailed review, the study aims to
show the current state of affairs, identify ongoing chal-
lenges, and propose ways to use AI and ML to make nano-
technology safer and more environmentally friendly. It also
suggests using these technologies to monitor the real-world
use of NMs. The study aims to address current problems and
promote safer and more sustainable use of nanotechnology.

Facing the challenges identified in this review, the
collaboration between nanotechnology and ML not only
addresses current limitations but also sets a path for
future advancements. The partnership between these
innovative fields ensures the sustainable and responsible
application of nanotechnology, fostering innovation while
reducing potential risks. As we stand on the verge of an
era marked by the merging of nanotechnology and AI, it is
crucial to embrace these advancements thoughtfully, ush-
ering in a new era of technological integration that prior-
itizes safety, effectiveness, and long-term sustainability.

While the SLR on the integration of AI and ML in the
sustainability of NMs provides valuable insights, it has
several limitations. Publication bias may skew results since
studies with significant outcomes are more likely to be
published, potentially overestimating AI and ML effective-
ness. The scope of literature might be incomplete, excluding
relevant studies in non-English languages or less accessible
journals. The quality of included studies varies, with some
having methodological weaknesses, affecting the overall
conclusions. The heterogeneity of study designs, methodol-
ogies, and outcomes complicates unified conclusions and
generalizable recommendations. As both AI/ML and nano-
technology are rapidly evolving fields, the review’s findings
might quickly become outdated. There are also limited data
on long-term effects and real-world applications, with a lack
of longitudinal studies. Interdisciplinary challenges in
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integrating AI/ML with nanotechnology may have limited
the depth of some studies. In addition, the findings may
not be universally applicable across all NMs or industries
due to the specific contexts of the studies. Future research
should strive to include a diverse range of studies, improve
methodological quality and consistency, conduct longitudinal
studies, foster interdisciplinary collaborations, and regularly
update reviews to reflect the latest advancements and trends.
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