Review Article

Yanjie Ren[#], Yun Zhang[#], and Xiaobing Li*

Application of AgNPs in biomedicine: An overview and current trends

https://doi.org/10.1515/ntrev-2024-0030 received November 7, 2023; accepted April 17, 2024

Abstract: Silver nanoparticles (AgNPs) can provide excellent, reliable, and effective solutions for anti-microbial, drug-loading, and other purposes due to their extraordinary physical, chemical, and biological characteristics. Different methods have been used in the synthesis and characterization of AgNPs, and AgNPs have been applied in various fields of biomedicine, including dentistry, oncology, diabetology, neurodegenerative disorders, and so on. However, the cytotoxicity of AgNPs has not been solved during their application, making them controversial. The aim of this review is to summarize the capabilities, synthesis, and characterization methods, and the application of AgNPs in various biomedicine fields. In addition, the toxicity of AgNPs is explicated, and the methods of enhancing the benefit properties and reducing the toxicity of AgNPs are demonstrated. In the end, the perspective of AgNPs' research and application are proposed for the great potential in biomedicine contributing to human health.

These authors contributed equally to this work and should be considered first co-authors.

Yanjie Ren: State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China

Yun Zhang: Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China

Keywords: silver nanoparticles, synthesis, characterization, antimicrobial, anticancer, biomedical application, dentistry, toxicity

1 Introduction

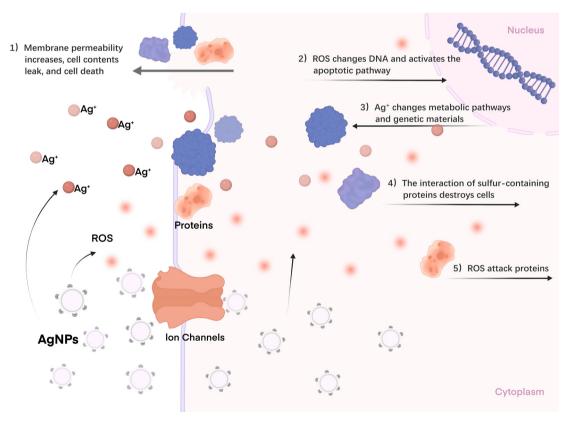
Nanotechnology is a fast-growing emerging technology, providing materials in nanometer size with excellent physicochemical and mechanical properties. Silver nanoparticles (AgNPs) are metal silver particles with a small size of 1–100 nm, large surface area volume ratio, superior carrier capacity, high reactivity, and flexible surface [1]. Silver is an ancient and safe antibacterial agent. Humans have a long history of using silver to fight bacterial infections. It was used in ointments and dressings for burns as silver nitrate or silver sulfadiazine [2,3]. With the advent of the era of nanotechnology, it is meaningful to explore the application of the antibacterial ability of AgNPs. Meanwhile, they are also popular in the food packaging industry, electronic manufacturing industry, and agriculture [4–6].

AgNPs, owing to their distinguished physicochemical properties, are the most popular and widely used nanoparticles (NPs) [7]. There are various biological activities of AgNPs, such as antibacterial, antiviral, anti-inflammatory, antifungal, antioxidant, anticancer, and antidiabetic [8-13]. AgNPs, the new antibacterial agent, are considered against a variety of pathogenic and infectious microorganisms, including multidrug-resistant bacteria. To be specific, AgNPs have outstanding antibacterial activity against Gram-positive and Gram-negative bacteria [14]. In this review, we concluded the application of AgNPs in dentistry, such as the prevention of caries, restoration of tooth defects, root canal therapy, periodontology, implantology, orthodontic brackets, oral cancer, as well as its outstanding performance in the treatment of other cancers, diabetes, neurodegenerative diseases, and other biomedical fields [15]. In addition, we delved into the cytotoxicity of AgNPs and proposed the future research directions to explore the integration of AgNPs with biomedicine.

^{*} Corresponding author: Xiaobing Li, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China, e-mail: 909984963@qq.com

2 Capabilities of AgNPs

AgNPs have made remarkable contributions to biomedicine and processed high prospects for commercial use due to their antibacterial, antiviral, anti-inflammatory, anticancer, and antidiabetic activities [7]. Their possible mechanisms of action are shown in Figures 1–3.


2.1 Antimicrobial activity

2.1.1 Antibacterial capability

Nowadays, the research on the antibacterial mechanism of AgNPs is not sufficient, and the regularization of different bacteria may be distinguished in Figure 1. Taken as an example, the oral cavity is a complex environment inhabiting a variety of microorganisms. For example, *Streptococcus mutans* (S. mutans), Porphyromonas gingivalis, and Fusobacterium nucleatum are the main etiological agents

of caries and periodontal diseases [16]. Zorraquin-Pena et al. [17] demonstrated the antimicrobial activity against oral pathogens of AgNPs. Moreover, some studies found that the inhibition of *Staphylococcus aureus* was caried out by disturbing respiratory chain dehydrogenase, interfering with bacterial growth and cell metabolism; the inhibition of *Escherichia coli* was done by destroying the integrity of the bacteria by depolarization and membrane instability; the inhibition of *Pseudomonas aeruginosa* by AgNPs was done through the production of free radicals that destroyed the cell membrane, and the interaction of reactive oxygen species (ROS) with the cell wall and cell membrane [18–20].

Over the past few decades, the frequent and widespread use of antibiotics led to the antibiotic-resistant bacteria development. Resistance to pathogenic microorganisms threatened global public health [21]. Research has found that the combination of AgNPs with conventional antibiotics could improve the antibacterial effect and reduce the use of antibiotics to hinder the development of drug resistance of pathogenic bacteria [22].

Figure 1: Antibacterial mechanism: (1) AgNPs increased membrane permeability and induced leakage of cell contents, leading to cell death. (2) Oxidative stress changes the structure and function of DNA and proteins, causes damage to intracellular machinery, and activates the apoptotic pathway. (3) The release of silver ions, due to their size and charge, can change metabolic pathways and genetic materials after interacting with cell components. (4) The interaction between AgNPs and sulfur-containing proteins in bacterial cell walls leads to the structural damage of cell wall rupture. (5) ROS attack proteins.

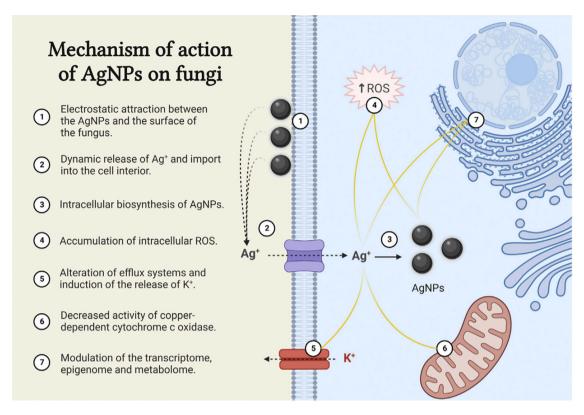


Figure 2: Antifungal mechanism of AgNPs. Reproduced with permission from Ref. [28] (Copyright 2022 Frontiers).

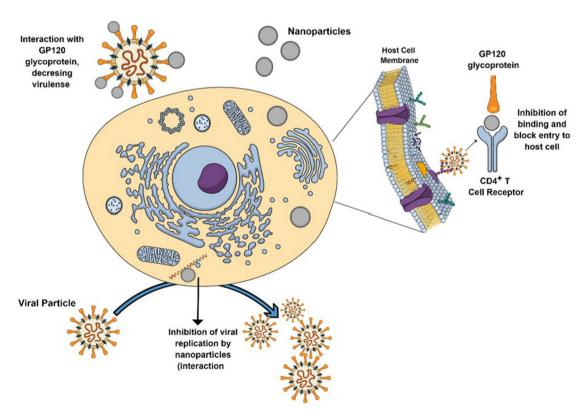


Figure 3: Antiviral mechanism of AgNPs. Reproduced with permission from ref. [31] (Copyright 2021 MDPI).

The development of drug resistance was done by changing the target side, degrading the enzyme, reducing membrane permeability, and activating the efflux pumps [23,24]. Bruna *et al.* [3] demonstrated that AgNPs can inhibit the growth of bacteria, showcasing an increased ability to penetrate their membranes with decreasing dimensions of NPs. Moreover, the antibacterial efficiency of AgNPs against Gram-negative bacteria was higher than that of Gram-positive bacteria.

2.1.2 Antifungal capability

The primary antifungal mechanism of AgNPs operates through structural modifications at the biofilm level. Numerous studies have demonstrated that the accumulation of reactive oxygen species in cells can trigger apoptosis. Furthermore, Babele *et al.* [25] discovered that AgNPs profoundly influence vital functions of fungal cells, including the regulation of the transcriptome, epigenome, and metabolome. Vazquez-Munoz *et al.* [26] considered AgNPs reduction process after the release of silver ions outside the fungus induced cell death. Rozhin *et al.* [27] demonstrated that potential antifungal mechanisms could be attributed to genes involved in maintaining cell wall or membrane integrity, entosis, vesicular transport activity, oxidative metabolism, cell respiration, and copper homeostasis (Figure 2).

2.1.3 Antiviral capability

AgNPs have high antiviral activity to inhibit virus infection or inactivate viruses, such as herpes simplex virus, respiratory syncytial virus, adenovirus type 3, and the influenza A virus [29,30], but the mechanism remains uncertain. AgNPs possess a large surface area and dominant size, promoting contact and penetration with viruses. AgNPs can adhere to the glycoprotein on the surface of viruses, interfere with the interaction between viruses and cell membranes, and prevent viruses from penetrating the cell membrane. They can also inhibit the nucleocapsid of the viral entity, ultimately destroying the viral genome and inhibiting its replication [29]. AgNPs exhibit antiviral potential, but it is still a challenge to design specific antiviral agents that only target viruses. It can also damage the viral lipid membrane, inhibit cellular replication, assembly, and release of virions, and have inhibitory effects at different stages of viral replication (Figure 3) [31,32].

2.2 Anti-inflammatory capability

Tyavambiza $et\ al.$ [33] showed AgNPs had anti-inflammatory properties, as AgNPs decreased the levels of proinflammatory cytokines (IL-6, IL-1 β , and TNF- α) in macrophages. Another study reported that the anti-inflammatory activity was equivalent to that of the standard anti-inflammatory drug diclofenac [34]. This suggested that AgNPs had the potential to become an anti-inflammatory drug to control chronic inflammatory diseases [35]. In a mouse model of rheumatoid arthritis (RA), Yang $et\ al.$ [36] used folic acid-modified AgNPs to treat RA, which showed a strong therapeutic effect without tissue accumulation and appreciable long-term toxicity.

2.3 Delivery drugs/medication nanocarriers

Recently, nanoparticle drug delivery systems (NDDS) deserve extensive attention and further research [37]. Asl *et al.* [38] believed most synthetic or semi-synthetic anticancer drugs can be toxic due to their insoluble accumulation at the absorption site. Moreover, the hydrophobicity of traditional drug delivery has limited the use of anticancer drugs [39]. In this regard, NPs have advantages in size, representing a solution to overcome these drawbacks, so that they can interact with lipids, proteins, and nucleic acids. The use of NPs to synthesize drugs increases the solubility and surface stability of the compound, enabling them to be transported across membranes, increasing blood drug concentration, reducing drug dosage, and thereby improving the efficiency of drug delivery to the target organ or tissue [40].

2.4 Photothermal therapy (PTT) and photodynamic therapy (PDT)

PTT is the use of near-infrared light to induce heat therapy, PTT is also widely used in antibacterial therapy, but it has the disadvantage of excessive temperature damaging normal cells. Zhu *et al.* [41] combined a mixture of sodium alginate and AgNPs modified polydopamine NPs to prepare a new hydrogel that can treat bacterial infections at low temperatures. In addition, Chang *et al.* [42] proved that the nano-composite hydrogel functional wound dressing prepared by the combination of AgNPs and PTT could alleviate inflammation and promote the healing of

infected skin wounds. Moreover, Ag-Te NPs synthesized by Ahn et al. [43] with Te nanorods can be used for the treatment of breast cancer in vitro and in vivo through the ablation of hyperthermic cancer cells by photothermal conversion and can play a role in eliminating breast tumor bacterial cells.

Photodynamic therapy (PDT) is to irradiate the lesion with a specific wavelength of laser, which can activate the photosensitive drugs selectively gathered in the lesion tissue and trigger a photochemical reaction to destroy the lesion [44]. PDT can effectively treat melanoma by coupling AgNPs with photosensitizer drug molecules, selectively induce apoptosis or necrosis of cancer cells, and target drug delivery to specific sites [45].

2.5 Others

The synthesized AgNPs can be used to detect X-ray exposure and enhancement doses for further application in the field of radiotherapy and diagnostics [46]. AgNPs have been proven to increase cancer cell oxidative stress, and cell membrane fluidity and cause apoptosis [47]. In particular, in the treatment of gliomas after radiation therapy, observe their effects on promoting apoptosis and antiproliferation of gliomas. Arif et al. [47,48] demonstrated the potential of AgNPs in bone healing. They found that AgNPs can enhance cell mineralization and differentiation, indicating promising applications in bone regenerative therapy. Furthermore, AgNPs promote wound healing by infiltrating a thick peptidoglycan layer in Gram-positive bacteria and a thinner layer containing lipopolysaccharide and acid in Gram-negative bacteria [49].

3 Synthesis and characterization of **AqNPs**

With the deepening investigation on AgNPs and the expansion of the application scope, the demand for AgNPs is also growing steadily, and the approach of AgNPs synthesis has become a matter of issue. Different methods of AgNPs synthesis have been studied, mainly including physical, chemical, and biological routes. Among them, the biosynthesis method has been extensively explored in recent years due to its low cost and low toxicity. To detect the presence of AgNPs, the synthesized AgNPs were characterized by means of UV-Vis, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR).

3.1 Physical synthesis

The physical method is to synthesize NPs from solid or atomized metallic silver to nanoscale utilizing laser ablation, ball milling, and sputtering to obtain stable AgNPs [3]. In general, the physical preparation uses physical energy to prepare AgNPs with fine-grained cycles. This method can effectively produce a large number of AgNPs in one process in ash form [50]. However, this synthesis requires external energy and complex equipment [51]. Although the physical synthesis method can produce plenty of AgNPs and the product is uniform, this method is costly, and there may be radiation [52]. Furthermore, it is still a major challenge to agglomerate with no capping agent or stabilizer.

3.2 Chemical synthesis

The chemical synthesis is lower in cost than the physical method, which can obtain NPs with clear spherical shapes, mainly including chemical reduction, electrochemistry, and sol-gel [53]. The materials of it require metal precursors, reducing agents, and stabilizers. The size of NPs is controlled by using capping agents, and their morphology is controlled by the growth and nucleation stages during the solution reduction process [50]. AgNPs with various shapes can be quickly obtained by chemical synthesis, but the use of irritating chemicals in the synthesis process may produce toxicity, which limits the application of AgNPs in medicine and may be harmful to the environment [51,54,55].

3.3 Biological synthesis

Biosynthesis is a method using reducing agents extracted from biological sources, which is noteworthy due to its fast, low-cost, and low-toxic effects on humans and the environment [56-59].

By multiple biotechnology tools, different natural resources are available, including fungi, bacteria, algae, viruses, plants, or their by-products such as proteins and lipids [60]. AgNPs from natural compounds like the bark of A. nilotica, aloe, lemongrass, Mentha, the aqueous leaf extract of Psidium guajava, and Coriandrum sativum are preferred because of their easier producing process and are cheaper and safer [56,61-64].

El-Naggar et al. [65] showed that AgNPs could be synthesized by reducing silver nitrate with phycoerythrin in cyanobacteria. Besides, the use of microorganisms such as bacteria and fungi can induce the reduction required for metal nano synthesis and easily achieve high yield, providing an environmentally friendly and low-cost technology. For example, AgNPs can also be synthesized with *Aspergillus sydowii* and *Beauveria bassiana* [66,67]. Furthermore, it is achievable to use secondary metabolites to synthesize AgNPs, such as *Curcumin*, *Streptomyces* sp., and *Rhodococcus rhodochrous* [57,68,69].

Physical and chemical synthesis are mainly applied in AgNPs manufactured in large amounts for saving time. But the disadvantage was the possible production of toxic substances and environmental pollution [52]. Compared with others, biological synthesis is the easiest, the most nontoxic, and environmentally friendly method to produce high-quality NPs, which is still the most applied and investigated method nowadays. Overall, Biological synthesis is a promising alternative method for biocompatible stable NPs.

3.4 Characterization of AgNPs

The physicochemical properties of NPs on their behavior, biodistribution, safety, efficacy, etc., need to be embodied by characterizing AgNPs to evaluate the functional aspects of the synthetic particles [70]. Different methods have been used to study the characterizations of AgNPs, including the size, morphology, surface area, surface charge, surface coating, and agglomeration behavior in the media. In the synthesis of AgNPs, silver ions are often obtained by reducing AgNO₃, and the way to detect the success of reduction is by the change in the color of the mixture to dark brown due to the excitation of surface plasmon vibrations in AgNPs [51]. The synthesis of AgNPs was confirmed by ultraviolet-visible spectroscopy (UV-Vis), XRD, SEM, TEM, and FTIR. The optical absorption spectrum of metal NPs is mainly dominated by surface plasmon resonance and the absorption band is related to the particle size. XRD is one of the most widely used conventional techniques to characterize NPs to determine the crystal structure and morphology, including crystal structure, lattice parameters, phase properties, and crystal size [51]. The size, shape, and structure of the synthesized AgNPs are analyzed by SEM or TEM [51,71]. FTIR analysis is used to identify the functional groups in the compound and reveal functional groups actively participating in reduction [72]. Table 1 shows AgNPs characterization using UV-Vis, XRD, SEM, TEM, and FTIR.

4 Application of AgNPs in various fields of biomedicine

Due to the excellent characteristics of AgNPs, the applications in biomedicine have developed rapidly such as dentistry, cancer, diabetes, and neurodegeneration. The oral cavity is an external environment with enormous microorganisms living in it. Dental caries and periodontitis are common oral diseases, and they will occur when the microenvironment niche is disturbed. Besides, it can also be used as a drug carrier for examination, diagnosis, and treatment (Figure 4, Table 2).

4.1 Dentistry

With the ability of antibacterial and anti-inflammation, AgNPs are widely used in dentistry, including dental caries therapy, periodontal and peri-implantitis prevention, orthodontic therapy, and oral cancer therapy.

4.1.1 Dental caries

Dental caries not only affect oral health but also associate with systemic and inflammation-related diseases, like diabetes and respiratory diseases [82,83]. Therefore, the prevention and treatment of dental caries are common oral health problems, which have attracted wide attention. Early childhood caries (ECC) is the presence of one or more decayed, missing, or filled primary teeth in children aged 71 months (6 years) or younger [84]. ECC has become a significant health problem with high prevalence. Khubchandani et al. [85,86] found preparations containing AgNPs can prevent ECC and rampant caries due to their anti-caries activity against S. mutans and their abilities to invade and destroy biofilm matrix. The impact of synthesized AgNPs on S. mutans was tested by pore diffusion and microdilution techniques. Al-Ansari et al. [87] found the potent antibiotic action over S. mutans seen with the synthesized AgNPs. Yin et al. [88] reported that AgNPs could prevent dental caries by inhibiting the adhesion and growth of cariogenic bacteria and hindering the demineralization of enamel and dentin.

One study found that adding different concentrations of AgNPs to the bonding system could exert their antibacterial effect without increasing cytotoxicity [89]. Besides, the bonding strength of the tooth-bonding interface was

Table 1: AgNPs characterization using UV-Vis, XRD, SEM, TEM, and FTIR

Methods	Observed indexes	Material	Results
UV-Vis	Absorption band	Curcumin	The maximum absorption peak at 430 nm [57]
		Ziziphus Jujuba leaf	The spectrum band at 434 nm [73]
		Five plant leaf extracts (Pine, Persimmon,	The maximum absorbance occurs at 430 nm [74]
		Ginkgo, Magnolia and Platanus)	
		Nocardiopsis sp. MBRC-1	A strong and broad peak at 420 nm [75]
		Trisodium citrate (TSC) as a reducing and	One single extinction peak around 400 nm up to
		stabilizing agent	425 nm [76]
		Liquid phase pulsed laser ablation (LPPLA) in TSC solutions	Increased plasmon absorption at 400 nm [77]
XRD	AgNPs peaks at 2θ	Ziziphus Jujuba leaf	The average crystallite size of 6 nm [73]
	angles	Caesalpinia ferrea seed extract	30–50 nm [78]
		Pandanus odorifer leaf extract	10-50 nm [71]
		Coriandrum sativum L.	11.9 nm [79]
		Nocardiopsis sp. MBRC-1	45 ± 0.05 nm [75]
		TSC as a reducing and stabilizing agent	21.1 nm ± 2.9, T = 80°
			14.64 nm ± 2.3, <i>T</i> = 120°
			20.7 nm ± 2.8, <i>T</i> = 140° [76]
TEM	Images under TEM	Magnolia leaf Persimmon, Magnolia and Pine leaf	Spherical shape; average diameter of 32 nm [74]
		Urtica dioica (Linn.) leaf extract	20–30 nm [59]
		Nocardiopsis sp. MBRC-1	Spherical shape; average diameter of 45 nm [75]
		LPPLA in TSC solutions	Nearly spherical shape;The average size of about
			13 nm [77]
SEM	Images under SEM	Curcumin	The average size of 51.13 nm [57]
		Coriandrum sativum L.	Ball shape [79]
		TSC as a reducing and stabilizing agent	Near to spherical structure [76]
FTIR	IR spectrum	Nocardiopsis sp. MBRC-1	The band at 2,923 and $2,853 \text{ cm}^{-1}$ (C–H stretch)
			1,460 cm ⁻¹ (C–H bend)
			1,655 cm ⁻¹ (-C==C- stretch)
			685 cm ⁻¹ (-C=C-H:C-H bend) [75]
		Coriandrum sativum L.	3275.64 cm ⁻¹ (OH stretching)
			1632.43 cm ⁻¹ (C=O stretch)
			2919.43 cm ⁻¹ (C H extension and extension of alkanes with
			the C-H connection)
			1398.12 cm ⁻¹ (CH ₃ stretching)
			1237.86 cm ⁻¹ (C–O and amine vibrations) [79]
		TSC as a reducing and stabilizing agent	3,250 cm ⁻¹ (O–H bond)
			1,583 cm ⁻¹ (anti-symmetric COO– stretching)
			1,393 cm ⁻¹ (symmetric COO– stretching) [76]

reliable and could improve the service life of the restoration [89]. Even with low concentrations of AgNPs incorporated into the composite resin, they could exhibit significant antibacterial properties without affecting inherent mechanical and biological properties [90]. In the realm of endodontic materials, the efficacy of AgNPs-based irrigants in eliminating S. aureus and E. faecalis is comparable to that of 5.25% NaClO. Furthermore, these irrigants exhibit an enhanced antibacterial effect when employed in root canal therapy [91].

4.1.2 Periodontal and peri-implantitis

Plaque control is the core of periodontal treatment. The effect of plaque control is crucial in periodontitis and peri-implantitis treatment. Antibiotics are required for patients with severe inflammation and periodontal surgery or implant surgery. However, antibiotics easily induce antibiotic resistance and reduce anti-microbial efficiency in plaque biofilms [92-94]. Nowadays, AgNPs have shown proposed application in the treatment of periodontitis and 8 — Yanjie Ren et al. DE GRUYTER

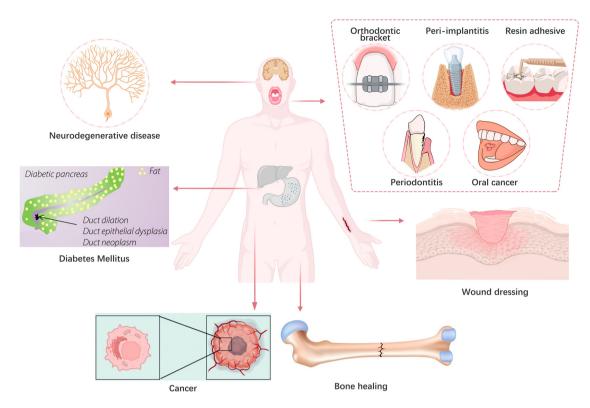


Figure 4: Application of AgNPs in various fields of biomedicine. Reproduced with permission from Ref. [80,81] (Copyright 2022 MDPI and WILEY 2017).

peri-implantitis or infection prevention due to their excellent antibacterial properties and resistance to induction [95]. Besides, Rani *et al.* [96] investigated the colonization and infiltration of specific bacteria (*S. mutans, Aggregatibacter actinomycetemcomitans, F. nucleatum*, and *Porphyromonas gingivalis*) on AgNP-impregnated guided tissue regeneration membranes. They believed that the incorporation of AgNPs may be valuable and worth studying

further. Habiboallah *et al.* [97] studied the effect of periodontal dressing with AgNPs on postoperative periodontal wounds and observed that the AgNPs group had less cell infiltration, more collagen synthesis, and cardiovascular formation.

Zhou et al. [98] studied the combination of antimicrobial peptides with osteogenic fragments with AgNPs and successfully achieved synergistically anti-bacterial and

Table 2: Functions of AgNPs in various biomedical fields

Function	Medical fields	Diseases	Ref.
Anti-caries and anti-bacteria	Oral medicine	Dental Caries	[82-91]
Anti-bacteria and anti-drug resistance		Periodontal and peri-implantitis	[92-99]
Anti-bacteria and reduce the surface sharpness and friction		Orthodontics	[100-103]
Anti-proliferation, cytotoxicity, and apoptosis-promoting effects		Oral cancer	[104-113]
Inhibit carbohydrate-digesting, key enzymes associated with diabetes, and promote wound healing	Endocrine system	Diabetes mellitus	[114–118]
Inhibitory effect on amyloid fiber accumulation and biosensor construction	Nervous system	Neurodegenerative diseases	[119–128]
Small, highly targeted, and crossing the BBB	NDDS	Cancer and neurological disorders	[37-40]
Targeted therapy, drug resistance, cytotoxicity, and radiosensitivity	Cancer	PCa, ccRCC	[129-133]
Antibacterial activity, anti-inflammatory effect, and drug carrier effect.	Wound coating systems	Wound	[134–138]
Promote osteogenesis	Bone trauma	Bone healing	[139-142]
Toxicity	_	CVDs; neurodegenerative toxicity	[139–141]

osseointegration. The potential mechanism was the destruction of bacterial cell membranes and the production of ROS. Bone formation was due to the compound which was beneficial to the adhesion, diffusion, and proliferation of bone marrow stem cells on the surface, and promoted the expression of osteogenic genes and the secretion of collagen [98]. Titanium implants containing AgNPs can produce good bacterial protection, which is conducive to solving the problem of peri-implant inflammation. Gelatamp, a commercially available absorbable gelatin sponge imbued with colloidal silver, is extensively utilized in the dental field for procedures such as tooth extraction, oral and maxillofacial surgery, and periodontal surgery. It offers rapid hemostasis, reduces postoperative complications, and aids in wound healing [99].

4.1.3 Orthodontics

For patients undergoing orthodontic treatment, brackets on the surface of the teeth make it difficult to clean, resulting in the accumulation of plaque biofilms and the risk of tooth demineralization and mucosal diseases like white spot lesions [100]. Hernandez-Gomora et al. [101] found that AgNPs had plaque resistance and could improve the physical properties of orthodontic elastic plates, such as maximum strength, tension, and displacement. In addition, Yuan et al. [102] designed a new adhesive containing polycaprolactone-gelatin-AgNPs (PCL-Gelatin-AgNPs) composite fiber, which enhanced the antibacterial efficiency without affecting the bonding ability. In orthodontic treatment, the surface modification of the archwire by AgNPs can not only prevent the accumulation and development of plague but also reduce the surface sharpness and friction between the archwire and the orthodontic bracket [103].

4.1.4 Oral cancer

The occurrence of cancer is a multi-factor, multi-step complex process, with abnormal cell differentiation and proliferation, growth out of control, invasion and metastasis, and other biological characteristics [65]. It has been reported that AgNPs had prominent anticancer activity in different types of cancers such as breast cancer, cervical cancer, colon cancer, ovarian cancer, and lung cancer [104–108].

NPs have been successfully applied to anticancer drugs due to their high surface volume ratio and high binding activity, and are easily diffusing into cells. As a new anticancer drug, AgNPs can also be applied to oral cancer. Subramanyam et al. [109] analyzed caspase activity by cell cycle test, apoptosis test, and flow cytometry. The results showed that AgNPs had excellent anti-proliferation, cytotoxicity, and apoptosis-promoting effects on oral cancer cells. Another study also demonstrated the significant free radical scavenging activity and antibacterial activity of AgNPs and inferred that AgNPs had the potential to treat human oral cancer-derived diseases [110]. In addition, AgNPs are now widely used in the diagnosis and treatment of cancer due to their unique sterilization, therapeutic effect, and stability, as well as the improvement of nanotechnology and therapeutic agents [111,112]. Moreover, the combination of different anticancer drugs and metal particles have been proven to enhance the endoplasmic reticulum stress of cancer cells, which has become an innovative method to fight different cancers [113].

4.2 Diabetes mellitus

Diabetes mellitus is a disease of abnormal metabolism characterized by hyperglycemia, which is associated with a high risk of specific chronic complications. Studies have shown that AgNPs can inhibit carbohydrate-digesting and key enzymes associated with diabetes, thereby controlling blood sugar. Kanmani et al. [114] showed that AgNPs have antidiabetic properties, significantly inhibiting α-amylase (78.84%) and α-glucosidase (58.86%) at a 100 µg/ml concentration, highlighting AgNPs' potential for diabetes management. Furthermore, AgNPs have been proven to have intensive hypoglycemic activity which was significantly dose-dependent. With their increase in surface area and decrease in NP size, anti-diabetic activity is stronger [115]. Due to the high blood glucose level, local hypoxia, impaired immunodeficiency, and other factors, diabetic wounds are difficult to heal. Dressings with AgNPs can accelerate wound healing and reduce scar formation. This is not only related to the antibacterial properties of AgNPs but also related to its anti-inflammatory and high surface volume ratio to enhance the penetration of the wound site [116]. Kong et al. [117] prepared a new type of AgNPs composite hydrogel. Polymer materials with the new dressing could improve the microenvironment, promote wound healing, and relieve pain. Khalil et al. [118] believed that the biosynthesis of AgNPs had stronger free radical scavenging activity in wound healing, due to the dual mode of action provided by the metal covered by plant components.

4.3 Neurodegenerative diseases

The pathogenesis of most neurological diseases is associated with up-regulation of amyloid-beta aggregation. Dehvari and Ghahghaei [119] found that biosynthesized AgNPs had a significant inhibitory effect on amyloid fiber accumulation. In addition, research has found that AgNPs can be used to combat neurological diseases caused by protein misfolding, such as Parkinson's disease and Alzheimer's disease (AD) [120]. Owing to their optimal size, anti-inflammatory, antibacterial, antioxidant properties, and sustained drug delivery capabilities, AgNPs can effectively transport therapeutic drugs across the Blood-Brain Barrier (BBB), thereby offering a promising approach for treating neurological disorders [121–123].

AgNPs can also be used for biosensor construction of nervous system-related diseases. In recent years, based on the great progress of nanoscience, biosensors for detecting the main biomarkers of AD have been significantly developed [124]. Microglia are resident immune cells in the brain, which are associated with neurodegenerative diseases. Experiments have shown that citrate-coated AgNPs formed inactive silver sulfide (Ag₂S) and released Ag⁺, eventually reducing inflammation and neurotoxicity of microglial [125]. However, some studies have shown that AgNPs may change the morphology of astrocytes, and increase neuronal inflammation and degeneration [126,127]. Recent studies have found that AgNPs induced oxidative stress in a coating-dependent manner and disrupted the antioxidant system in the hippocampus, which may be a potential cause of neurodegeneration and cognitive impairment [128].

4.4 Cancer

Thapa et al. [129] developed AgNPs embedded graphene oxide with coupled MTX(MTX-GO/AgNPs) and found that this combined system can be used for folate receptor targeted cancer therapy. Other studies have shown that AgNPs can also be used to treat drug-resistant forms of cancer, such as prostate cancer (PCa) that is resistant to hormone therapy or metastatic disease. Morais et al. [130,131] found that synthetic AgNPs can produce cytotoxicity through endocytosis for the treatment of castration-resistant prostate cancer. Morais et al. [130] went further and found that AgNPs showed new potential in radiological anticancer treatment strategies. They treated clear cell renal cell carcinoma (ccRCC) with AgNPs combined with Everolimus because it can sensitize cells to radiation while showing potential cytotoxicity in ccRCC tumor models. The role of nanomaterials in drug delivery in cancer treatment has been mentioned above in NDDS. In addition, Haque et al. [132] found that AgNPs can be used as a non-invasive imaging tool based on near-infrared to treat cancer. From this point of view, AgNPs

show tremendous potential in exploiting new fields for cancer therapy. In cancer disease theranostics, Mukherjee *et al.* [133] found that the red fluorescence of biologically synthesized AgNPs could serve as an imaging enhancer for detecting the localization of drug molecules within cancer cells

4.5 Wound coating/dressing

AgNPs have excellent antibacterial activity, anti-inflammatory effect, and drug carrier effect [134]. Combined with other composite materials, AgNPs are incorporated into gels to form new wound dressing systems and develop unique new bandages. It can promote wound healing, control the growth of multi-drug resistant bacteria, reduce inflammation, and enhance immunity [135]. Scientists have developed and commercialized AgNPs-based wound dressings that can cover large areas of burns and improve wound healing activity (ACTICOAT: Smith and Nephew, UK) [136]. Popescu et al. [137] demonstrated that composite hydrogels embedded with AgNPs and ibuprofen can play an antibacterial role in wound dressings, support healing and proliferation processes, and reshape the ultimately damaged tissue. In the context of cancer gene therapy, pegylated AgNPs are used as carriers of small interfering RNA that exhibit apoptosis in leukemic line cells [138].

4.6 Bone healing

AgNPs can promote the formation of fibrous joints, join the subsequent ends of the fracture, and upregulate the proteins of different bone morphogenesis [139–141]. Abd-Elkawi *et al.* [142], using a rabbit osteogenic model, further studied that the addition of platelet-rich fibrin and AgNPs to calcium carbonate nanoparticles (CCNPS) could reduce their absorption rate and improve their osteogenic and osteoinductive properties by promoting new bone formation.

5 Toxicity of AgNPs

As AgNPs have become widely used, research on their effects on human health and the environment has increased. But its toxicological mechanism remains unclear. Some experimental results on NPs toxicity suggest that the cytotoxic and genotoxic effects of AgNPs depend on their size, shape, concentration, exposure time, administration routes environmental factors as well as capping agents. Scherer et al. [143] found that the smaller the particle size of AgNPs, the greater the toxicity, which may result from the larger specific surface area assisting in penetrating the cell membrane. The toxicity of AgNPs is also related to the specific surface area due to the shape of the particle, and the physical damage to the cell is more caused by irregular particles.

5.1 Possible toxicity mechanisms

AgNPs have the ability to continuously release silver ions (Ag⁺) for a long time, and it has great potential in dermatology and wound care management. However, Ahlberg et al. [144] proved that the release of Ag⁺ during the preparation and storage of NPs was the main reason for inducing intracellular ROS and related cytotoxicity by comparing AgNPs in O2 and Ar. Another study evaluated the acute toxicity of metal/metal oxide NPs using a rat liverderived cell line (BRL3A) in vitro. The results showed that when AgNPs decreased mitochondrial function, their cytotoxicity to hepatocytes may be mediated by oxidative stress [145]. Meanwhile, they studied the size and concentrationdependent cytotoxicity mechanism of AgNPs [56]. The results showed that AgNPs can cause cell damage by destroying the stability of the autophagy-lysosomal system, resulting in activation of NLRP3 inflammasome-dependent caspase-1, endoplasmic reticulum stress, lactate dehydrogenase release, and apoptosis [146]. In addition, an in vitro study has shown that short-term and low-dose AgNPs exposure can induce vascular endothelial(VE)-cadherin phosphorylation, thereby disrupting vascular integrity and increasing endothelial cell permeability, which is associated with cardiovascular diseases (CVD) [147]. In terms of neurotoxicity, Pavičić et al. [148] proved in vitro tests that no matter what coating agent AgNPs is, it will cause oxidative damage to neurons, attenuate mitochondrial activity, and ultimately affect neurodevelopment and neurodegenerative toxicity.

5.2 Methods to reduce toxicity

Changing coating is a method to reduce the cytotoxicity of AgNPs. Coating material on the metal surface can enhance the advantages of NPs like improving stability and reducing agglomeration, but uncoated AgNPs significantly will reduce cell viability in a time- and dose-dependent manner. Coating can also play an oxidative protection role and reduce the

release of silver ions. Moreover, the coating can even protect living cells from the cytotoxicity of AgNPs. The mechanism is by affecting the surface area, shape, and physical properties [149]. The material of the coating can be divided into organic and inorganic substances. With respect to organic substances, Travan et al. [150] promoted biosynthesis of AgNPs, polysaccharides-coated AgNPs possessed antimicrobial activity, but were non-toxic to eukaryotic cells. Another study has shown that natural clay as raw material to prepare silicate nanoplatelets loading with AgNPs provided good support for AgNPs, and reduced the inherent toxicity of AgNPs in clinical use [151].

Several studies have reported that selenium (Se) manages to resist AgNPs-induced toxicity by inhibiting oxidative damage and enhancing anti-inflammatory ability [152-155]. Ma et al. [156] recently found that Se had a protective effect on CVD caused by VE injury induced by AgNPs, which is attributed to inhibiting oxidative ROS and pro-inflammatory NF-κB/NLRP3 inflammasome by activating Nrf₂ and antioxidant enzyme (HO-1) signaling pathways. Meanwhile, Hajtuch et al. [157] found that AgNPs coated with lipoic acid were more biosafe. In the oral field, studies by Niska et al. [158] showed that AgNPs with capping agents had less cytotoxicity and a wider range of antimicrobial activity against gingival fibroblasts.

6 Conclusion and perspectives

AgNPs have shown extraordinary functions in biomedicine due to their unique physicochemical properties and enhanced anti-bacterial activities. For example, AgNPs may provide new strategies for the treatment and prevention of dental infections, diabetes, and neurodegeneration. In addition, AgNPs have gradually been applied in other biochemistry, including environmental protection, monitoring, purification, medical treatment, and agricultural wastewater treatment through nanofiltration technology. In the coming decades, the application of AgNPs in nanomedicine, wound healing products, disinfectants, antibacterial nanocomposites, and antibacterial coatings is expected to have broad market prospects. However, although AgNPs have been maturely applied in various fields, the properties of AgNPs still need to be improved, and their toxicity remains unsolved.

In combination with this review, in order to enhance the capabilities and reduce the toxicity of AgNPs, the following strategies can be considered:

1) Changing the synthesis method: Using Green synthesis using biosynthesis: Using biosynthesis methods (such as using microbial or plant extracts) to produce AgNPs can result in safer and more environmentally friendly AgNPs.

- These biosynthesized AgNPs generally have better biocompatibility and lower toxicity.
- 2) Changing traits to control the size and shape of AgNPs: The study found that the size and shape of AgNPs have a significant impact on their toxicity. In general, the smaller the size and the more irregular the shape of AgNPs, the more toxic it is. Therefore, by optimizing the synthesis conditions and controlling the size and shape of AgNPs, its toxicity can be effectively reduced.
- 3) Surface modification: Surface modification of AgNPs can change their activity and reduce toxicity.
- 4) Using drug-carrying AgNPs: AgNPs can be used as drug carriers to enhance their antibacterial or anticancer activity by combining with other drugs.
- 5) Combining with other methods: AgNPs can be combined with PDT, PTT, and radiology to promote the development of treatment and diagnostics.
- 6) In addition, to ensure the safe application of AgNPs, it is also necessary to conduct low-dose use of AgNPs and conduct more in-depth biocompatibility and toxicity studies, so as to reduce the toxic effects on non-target sites.

Funding information: This research was funded by the Science and Technology Planning Project of Sichuan Province (No. 22ZDYF2835).

Author contributions: Writing - original draft preparation: Yanjie Ren; writing - review and editing: Yun Zhang; visualization: Yanjie Ren; corresponding author Xiaobing Li was responsible for the revision of this article and communication with the editors. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

- Uthaman A, Lal HM, Thomas S. Fundamentals of silver nanopar-[1] ticles and their toxicological aspects. 2021, 1st edn. Springer Nature Switzerland AG; 2021.
- [2] Miller CN, Newall N, Kapp SE, Lewin G, Karimi L, Carville K, et al. A randomized-controlled trial comparing cadexomer iodine and nanocrystalline silver on the healing of leg ulcers. Wound Repair Regen. 2010;18(4):359-67.
- Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles [3] and their antibacterial applications. Int J Mol Sci. 2021;22(13): 7202.

- Jiang W, Zhao P, Song W, Wang M, Yu. DG. Electrospun zein/ polyoxyethylene core-sheath ultrathin fibers and their antibacterial food packaging applications. Biomolecules. 2022;12(8):1110.
- [5] Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20(4):865.
- Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role plants metabolites. Appl Int J Env Res Public Health. 2022;19(2):674.
- [7] Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological synthesis of silver nanoparticles and prospects in plant disease management. Molecules. 2022;27(15):4754.
- [8] Ahmad B. Chang L. Satti UO, Rehman SU, Arshad H. Mustafa G. et al. Phyto-synthesis, characterization, and in vitro antibacterial activity of silver nanoparticles using various plant extracts. Bioengineering. 2022;9(12):779.
- [9] Choi O, Deng KK, Kim NJ, Ross LJ, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008;42(12):3066-74.
- [10] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83.
- [11] Siegel J, Kaimlova M, Vyhnalkova B, Trelin A, Lyutakov O, Slepicka P, et al. Optomechanical processing of silver colloids: new generation of nanoparticle-polymer composites with bactericidal effect. Int | Mol Sci. 2020;22(1):312.
- [12] Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95-101.
- Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory [13] activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine. 2008;4(3):241-51.
- [14] Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Retracted: characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):10.
- [15] Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M, et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mat Sci Eng C-Mater. 2018;91:881-98.
- [16] Aas IA, Paster BI, Stokes LN, Olsen I, Dewhirst FE, Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721-32.
- Zorraquin-Pena I, Cueva C, Gonzalez DLD, Bartolome B, Moreno-[17] Arribas MV. Glutathione-stabilized silver nanoparticles: antibacterial activity against periodontal bacteria, and cytotoxicity and inflammatory response in oral cells. Biomedicines. 2020;8(10):375.
- Camargo LO, Fontoura I, Veriato TS, Raniero L, Castilho ML. [18] Antibacterial activity of silver nanoparticles functionalized with amikacin applied against multidrug-resistant acinetobacter baumannii. Am J Infect Control. 2023;51(8):871-8.
- [19] Campo-Beleno C, Villamizar-Gallardo RA, Lopez-Jacome LE, Gonzalez EE, Munoz-Carranza S, Franco B, et al. Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett Appl Microbiol. 2022;75(3):680-8.
- [20] Ji H, Zhou S, Fu Y, Wang Y, Mi J, Lu T, et al. Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. Mat Sci Eng C-Mater. 2020;110:110735.

DE GRUYTER

- [21] Duval RE, Grare M, Demore B. Fight against antimicrobial resistance: we always need new antibacterials but for right bacteria. Molecules. 2019;24(17):3152.
- [22] More PR, Pandit S, Filippis A, Franci G, Mijakovic I, Galdiero M. Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11(2):369.
- Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting [23] antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415-27.
- [24] Chakraborty A, Hague SM, Ghosh D, Dey D, Mukherjee S, Maity DK, et al. Silver nanoparticle synthesis and their potency against multidrug-resistant bacteria: a green approach from tissue-cultured Coleus forskohlii. 3 Biotech. 2022;12(9):228.
- [25] Babele PK, Singh AK, Srivastava A. Bio-inspired silver nanoparticles impose metabolic and epigenetic toxicity to saccharomyces cerevisiae. Front Pharmacol. 2019;10:1016.
- [26] Vazguez-Munoz R, Avalos-Borja M, Castro-Longoria E. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. Plos One. 2014;9(10):e108876.
- [27] Rozhin A, Batasheva S, Kruychkova M, Cherednichenko Y, Rozhina E, Fakhrullin R. Biogenic silver nanoparticles: synthesis and application as antibacterial and antifungal agents. Micromachines-Basel. 2021;12(12):1480.
- [28] Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem. 2022;10:1023542.
- [29] Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, et al. Silver nanoparticles as potential antiviral agents. Pharmaceutics. 2021;13(12):2034.
- [30] Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A, et al. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses-Basel. 2019;11(8):732.
- [31] Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P, Lourenco IM, et al. Bactericidal and virucidal activities of biogenic metal-based nanoparticles: advances and perspectives. Antibiotics. 2021;10(7):783.
- [32] Naumenko K, Zahorodnia S, Pop CV, Rizun N. Antiviral activity of silver nanoparticles against the influenza A virus. | Virus Erad. 2023:9(2):100330.
- Tyavambiza C, Meyer M, Wusu AD, Madiehe AM, Meyer S. The [33] antioxidant and in vitro wound healing activity of cotyledon orbiculata aqueous extract and the synthesized biogenic silver nanoparticles. Int J Mol Sci. 2022;23(24):16094.
- Alsareii SA, Manaa AA, AlAsmari MY, Bawahab MA, Mahnashi MH, Shaikh IA, et al. Synthesis and characterization of silver nanoparticles from rhizophora apiculata and studies on their wound healing, antioxidant, anti-inflammatory, and cytotoxic activity. Molecules. 2022;27(19):6306.
- [35] Tyavambiza C, Elbagory AM, Madiehe AM, Meyer M, Meyer S. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from cotyledon orbiculata aqueous extract. Nanomaterials. 2021;11(5):1343.
- Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, et al. Targeted silver [36] nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials.
- [37] Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, et al. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol. 2022;13:1025160.

- [38] Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, et al. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine. 2023;18(3):279-302.
- [39] Al-Serwi RH, Eladl MA, El-Sherbiny M, Saleh MA, Othman G, Alshahrani SM, et al. Targeted drug administration onto cancer cells using hyaluronic acid-quercetin-conjugated silver nanoparticles. Molecules. 2023;28(10):4146.
- [40] Szewczyk OK, Roszczenko P, Czarnomysy R, Bielawska A, Bielawski K. An overview of the importance of transition-metal nanoparticles in cancer research. Int | Mol Sci. 2022;23(12):6688.
- [41] Zhu H, Cheng X, Zhang J, Wu Q, Liu C, Shi J. Constructing a selfhealing injectable SABA/Borax/PDA@AgNPs hydrogel for synergistic low-temperature photothermal antibacterial therapy. | Mater Chem B. 2023;11(3):618-30.
- Chang R, Zhao D, Zhang C, Liu K, He Y, Guan F, et al. [42] Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int J Biol Macromol. 2023;226:870-84.
- [43] Ahn H, Kang S, Kang K, Lee DN, Min DH, Jang H. Rod-to-sphere elemental reconstruction of biocompatible Ag(2)Te-Ag(4.53)-Te(3) nanoparticles for triple negative breast cancer photo-nanotherapy. J Mater Chem B. 2023;11(23):5142-50.
- [44] Zhao J, Gao N, Xu J, Zhu X, Ling G, Zhang P. Novel strategies in melanoma treatment using silver nanoparticles. Cancer Lett. 2023;561:216148.
- [45] Shivashankarappa A, Sanjay KR. Photodynamic therapy on skin melanoma and epidermoid carcinoma cells using conjugated 5aminolevulinic acid with microbial synthesised silver nanoparticles. J Drug Target. 2019;27(4):434-41.
- [46] Mattea F, Vedelago J, Malano F, Gomez C, Strumia MC, Valente M. Silver nanoparticles in X-ray biomedical applications. Radiat Phys Chem. 2017;130:442-50.
- [47] Arif M, Nawaz AF, Ullah KS, Mueen H, Rashid F, Hemeg HA, et al. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications. Heliyon. 2023;9(6):e17252.
- [48] Qing T, Mahmood M, Zheng Y, Biris AS, Shi L, Casciano DA. A genomic characterization of the influence of silver nanoparticles on bone differentiation in MC3T3-E1 cells. | Appl Toxicol. 2018:38(2):172-9.
- Ovais M, Ahmad I, Khalil AT, Mukherjee S, Javed R, Ayaz M, et al. [49] Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biot. 2018;102(10):4305-18.
- Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various [50] methods of synthesis, size affecting factors and their potential applications-a review. Appl Nanosci. 2020;10:1369-78.
- [51] Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials. 2022:15(2):427.
- Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nano-[52] particles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031.
- [53] Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N. Green sonochemical synthesis of silver nanoparticles at varying concentrations of kappa-carrageenan. Nanoscale Res Lett. 2015;10(1):916.
- [54] Ahmed KB, Kalla D, Uppuluri KB, Anbazhagan V. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer

- from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohydr Polym. 2014;112:539–45.
- [55] Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ. Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci. 2011;12(8):4872–84.
- [56] Zubair M, Azeem M, Mumtaz R, Younas M, Adrees M, Zubair E, et al. Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. Env Pollut. 2022;304:119249.
- [57] Karan T, Erenler R, Moran BB. Synthesis and characterization of silver nanoparticles using *curcumin*: cytotoxic, apoptotic, and necrotic effects on various cell lines. Z Naturforsch C. 2022;77(7–8):343–50.
- [58] Samuggam S, Chinni SV, Mutusamy P, Gopinath S, Anbu P, Venugopal V, et al. Green synthesis and characterization of silver nanoparticles using spondias mombin extract and their antimicrobial activity against biofilm-producing bacteria. Molecules. 2021;26(9):2681.
- [59] Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using *Urtica dioica* Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl SC. 2016;9(3):217–27.
- [60] Mistry H, Thakor R, Patil C, Trivedi J, Bariya H. Biogenically proficient synthesis and characterization of silver nanoparticles employing marine procured fungi Aspergillus brunneoviolaceus along with their antibacterial and antioxidative potency. Biotechnol Lett. 2021;43(1):307–16.
- [61] Manen JF, Sinitsyna O, Aeschbach L, Markov AV, Sinitsyn A. A fully automatable enzymatic method for DNA extraction from plant tissues. BMC Plant Biol. 2005;5:23.
- [62] Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. Futur | Pharm Sci. 2021;7(1):145.
- [63] Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, et al. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv. 2019;9(50):29293–9.
- [64] Nagaraja S, Ahmed SS, Bharathi DR, Goudanavar P, Fattepur S, Rupesh KM, et al. Green synthesis and characterization of silver nanoparticles of psidium guajava leaf extract and evaluation for its antidiabetic activity. Molecules. 2022;27(14):4336.
- [65] El-Naggar NE, Hussein MH, El-Sawah AA. Phycobiliproteinmediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Sci Rep. 2018;8(1):8925.
- [66] Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep. 2021;11(1):10356.
- [67] Soleimani P, Mehrvar A, Michaud JP, Vaez N. Optimization of silver nanoparticle biosynthesis by entomopathogenic fungi and assays of their antimicrobial and antifungal properties. J Invertebr Pathol. 2022;190:107749.
- [68] Shah Z, Hassan S, Shaheen K, Khan SA, Gul T, Anwar Y, et al. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Mat Sci Eng C-Mater. 2020;111:110829.
- [69] Alam A, Tanveer F, Khalil AT, Zohra T, Khamlich S, Alam MM, et al. Silver nanoparticles biosynthesized from secondary metabolite

- producing marine actinobacteria and evaluation of their biomedical potential. Antonie van Leeuwenhoek. 2021;114(10):1497–516.
- [70] Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534.
- [71] Hussain A, Alajmi MF, Khan MA, Pervez SA, Ahmed F, Amir S, et al. Biosynthesized silver nanoparticle (AgNP) from pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Front Microbiol. 2019;10:8.
- [72] Tkachenko Y, Niedzielski P. FTIR as a method for qualitative assessment of solid samples in geochemical research: a review. Molecules. 2022;27(24):8846.
- [73] Gavade NL, Kadam AN, Suwarnkar MB, Ghodake VP, Garadkar KM. Biogenic synthesis of multi-applicative silver nanoparticles by using *Ziziphus Jujuba* leaf extract. Spectrochim Acta A. 2015;136(Pt B):953–60.
- [74] Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc Biosyst Eng. 2009;32(1):79–84.
- [75] Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel *Nocardiopsis* sp. MBRC-1. Biomed Res Int. 2013;2013:287638.
- [76] Barani H, Mahltig B. Microwave-assisted synthesis of silver nanoparticles: effect of reaction temperature and precursor concentration on fluorescent property. J Clust Sci. 2022;33:101–11.
- [77] Delmee M, Mertz G, Bardon J, Marguier A, Ploux L, Roucoules V, et al. Laser ablation of silver in liquid organic monomer: influence of experimental parameters on the synthesized silver nanoparticles/graphite colloids. J Phys Chem B. 2017;121(27):6646–54.
- [78] Ashraf H, Anjum T, Riaz S, Naseem S. Microwave-assisted green synthesis and characterization of silver nanoparticles using melia azedarach for the management of fusarium wilt in tomato. Front Microbiol. 2020:11:238.
- [79] Ashraf A, Zafar S, Zahid K, Salahuddin SM, Al-Ghanim KA, Al-Misned F, et al. Synthesis, characterization, and antibacterial potential of silver nanoparticles synthesized from *Coriandrum* sativum L. | Infect Public Health. 2019;12(2):275–81.
- [80] Yagihashi S. Diabetes and pancreas size, does it matter? | Diabetes Invest. 2017;8(4):413–15.
- [81] Kovacs D, Igaz N, Gopisetty MK, Kiricsi M. Cancer therapy by silver nanoparticles: fiction or reality? Int J Mol Sci. 2022;23(2):839.
- [82] Winning L, Lundy FT, Blackwood B, McAuley DF, El KI. Oral health care for the critically ill: a narrative review. Crit Care. 2021;25(1):353.
- [83] Qiu W, Zhou Y, Li Z, Huang T, Xiao Y, Cheng L, et al. Application of antibiotics/antimicrobial agents on dental caries. Biomed Res Int. 2020;2020:5658212.
- [84] Anil S, Anand PS. Early childhood caries: prevalence, risk factors, and prevention. Front Pediatr. 2017;5:157.
- [85] Khubchandani M, Thosar NR, Dangore-Khasbage S, Srivastava R. Applications of silver nanoparticles in pediatric dentistry: an overview. Cureus J Med Sci. 2022;14(7):e26956.
- [86] Targino AG, Flores MA, Dos SJV, de Godoy BBF, de Luna FH, Galembeck A, et al. An innovative approach to treating dental decay in children. A new anti-caries agent. J Mater Sci-Mater. 2014;25(8):2041–7.
- [87] Al-Ansari MM, Al-Dahmash ND, Ranjitsingh A. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action

- on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Heal. 2021;14(3):324-30.
- Yin IX, Zhao IS, Mei ML, Li Q, Yu OY, Chu CH. Use of silver nano-[88] materials for caries prevention: a concise review. Int J Nanomed. 2020;15:3181-91.
- [89] Dutra-Correa M, Leite A, de Cara S, Diniz I, Marques MM, Suffredini IB, et al. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. | Dent. 2018;77:66-71.
- Ahmed O, Sibuyi N, Fadaka AO, Madiehe MA, Maboza E, Meyer M, et al. Plant extract-synthesized silver nanoparticles for application in dental therapy. Pharmaceutics. 2022;14(2):380.
- Moghadas L, Shahmoradi M, Narimani T. Antimicrobial activity of a new nanobased endodontic irrigation solution: In vitro study. 2012:3(4):142-46
- Rams TE, Sautter JD, Van Winkelhoff AJ. Comparative in vitro [92] resistance of human periodontal bacterial pathogens to tinidazole and four other antibiotics. Antibiotics. 2020;9(2):68.
- Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114-22.
- [94] Halkai KR, Halkai R, Mudda JA, Shivanna V, Rathod V. Antibiofilm efficacy of biosynthesized silver nanoparticles against endodontic-periodontal pathogens: An in vitro study. J Conserv Dent. 2018;21(6):662-66.
- [95] Noronha VT, Paula AJ, Duran G, Galembeck A, Cogo-Muller K, Franz-Montan M, et al. Silver nanoparticles in dentistry. Dent Mater. 2017;33(10):1110-26.
- Rani S, Chandra RV, Reddy AA, Reddy BH, Nagarajan S, Naveen A. [96] Evaluation of the antibacterial effect of silver nanoparticles on guided tissue regeneration membrane colonization-an in vitro study. J Int Acad Periodontol. 2015;17(3):66-76.
- Habiboallah G, Mahdi Z, Majid Z, Nasroallah S, Taghavi AM, Arjmand AFN. Enhancement of Gingival wound healing by local application of sliver nanoparticles periodontal dressing following surgery:a histological assessment in animal model. Mod Res Inflamm. 2014;3:128-38.
- Zhou W, Bai T, Wang L, Cheng Y, Xia D, Yu S, et al. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infectiontrigger antibacterial apability and enhanced osseointegration. Bioact Mater. 2023:20:64-80.
- Selvido DI, Bhattarai BP, Riddhabhaya A, Vongsawan K, Arunpraphan S, Wongsirichat N. A review on the application of silver nanoparticles in oral and maxillofacial surgery. Eur J Dent. 2021;15(4):782-87.
- [100] Restrepo M, Bussaneli DG, Jeremias F, Cordeiro RC, Raveli DB, Magalhaes AC, et al. Control of white spot lesions with use of fluoride varnish or chlorhexidine gel during orthodontic treatment: a randomized clinical trial. J Clin Pediatr Dent. 2016;40(4):274-80.
- [101] Hernandez-Gomora AE, Lara-Carrillo E, Robles-Navarro JB, Scougall-Vilchis RJ, Hernandez-Lopez S, Medina-Solis CE, et al. Biosynthesis of silver nanoparticles on orthodontic elastomeric modules: evaluation of mechanical and antibacterial properties. Molecules. 2017;22(9):1407.
- [102] Yuan Q, Zhang Q, Xu X, Du Y, Xu J, Song Y, et al. Development and characterization of novel orthodontic adhesive containing PCLgelatin-AgNPs fibers. J Funct Biomater. 2022;13(4):303.
- [103] Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. Nanotechnol Rev. 2022;11(1):2433-50.

- [104] Gurunathan S, Park JH, Han JW, Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomed. 2015;10:4203-22.
- [105] Al-Sheddi ES, Farshori NN, Al-Oqail MM, Al-Massarani SM, Saguib Q, Wahab R, et al. Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl. 2018;2018:9390784.
- [106] Gurunathan S, Qasim M, Park C, Yoo H, Kim JH, Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int | Mol Sci. 2018;19(8):2269.
- [107] Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomed. 2017;12:6487-502.
- [108] Fard NN, Noorbazargan H, Mirzaie A, Hedayati CM, Moghimiyan Z, Rahimi A. Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer. Artif Cell Nanomed B. 2018;46(sup 3):S1047-58.
- [109] Subramanyam GK, Gaddam SA, Kotakadi VS, Palithya S, Penchalaneni J, Challagundla VN. Argyreia nervosa (Samudra pala) leaf extract mediated silver nanoparticles and evaluation of their antioxidant, antibacterial activity, in vitro anticancer and apoptotic studies in KB oral cancer cell lines. Artif Cell Nanomed B. 2021;49(1):635-50.
- [110] Subramanyam GK, Gaddam SA, Kotakadi VS, Gunti H, Palithya S, Penchalaneni J, et al. Green fabrication of silver nanoparticles by leaf extract of byttneria herbacea roxb and their promising therapeutic applications and its interesting insightful observations in oral cancer. Artif Cell Nanomed B. 2023:51(1):83-94.
- [111] Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O'Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7(8):657-67.
- [112] Teli MK, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: going small means aiming big. Curr Pharm Des. 2010:16(16):1882-92.
- Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. Synthesis [113] and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019;9(1):13071.
- Kanmani F, IrudayaIrin SP, Ghasemi NM, Ghorbanzadeh A, Najafi S, Sahebkar A, et al. Antioxidant and antidiabetic activities of biologically synthesized silver nanoparticles using Linum usitatissimum Extract. Orient J Chem. 2021;37(5):1235.
- [115] Nagaraja S, Ahmed SS, DR B, Goudanavar P, Fattepur S, Meravanige G, et al. Green synthesis and characterization of silver nanoparticles of psidium guajava leaf extract and evaluation for its antidiabetic activity. Molecules. 2022;27(14):4336.
- Gherasim O, Puiu RA, Birca AC, Burdusel AC, Grumezescu AM. An [116] updated review on silver nanoparticles in biomedicine. Nanomaterials. 2020;10(11):2318.
- [117] Kong C, Chen S, Ge W, Zhao Y, Xu X, Wang S, et al. Riclin-Capped silver nanoparticles as an antibacterial and anti-inflammatory wound dressing. Int | Nanomed. 2022;17:2629-41.
- Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nano-[118] particles using olive leaf extract. Arab J Chem. 2010;4(5):431-7.

- [119] Dehvari M, Ghahghaei A. The effect of green synthesis silver nanoparticles (AgNPs) from Pulicaria undulata on the amyloid formation in alpha-lactalbumin and the chaperon action of alphacasein. Int J Biol Macromol. 2018;108:1128–39.
- [120] Parveen M, Kumar A, Khan MS, Rehman R, Furkan M, Khan RH, et al. Comparative study of biogenically synthesized silver and gold nanoparticles of Acacia auriculiformis leaves and their efficacy against Alzheimer's and Parkinson's disease. Int J BIOL Macromol. 2022;203:292–301.
- [121] Jiang Q, Yu S, Li X, Ma C, Li A. Evaluation of local anesthetic effects of Lidocaine-Ibuprofen ionic liquid stabilized silver nanoparticles in male Swiss mice. J Photoch Photobio B. 2018:178:367–70.
- [122] Karthik CS, Manukumar HM, Ananda AP, Nagashree S, Rakesh KP, Mallesha L, et al. Synthesis of novel benzodioxane midst piperazine moiety decorated chitosan silver nanoparticle against biohazard pathogens and as potential anti-inflammatory candidate: A molecular docking studies. Int J Biol Macromol. 2018;108:489–502.
- [123] Arumai SD, Mahendiran D, Senthil KR, Kalilur RA. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J Photoch Photobio B. 2018;180:243–52.
- [124] Carneiro P, Morais S, Pereira MC. Nanomaterials towards biosensing of Alzheimer's disease biomarkers. Nanomaterials. 2019;9(12):1663.
- [125] Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen S, Goode AE, Theodorou IG, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H₂S-synthesizing enzymes. Sci Rep. 2017;7:42871.
- [126] Dan M, Wen H, Shao A, Xu L. Silver nanoparticle exposure induces neurotoxicity in the rat hippocampus without increasing the blood-brain barrier permeability. J Biomed Nanotechnol. 2018;14(7):1330–8.
- [127] Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schroder H, Skytte L, et al. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology. 2019;13(2):221–39.
- [128] Dziendzikowska K, Wilczak J, Grodzicki W, Gromadzka-Ostrowska J, Wesierska M, Kruszewski M. Coating-dependent neurotoxicity of silver nanoparticles-an in vivo study on hippocampal oxidative stress and neurosteroids. Int J Mol Sci. 2022;23(3):1365.
- [129] Thapa RK, Kim JH, Jeong JH, Shin BS, Choi HG, Yong CS, et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloid Surf B. 2017;153:95–103.
- [130] Morais M, Machado V, Figueiredo P, Dias F, Craveiro R, Lencart J, et al. Silver nanoparticles (AgNPs) as enhancers of everolimus and radiotherapy sensitivity on clear cell renal cell carcinoma. Antioxidants. 2023;12(12):2051.
- [131] Morais M, Machado V, Dias F, Figueiredo P, Palmeira C, Martins G, et al. Glucose-functionalized silver nanoparticles as a potential new therapy agent targeting hormone-resistant prostate cancer cells. Int J Nanomed. 2022;17:4321–37.
- [132] Haque S, Norbert CC, Acharyya R, Mukherjee S, Kathirvel M, Patra CR. Biosynthesized silver nanoparticles for cancer therapy and in vivo bioimaging. Cancers. 2021;13(23):6114.
- [133] Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Vinothkumar B, Bhadra MP, et al. Potential theranostics application of bio-

- synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014:4(3):316–35.
- [134] Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, et al. Silver nanoparticles phytofabricated through azadirachta indica: anticancer, apoptotic, and wound-healing properties. Antibiotics. 2023;12(1):121.
- [135] Shi G, Chen W, Zhang Y, Dai X, Zhang X, Wu Z. An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir. 2019;35(5):1837–45.
- [136] Burgess R. Understanding nanomedicine: An introductory textbook. 1st ed. Jenny Stanford Publishing; 2012.
- [137] Popescu I, Constantin M, Solcan G, Ichim DL, Rata DM, Horodincu L, et al. Composite hydrogels with embedded silver nanoparticles and ibuprofen as wound dressing. Gels. 2023;9(8):654.
- [138] Abashkin V, Pedziwiatr-Werbicka E, Horodecka K, Zhogla V, Ulashchik E, Shmanai V, et al. Silver nanoparticles modified by carbosilane dendrons and peg as delivery vectors of small interfering RNA. Int | Mol Sci. 2023;24(1):840.
- [139] Chen F, Han J, Guo Z, Mu C, Yu C, Ji Z, et al. Antibacterial 3D-printed silver nanoparticle/poly lactic-Co-glycolic acid (PLGA) scaffolds for bone tissue engineering. Materials. 2023;16(11):3895.
- [140] Zhao Y, Liu J, Zhang M, He J, Zheng B, Liu F, et al. Use of silver nanoparticle-gelatin/alginate scaffold to repair skull defects. Coatings. 2020;10:948.
- [141] Qing T, Mahmood M, Zheng Y, Biris AS, Shi L, Casciano DA. A genomic characterization of the influence of silver nanoparticles on bone differentiation in MC3T3-E1 cells. J Appl Toxicol. 2018;38(2):172–9.
- [142] Abd-Elkawi M, Sharshar A, Misk T, Elgohary I, Gadallah S. Effect of calcium carbonate nanoparticles, silver nanoparticles and advanced platelet-rich fibrin for enhancing bone healing in a rabbit model. Sci Rep. 2023;13(1):15232.
- [143] Scherer MD, Sposito J, Falco WF, Grisolia AB, Andrade L, Lima SM, et al. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci Total Env. 2019;660:459–67.
- [144] Ahlberg S, Meinke MC, Werner L, Epple M, Diendorf J, Blume-Peytavi U, et al. Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes. Eur J Pharm Biopharm. 2014;88(3):651–7.
- [145] Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol Vitro. 2005;19(7):975–83.
- [146] Mishra AR, Zheng J, Tang X, Goering PL. Silver nanoparticleinduced autophagic-lysosomal disruption and NLRP3-inflammasome activation in HepG2 cells is size-dependent. Toxicol Sci. 2016;150(2):473–87.
- [147] Sun X, Shi J, Zou X, Wang C, Yang Y, Zhang H. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J Hazard Mater. 2016;317:570–78.
- [148] Pavicic I, Milic M, Pongrac IM, Brkic AL, Matijevic GT, Ilic K, et al. Neurotoxicity of silver nanoparticles stabilized with different coating agents: In vitro response of neuronal precursor cells. Food Chem Toxicol. 2020;136:110935.
- [149] Fahmy HM, Mosleh AM, Elghany AA, Shams-Eldin E, Abu SE, Ali SA, et al. Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv. 2019;9(35):20118–36.

- [150] Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, et al. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 2009;10(6):1429-35.
- [151] Chang CH, Lee YH, Liao ZH, Chen MH, Peng FC, Lin JJ. Composition of nanoclay supported silver nanoparticles in furtherance of mitigating cytotoxicity and genotoxicity. PLoS One. 2021;16(2):e0247531.
- [152] Zhao L, Feng Y, Xu ZJ, Zhang NY, Zhang WP, Zuo G, et al. Selenium mitigated aflatoxin B1-induced cardiotoxicity with potential regulation of 4 selenoproteins and ferroptosis signaling in chicks. Food Chem Toxicol. 2021;154:112320.
- Ma W, He S, Xu Y, Qi G, Ma H, Bang JJ, et al. Ameliorative effect of sodium selenite on silver nanoparticles-induced myocardiocyte structural alterations in rats. Int | Nanomed. 2020;15:8281-92.
- [154] Ansar S, Abudawood M, Hamed SS, Aleem MM. Sodium selenite protects against silver nanoparticle-induced testicular

- toxicity and inflammation. Biol Trace Elem Res. 2017;175(1):
- [155] Ansar S, Alshehri SM, Abudawood M, Hamed SS, Ahamad T. Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int J Nanomed. 2017;12:7789-97.
- [156] Ma Y, Wang L, He J, Ma X, Wang J, Yan R, et al. Sodium selenite ameliorates silver nanoparticles induced vascular endothelial cytotoxic injury by antioxidative properties and suppressing inflammation through activating the Nrf2 signaling pathway. Biol Trace Elem Res. 2023.
- [157] Hajtuch J, Santos-Martinez MJ, Wojcik M, Tomczyk E, Jaskiewicz M, Kamysz W, et al. Lipoic acid-coated silver nanoparticles: biosafety potential on the vascular microenvironment and antibacterial properties. Front Pharmacol. 2021;12:733743.
- [158] Niska K, Knap N, Kedzia A, Jaskiewicz M, Kamysz W, Inkielewicz-Stepniak I. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: an in vitro study. Concerns about potential application in dental practice. Int J Med Sci. 2016;13(10):772-82.