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Abstract: This article reports on the synthesis, character-
ization, and application of titanium dioxide quantum dots
(TDS) for wastewater treatment. Three TDS samples were
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Graphical abstract

synthesized via a low-temperature precipitation method
with calcination at 280°C (TDS1), 290°C (TDS2), and 300°C
(TDS3). Characterization techniques such as X-ray powder
diffraction, X-ray photoelectron spectroscopy, and trans-
mission electron microscopy confirmed the high crystal-
linity, purity, and quantum confinement of the TDS with
sizes of 3.1, 5.5, and 8.5 nm, respectively. The photocatalytic
activity of TDS was evaluated by degrading Congo red dye
under xenon lamp irradiation. TDS1, with the smallest size
of 3.1nm and the largest bandgap of 3.09 eV, showed the
highest photodegradation rate of 22.49 x 1073 S~ TDS1 also
showed effective degradation of real industrial textile was-
tewater under sunlight over nine repeated cycles of use.
The antibacterial activity of TDS against Bacillus subtilis
and Candida albicans was demonstrated, with the highest
inhibition by TDS1 attributed to its higher surface area.
Overall, the study shows the high photocatalytic and anti-
microbial potential of synthesized TDS, especially the smal-
lest 3.1nm TDS1 sample. The recycling results also show-
case the reusability of TDS for wastewater treatment.

Keywords: quantum dots size, low-temperature modified
precipitation method, industrial textile wastewater
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1 Introduction

Water is essential for life, but it is also vulnerable to pollu-
tion from various sources, such as industrial effluents, agri-
cultural runoff, and urban waste. Among the pollutants
that pose severe threats to human health and the environ-
ment are organic compounds, such as dyes, pharmaceuti-
cals, pesticides, and other chemicals, that are resistant to
conventional treatment methods. Therefore, there is a
need for alternative and effective technologies to remove
these contaminants from wastewater and restore water
quality [1-5]. One of the promising technologies is photo-
catalysis, which uses light and a semiconductor catalyst to
initiate oxidation and reduction reactions that can degrade
organic pollutants into harmless products, such as water,
carbon dioxide, or other simple molecules. Photocatalysis
has several advantages, such as low cost, environmental
friendliness, high efficiency, and applicability under mild
conditions. However, there are also some challenges, such
as the limited light absorption, the high recombination rate
of photogenerated charge carriers, and the low stability
and recyclability of the catalysts [6-9]. In recent years,
significant progress has been made in the field of photo-
catalysis for wastewater treatment, with the development
of novel catalysts, reactor designs, and process optimiza-
tion. This article aims to review the recent research on
photocatalysis for wastewater treatment, focusing on the
following aspects: (1) the types and sources of organic pol-
lutants in wastewater; (2) the principles and mechanisms
of photocatalysis; (3) the synthesis and characterization of
various photocatalysts, including metal oxides, metal sul-
fides, carbon-based materials, and hybrid composites; (4)
the factors affecting the photocatalytic performance, such
as light source, pH, temperature, catalyst dosage, and coex-
isting substances; (5) the design and operation of different
photocatalytic reactors, such as batch, continuous, and
hybrid systems; and (6) the evaluation and comparison of
the photocatalytic efficiency, stability, and cost-effective-
ness. The article also discusses the challenges and oppor-
tunities for the future development of photocatalysis for
wastewater treatment [10-17].

The classification of dyes can be done in two different
ways: based on their chemical structure or based on their
method of application. Chemically, dyes can be either
organic or inorganic compounds, and each category can
have natural or synthetic variants. Application-wise, dyes
can be anionic, direct, or dispersed, depending on the type
of fiber they are used to color, such as protein, cellulose,
or polyamide. However, these two classifications are not
mutually exclusive, as some dyes belong to more than one
coloristic group or can be applied to multiple substrates,
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while others are specific to a single group or substrate. The
Color Index uses both classifications to catalog all the dyes
and pigments that are commercially available for various
coloration applications, such as textiles, plastics, paints,
inks, and liquids [10-13,18-20].

Based on the photocatalytic process of organic pollu-
tant degradation, the use of heterogeneous nano-photo-
catalysts made from metal oxides as raw materials is
seen as a successful industrial wastewater treatment trend
[21-24]. According to the functional claims made for metal
oxide semiconductors, this technique has a wide bandgap,
is environmentally friendly, is inexpensive, and is biocom-
patible. Furthermore, these compounds can break down a
wide variety of pollutants when exposed to ultra violet
(UV) light [25-27].

Titanium dioxide nanoparticles are often regarded as
the most effective room-temperature photocatalyst among
heterogeneous nanocatalysts due to their large band gap
(3.20 eV) for the anatase phase. They are employed in the
photodegradation of organic dyes, in addition to their usage
in the treatment of industrial effluent and water [27-32].

Ten-nanometer-diameter titanium dioxide quantum
dots (TDS) have unique physicochemical and luminous fea-
tures that are not seen in macromolecules [33-35]. Because
the influence of the quantum size is so crucial to photo and
electrical parameters such as excitation energy and radia-
tion lifetime, TDS preparation is of significant interest
[36-38]. According to the boxed particle theory of quanti-
zation, shifts in particle size translate into shifts in elec-
tronic structure, with holes and electrons experiencing
spatial constraints at the same time that energy levels
are constrained. As the particle size of the produced
quantum dot oxides decreases, the frequency at which
they emit and absorb light changes dramatically [39-45].
In addition to their use as cell biomarkers [46,47], antibac-
terial drugs [48-51], antifungal agents [52,53], and in gene
therapy [54,55], a promising new approach to treating
cancer, TDS, has many other potential applications. Recent
studies have shown that TDS may be employed in a wide
variety of cutting-edge technologies, such as optoelectro-
nics instruments, UV laser detectors, photodetectors, high-
performance solar cells (about 60%), film transistors, and
photodetectors [43,56-62].

In the present study, we investigated the structure,
surface characteristics, and optical properties of thermally
decomposed titania nanocrystallites (TDS) subsequent to
their formation. Further advances in the tunable absorp-
tion assessment and quantification of the photocatalytic
activity were accomplished via systematic measurement
and quantification of the optical deterioration of dyes
under varied illumination conditions. Additionally, the
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antimicrobial properties of all synthesized samples were
examined in vitro against the gram-positive bacterium B.
subtilis, the gram-negative bacterium Escherichia coli, and
the yeast Candida albicans.

Furthermore, we devised a straightforward and cost-
effective methodology for synthesizing TDS in the anatase
crystalline form. Various TDS samples were fabricated uti-
lizing thermal techniques, the intricacies of which have
been elucidated herein. Several variants of the Congo red
dye could be produced by harnessing quantum dots in
conjunction with irradiation from a xenon photoreactor
in a photocatalytic process. Our investigation has also reli-
ably estimated the recyclable characteristics of the TDS
samples employed in the photocatalytic mineralization of
industrial textile effluent under solar illumination condi-
tions. In summary, our systematic analyses have provided
novel insights into the structure—property relationships of
thermally synthesized TDS photocatalysts and their poten-
tial applications in wastewater remediation.

2 Experimental

2.1 Materials

All the compounds that were used in this study were of
analytical grade and had not undergone any purification
processes. All chemicals were supplied by Fisher and
Sigma Company. Isopropyl alcohol, with a purity level of
99.5%, was supplied by Fisher Company. Titanium(v) iso-
propoxide (TTIP) had been supplied by Fluka Company. In
the dye companies, Congo red dye had been produced from
the manufacturing site at one of the textile processing and
dyeing factories at Al-Obour industrial city, Cairo, Egypt, as
a local market dye. The cetyl trimethyl ammonium bro-
mide (CTAB) industrial powder was supplied by Fluka
Company. In addition, deionized water was utilized.

2.2 Method of preparation

TDS samples by low-temperature precipitation method rather
than any other method because at low temperature the
observed size is the minimum size can be obtained while
at high temperature the phase observed of TDS sample
observed have larger size than that obtained at low-tempera-
ture. Also, most common methods, such as sol-gel and hydro-
thermal methods, produced nano-TiO, with a larger size than
that obtained by the low-temperature precipitation method.
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Low-temperature TDS samples precipitated using a novel
method. Using a syringe, 6.0 mL of TTIP was dispensed into
a 250 mL beaker containing 180 mL of isopropyl alcohol, and
the mixture was stirred continually at 0°C for over 60 min to
create solution A (pH = 7). After 24h at room temperature
(25°C), a white powder is produced by slowly adding 0.03 mol
of CTAB to solution (A). The dry white powder was taken out
of the crucible and placed in the mortar. The samples were
coarsely crushed, then deposited in an aluminum oxide cru-
cible. Subsequently, the samples were subjected to the calci-
nation process in a muffle furnace for 45 min at 280, 290, and
300°C, generating TDS1, TDS2, and TDS3, respectively.

2.3 Characterization

The crystalline characteristics of the produced materials
were evaluated using the Cu-Ka criteria by PANalytical
X’pert professional MPD (Netherlands), where Cu-Ka radia-
tion = 0.154 nm, 40 m, A50 kV; data were recorded in 0.017 s
per step by using Philips, X’ pert MPD, Netherlands. X-ray
photoelectron spectroscopy (XPS) was measured at ultra-
high vacuum (UHV) on K-ALPHA from Thermo Fisher
Scientific (USA) with X-ray (monochromatic) where spot
size is 400 pm at pressure 10~ mbar and Al K-alpha radia-
tion -10 to 1,350 eV at narrow spectrum 50 eV with spec-
trum pass energy reached 200 eV, and the quantum dot
samples’ form and particle size were studied using high-
resolution transmission electron microscopy (HRTEM)
(Philips/FEI BioTwin CM120, USA). Shimadzu, UV 2600i
(Japan), a parameter measurement system, was used to
measure the UV-Vis absorption spectrum. The precise
surface area of the ready catalysts was determined using
the Brunauer-Emmett-Teller (BET) technique from the sur-
face homogenization curve of N at 78 K using a microTris-tar
3000 (USA) from Micromeritics Instrument Corporation.

When the TQD samples are ready at 160°C for 1 h, by
employing the following equation: S = 6/dxp, the specific
surface area is calculated: where d is the mean particle
diameter, p is the three TiO, density values estimated
(4.30, 3.89, and 3.43 g/cm®) for TDS1, TDS2, and TDS3 sam-
ples, respectively, and S is the BET-surface area specific.

A xenon photoreactor with a water-cooling system is
used for the photodegradation operations to avoid the
lamp’s temperature going too high. The wavelength of
the xenon light lamp ranges from 200 to 1,100 nm with
moderate power at 100 W/cm? in the presence of TDS sam-
ples, Congo red dye, and industrial textile effluent, mea-
sured using a multiparameter benchtop photometer.

The COD was measured with the COD C99 Series Multi-
parameter Desktop Photometer, Hanna, USA. Photocatalytic
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activity was evaluated by total organic carbon (TOC) from
Analytik Jena (multi N/C3100), Germany. Recycled TDS used
in the recycling processes was illustrated by means of Fourier
transform infrared spectra (FTIR), which were recorded using
a Jasco, FTIR-4600, USA, to detect any changes observed for
the prepared catalyst after each recycling process.

2.4 Photocatalytic efficiency of TDS

The photocatalytic technique was used for assessing photo-
catalytic efficacy and enhancing photodegradation of Congo
red dye as a model artificial dye using a xenon photoreactor
(100 W) with a wavelength limit of 200-1,100 nm: 0.25 g of TDS
were distributed in 500 mL of dye solution (5 x 107 M, pH =
6.8) [63-65]. Then TDS was added to the dye and stirred for
30 min in the dark to verify the adsorption/desorption equili-
brium. The last step is to remove any leftover catalyst parti-
cles from the solution by immediately centrifuging using
Thermo MEGAFUGE 16 for 30 min at 12,000 rpm.

2.5 Photocatalytic activity by sunlight

In order to assess how well photocatalysis works, indus-
trial textile effluent from a dying plant with a pH in the
region of 6.9 is treated immediately under direct sunlight.
Throughout the research, the daily dosage of UV radiation
was 4.7 mW/Cm? and the dose of visible light received during
the middle of the day was 1,635 mw/Cm?. Quantification of
the photocatalytic activity of an unusually active sample was
accomplished by examination of the amount of carbon
dioxide present at time t.

2.6 Recycling processes

The recycling process of TDS as photocatalysts was vali-
dated and estimated nine times by utilizing spectrophoto-
metry to measure the photodegradation rate of all the
photodegradation processes evaluated for dyes using a
xenon photoreactor and sunlight. This was done in order
to determine how quickly the dyes broke down in the pre-
sence of light.

TOC and COD (chemical oxygen demand) investiga-
tions were also used as a method for assessing the max-
imum percentage across all the photocatalytic processes
that were found.
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2.7 In vitro antimicrobial activity

Antimicrobial activity of different TDS samples was evalu-
ated against pathogenic Gram-negative bacterium (Salmonella
enterica ATCC 25566), Gram-positive bacterium (B. subtilis
ATCC6633), fungus (Fusarium solani NRC15), and fungal yeast
(C. albicans ATCC 10231) by the agar spreading technique
carefully.

Fungal yeast and bacteria were obtained from the American
Type Culture Collection, while the isolated fungal was obtained
from the culture collection from the Chemistry of Natural and
Microbial Products Department, National Research Center, Egypt.
At least two passes for the microorganisms were done to ensure
viability and purity. The fungi were grown on a potato dextrose
agar medium, while the bacteria were grown on a nutrient agar
medium. The antimicrobial assay used the spreading technique
[66]. In these experiments, microbial suspension of fungus or
bacterium was suspended, swabbed in sterile distilled water,
and adjusted to McFarland No. 0.5 as standard turbidity. Then,
the microbial suspension was spread on a nutrient agar medium
for bacteria or on potato dextrose agar medium for fungi.

The inoculated agar was poured into an assay plate
with a 5cm diameter, and it was then allowed to cool on
a level surface. Once the solidification of the medium is
observed, 4 mm diameter agar slices were made, and 10 mg
of the TDS-prepared samples were placed into each one.
The inoculated agar plates were incubated for a day at 37°C
for bacteria and 3 days at 27°C for fungi. The antimicrobial
effect was estimated and evaluated by measuring the dia-
meter of the inhibition zone around samples in millimeters.

3 Results and discussion

3.1 X-ray powder diffraction (XRD)

Crystallographic characteristics of the produced quantum
dot samples were studied by inverse XRD analysis, as
shown in Figure 1. Complete indexing of XRD data was
performed on the TDS structure (JCPDS-ICDD file 84-1285).
The (101), (112), (200), (105), and (213) planes correspond to
the optical phenomena peaks seen at 20 of 25.3°, 37.8°, 48.0°,
55.0°, and 62.6°, respectively. The high purity of the TDS
samples’ crystalline nature in the anatase phase under the
testing conditions was shown by the absence of distinct
impurity characteristic peaks in different second stages.

Figure 1 also depicts the TDS-supported packing struc-
ture of Rietveld screens. The Scherrer equation was used to
calculate an approximate crystallization size for the pro-
duced samples:
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Figure 1: XRD pattern of different TDS samples.

Table 1: Lattice parameters (a, ), unit cell volume (V) data of TDS
samples

Sample a () c (b Vv (R3) Crystallite size (nm)
TDS1 3.7090 9.4090 134.8995 3.1
TDS2 3.7165 9.4400 134.9663 5.5
TDS3 3.7209 9.4860 135.2222 8.5
kA
= , @
B cosO

where k is the wavelength of the radiation employed in Cu-
Ka detectors (0.15406 nm), S is the half-maximum breadth
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of the peak, 2h is the maximum angle of the optical phe-
nomena, and K is Scherrer’s constant (= 0.9).

Figure 1 depicts the situation. Common crystallization
sizes were 3.1, 5.5, and 85nm for samples TDS1, TDS2, and
TDS3, respectively, indicating a minor increase in the estimated
crystallization sizes when the temperature is increased, as
shown by the obtained values.

Table 1 and Figure 2 show the results of the Rietveld
refinement analysis performed on the XRD data using Full-
Prof software, which yielded the lattice constant and unit
cell volume. The Rietveld refinement profiles of all the TDS-
prepared samples matched the experimental data exactly.
The Ti*" ion (sixfold coordination, VI) has an ionic radius of
0.601 in TDS1, 0.606 in TDS2, and 0.613 in TDS3. The close
difference in the ionic radii and the competitive effect
between them are responsible for the significant increase
in the unit cell volume of TDS-prepared samples, which is
caused by the decreasing crystal size of the TDS-prepared
samples.

3.2 XPS

The TDS1 surface characterization was confirmed by XPS.
Oxygen, carbon, and titanium were detected in the observed
spectra. The binding energy (BE) of the Cls photoelectron
peak was observed at 280 eV, which is stronger for TDS1
(Figure 3(d)), while the XP spectrum of TiO, in the Ti 2p
deconvoluted into four Ti 2p peaks, as shown in Figure 3(b);
Ti** 2p3/2 at 448.88 eV, Ti*" 2p1/2 at 459.80 eV, Ti*" 2p3/2 at
460.92eV, and Ti** 2pl/2 at 465.08eV EB irradiation.

a(A)
c(A)
V (A3)

Crystal size (nm)

il

TDS1

TDS2

TDS3

Figure 2: Variation of lattice parameters (a) and (c) and unit cell volume (V) of different TDS samples.



6 —— Walied A. A. Mohamed et al.

180000

160000

140000

120000

(a) P

O1s
100000

80000

Count /s

60000

40000

20000 Cls

04

800 600 400 200
Binding Energy (E)

T T
1200 1000

80000

(c) o1s
60000 -

40000

Count /s

20000

537 534 531 528 525
Binding Energy (E)

Figure 3: XPS of (a) TDS1, (b) Ti2p, (c) O1s, and (d) C1S.

Particularly, the concentrations of Ti** decreased with EB
irradiation, whereas the concentrations of Ti** increased.
The Ti** amount on the surface of TDS1 plays an interesting
role due to TDS1 doping with polymer atoms. In Ti*", trapping
of the photogenerated electrons was observed, thereby inhi-
biting the majority and minority carrier’s recombination
[67,68]. Also, the binding states of oxygen in TDS1 were deter-
mined where the O1s XPS peak was observed to three peaks
as shown in Figure 3(c) at 529.90, 529.50, and 528.15 eV. The
TDS1 survey spectra contain the O 1s and Ti 2p peaks of the
titanium dioxide, C1S, and N1S (Figure 3(a)).

3.3 Transmission electron microscopy (TEM)

The shape and length of the TDS particles in the arranged
samples were investigated by HRTEM, a technique that
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allows for direct imaging of the atomic structure of sam-
ples. Figure 4 shows the HRTEM images of the samples,
which confirm the formation of ultrafine nanoparticles.
The nanoparticles exhibit high crystallinity and aniso-
tropic morphology, with ellipsoidal and elongated shapes.
The average diameters of the nanoparticles in the samples
TDS1, TDS2, and TDS3 are 3.1, 5.5, and 8.5 nm, respectively.

The annealing temperature of 70°C was reached, and
the particle length of the generated samples increased
slightly compared to the crystallite length. The particle
length for TDS1, TDS2, and TDS3 was 3.1, 5.5, and 8.5 nm,
respectively, at this temperature. The preparation method
and the stabilizing solvent were effective in preventing nano-
particle coagulation and maintaining the particle size below
10 nm; the threshold for quantum confinement effects and
some agglomeration was observed, which was attributed to
the small size of the particles.



DE GRUYTER

Dielectric properties, antimicrobial activity, and recycling of TiO, quantum dots

. 43.35mm

100

(e)

article size
|— Gauss Fit

Count
Count

2 3 4 5 6 7 8 9 10 2 3 4 5

Particle size (nm)

6 7 8 9 10
Particle size (nm)

120
0 Particle size]

|— Gauss Fit
— Gauss Fit

Particle size (nm)

Figure 4: (a)-(c) TEM of TDS samples, and (d)-(f) particle size distribution map.

From previous results observed (XRD and HRTEM),
in the case of quantum dots, the photocatalytic activity
increases as the particle sizes decrease which observed
from XRD and HRTEM which led to increases in the band
gap, which led to an increase in the photocatalytic activity
because there is an inverse relationship between particle
size and the photocatalytic activity according to literature
and our previous work [28,65,69,70].

3.4 SEM

The FE-SEM images of TDS samples are shown in Figure 5,
where the particle size reached more than 30 nm after just 1
day. In order to keep the nanoparticles below the quantum
dots limit of 10 nm, it was necessary to make use of powerful
stabilizing solvents that prevent coagulation. These solvents
played a crucial role in preserving the desired nanoscale size
by providing a stable microenvironment, thereby aligning

with the critical requirements for quantum dot applica-
tions [71,72].

3.5 FTIR analysis

The results of an investigation into the chemical composi-
tion of TDS samples are shown in Figure 6. Stretching
vibrations have been seen in Ti-O-Ti; however, the cause
of these vibrations has not been determined. These vibra-
tions may be imagined as a wide band with a frequency
range of 400-900 cm™™. It has been determined that bending
and stretching vibrations in the hydroxyl group are respon-
sible for the bands that may be seen at 1636.008-1632.025 cm ™"
and 3341.111-3361.225 cm™". It is possible to minimize the mass
of the molecule by redistributing the height to the facets,
which have greater wave numbers [73,74].

Relative banding system changes in the intensities of
absorption bands and frequency shifts reflect changes in a
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Figure 6: FTIR spectrum of different TDS-prepared samples.

pattern that is controlled by either the chemical form of the
field or its surroundings [70,75]. It is possible that the wave-
numbers and vibration frequency will increase if the mole-
cule in question has a much lower mass.

3.6 Band gap

The determination of bandgap energies for the TDS sam-
ples was carried out utilizing the Kubelka—-Munk (KM)

function, an analytical technique well-established in the
field of materials science. As illustrated in Figure 7, the
KM analysis yielded bandgap energies of 3.09, 3.03, and
2.97 eV for TDS1, TDS2, and TDS3, respectively. These values
provide insight into the electronic structure of the TDS
materials and how their photocatalytic properties may
vary with nanoparticle size.

In addition, the BET method was employed to ascertain
the specific surface areas of the TDS samples, obtaining

5
_z%°
-~ Z -
44
~
Y 4
=]
<
3
frag 34 /] = Egof TDS1 =3.09 ev
= = Egof TDS2 =3.03 ev
= = Egof TDS3=2.97 ev
24
T = =® <
-—r—r—-t—rrrrrr—r7r
275 3.00 325 350 3.75 400 425 4.50
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Figure 7: Tauc’s plot, bandgaps, and diffuse reflectance of different TDS-
prepared samples.
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values of 357.14, 325.20, and 262.23 mz/g for particle sizes of
31, 55, and 8.5nm, respectively. The inverse relationship
between surface area and particle size is ascribed to the
greater relative surface exposed in smaller nanoparticles.
Furthermore, the photocatalytic efficacy of TiO, materials is
known to deteriorate rapidly due to high rates of recombina-
tion between photoexcited conduction band electrons and
valence band holes. Strategies to mitigate this effect remain
an active area of research, with controlled doping and
nanostructuring approaches currently being investigated
to prolong charge carrier lifetimes and thereby enhance
photocatalytic performance.

3.7 Photocatalytic processes

The photodegradation of Congo red dye by a xenon photo-
reactor was investigated using different TDS samples. The
absorption spectra of the dye solutions at different irradiation
times are shown in Figure 8(a)-(c). The photodegradation
rates were calculated from the changes in the absorbance
of the dye at its maximum wavelength. Figure 8(d) shows
the kinetic diagram of the photodegradation process, which
exhibits a linear relationship between In(Cy/C) and the irra-
diation time, where C, and C are the initial and final concen-
trations of the dye, respectively. This diagram applies to all
photodegradation processes. Additionally, it has been shown
before [64,65] that the production of hydroxyl radicals is an
essential step in the process of Congo red dye photodegrada-
tion. Using TDS catalysts for photodegradation of Congo red
dye is an example of a proposed technique. When just the
catalyst is exposed to light, excited electrons (e") are displaced
to a higher energy level. At the same time, excited ions (h")
are generated at the lower energy level of the previous level.

The photodegradation of the Congo red dye depends
on the generation of hydroxyl radicals, and superoxide was
found to be the reactive species. It has been proposed that
the production of Congo red dye may be accomplished by
the interaction of (¢”) and (h*) radicals with oxygen dioxide
and water. After that, it focused on the active species of the
Congo red dye molecule to finish the breakdown pro-
cess [76-79].

TiO, was substituted for TDS in the equations that
describe the general photocatalytic activity. This was done
so that the equations could be understood more clearly.
TiO, at the quantum dots limit is less than 10 nm. According
to the hypothesized mechanism for the photodegradation of
Congo red dye in the presence of TDS precursors, the irradia-
tion process for the produced photocatalysts (TDS) would
cause electrons to be transferred from the valence band
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region to the conduction band area. This will take place
when electrons move from the valence band area to the
conduction band area. The valence band serves as the point
of departure, whereas the conduction band serves as the
destination in its entirety. Then, only a higher energy level
is reached by the excited negative electron (e”), while a posi-
tive hole (h*) forms at a lower energy level. Therefore, one
may consider these activities to be by-products of the photo-
catalytic process.
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Figure 8: Absorption spectra and kinetics plot (a)-(c) of photodegrada-
tion process of Congo red dye.
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Additionally, the general steps of the photocatalytic
mechanism are examined, substituting TDS (identified as
TiO, at the quantum dot threshold, less than 10 nm) by TiO,
in the mechanism equations for improved clarity and com-
prehension in a scholarly discourse.

TDS + hv(UV) — TDS(e")(CB) + TDS(H)(VB),  (2)

h" + H,0 — 'OH + H', 3)
e+ 0; > 0y, @

H,0 + 0; - HO; + 'OH, (5)
2HO; — H,0, + Oy, 6)
H,0, + 05 » 'OH + OH™ + Oy, (7)

Dye + 'OH + O; — Degraded organic dye, 8)
Degraded organic dye + ‘OH + O; — H,0 + CO,. (9)

In the proposed mechanism for the photodegradation
of Congo red dye in the presence of TDS situated in the

| A direct sunlight source : >
falls on titanium oxide ]
powder. > ~

\ Congored /

7
Break down dye

molecules with OH
radicals and excited

\ electrons. )

Photodegradation
process by Excited
electron

b
VL0 X

Titanium oxide

nano powder

LR

Dye
molecule

Scheme 1: A schematic illustration of the photodegradation process of
Congo red dye in the presence of different TDS samples.

DE GRUYTER

valence band region, the translocation of electrons from
the valence band to the conduction band is induced by the
irradiation process. Commencing in the valence band and
culminating in the conduction band, this transference
results in the electron ascending to a higher energy state
within the excited negative electron (e”) configuration.
Simultaneously, a positive hole (h*) emerges at a lower
energy level. Consequently, these processes may be con-
strued as consequential by-products of the photocatalysis
process. Also, a schematic illustration of the photodegrada-
tion process is shown in Scheme 1.

The rate of photodegradation of Congo red dye in a
xenon photoreactor is about 2.5 times greater at TDS1 =
2249 x 107°S™ than it is at TDS3 = 9.81 x 10°S™, and it
is roughly 1.5 times quicker at TDS2 = 14.30 x 1073s™%
According to the findings, photocatalytic performance rises
with decreasing TDS size because this leads to an increase
in surface area across all photodegradation processes. This is
the conclusion drawn from the data. Even when contrasting
the efficacy of various photodegradation processes, this obser-
vation is true. When the TDS size is decreased, the value of the
band gap may be observed to rise to higher levels. These
results give more indication that the quantum size impact of
TDS photocatalysts has an influence on the photocatalytic activ-
ities that are taking place, as shown in Table 2.

3.8 Recycling processes

The photodegradation of a real industrial effluent with a
high COD of 4,385 ppm was investigated using different
cycles of recycling of the photocatalyst. The COD is a mea-
sure of the amount of oxygen required to oxidize the
organic pollutants in water 1. The photocatalyst was a
nanosized sample of TDS1 (3.1nm), which was reused
nine times. The recycling of the photocatalyst resulted in
its accumulation and reduced its photodegradation effi-
ciency. However, after nine cycles, the COD of the effluent
was reduced to less than 1,000 ppm, which is the maximum
permissible limit according to Egyptian Environmental
Law 2. This indicates that the TDS1 sample was effective

Table 2: Photodegradation rate constant Kr, irradiation time of photodegradation of Congo red dye in the presence of different TDS samples with

their crystallite sizes and Eg values

Sample Krs™ Irradiation time (min) Crystallite size (nm) Eg

TDS1 6.94 x 1073 100 3.1 3.09
TDS2 450 x 1073 105 5.5 3.03
TDS3 9.89 x 1073 120 8.5 2.97
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in degrading the organic contaminants in the effluent
[80,81]. The photodegradation rate of the TDS1 sample
was determined by measuring the changes in its optical
properties. The increase in the size of the TDS particles
during the photodegradation process was attributed to
the thermal effects induced by direct sunlight exposure.
The sunlight not only provided the photons for the photo-
degradation reactions but also increased the temperature
of the sample, which affected its morphology and stability.

Figure 9 shows that the total length of time spent in
direct sunlight reached 9h, and that as TDS increased in
size as a result of accumulation, the rate at which it under-
went photodegradation slowed down. Both of these findings
are shown in the graph. The TOC investigation exhibited a
similar behavior as the COD observation, as shown in
Figure 10, with photodegradation rates of the real indus-
trial effluent sample reducing to nine times recycling when
the TDS1 sample was present. This result was consistent
with the COD observation. Despite the fact that there was a
photodegradation process by direct sunlight, these data
show that the size of TDS particles rose during the recycling
process and that this trend was reflected in the breakdown
rate determined by the COD and TOC tests. This was the case
despite the fact that the recycling process was carried out.

Figure 11 shows that the FTIR spectrum of the recycl-
ability of the sample that was tested (TDS1) does not have
an influence on the created catalyst until after nine cycles
of recycling have been completed; nonetheless, these shifts
are caused by agglomeration after recycling for several
cycles. In the FTIR spectrum of TDS1, broad bands at 660 cm™
indicate Ti—O-Ti bonds, while two bands at 1,640 and 3,362 cm™
are related to the stretching and bending vibrations of O-H
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Figure 9: COD of solar irradiation for a real sample during the recycling
process of the TDS1 sample.
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Figure 10: TOC of solar irradiation for a real sample during the recycling
process of the TDS1 sample.

groups, respectively. After going through nine cycles of recy-
cling, the O-H group band’s stretching and bending vibra-
tions shifted by 1,643 and 3,372 cm™, respectively.

From the above results, the performance of the TDS
samples across multiple recycling cycles proven by both
techniques FTIR and COD, where at COD analysis the real
sample which have COD value at 4,385 ppm after each
recycling process which including the same solar irradia-
tion process for a 8 h, the COD value increases because the
quantity of oxygen demand for COD analysis increases so
the final COD value increases by increasing the number of
recycling process till reached to the COD allowed limit
according to the environmental law applied from the
environment ministry (1,000 ppm). Just the COD value
reached 1,000 ppm, the recycling processes stopped, and
there is no need to continue because after that, it is not
accepted environmentally and legally.

Also, TOC used to evaluate the performance of the TDS
samples across multiple recycling cycles but depending on
the decrease in the total organic content in the TDS sam-
ples across multiple recycling cycles till reached nearly less
than 9% and after that we did not observe any variation in
the decreasing value, so the recycling processes stopped
and there is no need to continue because after that it is
not accepted environmentally and legally.

The stability of the TDS samples across multiple recy-
cling cycles provided by the FTIR spectrum, where there is
no shift observed for the peaks of the TDS samples, which
indicated that there is no phase change in TDS samples
observed. The observed effect of the decrease in the inten-
sity of FTIR refers to decreases in the active site on the
prepared catalyst.
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Figure 11: FTIR spectrum of TDS1 before and after recycling processes.

This result refers to an increase in the size of the TDS
samples that is being studied; after nine cycles of recycling,
no additional peaks are seen, which indicates that there
has been no adsorption that has taken place on the catalyst
surface, and variations in the frequency and relative band
strengths of absorption bands suggest that there have been
few modifications to the chemical structure.
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Table 3: Antimicrobial activity of TDS1, TDS2, and TDS3 against different
microorganisms

Microorganism Inhibition zone (mm)

TDS1 TDS2 TDS3
Gram-positive bacterium  B. subtilis 18 14 10
Gram-negative bacterium  S. enterica 0 0 0
Yeast C. albicans 10 12 15
Fungus A. niger 0 0 0

3.9 In vitro antimicrobial activity

All TDS samples have antimicrobial activity against the gram-
positive bacterium, Bacillus subtilis, and the yeast, C. albicans,
as shown in Table 3 and Figure 12, while all TDS samples did
not show any antimicrobial activity against the gram-negative
(S. enterica) bacterium or antifungal activity (Aspergillus
niger). The microbial gram-positive bacteria and yeast tests
revealed that the inhibition zone for TDS1 was larger than
that observed for TDS2 and TDS3 due to the enhanced anti-
microbial activity of TDS1 referring to the high surface area
for the TDS1 sample than other samples (TDS2 and TDS3)
which have more reactive oxygen species as a generated
free radical which led to increasing the inhibition zone.

Figure 12: Inhibition zone of TDS1, TDS2, and TDS3 against B. subtilis (a)-(c) and C. albicans (d)-(f), respectively.
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4 Conclusion

This study successfully synthesized TDS of sizes 3.1, 5.5, and
8.5nm using a low-temperature precipitation technique
followed by calcination at 280, 290, and 300°C, respectively.
Extensive characterization using XRD, XPS, TEM, and FTIR
verified the high crystallinity, anatase phase purity, and
nano-scaled dimensions of the produced TDS particles. XRD
analysis indicated an increase in crystallite size from 3.1 to
85nm with increasing calcination temperature. XPS con-
firmed the chemical states of Ti, O, and C in TDS1. TEM ima-
ging revealed spherical, elongated nanoparticles with sizes
consistent with XRD data, along with high crystallinity. FTIR
identified characteristic Ti-O-Ti vibrations in TDS.

Optical characterization showed the bandgap energy
decreased from 3.09 to 2.97 eV for TDS1 to TDS3, respec-
tively, due to the quantum confinement effect of the
smaller 3.1 nm particles. Correspondingly, TDS1 exhibited
a large surface area of 357.14 m%g. Photocatalytic testing
demonstrated that TDS1 had the highest rate constant of
22.49 x 107 S for degrading Congo red dye under the
xenon lamp, compared to 14.30 x 10~ and 9.81 x 107> §7*
for TDS2 and TDS3. The superior photocatalytic perfor-
mance of TDS1 is ascribed to the increased bandgap and
surface area from quantum confinement in the smaller
3.1nm particles. TDS1 also showed excellent recyclability for
degrading real industrial textile wastewater under sunlight
over nine cycles. COD, TOC, and FTIR analysis verified stable
photocatalytic performance upon reuse without changes in
the chemical structure or species adsorption.

Additionally, all TDS samples displayed antimicrobial
activity against B. subtilis and C. albicans, with TDS1 exhi-
biting the largest inhibition zone. This enhanced antimi-
crobial effect is due to the high surface area and increased
reactive oxygen species generation of the 3.1nm TDS1
particles. In summary, this work successfully synthesized
pure anatase phase TDS with tunable properties by con-
trolling calcination temperature. The optimal 3.1 nm TDS1
particles achieved superior photocatalytic performance for
dye degradation and wastewater treatment due to the com-
bined effects of increased bandgap and surface area from
quantum size confinement.
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