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Abstract: The manufacturing of ballistic impact-resistant
(BIR) body armours has evolved over the years with the
aim of reducing their weight and enhancing their energy-
absorbing capacity upon ballistic impacts. The incorpora-
tion of nanoparticles into advanced BIR body armour
systems is considered one of the promising techniques.
The methods employed in incorporating various nanoparti-
cles in the manufacturing of textile-based body armour sys-
tems face a research gap in the optimisation of the associated
parameters. This article discusses the mechanism involved
in the energy absorption of composites and nanocomposites
upon ballistic impact. The current review article highlights
the chemical, physical, and mechanical properties of various
nanoparticles incorporated into BIR body armour systems.
BIR nanocomposites consisting of carbon nanotubes, gra-
phene nanoplatelets, nano-silica, nanoclays, nano-alumina,
etc., have been discussed herein. In addition, the significance

of various techniques for the dispersion of these nanoparti-
cles was also highlighted. Various methods, such as sol–gel,
PVD, CVD, thermal spray, and electroless methods for coating
the nanoparticles on the surface of the fibre/fabric were also
discussed.

Keywords: ballistic impact resistant, energy absorption,
nanoparticles, coating, STF, CNT, graphene, nano-clays

1 Introduction

A body armour system is essential for safeguarding the
human body against various levels of threats ranging from
combat projectiles to sharp objects. Materials employed in
manufacturing these body armours have evolved consistently
along with human civilisation, from stones to advanced nano-
materials. In the past, people used to safeguard their bodies
from different levels of threat by using primitive materials
like stone, wood, leather, steel, and copper [1]. In time, people
started to employ fibres like nylon, cotton, linen, and silk to
produce textile-based protective clothing [1,2]. The revolution
of advanced body armours began in 1960 with the evolution
of modern synthetic fibres having excellent ballistic impact-
resistant (BIR) properties [3]. Due to the advanced technol-
ogies, ever-increasing precision in military operations is
pushing the need to enhance the performance of body
armours without compromising their weight.

Traditionally, body armours employed in ballistic appli-
cations were manufactured using heavier inserts, which
increase the overall weight of the body armour and even-
tually reduce the mobility of the wearer [4]. To overcome
these shortcomings, textile-based polymer composites have
been explored to produce lighter and BIR body armours [5].
Recently, research on nanocomposites for various applica-
tions has increased. In particular, the incorporation of nano-
particles into textile fabrics as coatings for high-velocity
ballistic impact applications has attracted the attention of
researchers [6,7]. To reduce the weight and enhance the
mobility of the wearer, researchers have started to produce
textile-based soft body armours. This approach helped to
reduce the body armour weight to a certain extent. Gener-
ally, to improve the BIR capacity of the composite, more
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layers are employed, which again increases the weight of
the body armour [8]. With the emergence of nanotech-
nology, researchers have started to incorporate nanoparti-
cles into the manufacturing of soft body armour to further
reduce its weight. To obtain suitable ballistic impact proper-
ties, nanoparticles can be coated on the surface of textiles,
which will eventually help in reducing the number of layers
employed in making soft body armours [9].

For ballistic applications, the timeframe within which
the ballistic impact mechanism occurs is very small (0–200
µs) [10]. Hence, for ballistic impact applications, it is impor-
tant to have the correct material that performs precisely
within this short period. It is a well-known fact that bal-
listic-resistant material should possess a higher value of
toughness to have enhanced energy absorption and resis-
tance to delamination. To obtain higher toughness for com-
posites, various methods like matrix modification, hybridi-
sation [11–13], optimisation of fibre architecture [4,14], and
addition of nanoparticles [15–17] have been explored as
depicted in Figure 1. Nanomaterials exhibit outstanding
properties and are considered an excellent option for bal-
listic impact applications [6,18]. This has resulted in the
development of advanced nanocomposites with lower density,
remarkable strength and stiffness, greater fracture resistance,
and outstanding absorption of impact energy [19,20]. In recent
times, nanoparticles like carbon nanotubes (CNTs) [21–24],
nano-silica [25–28], nano-clay [6,29,30], graphene nano-plate-
lets [18,31,32], milled nanofibres [6], buckypaper [33], and
nano-alumina [4,18,34] have been employed to enhance the
ballistic impact behaviour of nanocomposites.

High-performance fibres, such as ultra-high molecular
weight polyethylene (UHMWPE), Kevlar, Twaron, PBO, and
PIPD, are employed in ballistic impact applications. These
fibres exhibit a smooth surface, lower surface energy,

chemical inertness, and lower functional groups, which
hampers their ability to adhere properly to the matrix
material and eventually produces a fragile bond between
the fibre and matrix at the interface, which is not ideal for
the absorption of energy [35]. For ballistic impact applica-
tions, moderate interfacial properties are desirable to
enhance energy absorption by mechanisms like friction
slippage, cracks, and matrix debonding [36]. The intro-
duction of suitable nanoparticles like nano-silica [37], gra-
phene [38], CNTs (SWCNT and MWCNT) [39], zinc oxide
[37], nano-clay [40], and other ceramic nanoparticles on
the surface of these high-performance fibres helps to
overcome their limitations and further enhances the
BIR properties. Generally, the ability of nanocomposites
to absorb impact energy depends mainly on the type of
fibres, matrix, and incorporated nanoparticles. In addi-
tion, the dispersion of nanoparticles, methods used for
the dispersion, weight fraction of the nanoparticles, and
interfacial properties between various constituents of the
nanocomposites determine its energy-absorbing capacity
[41]. Similarly, natural fibre-based nanocomposites are
gaining momentum for use in ballistic impact applica-
tions because of their biodegradability, good strength,
low density, and low cost. These composites are typically
composed of natural fibres, such as jute [42], curaua [43],
sisal [44], and kenaf [45], as well as a polymer matrix,
such as epoxy, polyethylene glycol (PEG), and polyester
resin, reinforced with nanoparticles, such as graphene
oxide [46], CNTs [47], and metal oxide nanoparticles
[48]. One advantage of natural fibre-based composites is
their ability to absorb impact energy through their vis-
coelastic deformation behaviour, which can effectively
mitigate the damage caused by ballistic impacts [49].
The addition of nanoparticles can further enhance this
behaviour by improving the interfacial bonding between
the natural fibres and polymer matrix, which can lead to
increased stiffness and strength [46].

We begin with a discussion of how technologies have
evolved over the years in the development of body armour
systems. This study addresses the significance of nanoparti-
cles in the absorption of ballistic impact energy. In particular,
the influence of nanoparticle coating on the enhancement of
BIR properties of high-performance and natural fabrics is
discussed. This study explores the suitability of various nano-
particles for incorporation in the manufacturing of BIR mate-
rials. This also highlights the importance of the homogeneous
dispersion of nanoparticles in exploiting their full potential.
Finally, various techniques available for coating the nanopar-
ticles on the surface of conductive as well as non-conductive
fibres and challenges in fabricating BIR nanocomposites were
addressed.

Figure 1: Factors influencing the toughness of textile-based
nanocomposites.

2  Anand Biradar et al.



2 Technology development

The technology involved in the development of body armour
systems is constantly evolving. Figure 2 provides information
about technology development over the years. The use of
textile-based body armour systems began during World war
I and II by utilising silk and nylon fabric. Body armours pro-
duced from silk and nylon were able to resist projectiles at
considerably lower velocities [54]. To further enhance the
energy absorbing capacity of textile-based armours, high-per-
formance fibres such as Aramids (Kevlar, Technora Twaron,
etc.) and UHMWPE (Dyneema and spectra) were invented
during 1970–1980 [54,55]. The ever-increasing requirements
to produce lighter, high-performing, and cost-effective body
armours pushed researchers towards hybridisation in the
1990s [51]. Structural hybridisation of the body armour system
is an evolving research area. With the emergence of nanotech-
nology, researchers have begun to incorporate nanoparticles
in the development of nanocomposites for various applica-
tions. However, the incorporation of nanoparticles in the
development of body armour systems took place around
2005 [52,56]. Most of the researchers have incorporated the
nanoparticles by mixing them with a matrix material, but
there are only a few studies on the coating of nanoparticles
on the surface of the fibres [57,58].

3 Energy absorption and failure
mechanism in ballistic impact

In the ballistic impact, the absorption of projectiles’ kinetic
energy occurs via four important mechanisms: (a) absorp-
tion of energy during shearing of yarns, (b) absorption of
energy during the formation of a cone at the back side, (c)
absorption of energy in the compression and fabric move-
ment, and (d) absorption of energy in the form of heat. In
particular, the yarn pull-out, yarn rupture, yarn fibrillation,

friction, cone formation, and bowing are the modes of
energy absorption [59].

The failure mechanism of textile-based body armours
varies with respect to impact velocity (low, medium, and
high) as well as with the energy absorption capacity of the
constituent materials of the target (fibre, resin, and nano-
reinforcement). The mechanism of failure involved in bal-
listic impacts is quite different in comparison with low-
velocity impacts [60]. This mechanism can be attributed to
the multiple layers of laminates employed in ballistic appli-
cations. As the thickness of the panel increases, the time
available for the target to respond against a high-velocity
projectile also increases [60]. When the bullet hits the panel,
the bullet will perforate if its kinetic energy is beyond the
energy-absorbing capacity of the panel. On the other hand, a
panel can catch the bullet if its energy-absorbing capacity is
beyond the bullet’s kinetic energy [61].

When the projectile hits the fabric, yarns that come
under contact with the projectile directly are labelled as
primary yarns, and yarns that do not come under direct
contact with the projectile are termed secondary yarns, as
depicted in Figure 3 [31,62].

In general, different failure mechanisms like compres-
sion of the panel under projectile, compression in the vici-
nity of the point of impact, primary yarns undergoing ten-
sile failure, deformation in the secondary yarns, shear
plugging, matrix cracking, and delamination can take place
at different stages in the thickness direction of the panel. In
addition, back-face deformation, inter-yarn friction, and
friction between fabric and projectile in the thickness
direction occur [25].

3.1 Energy absorption mechanism in the
nanocomposites under a ballistic impact

The mechanical performance of polymer composites tends
to increase with the reinforcement of nanoparticles. This

Figure 2: Technology development in the creation of body armour systems [34,50–54].
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nano-reinforcement is generally recognised as the third
phase. However, the mechanism involved in the perfor-
mance of nanocomposites can be completely different com-
pared to composites having reinforcements at the micron
level [63]. This situation is due to the higher surface area of
the nanoparticles. For example, upon ballistic impact,
polymer resins without nanoparticles will undergo failure
mechanisms like radial cracks, shear yielding, and shear plug-
ging. However, if nanoparticles are incorporated into polymer
resins, the failure mechanism takes place through crack brid-
ging, crack deflection, debonding of nanoparticles, and plastic
void growth [17]. In this direction, it is essential to understand
the mechanism involved in the absorption of impact energy
for nanocomposites. Eq. (1) helps in understanding how the
total energy of the projectile is absorbed by the nanocompo-
sites. It provides the energy lost (EL) by the projectile in the
process of perforating the target:

( )= −E m V V
1

2
,L

2
r

2 (1)

where m denotes the projectile’s mass, V denotes the pro-
jectile’s incident velocity, and Vr denotes the projectile’s
residual velocity. Eq. (2) describes the energy the laminate
has absorbed overall (ETotal):

= + + + +E E E E E E ,Total Fra Cone Def Dela Mat Crack (2)

where EFra is the absorption of energy due to fibre failing in
tensile mode, ECone is the energy carried by the travelling
projectile, EDef is the absorption of energy due to the defor-
mation of secondary yarns, EDela is the absorption of
energy due to delamination, and EMat Crack is the absorption
of energy due to the generation of cracks in the matrix. Eq.
(3) can be used to calculate the nanocomposite laminates
ballistic limit velocity (VBl):

=V
m

E
2
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3.2 Pinning of cracks

The incorporation of nanoparticles in the composites helps
in the stoppage of crack propagation. It is commonly recog-
nised as a mechanism of crack pinning. From Figure 4, it
can be seen that the addition of nano-silica resulted in the
pinning of cracks [64]. This is one of the dominant mechan-
isms when it comes to energy absorption [65].

3.2.1 Deflection of crack

Composites consisting of stiffer nanoparticles make the
crack deviate by tilting or twisting, which results in the
alteration of the plane of crack propagation, thereby even-
tually enhancing the overall surface area associated with
the crack. As the surface area of the crack increases, the
absorption of energy also increases [66]. Generally, to deflect
the crack propagation to another plane, well-bonded and
hard particles are incorporated.

3.2.2 Immobilised polymer

Polymeric chain mobility is restricted when the nanopar-
ticles are dispersed in it, necessitating significantly more
energy to move the chains [18,67]. In addition, these nano-
particles also have the potential to change the glass transi-
tion temperature as well as the chemical behaviour of the
composites.

3.2.3 Bridging of cracks

The incorporation of nanoparticles into the fibre-rein-
forced composites helps the bridging of cracks through

Figure 3: Primary and secondary yarns of the fabric upon projectile impact.

4  Anand Biradar et al.



the toughening mechanism. Among the nanoparticles, CNT
helps significantly in crack bridging due to higher elonga-
tion at break [68]. This crack-bridging phenomenon tends
to slow down the growth of the crack and simultaneously
increases energy absorption.

3.2.4 Debonding and voids

Debonding is another mechanism by which toughness is
induced into nanocomposites. When a projectile hits the
target, debonding slippage takes place between the matrix
and nanoparticles, which results in the enhancement of
interface friction, which eventually helps in the dissipation
of energy [47]. However, the dissipation of energy is quite
lower in the case of debonding in comparison with other
mechanisms.

4 Nanoparticles incorporated in
developing body armour systems

Nanomaterials consist of nanoparticles with dimensions in
the range of 1–100 nm, unlike bulk materials (above 100 nm).
Nanocomposites are obtained by incorporating these nano-
particles in the continuous phase of the material. These nano-
composites (combined form) exhibit enhanced properties in
comparison with their constituents (uncombined form). One

of the key characteristics of nanomaterials is the surface area/
volume ratio, which decides the material’s unique properties
and usability [69]. In general, nanoparticles are categorised
based on their size, morphology, and chemical properties.
Depending on the chemical and physical characteristics,
some important classes of nanoparticles are classified as
carbon-, ceramic-, metal-, and polymeric-based [70,71]. In
this section, important nanomaterials which have been
employed frequently in the development of body armour
systems are discussed.

4.1 Nano-silica-based shear thickening
fluid (STF)

STF is a smart anti-ballistic material that tends to change
from liquid to solid phase upon ballistic impact to resist the
impact caused by high-speed projectiles [42]. Upon the dis-
appearance of the impact, the solid phase returns to its
initial state (liquid phase) reversibly. STF is a non-Newto-
nian fluid in which shear stress increases non-linearly with
an increase in the shear rate. The viscosity of the STF
increases suddenly as the shear rate crosses the critical
value called the critical shear rate. It is generally known
as shear thickening behaviour, and this process is rever-
sible, i.e. upon release of impact force, STF tends to come
back to its initial flow state. Figure 5 shows the shear
thickening phenomenon. STF is generally made up of two
phases: the dispersed phase and the dispersion medium.

Figure 4: SEM images of crack pinning in epoxy resin (a) without nano-silica, (b) with 2.5 vol% nano-silica, and (c) with 13.4 vol% nano-silica [64].
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The dispersed phase is made up of sub-micron or nanos-
cale particles of silica, poly-methyl methacrylate (PMMA)
or calcium carbonate, etc. On the other hand, the disper-
sion medium consists of water, polyethylene glycol (PEG),
silicon oils, and polypropylene glycol (PPG) [72,73]. The key
to attaining the shear thickening behaviour is the proper
interaction between the dispersed phase and the disper-
sion medium. For dispersed phase, fumed silica or colloidal
silica nanoparticles, and for dispersion medium, PEG is
extensively used by most researchers. The main reason

behind choosing PEG as a dispersion medium is due to
its non-toxic nature, thermal stability, and ease of handling
[74–76]. To achieve the optimal distribution of particles
throughout the STF, breaking of intermolecular interaction
among nanoparticles is essential [77]; this can be accom-
plished by the use of techniques like sonochemical, mag-
netic stirrer, high-speed homogenisation, ultrasound soni-
cation, etc. [78,79].

Different theories have been suggested by researchers
to describe the behaviour of shear thickenings, such as
order–disorder theory, dilation theory, hydrocluster theory,
and contact-rheology theory [77,80,81]. The behaviour of STF
depends upon crucial parameters such as the presence of
solid content, particle shape, particle aspect ratio, size of the
particles and their distribution, interaction among particles,
particle hardness and temperature, pH, and nanofillers [4].
Generally, to prepare STF, first nano-silica particles are dis-
persed in ethanol with the help of ultrasonication; then, a
known amount of PEG is added to this solution with subse-
quent ultrasonication, and finally, the prepared STF is dried
in an oven to evaporate excess ethanol. To perform the
impregnation of fabric, STF is again diluted with ethanol
and ultrasonicated; then, the fabric is soaked in the STF

Figure 5: Mechanism of shear thickening [25].

Figure 6: The preparation process of STF-impregnated fabrics: (a) SEM images of silica particles, (b and c) impregnation process, and (d) drying
treatment [82].
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solution and dried in an oven to evaporate the excess
ethanol, as depicted in Figure 6.

In the case of neat panels, when a fabric is hit by a
bullet, angular orientations act as a facilitator in the propa-
gation of stress waves through primary yarns in different
directions. This beneficial effect (facilitated by angular
orientation) is insignificant due to the smaller number
of primary yarns and relatively insufficient contribution
from secondary yarns in energy absorption. The involve-
ment of secondary yarns can be enhanced by impreg-
nating the fabric in STF. Thus, the use of STF further enhances
the advantage of angular orientation by increasing the dome
formation area (Figure 7) [83].

SEM images of the Kevlar fabric impregnated in STF
(35 wt%) have indicated good dispersion of silica nanopar-
ticles on the surface of Kevlar fabric(Figure 8) at different
magnifications. Deposition of STF in the inter-yarn gaps at
the yarn crossover region was also observed. The specific
energy absorption (SEA) capacity of the Kevlar/STF compo-
site was 2.3 times higher compared to the neat Kevlar
fabric.

A rheometer is generally used to understand the rheo-
logical response of the developed STF. Figure 9(a) and (b)
depicts the influence of nano-silica wt% on the rheological
response of the developed STF, and Figure 9(c) and (d)
presents the rheological response of the developed STF at
different operating temperatures. From the figure, it is
evident that the viscosity of all the developed STFs varies
non-linearly with respect to the applied shear rate. Upon

application of the shear rate, STF experienced both shear
thinning as well as shear thickening. At lower shear rates, a
shear-thinning response was observed and at higher shear
rates, a shear-thickening response was observed [42,79,85,86].
From Figure 9(a) and (b), it can be observed that with the
increase in the nano-silica wt%, critical shear rate values
have decreased, and once the shear rate exceeds its critical
value, a sudden jump in the viscosity of the STF can be
observed. When the effect of the temperature was investigated
on the rheological response of the STF, it was found that with
the increase in the temperature, the shear rate required for
attaining the highest viscosity and critical value of the shear
rate also increases and decreases in peak viscosity values, as
depicted in Figure 9(c) and (d). Also, results of the rheological
study have revealed that, with the increase in the particle size
(from 100 to 500 nm), the critical shear rate values decrease.
Along with the many advantages in ballistic impact applica-
tions, STF exhibits certain limitations like temperature sensi-
tivity, limited durability, and complex manufacturing pro-
cesses [87].

4.2 Graphene nanoparticle coating

As graphene is a rigid and high-strengthmaterial, the potential
future of graphene in ballistic applications has been investi-
gated [90–92]. Previously, graphene layers were employed in
manufacturing body armours to reduce blunt trauma and

Figure 7: Propagation of stress waves in neat and STF-treated fabrics [83].
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Figure 8: SEM images of Kevlar fabric impregnated with STF (35 wt%) [84].

Figure 9: Rheological behaviour of STF: (a) [84] and (b) [42] for different wt% of nanosilica and (c) [88] and (d) [89] at different temperatures.
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dissipate the projectile’s kinetic energy away from the strike
zone. However, the manufacturing of graphene-layered body
armour is quite expensive.With the development of nanotech-
nology, graphene nanoparticles have been used in the manu-
facturing of body armours.

The application of graphene nanoplates on the high-perfor-
mance fabric surface results in the increase of tensile strength,
tenacity, and Young’s modulus of the nanocomposites [93].

Reinforcement of Aramid fabric (Twaron®) was performed
with graphene oxide (GO) solution; subsequently, heat treat-
ment was carried out at 120°C. The ballistic behaviour of the
fabric was improved by increasing the coefficient of friction
of the fibres. A comparison between neat and GO-coated fab-
rics with one and two filtrations was carried out; GO-coated
fabric with two filtrations has shown better resistive force
(50% increase) in comparison with neat fabrics [31]. All the

Figure 10: (a) OM of neat aramid, (b) SEM of neat aramid, (c) OM of aramid+ GO (1), (d) SEM of aramid+ GO(1), (e) OM of aramid + GO(2), and (f) SEM of
aramid + GO(2) [31].
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samples were compared using optical microscopy (OM) and
scanning electron microscopy (SEM). As shown in Figure 10,
smooth surfaces were observed on OM (a) and SEM (b) for
neat aramid fabric. Figure 10(c) and (d) shows the partial
covering of GO flakes from the first filtration. Moreover,
Figures 10(e) and 26(f) show almost complete covering of
small GO flakes on aramid from the second filtration [31].
The uniform distribution of GO flakes during coating
helps in obtaining a superior ballistic performance of
the aramid [90].

A molecular dynamic test was carried out on graphene-
coated polyethylene samples, and it was found that gra-
phene has the potential to transform polyethylene into a
BIR high-performance material. Over an eight-fold increase
in the ballistic impact, the resistant capacity of the polyethy-
lene can be achieved by coating a layer of graphene on it.
The impact of graphene was more pronounced when gra-
phene was added in the form of a coating on the surface
rather than as reinforcement. In the multi-layered body
armour system, graphene at the topmost layers only con-
tributed to the absorption of ballistic impact energy, as
depicted in Figure 11 [94].

To understand the significance of the incorporation of
graphene nanopowder in its ballistic properties, experi-
ments were conducted on a glass fibre-based composite.
Two types of composites with 2 and 3mm thicknesses
were developed using the vacuum-assisted resin transfer
moulding technique. Upon the addition of 0.1 wt% of gra-
phene nanoplatelet to the composite, the energy absorp-
tion capacities of the 2 and 3 mm thick samples improved
by 9.2 and 8.2%, respectively. An increase in the energy
absorption capacity was attributed to the enhanced ductile
properties of the composite [95].

To evaluate ballistic performance, an investigation
was carried out on curaua fibres (CFs) coated with gra-
phene oxide. The coating was done by immersing the CF
in the graphene oxide solution (0.1 wt% with respect to the
fibre), and then the coated fibres were dried in an oven for
24 h at 80°C. The presence of graphene oxide was con-
firmed by the Raman and Fourier transform infrared spec-
troscopy. From the FTIR analysis, it was evident that gra-
phene oxide exhibited changes in the characteristic bands
of the CFs [96]. Changes in the surface morphologies of the
CFs after the deposition of graphene oxide can be observed
in SEM images, as presented in Figure 12. At higher magni-
fications, cracks have opened up on the CF surface due to
the intensity of the electron beams, as presented in Figure
12(a), with a white arrow indicating the crack location. How-
ever, graphene oxide-coated CF was more stable, and the
surface was more intact without any visible cracks, as
shown in Figure 12(b).

4.3 CNT coating

CNTs have been extensively employed in various applica-
tions owing to their excellent chemical, electrical, mag-
netic, and mechanical properties. CNTs are used in the
making of useful articles like bulletproof vests, artificial
muscles, expansion-proof blankets, and reinforced mate-
rials [97]. To explore the capability of CNTs in ballistic beha-
viour, it is essential to understand the mechanism of bullet
impact involving how the velocity, momentum, force, and
energy vary in the time horizon when the bullet strikes.
CNTs with a larger area can withstand projectiles with

Figure 11: Velocity profile of the projectile: (a) coated sample and (b) multi-layered reinforced sample [94].
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higher velocity. Body armours from CNTs exhibit sustained
resistance, even when multiple bullets are shot at the same
location [98]. The performance of polymer composites at
cryogenic temperatures can be enhanced with the inclusion
of an appropriate amount of CNTs. CNTs are categorised into
two types: single-walled and multi-walled CNTs. From an
economical perspective, MWCNTs are comparatively less
expensive than SWCNTs [99].

Though fibres like UHMWPE are used significantly in
ballistic and aerospace applications, it possesses poor adhe-
sion properties with the polymers due to their non-polarity
and chemical inertness [100–103]. To overcome this limita-
tion, two approaches are generally employed: (i) the use of
surface treatment of the fibre to enhance the surface energy
and (ii) the inclusion of nano-reinforcements in the matrix
to decrease the surface energy [104–106]. The introduction
of polar functional groups onto the polymer matrix can be
achieved by incorporating various nano-reinforcements,
like multi-walled CNTs, carbon nanofibres (CNFs), nano-
clay, and graphene nanoplatelets (GnPs) [107–109]. CNTs
are known for possessing outstanding Young’s modulus
(greater than 1 TPa) and tensile strength (100 times greater
than that of the strongest steel). An investigation was carried
out on the UHMWPE/epoxy composite by incorporating
MWCNT as a secondary reinforcement. To enhance the com-
patibility with the epoxy matrix, chemical treatment is car-
ried out on UHMWPE and MWCNTs by using glycidyl metha-
crylate and amino-thiol. Results showed that chemical treatment
increases the wettability, adhesion, tensile properties,
and inter-laminar shear stress [110]. The study conducted
on carbon fibre/MWCNT/epoxy nanocomposites found that
the inclusion of MWCNT results in an increase in conductivity.

thermogravimetric analysis has shown that with the increase
in MWCNT content, the thermal stability of the nanocompo-
sites is also enhanced [111]. As the army bases are located in
various climate conditions, soft body armours must possess
good thermal stability.

An investigation was carried out by growing CNT on the
E-glass fabric using the CVD method. The introduction of
CNT in the composite resulted in the reduction of ILSS
and bending properties. However, when the ballistic impact
test (V50) was carried out, the composite consisting of CNT
exhibited an inflated V50 value (up by 11.1%) due to the
enhanced energy absorption properties [15]. An evaluation
of the BIR capacity of the newly developed composite was
carried out. The composite was made up of CNT/polystyrene
ethyl acrylate (PSt-EA)/C-STF/Kevlar. The rheological beha-
viour of the STF developed from PSt-EA was found to
increase significantly upon the addition of CNT. The study
also highlighted the importance of adding an optimum
amount of CNT (1.0%) into the STF. In the current work,
when the amount of CNT addition exceeded 1%, it reduced
its significance. Figure 13(a–d) depicts the results of the yarn
pull-out tests. From the results, it can be observed that for
the neat Kevlar fabric, highest pull-out force recorded was
around 2.5 N, and it increased to 9 N for the Kevlar/STF
sample. Upon the addition of CNT, the pull-out force reached
nearly 15 N, which was the highest among all the samples.
An increase in the pull-out force was attributed to the
enhanced inter-yarn friction (from 0.50 to 0.80) upon the
addition of CNTs. Figure 14(a–c) depicts the SEM images of
neat Kevlar, Kevlar/STF, and Kevlar/STF/CNT. Figure 14(d)
presents the deposition pattern of PSt-EA and CNT nanopar-
ticles [22].

Figure 12: SEM images of the surface of the fibres: (a) CFs and (b) graphene oxide-coated CFs [96].
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Figure 13: Yarn pull-out test: (a) neat Kevlar, (b) Kevlar/STF, (c) Kevlar/STF/CNT, and (d) pull-out forces at 20 mm/min for all the samples [22].

Figure 14: SEM images of (a) neat Kevlar, (b) Kevlar/STF, (c) Kevlar/STF/CNT, and (d) deposition patterns of PSt-EA and CNT nanoparticles [22].
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4.4 Nano-clay

Nano-clays are made up of layered silicates having octa-
hedrally shared Al(OH)3/Mg(OH)3 edge and Si atom bound
tetrahedrally as structural elements. Nano-clays are obtained
from organic sources [112]. In comparison with other nano-
particles, nano-clays are less expensive from an economical
perspective and are pro-environment. These advantages have
encouraged researchers to further explore the utilisation of
nano-clays in nanocomposites for various applications. An
investigation was carried out by Pol et al. [41] to identify
the influence of nano-clays on the ballistic behaviour of the
E-glass/epoxy composite panel. Nano-clays are loaded into the
epoxy system by varying their weight percentage (0–7 wt%)
with respect to the resin. With the incorporation of 3 wt% of
nano-clays, 16% enhancement in the Young’s modulus was
achieved. On the other hand, for 5 wt% of nano-clays,
enhancement of Young’s modulus was restricted to 8%.
Upon the addition of 5 wt% of nano-clays, energy absorption
and damaged area of the panel increased significantly at
142m/s. Another experimental work was carried out on
Kevlar fibre, and nano-clay-reinforced epoxy composite. Gra-
phene and nano-clay (up to 10 wt%) were added to the Kevlar/
epoxy (70/30 vol%) composite as nanofillers. Results from the
flow velocity and drop-down tests indicated that the addition
of nano-clay had a more significant effect in terms of absorp-
tion of energy and impact resistance capability in comparison
with graphene. In the penetration behaviour study, nano-
clays outperformed graphene [38].

Assessment of ballistic performance of E-glass/nano-
clays/polyester composite was carried out at various pre-
load conditions like without preload, and preload in both

uniaxial and biaxial directions for tension and compres-
sion. Results indicated that the application of preload
would result in a decrease in energy absorption and bal-
listic behaviour of the composites. For comparison, two
types of samples were developed, one without nano-clays
and another one with nano-clays (1.5 wt%). Upon the addi-
tion of nano-clays, the surface morphology of the compo-
site changed significantly, as shown in Figure 15 [113]. Bal-
listic test results revealed that the incorporation of nano-
clays in the composite results in an increase in energy
absorption for both no-preload and preload conditions [113].

4.5 Other nanoparticles

Apart from nano-silica, graphene, CNTS, and nano-clays,
other nanoparticles like silica carbide (SiC), titanium boride
(TiB2), boron carbide (B4C), graphite, ZnO nanowires, and
aluminium oxide (Al2O3) were also employed as reinforce-
ment in the development of BIR composites. An examination
was conducted to understand the effect of silane-treated
alumina nanoparticles on the ballistic performance of the
UHMWPE/epoxy composites. The addition of silane-treated
alumina nanofillers was done at different weight percen-
tages like 0, 1, 3, and 5 wt%. Among all the samples, energy
absorbed by the composite consisting of 5 wt% of alumina
was the highest (183.2 J), and the minimum number of plies
required for stopping the bullet was also the least. When the
ballistics test was carried out at an initial projectile velocity
of 373m/s, the residual velocity recorded for the sample
having 5 wt% of alumina was also the least among all [114].

Figure 15: SEM images of the composite (a) without nano-clay and (b) with nano-clays (1.5 wt%) [113].
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To improve the inter-yarn fraction of aramid fabrics,
ZnO nanowires were grown on the surface of aramid fabric
[115]. The increase in the inter-yarn friction was attributed to
the interlocking mechanism between the grown ZnO nano-
wires and fibres. In addition to the inter-yarn friction, ZnO
nanowire growth improved the tensile strength (13%) and
Young’s modulus (10%) of the fabric. In another work, to
improve the fracture toughness of fibre-reinforced composites
(glass/carbon/epoxy), alumina nanofillers (Al2O3) and graphene
nanoplatelets (GNPs) were added as hybrid nano-reinforce-
ments [116]. Upon the addition of nanoparticles, nanobubbles
observed for the neat samples are filled with nanoparticles

(Figure 16), which resulted in the improvement of fracture
toughness of the composite.

The influence of various nanofillers like GNPs, CNTs,
and hexagonal boron nitride sheets (BNNS) on the ballistic
performance of the glass/epoxy composite was studied.
Five variants of nanocomposites, namely (i) glass/epoxy,
(ii) glass/epoxy + GNPs, (iii) glass/epoxy + CNTs, (iv) glass/
epoxy + BNNS + GNPs, and (v) glass/epoxy + BNNS + CNTs,
were developed for carrying out a comparative study.
Ballistic impact test results show that an increase in impact
resistance was observed for all the samples consisting of
nanofillers compared to samples without nanofillers (glass/

Figure 16: (a) Glass fibres, (b) carbon fibres, (c) hybrid glass and carbon fibres, (d) hybrid glass and carbon fibres at 1.5 wt% GNPs and1.5 wt% Al2O3.
(e) Hybrid glass and carbon fibres at 3 wt% Al2O3. (f) Higher magnification of hybrid glass and carbon fibres at 1.5 wt% GNPs and 1.5 wt% Al2O3 [116].
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epoxy). Among all the samples, glass/epoxy + BNNS + GNPs
recorded the lowest exit velocity when tested at the impact
velocity of 134 m/s, as depicted in Figure 17(a). Across sam-
ples, SEA was highest for glass/epoxy + BNNS + CNTs (16.3%
higher compared to neat samples as shown in Figure 17(b)).
SEA of all the nanocomposites was higher than that of the
neat sample [47].

4.6 Dispersion of nanoparticles

The incorporation of nanoparticles in the development of
soft body armour systems is considered one of the promi-
nent methods to enhance its ballistic impact performance
without compromising on the weight aspects. However, the
dispersion of nanoparticles in the composites in a homo-
geneous manner is a very challenging task. Non-homoge-
nous dispersion of nanoparticles can restrict the exploi-
tation of their advantages [117]. Agglomeration of nanoparticles
results in the reduction of their overall effectiveness [118].
During the synthesis of nanoparticles, two types of clusters
are generally formed, known as aggregates and agglomer-
ates. Aggregate clusters are formed by the covalent bond
between the primary particles, whereas agglomerate clus-
ters are formed by weak bonding forces, which can be sepa-
rated into primary particles [119,120]. To obtain proper
homogenous dispersion of nanofillers in a suitable liquid
medium, researchers have used mechanical stirring
and ultrasonication with high intensity [121,122]. Simi-
larly, GnPs were dispersed in epoxy resin with acetone,

ultrasonication, and magnetic stirring (hot plate), as
depicted in Figure 18 [19].

To improve the dispersion of CNTs and break the
agglomerates, plasma functionalisation was carried out
on the surface of CNTs [113]. After functionalisation, CNTs
were able to gel with the matrix material and form a good
homogenous solution. Plasma functionalisation brought
changes to the surface morphology by developing small
defects and functional groups [123]. The hydrothermal
reaction is another effective method for the dispersion of
nanoparticles, in which a solution consisting of nanoparti-
cles and solvent undergoes a heterogeneous reaction at high
temperature and pressure. In an earlier study, MWCNTswere
dispersed in various organic media like ethanol, dichloro-
methane, hexane, and isopropyl alcohol by employing a
hydrothermal reaction. Raman spectroscopy characterisation
revealed that, among all the dispersion media, the dispersion
and debundling ability of MWCNTs increased significantly for
dichloromethane. Results obtained from other characterisa-
tion techniques like UV-Vis spectroscopy and transmission
electron microscopy were also in agreement with the Raman
spectroscopy results [124].

In another study, the dispersion of MWCNs was assessed
in different media like sodium hydroxide, sodium silicate, and
combined sodium hydroxide and sodium silicate. Among
them, the dispersion of MWCNTs was found to be excellent
in the sodium silicate medium. The dispersion process was
carried out with naphthalene sulfonate and ultrasonication,
as shown in Figure 19. The effect of ultrasonication in the
dispersion of MWCNT is evident in Figure 19. The MWCNT

Figure 17: Influence of nanomaterials on the (a) exit velocity of the projectile and (b) upon ballistic impact (134 m/s) SEA by all the samples [47].
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Figure 18: Steps involved in the dispersion of GnPs in the epoxy resins [19].

Figure 19: Effect of ultrasonication in the dispersion of MWCNTs [125].
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bundle had the smallest size, and its behaviour was most
stable in sodium silicate in comparison with other media.
Control over crack propagation and spatial distribution is
best for MWCNTs dispersed in sodium silicate [125].

The summary of the influence of various nanofillers on
the ballistic behaviour of the composites in terms of absorp-
tion of energy and the ballistic limit is presented in Table 1.

5 Methods employed in the coating
of nanoparticles on the fibre/
fabric surface

Over the years, techniques available for the coating of var-
ious materials on fibre surfaces have evolved, as depicted in
Figure 20. Some of the important coating methods employed
during 1990–2000 were sol–gel, physical vapour deposition
(PVD), chemical vapour deposition (CVD), thermal spray,
and electroless [57]. Each coating method has its scope, lim-
itation, and significance. For instance, dip coating and elec-
troless deposition can be accomplished at lower operating
temperatures, unlike CVD and PVD, in which the minimum
operating temperature required for the initiation of the

coating process itself is 250°C. Such higher operating tem-
peratures can restrict the utilisation of CVD and PVD
methods for the fibres having lower melting points like
polymers. Along with these coating techniques, advanced
methods like the EPD technique [133], atmospheric plasma
spraying [134], spray coating [135], radio frequency plasma-
enhanced CVD [136], and flame synthesis methods [137] are
also available for the coating of nanoparticles to enhance the
flexural, tensile, and thermal properties of the fibre/fabric.

Fibres employed in the development of textile-based
body armour systems are mostly non-conductive. Hence, it
is important to understand the coating techniques suitable
for non-conductive materials. Generally, sol–gel, the failure
mechanism of textile-based body, PVD, thermal spray, and
electroless techniques are employed for the coating of nano-
particles on the non-conductive high-performance fibres, as
depicted in Figure 21.

5.1 Sol–gel

It is an economical chemical process in which sol is a
suspension of solid particles in a phase consisting of liquid
and gel is solid particles submerged in the liquid solvent [138].

Table 1: Influence of nanofillers on the ballistic behaviour of the composites

Fibre/fabric Matrix Nanophase reinforcement Energy absorption Ballistic limit Ref.

Jute PEG 40 wt% of nano-silica 34 J 75 m/s [42]
Luffa fibre Epoxy Graphene nanofiller 80.15 J 120 m/s [126]
Basalt fibre Epoxy 2 wt% nano-zirconium oxide +

0.1 wt% graphene oxide
Increased by 67% Increased by 30% [127]

Flax fibres Epoxy 0.2 wt% of TiO2 Increased energy absorption
after TiO2 deposition

— [128]

Curaua Epoxy Graphene oxide coating Higher energy absorption for
GO-coated CFs

— [96]

Heracron PEG 65 wt% of nano-silica Increased by 13% 206m/s [87]
Kevlar (12
layers)

Epoxy Graphene nanoplatelets (0.25
wt%)

150–160 J 250–260 m/s [19]

Kevlar 29 Epoxy 1.65 wt% MWCNTs 6.5% improvement (V50) [129]
E-glass Epoxy Amino-functionalised MWCNTs

(0.3 wt%)
109.56 J Increased by 5–6.5% [130]

E-glass Unsaturated polyester
E15-8082 resin

MWCNTs were grown on E-glass
using CVD

SEA increased by 106% V50 values increased
by 11.1%

[15]

E-glass Epoxy 0.5 wt% nano-silica 56.3 J 110 m/s [131]
Kevlar PEG 35 wt% of nano-silica 70 J (increased by 600%) 115 m/s (increased

by 187.5%)
[84]

UHMWPE PEG 65 wt% of nano-silica Increased by 90% 430 m/s [89]
Kevlar PEG400 Aluminium powder 693 J [132]

Colloidal silica 679 J
Silica carbide 663 J

E glass Epoxy Nano-clay (5 wt%) 100 J (increased by 5%) 130 m/s [41]
UHMWPE Epoxy Silane-treated alumina (Al2O3)

5 wt%
183.2 J increased by 18.04% [114]
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In this process, a chemical solution acts as a precursor to
form an integrated system from discrete particles. Sol–gel
coating can be done in various forms like spraying, dip
coating, and spinning. As the sol–gel coating process is con-
siderably slow, it is not considered a cost-effective option for

industrial applications where a high rate of production is
required [142]. However, sol–gel coating is significant when
substrate has to be protected against decreasing ion release
and corrosion. Inter-yarn friction of a given fabric material
plays a significant role in determining its BIR capacity. The

Figure 20: Technology development in the coating of fibres by various methods [57].

Figure 21: Important nanocoating techniques for non-conductive fibres [2,138–141].
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sol–gel method can be employed to introduce nanoparti-
cles on the surface of high-performance fabrics (Figure 22),
which improves inter-yarn friction and eventually helps
in absorbing the projectile energy during the ballistic impacts
[138].

5.2 PVD coating

PVD-coated materials are employed in a wide range of
applications, from industrial parts to decorative objects
where corrosion and wear-resistant slim films are required
[140]. The main benefit of this method is that customised corro-
sion, mechanical, and aesthetic properties can be obtained.
Generally, the PVD process is carried out in a high-vacuum
chamber where solid or liquid materials get vaporised, and
subsequently, vapour condensation takes place, which in turn
produces a dense and solid film [143]. Evaporation and splut-
tering are the two commonly employed PVD types. Coating
layers obtained from the PVD process are quite thin; hence
multi-layered coating and careful selection of material become
even more important. To summarise, PVD coating has the
potential to be employed in various applications like aerospace,

automotive, biomedical, and defence [144]. The PVD process
offers flexibility in the usage of organic as well as an inorganic
coating material for obtaining the hard and corrosive resistant
layer. The utilisation of the PVD process for the deposition of
polymer material is considered a challenging option due to
polymer degradation. Owing to its higher coating initiation
temperatures of PVD, it is not preferred to develop
polymer-based nanocomposites for ballistic impact applica-
tions. In this direction, further research is required to over-
come these challenges.

5.3 CVD coating

CVD is another vapour deposition method to produce a
coating on the substrate. Like the PVD process, this process
is carried out in a high-vacuum chamber. However, the
coating material in CVD is in the form of gas [145]. In this
process, chemical gases are fed into the high-vacuum
chamber, and chemical reactions among these gases pro-
duce a layer of coating [46]. A wide range of materials in
different forms and compositions can be used to coat the
substrate using the CVD process, including nitrides,

Figure 22: Schematic representation of the sol–gel method [7].
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oxynitrides, carbides, a composition consisting of Si with
Ge and O, carbon in different forms like a diamond, fluor-
ocarbons, graphene, polymers, nanotubes/nanofibres/fibres
W and Ti. The CVD process can be performed in various
categories like an ultra-high vacuum, low pressure, and
atmospheric pressure. Ultra-high vacuum and low-pressure
processes are frequently used. Further classification of the
CVD process is done based on material properties, substrate
heating, and the kind of plasma employed in the vaporisa-
tion of the materials. In the case of the CVD process, heating
of the substrate at 900° is required, which means it cannot

be employed for the materials sensitive to the temperatures.
On the other hand, PVD is considered a potential option for
temperature-sensitive materials.

The growth of CNTs occurs on top of the full 30 cm × 30
cm region on the de-sized GF2 sample. The density of the
grown CNT particles was slightly non-uniform across the
substrate area. The de-sizing process was responsible for
the slightly uneven growth of CNTs [146]. The SEM images
of the grown CNTs at different magnifications are shown in
Figure 23(b–g). The CNT forest was composed of MWCNTs
and the growth of these MWCNTs around the exposed

Figure 23: Growth of MWCNTs on the de-sized GF2 samples: (a) optical microscopic image of GF1, GF2, and CNT-GF2 fabrics and (b–g) SEM images
presenting the growth of MWCNTs at various magnifications [15].
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cylindrical surfaces of the glass fibres (Figure 23(c–g)). The
presence of CNT forest on the upper and lower surfaces of
the fibre was visible, as shown in Figure 23(f). It indicates
the good coverage of MWCNTs around the fibre surface.
Penetration of the grown MWCNTs in the thickness direc-
tion of the fabric was also observed.

Although the use of the CVD technique for coating the
nanoparticles on the fibre surfaces has been done in
the past, they are very less in number, particularly in the
development of BIR nanocomposites. The primary reason
for limited usage is due to the higher coating initiation
temperature associated with CVD, which restricts its appli-
cation on low melting point materials like polymers. In this
direction, further research is required.

5.4 Thermal and other spray coatings

The thermal spray coating process is known to use the heat
source generated from the combustion of chemical, elec-
tric, and plasma to melt the assigned material and even-
tually spray the molten material on the substrate to obtain
the protective coating. The coatings obtained from this type
are reliable from a wear and corrosion resistance point of
view. The thickness obtained from this technique varies
from 20 µm to some millimetres, which is quite higher in
comparison with the thickness obtained from PVD, CVD, or
electroplating. The categorisation of thermal spray coating
into different types is done based on their process specifi-
cation and characteristics. Frequently used categories are

Figure 24: Ultrasonic spray coating of MWCNTs on carbon fibres [135].

Figure 25: SEM images of CNTs spray-coated carbon fibres [135]. (a) raw CFs, (b) CNTs, (c) and (d) CFs with CNT spray coatings.
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detonation, plasma, high-velocity oxyfuel, high-velocity air
fuel, and warm/cold and wire arc spraying. Although
thermal spray coatings are carried out on fibres for dif-
ferent applications [57,147], it is yet to be explored for
ballistic impact applications. In addition to thermal spray
coating, other spray coating techniques like ultrasonic spray
and hand spray coating techniques have been employed
[135,148]. To enhance the surface properties of carbon fibres,
CNTs were spray coated on them (Figure 24) and then the
coated carbons fibres were reinforced with high-density
polyethylene to produce composites. A significant change
in the morphology of the CNT-coated carbon fibres was
observed compared to uncoated carbon fibres as depicted
in Figure 25. The composites prepared from CNT-coated
fibres exhibited enhanced mechanical properties [135]. Simi-
larly, thismethod has the potential to be employed for devel-
oping BIR materials.

5.5 Electroless coating

The electroless coating, also called auto-catalytic coating, is
a non-galvanic kind of coating technique in which several
reactions take place simultaneously in a water-based solu-
tion without the aid of electricity [149,150]. The electroless
coating process is carried out in four steps, namely, surface
treatment, surface sensitisation, surface activation, and
deposition of material on the substrate, as depicted in
Figure 26 [149,151]. Generally, electroless coating bath con-
sists of a metal ion source, complexing agents, reducing
agents, buffering agents, wetting agents, and a stabiliser
[151]. Temperature and pH are the two controllable para-
meters in the electroless coating [152]. Electroless coating
on different fibres was performed in the past to improve
the conductivity, strength, and EMI shielding capability
[149,153]. However, the potential of electroless coating on

Figure 27: SEM images of electroless NiP-coated carbon fibres [149]. (a) Island-shaped protuberance and (b) Tree-shaped protuberance.

Figure 26: Electroless-coating process [149,151,156].
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fibres for ballistic impact applications is yet to be explored.
The electroless NiP-coated fibres exhibit the island-shaped
protuberances (below 70°) and tree-shaped protuberances
(80°), as depicted in Figure 27.

Electroless coating technique is considered one of the
effective options, owing to its cost-effectiveness, higher
throwing power, higher potential to coat conductive as
well as non-conductive surfaces, and potential to coat the
substrate continuously and uniformly [154,155].

The selection of techniques in the development of
nanocomposites depends on the type of fibres, nano-rein-
forcements, the thickness of the deposition, and operating
conditions. To date, most of the researchers have devel-
oped nanocomposites for ballistic impact applications by
modifying the matrix with nano-reinforcements and by dip-
coating methods. Significant scope lies ahead in exploring the
potential of sol–gel, CVD, PVD, spray, and electroless-coating
techniques in the development of BIR nanocomposites.

6 Conclusion

The ballistic impact mechanism is a fast and complex pro-
cess that takes place within 0–200 µs. In composites, the
absorption of ballistic impact energy takes place via major
mechanisms like the tensile failure of yarns that come
under direct contact with the projectile, pull-up of other
yarns that do not come in direct contact with the projectile,
toughness at the interface, and toughness possessed by the
matrix. On the other hand, nanocomposites absorb the
ballistic impact energy via the mechanisms like pinning
cracks, deflection of cracks, immobilisation of polymer
chains, bridging of cracks, and debonding. These mechan-
isms also help in enhancing resistance to delamination.
From the literature, it can be stated that effective results
from the incorporation of nanoparticles can be achieved
only when they are used in optimum quantity.

The significance of impregnation of fabrics in the
nano-silica-based STF for the enhancement of BIR is rea-
lised herein. The incorporation of other nanoparticles along
with nano-silica in the development of STF has the potential
to produce smart and multifunctional body armour systems.
Similarly, the significance of graphene nanoparticles, CNTs,
nano-clays, alumina, zinc oxide nanorods, and other nano-
particles is highlighted from the BIR point of view. In the
future, research on the incorporation of hybrid nanofillers
for ballistic impact applications needs to be carried out to
realise their combined potential.

Techniques employed in the incorporation of the nano-
particles also significantly influence the BIR properties of

the nanocomposites. Among the various coating techniques,
sol–gel, PVD, CVD, thermal spray, and electroless are sui-
table for both conductive and non-conductive surfaces.
Most of the fibres employed in the making of body armour
systems are non-conductive. Among the coating methods
available for non-conductive surfaces, the electroless
method was found to be more economical and user-
friendly. As the operating temperature in the electroless
coating is around 80–90°, it can be a promising option
for materials having low melting points like polymers.
Another big challenge in the incorporation of nanoparticles
is agglomeration. If nanoparticles are not dispersed prop-
erly, then their impact becomes less significant. To achieve
better dispersion of nanoparticles, ultrasonication is carried
out for the desired period in various media. The medium
used for the dispersion depends on the type of nanoparticle
employed in the work.
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