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Abstract: The boundary-layer flow on a shrinking/con-
tracting sheet has abundant industrial applications, which
include continuous glass casting, metal or polymer extru-
sions, and wire drawing. In this regard, the present analysis
focuses the hybrid nanofluid flow on an exponentially extending
sheet. The water-based hybrid nanofluid flow contains CoFe2O4

and TiO2 nanoparticles. Heat transfer rate analysis involves the
utilization of the Cattaneo–Christov heat flux model. Moreover,
the Brownianmotion and thermophoresis effects are used in this
novel work. The mathematical model is presented in the form of
system of partial differential equations, which is then trans-
formed into system of ordinary differential equations (ODEs)
using the similarity variables. The system of ODEs is evaluated
by homotopy analysis method. The variation in the flow profiles
has been investigated using figures and tables. The conclusions
demonstrate that the effect of magnetic parameter is 52% better
for hybrid nanofluid flow than for the pure water. Conversely,
the increasing magnetic parameter diminishes the thermal
transfer rates for water, TiO2–H2O, CoFe2O4–H2O, and
TiO2–CoFe2O4/H2O. The increasing thermophoresis parameter
upsurges the thermal flow rate of nanofluids and hybrid
nanofluid, while the increasing Brownian motion parameter
lessens the thermal transfer rates of nanofluids and hybrid
nanofluid. The increasing effect of thermophoresis parameter
is 39% better for hybrid nanofluid than for the base fluid.

However, the declining impression of Brownian motion factor
is 48% greater for hybrid nanofluid related to pure water.

Keywords: hybrid nanofluid flow, nanoparticles, three-
dimensional, exponentially stretching sheet, thermal and
mass flux conditions, Cattaneo–Christov heat flux model

Nomenclature

A temperature exponent parameter
B concentration exponent parameter
B0 magnetic field strength ( )− −kg s A1 1

BiT thermal Biot number
C concentration ( )-mol m 3

Cp specific heat ( )− −J kg K1 1

DB coefficient of Brownian
diffusion ( )−m s2 1

DT coefficient of thermophoresis
diffusion ( )−m s2 1

Ec Eckert number
f g θ ϕ, , ,
0 0 0 0

initial guesses (−)
hf coefficient of heat

transfer ( )− −W m K2 1

k thermal conductivity ( )− −W m K1 1

L reference length (m)
L L L L, , ,f g θ ϕ linear operator (−)
M magnetic parameter

( )=m i 1, 2, 3, ... ,10i constants in general solution (−)
Nb, Nt Brownian motion and thermo-

phoresis factors
Sc, Pr Schmidt and Prandtl numbers
w w w, ,1 2 3 velocity components ( )−m s 1

x y z, , coordinate axes (m)

Greek letters

ρ density ( )−kg m 3
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μ dynamic viscosity ( )− −kg m s1 1

σ electrical conductivity ( )−S m 1

φ φ,
1 2

nanoparticles’ volume fractions
Λ thermal relaxation time parameter
α ratio of rate parameter

Subscripts

∞ free stream
w surface
f fluid
nf nanofluid
hnf hybrid nanofluid
1, 2 first and second nanoparticles

1 Introduction

As the technology continues advancement, heat transmission
has been the most significant procedure. Transportation,
thermal power generation, chemical processes, manufac-
turing, as well as several other applications and sectors
requiring heat generation, demand effective thermal perfor-
mance to obtain the best results. Various analyses have been
attempted in recent years to expand the thermal transfer
capabilities of the transmitting medium, which is referred
to as thermal transmission of fluid. Maxwell [1] was the first
one to present the concept of dissolving solid particles that
have high thermal conductivity into a base fluid, which was
later carried on by Hamilton and Crosser [2] to increase the
thermal conductance of fluid. Despite this, numerous defects
and restrictions remained, like clotting in the flow field
channel. In response to this limitation, a rapid investigation
was conducted, resulting in the development of nanofluids.
Choi and Eastman [3] manufactured this innovative thermal
transference fluid, and it is thought that owing to its unique
characteristic, it will be able to avoid coagulation of the flow
passage. With the continuous progress of technology, a novel
type of thermal transfer fluid called hybrid nanofluid has
emerged as advancement over traditional nanofluids. This
innovative fluid is formulated by dispersing two types of
particles (nanosized) with excellent thermal conductivity.
Sarkar et al. [4] highlighted the dominance of hybrid nano-
fluid regarding their thermophysical properties, heat trans-
mission and potential applications, and obstacles. According
to the review, the appropriate hybridization of hybrid nano-
fluids might make them highly promising for heat transfer
augmentation. Nabil et al. [5] offered a review article on the
hybrid nanofluid flow. Sajid and Ali [6] presented a compre-
hensive review based on artificial neural networking,

experimental and numerical studies of hybrid nanofluids.
Devi and Devi [7] investigated the magnetized Cu-Al2O3/water
hybrid nanofluid flow on elongating surface. Their results
signified that the thermal transference rate of the Cu-Al2O3/
water is better than that of the Cu/water. Zainal et al. [8]
discussed hybrid nanoparticles’ flow containing Cu and
Al2O3 nanoparticles. For the general synchronism of the elec-
tric and magnetic fields, they found that the magnetic field
and suction slow down fluid movement. Furthermore,
increases in the radiative heat parameter enhances the Nus-
selt number. Roy and Pop [9] inspected hybrid nanofluid flow
over an extending sheet and showed that for the escalating
values of magnetic, suction, Cu nanoparticles’ volume frac-
tion, and second-grade parameters, the dual solutions’ exis-
tence region expands. Furthermore, stability analysis is con-
ducted to identify the problem that has actually stable and
unstable solutions. Sreedevi and Reddy [10] discussed Wil-
liamson hybrid nanoparticles’ fluid flow on a gyrating
cylinder using the impacts of microorganisms and thermal
as well as mass flux model suggested by Cattaneo-Christov.
Babu et al. [11] investigated computationally the optimization
of entropy for MHD nanofluid flow on a nonlinear elongating
surface convective and slip constraints at the boundaries and
have noted that nonlinear elongating features of the surface
are supporting the thermal flow more effectively. Reddy and
Sreedevi [12] examined the impacts of thermal as well as
mass flux model suggested by Cattaneo–Christov on Maxwell
hybrid nanofluid flow on a shrinking/elongating surface.
Reddy and Sreedevi [13] explored thermal transportation
for carbon nanotubes (CNTs) nanofluid flow in conduit using
improved Fourier thermal flux. Harish Babu et al. [14]
inspected influences and the impacts of inclinedmagnetic field
for CNTs on exponentially elongating sheet using slip effects.
Harish Babu et al. [15] discussed the collective influences of
thermal flow and magnetic field on nanofluid flow over elastic
surface. Further research on similar concept is based on pre-
vious studies [16–21].

The boundary-layer flow past a shrinking/elongating
sheet has numerous applications toward manufacturing
processes in the field of engineering, which include con-
tinuous glass casting, metal or polymer extrusions, and
wire drawing. Crane [22] was the pioneer to investigate
flow past a linearly extending sheet. Various flows over a
stretched sheet and flows over a contracting surface have
just recently been a focus of concern. Bhattacharyya [23]
carried out the investigation that indicates the criteria for
the presence of steady boundary-layer flow as a result of
the exponential shrinking sheet. Their result showed that
when the mass suction factor surpasses a specific critical
value, steady flow is feasible. Mat Yuzut [24] investigated
the heat transmission of MHD fluid flow on exponentially
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stretched surface. Their consequences showed that the
transmission rate of heat was observed to be declined
when the penetrability parameters were increased. Waini
et al. [25] addressed the hybrid nanofluid flow on an
extending/shrinking sheet. It was perceived that the heat
transmission rate is augmented with the augmenting volume
fraction of the nanoparticles. Further research on hybrid
nanofluid flow on an extending/shrinking surfaces can be
observed in the study by Ishak [26]. Abbas et al. [27] discussed
computationally nonlinearly radiative MHD nanofluid flow
on a vertical sheet and have noted that skin friction has
augmented, while Nusselt number has weakened with expan-
sion in concentration of nanoparticles. Abbas et al. [28] exam-
ined theoretically nanofluid flow on exponentially elongating
surface with impacts of velocity at free stream. Abbas and
Shatanawi [29] examined thermal and mass transportations
for Casson nanofluid flow on a variable elongating Riga sur-
face and have noted that velocity characteristics weakened
with upsurge in micro-polar factor.

Heat and mass transfer is a major topic of research for
its applications toward industries and engineering, such as
food processing, biomedical sciences, business, and tissue
conduction. Akbar et al. [30] discussed mixed convective
and time-independent flow of a viscous fluid past an
extending sheet with magnetic field impact. Their results
showed that the augmenting species and thermal Grashof
numbers have direct impact on thermal transference rate,
while the thermophoresis and Schmidt number have redu-
cing impact of heat transfer rate. Khan et al. [31] examined
the squeezing flow over a sensor sheet. The results dis-
closed that growth in squeezing factor has improved the
velocity panel of the non-Newtonian fluid. Sandeep et al.
[32] examined the heat transmission of magnetohydrody-
namic (MHD)-radiated flow of a dusty nanofluid containing
Cu and CuO nanoparticles on an exponentially extending
surface and have noted that thermal flow rate has aug-
mented with escalation in nanoparticles’ volume fractions,
while the wall fraction has reduced with augmenting nano-
particles’ volume fractions. Haq et al. [33] discussed the MHD
flow of a thermally convective nanofluid past an exponen-
tially expending surface with suction/injection effects. Heat
and mass transference of the hybrid nanofluids flow toward
different physical phenomena can be analyzed in previous
studies [34–41].

The analysis of hybrid nanofluid flow past an exponen-
tially extending sheet has many applications in various fields,
especially in engineering, fluid dynamics, and heat transfer.
Some of the these applications include heat exchangers,
cooling systems, renewable energy systems, material proces-
sing, biomedical applications, aerospace engineering, oil and

gas industries, and energy conversion systems. Keeping these
applications in mind, the current analysis focuses on the flow
of hybrid nanofluids over an exponentially extended surface
with thermal convection and mass flux constraints. The aim
of this analysis is to investigate the flow of hybrid nanofluids
containing TiO2 andCoFe O2 4 nanoparticles andH O2 as a base
fluid under thermal convection and mass flux conditions.
Furthermore, the Cattaneo–Christov heat flow model is consid-
ered to analyze the heat andmass transfer flow. Furthermore, a
strong magnetic field is considered to analyze the magnetized
flowof the hybrid nanofluid over an extending sheet. Problem is
formulated both physically andmathematically in Section 2. The
homotopic solution of the present model is presented in Section
3, and the convergence of the applied technique is presented in
Section 4. The physical discussion about the obtained results is
presented in Section 5 and concluded in Section 6.

2 Formulation of the problem

Take a three-dimensional viscous flow of −TiO CoFe O /H O2 2 4 2

hybrid nanofluid on an exponentially elongating surface.
The surface stretches in x - and y-directions with velocities

( )+ = ⎡⎣ ⎤⎦
+

W x y W expw

x y

L1 10 and ( )+ = ⎡⎣ ⎤⎦
+

W x y W exp
x y

L2w 20 ,

respectively, whereW10 andW20 are the stretching constants. A
magnetic field ( )Β B0, 0, 0 is practiced in normal direction to
flow of fluid, where B0 is the magnetic field strength. Figure 1
shows the physical representation of the flow problem. The
temperature and concentration of fluid are represented by T

and C . Tw, ∞T , Cw, and ∞C are the surface and free stream
temperatures and concentrations, respectively. The stretching
surface is also exposed to thermal convection and mass flux
conditions. In order to examine the heat transfer rate, the
Cattaneo–Christov heat flux model is used. The consequences
of thermophoresis and Brownian motion are also assumed.
Using the abovementioned suppositions, the principal equa-
tions are given in previous studies [42–44]:
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with boundary conditions [42–44]:
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The thermophysical characteristics of the nanofluid
and hybrid nanofluid, respectively, are described as fol-
lows with their numerical values depicted in Table 1:
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The following similarity transformations are according
to flow assumptions:
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By employing equation (9) in the leading equations
(1)–(4), we have
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The skin friction coefficients along primary and sec-
ondary directions are illustrated as:
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The dimensionless forms are written as
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are the local Reynolds

numbers.
The local Nusselt number is described as
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In dimensionless form, we can write
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In dimensionless form, we can write
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3 Homotopy analysis method
(HAM) solution

The HAM is the method used in this work to determine the
solutions. The initial guesses and linear operators are
defined as follows:

Figure 1: Geometrical view of flow problem.
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with properties:
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Here ℓ( )=i 1, 2, 3, ... ,10i are the constants in general
solution.

4 HAM convergence

In order to investigate the convergence of series solutions,
HAM is applied. The liner auxiliary factors ℏf , ℏg , ℏθ, and ℏϕ

play a main role in regulating and adjusting the conver-
gence areas of the modeled equations. Thus, the ℏ-curves
for velocities, thermal, and concentration distributions are
plotted in Figure 2. It can be understood from Figure 2 that
these flow profiles converge in their respective regions.

5 Results and discussion

This segment deals the variations in velocities along x - and
y-axes ( ( )′f ξ , ( )′g ξ ), temperature ( ( )θ ξ ), and concentration
( ( )ϕ ξ ) profiles via different physical parameters, which are
displayed in Tables 3–5 and Figures 3–13. The ranges of
the embedded factor are chosen as M = 0.4, Pr = 6.2, Ec =

0.2, Nb = 0.1, Nt = 0.1, Sc = 0.3, α = 1.0, Λ = 0.5, A = 0.2, B = 0.2,
φ

1
= 0.04, φ

2
= 0.04, and BiT = 0.5. Table 2 shows the assess-

ment of the current consequences with previously issued
reports and observed a strong promise with those published
reports. Table 3 portrays the impact of M on skin friction
along x-direction for water, −TiO H O2 2 , −CoFe O H O2 4 2 , and

−TiO CoFe O /H O2 2 4 2 . It is found that the increase in M boosts
the skin friction. Physically, growth in M augments Lorentz
force that opposes velocity and hence the skin friction coeffi-
cients augment. Additionally, the effect of magnetic parameter
is lower on pure water as compared to nanofluids and hybrid
nanofluid. This is for mixing of solid nanoparticles in water,

Table 1: Thermophysical features of the nanoparticles and pure
fluid [45–48]

Base fluid/nanoparticles C
p

ρ k σ

H O2 4,179 997.1 0.6071 5.5 × 10−6

TiO2 686.2 4,250 8.9538 2.38 × 106

CoFe O2 4 700 4,907 3.7 5.51 × 109

Table 2: Comparison of the present results of ( )θ ′ 0 with formerly
reported outcomes, when = =φ φ 0.0

1 2

Pr A Liu et al. [49] Magyari
and Keller
et al. [50]

Ramzan
et al. [51]

Present
results

1 −1.5 0.37741256 0.377413 0.37741301 0.37714
0 −0.54964375 −0.549643 −0.54964339 −0.54964
1 −0.95478270 −0.954782 −0.95478277 −0.95478
3 −1.56029540 −1.560294 −1.56029499 −1.56029

5 −1.5 1.35324050 1.353240 1.35324055 1.35324
0 −1.52123900 −1.521243 −1.52123893 −1.52123
1 −2.50013157 −2.500135 −2.500135210 −2.50014
3 −3.88655510 −3.886555 −3.88655512 −3.88656

10 −1.5 −2.20002816 2.200000 2.20000798 2.20008
0 −2.25742372 −2.2574249 −2.25742910 −2.25743
1 −3.66037218 −3.660379 −3.66037911 −3.66038
3 −5.62819631 −5.635369 −5.635316812 −5.63532

Table 3: Impact of M on Cx

==ϕ ϕ
1 2

M TiO ‒H O
2 2

CoFe O ‒H O
2 4 2

TiO ‒CoFe O /H O
2 2 4 2

0.0 0.5 1.52250 1.52250 1.52250
0.0 1.0 1.70583 1.70583 1.70583
0.0 1.5 1.88917 1.88917 1.88917
0.05 0.5 1.83757 1.86401 2.23569
0.05 1.0 2.07889 2.10533 2.55160
0.05 1.5 2.32022 2.34665 2.86751

Table 4: Impact of M on Cy

==ϕ ϕ
1 2

M TiO ‒H O
2 2

CoFe O ‒H O
2 4 2

TiO ‒CoFe O /H O
2 2 4 2

0.0 0.5 0.15225 0.15225 0.15225
0.0 1.0 0.17058 0.17058 0.17058
0.0 1.5 0.18891 0.18891 0.18891
0.05 0.5 0.18375 0.18640 0.22356
0.05 1.0 0.20788 0.21053 0.25516
0.05 1.5 0.23202 0.23466 0.28675
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Figure 2: ℏ-curves for ( )f ″ 0 , ( )g″ 0 , ( )θ ′ 0 , and ( )ϕ′ 0 .

 Black:Ti O2
Green:CoFe2O4

Red:TiO2 Co Fe2O4

M 1.0,2.0,3.0,4.0.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

f'

Figure 3: Impact of M on ( )f ξ′ .
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Figure 4: Impact of M on ( )g ξ′ .
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Figure 5: Impact of α on ( )f ξ′ .

Table 5: Impacts of M , Nt and Nb on Nu

==ϕ ϕ
1 2

M Nt Nb TiO ‒H O
2 2

CoFe O ‒H O
2 4 2

TiO ‒CoFe O /H O
2 2 4 2

0.0 0.5 0.3 0.3 0.05032 0.05032 0.05032
0.0 1.0 0.05400 0.05400 0.05400
0.0 1.5 0.06022 0.06022 0.06022
0.0 0.4 0.08066 0.08066 0.08066
0.0 0.6 0.08302 0.08302 0.08302
0.0 0.8 0.08424 0.08424 0.08424
0.0 0.4 0.07532 0.07532 0.07532
0.0 0.6 0.06926 0.06926 0.06926
0.0 0.8 0.06320 0.06320 0.06320
0.05 0.5 0.3 0.3 0.05916 0.05758 0.11552
0.05 1.0 0.06056 0.05921 0.11593
0.05 1.5 0.06139 0.06019 0.11686
0.05 0.4 0.08027 0.04673 0.11244
0.05 0.6 0.08294 0.04933 0.11304
0.05 0.8 0.08433 0.05067 0.11335
0.05 0.4 0.07424 0.04087 0.11111
0.05 0.6 0.06740 0.03422 0.10960
0.05 0.8 0.06056 0.02757 0.10809
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which increases the electrical conductance of base fluid, and
hence, dominant impacts are found in nanofluids and hybrid
nanofluid. Also, this effect is greater for −TiO CoFe O /H O2 2 4 2

than for −CoFe O H O2 4 2 and is greater for −CoFe O H O2 4 2 than
for −TiO H O2 2 . Furthermore, the effect of magnetic parameter

( =M 1.5) is 52% greater for hybrid nanofluid flow than for the
pure water. A similar impression of M is found on skin friction
along y-direction for water, −TiO H O2 2 , −CoFe O2 4 H O2 , and

−TiO CoFe O /H O2 2 4 2 , as portrayed in Table 4. Table 5 portrays

Black:TiO2
Green:CoFe2O4

Red:TiO2 CoFe2 O4

0.1,0.3,0.5,0.7.
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Figure 6: Impact of α on ( )g ξ′ .
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Figure 7: Impact of Nt on ( )θ ξ .

Nt 0.1,0.2,0.3,0.4.
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Figure 8: Impact of Nt on ( )ϕ ξ .
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Figure 9: Impact of Nb on ( )θ ξ .
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Figure 10: Impact of Nb on ( )ϕ ξ .

Black:TiO2
Green:CoFe2O4

Red:TiO2 CoFe2 O4

1.0,2.0,3.0,4.0.

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

Figure 11: Impact of Λ on ( )θ ξ .
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the influence of various factors on Nusselt number for water,
−TiO H O2 2 , −CoFe O H O2 4 2 , and −TiO2 CoFe O /H O2 4 2 . Growth in

M reduces the heat transfer rates of water, −TiO H O2 2 ,
−CoFe O H O2 4 2 , and −TiO CoFe O /H O2 2 4 2 . Physically, the

upsurge in M hikes the shear stress and causes a growing
behavior in skin frictions and Nusselt number. Furthermore,
Nusselt number is greater for −TiO CoFe O /H O2 2 4 2 , −TiO H O2 2

and −CoFe O H O2 4 2 compared to pure water. Additionally, the
greatest increasing behavior is found for −TiO CoFe O /H O2 2 4 2 .
The increasing thermophoresis parameter increases the heat
transfer rates of water, −TiO H O2 2 , −CoFe O H O2 4 2 , and

−TiO CoFe O /H O2 2 4 2 , while the increasing Brownian motion
parameter reduces the heat transfer rates of pure water,

−TiO H O2 2 , −CoFe O H O2 4 2 , and −TiO CoFe O /H O2 2 4 2 . The
increasing effect of thermophoresis parameter ( =Nt 0.4) is
39% higher for hybrid nanofluid than for pure fluid. Conver-
sely, the declining impact of =Nb 0.4 is 48% higher for hybrid
nanofluid. Figures 3 and 4 show the impression of M on velo-
city profiles ( ( )′f ξ , ( )′g ξ ). Growth in M lessens both ( )′f ξ and

( )′g ξ . The increasing M generates the Lorentz force that opposes

the −TiO H O2 2 , −CoFe O H O2 4 2 , and −TiO CoFe O /H O2 2 4 2 profiles.
This opposing force reduces the velocities profiles, as shown
in Figures 3 and 4. Furthermore, the impact of M is greater
for hybrid nanofluid flow in contrast of nanofluids. This effect
is for greater electrical conductance of the hybrid nanofluid.
Figures 5 and 6 demonstrate the impression of α on ( )′f ξ and

( )′g ξ . Growth in α diminishes the velocity profiles of the
−TiO H O2 2 , −CoFe O H O2 4 2 , and −TiO2 CoFe O /H O2 4 2 along

the x-direction, while reduces along the y-direction. The ratio
parameter is defined as =α W W/20 10, which clearly shows
that there is a direct relation between the stretching constant
W20 and α, while an inverse relation between the stretch-
ing constant W10 and α. Thus, the increasing α has direct
relation to W20 and reverse relation to W10. Therefore, the
velocity profiles of the −TiO H O2 2 , −CoFe O H O2 4 2 , and

−TiO CoFe O /H O2 2 4 2 along the x -direction reduce and the velo-
city profiles of the −TiO H O2 2 , −CoFe O H O2 4 2 , and

−TiO CoFe O /H O2 2 4 2 along the y-direction augment. Figures
7 and 8 depict the impacts of Nt on ( )θ ξ and ( )ϕ ξ of the

−TiO H O2 2 , −CoFe O H O2 4 2 , and −TiO2 CoFe O /H O2 4 2 . The
increasing Nt means the strengthening of thermophoretic
force. On surface of the stretching sheet, a higher concentra-
tion is witnessed, whereas the concentration reduces as the
nanofluids and hybrid nanofluid moves away from the sur-
face. Additionally, the higher impression is observed for
both −TiO H O2 2 and −CoFe O2 4 H O2 as compared to

−TiO CoFe O /H O2 2 4 2 . On the other hand, the impact of Nt

is slightly greater for −TiO CoFe O /H O2 2 4 2 as compared to
−TiO H O2 2 and −CoFe O H O2 4 2 . Figures 9 and 10 depict the

effects of Nb on ( )θ ξ and ( )ϕ ξ of the −TiO H O2 2 ,
−CoFe O H O2 4 2 , and −TiO CoFe O /H O2 2 4 2 . Upsurge in Nb

boosts ( )θ ξ , while it diminishes ( )ϕ ξ . The influence of
Nb is better for −TiO CoFe O /H O2 2 4 2 as compared to

−TiO H O2 2 and −CoFe O H O2 4 2 . Figure 11 illustrates the
effects of Λ on ( )θ ξ of the −TiO H O2 2 , −CoFe O H O2 4 2 ,
and −TiO CoFe O /H O2 2 4 2 . The increasing Λ reduces the
thermal profiles of −TiO H O2 2 , −CoFe O H O2 4 2 , and

−TiO CoFe O /H O2 2 4 2 . The increasing Λ indicates that the
nanofluids and hybrid nanofluid take extra time to
transfer heat into surrounding particles, which con-
sequently decline the thermal profiles. Additionally, the
reducing impact is greater on −TiO CoFe O /H O2 2 4 2 as
compared to −CoFe O H O2 4 2 and −TiO H O2 2 . Figure 12 shows
the impression of BiT on thermal distribution of −TiO H O2 2 ,

−CoFe O H O2 4 2 , and −TiO CoFe O H O/2 2 4 2 . The increasing BiT

escalates the thermal profiles. The increasing values of BiT

understand the augmentation in convective heating at the
surface. It should be noted that the isothermal case is
achieved for → ∞BiT and the isoflux wall condition
is achieved for =Bi 0T . It is obvious that the increasing
BiT has greater impact on the surface as revealed in
Figure 12. Figure 13 illustrates the impression of Sc on

Black:TiO2
Green:CoFe2O4

Red:TiO2 CoFe2 O4

BiT 1.0,2.0,3.0,4.0.

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 12: Impact of BiT on ( )θ ξ .

Sc 0.1,0.2,0.3,0.4.

 Black:TiO2
Green:CoFe2 O4

Red:TiO2 CoFe2 O4
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Figure 13: Impact of Sc on ( )ϕ ξ .
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concentration profiles of the −TiO H O2 2 , −CoFe O H O2 4 2 , and
−TiO CoFe O /H O2 2 4 2 . Growth in Sc diminishes the concentra-

tion profiles. Schmidt number is defined as =Sc
ν

D

f

B

. From
here, we see that there is an inverse relation among Schmidt
number and Brownian diffusion. So a hike in Schmidt
number diminishes the Brownian diffusion of the fluid flow
that ultimately diminishes the concentration distribution.
Furthermore, the decreasing impact of Sc is dominant
for −TiO CoFe O /H O2 2 4 2 .

6 Conclusion

The present analysis focuses the hybrid nanofluid flow on
an exponentially extending surface. The nanoparticles of
CoFe2O4 and TiO2 are mixed in water to hybridize the fluid.
Thermal flow rat involves the utilization of the Cattaneo–
Christov heat flux model. The famous Buongiorno model
has also used in this study. The mathematical model is
evaluated by HAM. The concluding remarks are presented
at the end of this analysis.
1) It is found that upsurge in magnetic factor augments the

skin friction coefficients along both directions. Furthermore,
the effect of magnetic parameter ( =M 1.5) is 52% greater
for hybrid nanofluid flow than for the pure water. However,
the increasing magnetic parameter reduces the heat
transfer rates of water, −TiO H O2 2 , −CoFe O H O2 4 2 , and

−TiO CoFe O /H O2 2 4 2 . Additionally, the greatest reducing
behavior is found for −TiO CoFe O /H O2 2 4 2 .

2) The increasing thermophoresis parameter increases the
heat transfer rates of water, −TiO H O2 2 , −CoFe O H O2 4 2 ,
and −TiO CoFe O /H O2 2 4 2 , while the increasing Brownian
motion factor diminishes the heat transfer rates of purewater,

−TiO H O2 2 , −CoFe O H O2 4 2 , and −TiO CoFe O /H O2 2 4 2 . The
increasing effect of thermophoresis parameter (Nt = 0.4) is
39% higher for hybrid nanofluid than for the pure fluid. On
the contrary, the declining impact of Brownian motion factor
( =Nb 0.4) is 48% higher in case of hybrid nanofluid.

3) The increasing magnetic parameter diminishes the
velocity panels along both directions. Also, due to the
greater electrical conductivity of fluid, the highest
impact of magnetic parameter is found for hybrid
nanofluid flow.

4) The increasing ratio of rate factor reduces the velocity
distribution of the nanofluid and hybrid nanofluid in
the x-direction and augments along the y-direction.

5) Increasing the thermophoresis, thermal Biot number,
and Brownian motion factors raises the thermal panels
of fluids, while increasing the thermal relaxation time
lowers them.

6) The concentration distributions of fluid are reduced
when the Brownian motion factor and Schmidt number
increase.
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