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Abstract: Cancer treatment often causes adverse effects
and toxicity, as chemotherapy drugs affect both cancerous
and healthy cells. Scientists seek to target tumor cells spe-
cifically and minimize harm to normal cells. Smart nano-
particles (NPs) are a modern technique that can release
drugs when triggered by internal or external stimuli, such
as temperature, pH, ultrasound, etc. This review covers sti-
muli-responsive micelle-based nanoparticles (SRM-NPs), a
promising drug delivery platform that can enhance drug
efficacy and reduce toxicity. It discusses the recent develop-
ments and applications of SRM-NPs, their responsiveness to
different stimuli, and their potential to overcome drug resis-
tance and adaptive responses. It also addresses the chal-
lenges and issues related to their stability, reproducibility,
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biocompatibility, safety, and optimization. The study con-
cludes that SRM-NPs have great potential for drug delivery,
but more research and development are needed to improve
their clinical utility.
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1 Introduction

Cancer is a significant contributor to mortality rates [1,2]
and poses a substantial obstacle to advancing life expec-
tancy [3]. As per the GLOBOCAN digital repository, there is
an anticipated rise in the occurrence of cancer every year
[4], with a forecasted doubling of such incidence by the
year 2050 [5]. The development of cancer treatments dates
back to the early 1900s [3]. Several cancer treatment mod-
alities exist, including chemotherapy, radiotherapy, surgery,
hormone therapy, monoclonal antibodies, cell therapy, and
gene therapy, as documented in sources [3,6,7]. Researchers
in the scientific community have been conducting studies and
creating therapeutic interventions involving chemotherapy for
the treatment of cancer to enhance their effectiveness and
minimize their adverse reactions [8]. Anticancer agents are
employed to impede the growth and dissemination of cancer
cells, given their capacity to disseminate to various organs
within the circulatory system [7,9]. Most chemotherapy agents
exhibit inadequate aqueous solubility [10], constraining their
ability to traverse cellular membranes [11-13]. Additionally, it is
frequently observed that these pharmaceutical compounds
exhibit limited stability or undergo rapid metabolism [1,9].
One additional characteristic of these pharmaceuticals is their
lack of ability to distinguish between normal and malignant
tissues [2,14]. The administration of anticancer medications at
high dosages is frequently associated with a range of adverse
effects, including but not limited to anemia, fatigue, alopecia,
anorexia, and other complications. Given the limited effective-
ness of current chemotherapeutic agents, the need for
improved cancer treatments with higher efficacy is imperative
[2,4,7,9,15,16]. Therefore, the development of contemporary
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approaches is essential for addressing this issue. Although
numerous chemotherapeutic agents are accessible, their effec- | < .
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of the inaugural liposomal drug delivery system by the US é g % <,
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satile physical and chemical characteristics, compatibility i § B
with biological systems, and capacity for degradation make " = g g E 2
polymers a popular choice for drug delivery applications. z E 2 % 5 & 3
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colloidal solution. Specifically, smaller and less stable than o =
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exhibit greater degradability and comparable biocompat- ; o
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hydrophobic drugs [52,53], have high biocompatibility, are
low-cost, easy to prepare, have a high drug loading capacity
[53], are small in size [54], have good solubility [55,56], can
circulate in the blood for a long time [55,57], can respond to
external stimuli, can efficiently deliver drugs to the target
tissue, have controlled drug release [53], exhibit excellent
performance [55], are stable [24], and have low toxicity [20].
PMs have a hydrophobic core that can load hydrophobic
agents (drugs and/or targeting agents) and a hydrophilic shell
that allows them to be water-soluble and durable [20,58-60].
Additionally, the hydrophilic shell of PMs can prevent protein
adsorption on the external surface of the micelles, which
allows for their purification [55]. The significance of NPs
that are capable of responding to stimuli cannot be overstated
[61].

This work explicitly discusses micelles that can respond
to internal or external stimuli [62], aiming to present a thor-
ough understanding of the possible uses of SRM-NPs as a
drug delivery system and the issues related to their clinical
application.

2 PMs

Nano-sized PMs are formed by the self-assembly of amphi-
philic block copolymers in aqueous solutions and typically
have a size between 10 and 100 nm [55]. Unlike bilayer
vesicles, micelles are monolayered and composed of a
hydrophobic inner core and hydrophilic outer shell. Various
polymers can be used in the hydrophilic part, including poly-
vinylpyrrolidone, polytrimethylene carbonate, and poly-
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(ethylene oxide) [63], but the most commonly used one is
polyethylene glycol (PEG) [56]. Poly(propylene oxide), polye-
sters, or glycolic and lactic acid copolymers are hydrophobic
components usually used in the inner core [56]. The structure
of the polymers used and the solvent conditions, such as the
temperature and pH of the environment, can cause variations
in the shape of the micelles [64,65]. Micelles can be seen in rod-
like, worm-like, and disc-like forms, although they are often
spherical systems [22,64]. The morphology of micelles is essen-
tial as a nanocarrier during blood circulation and cellular
uptake [66]. The surface characteristics of micelles are crucial
in biological fluids. Micelles with a positive zeta potential tend
to bind to non-specific proteins, leading to their accumulation
[67,68]. Although the cell membrane has a slightly negative
charge, positive NPs can be absorbed by cells more quickly
than neutral or negative particles [69]. Therefore, this positive
charge can enhance drug transfer through biological barriers
and facilitate better interaction with epithelium [66,70], as
observed in the administration of micelles via the oral route
[71]. The use of a hydrophilic and neutral surface can increase
the circulation time of micelles in the bloodstream by reducing
the formation of the protein corona [72,73]. The surface chem-
istry of NPs and the electrostatic and van der Waals interac-
tions between NPs, biomolecules, and cells are inevitable in
biological environments and are related to cell internalization
processes [74]. A timeline overview of the development of PMs
has been presented in Figure 1.

One of the most important parameters for micelles is
critical micelle concentration (CMC) because it represents
the minimum concentration of polymer in the solu-
tion that leads to the formation of micelles. This factor
indicates the thermodynamic stability of micelles. Above
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Figure 1: An overview of the development of PMs. Since their initiation in 1990, there have been significant advancements in PMs. Numerous clinical
trials have been conducted, with many still in progress. Several PM-based drugs have received approval from the FDA and other regulatory bodies.
Presently, there is a prevailing trend toward designing PMs that are responsive to multiple stimuli and targeted. The data presented in the figure were

collected from various sources [5,75-79].
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this concentration, copolymers begin to aggregate, and
micelles are stable. At lower CMCs, amphiphilic molecules
exist as separate surfactants, and micelles are not formed
[80]. The characteristics of copolymers, such as the length
of hydrophobic and hydrophilic parts, affect the CMC
threshold value. For example, increasing the length of
the hydrophobic part leads to more interactions between
hydrophobic fragments, which reduces the CMC [81]. The
surface tension method [82,83], light scattering method
[84], and electrical conductivity method [85] are the most
common CMC measurement methods.

Micelles can enter the cell or release the cargo outside
the cell and cause the drug to accumulate in different places,
such as the plasma membrane or different cell compartments
[86,87]. Micelles are internalized mainly through endocytosis,
which occurs when micelles interact with the cell membrane
and transport within endosomes to the cytoplasm [88,89].
Most PMs are degraded in the plasma membrane or lyso-
somes; only a few can enter the cell intact [89]. After micelles
are internalized through endocytosis, unimers reduce ATP by
increasing membrane fluidity, which leads to a decrease in
ATPase activity. This, in turn, enables a more accessible
bypass of ATP-dependent efflux pumps, reducing drug and
multidrug resistance (MDR) [90,91]. Moreover, MDR can be
significantly reduced by conjugating molecules like quercetin
that inhibit these pumps. The API can be physically entrapped
or chemically conjugated to the micelle. The APIloaded by the
physical method is released by simple diffusion, whereas the
chemically conjugated method requires a specific functional
group of the API to establish a covalent bond with the hydro-
phobic portion of the micelles. This incorporation in the core
causes the release of the API by surface erosion or complete
degradation of the PM [92,93]. The advantages of polymer
micelles have garnered much attention in recent years due
to their ability to increase the stability and solubility of drugs
compared to free drugs. This can be achieved by physically
loading hydrophobic drugs or chemical conjugation. It is pos-
sible to design the size of micelles and increase their circula-
tion time in the blood to prevent premature clearance of NPs
smaller than 10 nm through renal glomeruli [56,94]. One of the
key factors in increasing blood circulation time is increasing bio-
distribution, which can be achieved by the appropriate design of
the molecular weight and size of micellar polymers. Meanwhile,
the mononuclear phagocyte system (MPS, previously referred to
as the reticuloendothelial system) in the liver and spleen can
remove NPs larger than 100nm from the blood circulation
system. Therefore, an appropriate size range of 10-100 nm can
prevent the rapid clearance of micelles from the body. Moreover,
to avoid detection and removal by the MPS, the biocompatibility
of micelles can be enhanced by utilizing biocompatible and hydro-
philic polymers such as PEG [56,95-97].
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In in vivo environments, the lack of stability of nano-
materials is one of the main challenges due to their inter-
action with plasma proteins, intense dilution, and pH
shifts. These factors can cause premature cargo release
and lead to undesired drug accumulation in non-target
tissues. Micelles with a low CMC can maintain their stabi-
lity even in very dilute conditions, and this advantage pro-
vides them with more opportunities to penetrate target
tissues during blood circulation. This also increases the
possibility of their accumulation in tumor tissue through the
enhanced permeability and retention (EPR) effect [56,98,99].
The aforementioned features make micelles an intriguing
option for drug delivery. The use of polymer micelles as a
drug delivery system is based on their ability to transport
hydrophobic and insoluble drugs, control drug release over
a prolonged period, and target specific cells and organs. Since
many anticancer agents have poor aqueous solubility, PMs are
suitable for delivering them [56,100]. Compared to normal
body cells, tumor cells have pH acidity, altered redox potential,
and overexpressed proteins, and enzymes that can trigger
drug release in these tissues. Micelles that can respond to these
stimuli enable the controlled release of drugs and increase
their effectiveness. Additionally, external stimuli such as light,
temperature, and ultrasound (US) waves can be used to trigger
drug release in the tumor area [101]. The aim of this article is
to summarize and review the use of smart micelles in cancer
treatment.

3 Smart micelles

3.1 Ligand-mediated targeting

Cancerous cells express certain biomarkers on their sur-
face that are involved in cell reproduction, intercellular
interactions, and signal transduction. Examples of such
biomarkers include membrane proteins and growth and
transcription factors. Using these biomarkers makes it pos-
sible to create targeted binding conditions for cancer cells,
making treatments more effective and less toxic (Figure 2)
[102]. Since one of the challenges in DDS is related to the
abhility of the drug to penetrate cells, carriers are often mod-
ified with ligands to target cancer cell receptors [103]. Ligand-
mediated targeting is a widely used approach to improve the
specificity of drug delivery to desired sites. By modifying the
surface of smart micelles with specific ligands, they can selec-
tively bind to receptors or proteins that are overexpressed on
the surface of target cells. This targeted interaction enhances
the effectiveness of cellular uptake and therapeutic
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Figure 2: Ligand-targeted micelles. Different ligands are used to target overexpressed biomarkers and receptors on the surface of cancer cells. These
micelles circulate in the body and bind to the overexpressed receptors of cancer cells. This way, micelles can accumulate only in cancerous tissue
without harming healthy cells. Then, micelles enter the cancer cells through ligand-mediated endocytosis, releasing their cargo in lysosomes and

eventually killing the cell.

interventions [104]. One of the ligands that can be used to
modify carriers for targeted drug delivery is aptamers. Apta-
mers are single-stranded oligonucleotides that can bind to
cancer cell receptors with high affinity when placed on the
surface of carriers. For instance, the DNA aptamer S2.1 can
target MUC1 (mucin 1) on the surface of cancerous cells, such
as ovarian and breast cancer cells. In melanoma cancer, RNA
aptamer 9.8 has been shown to effectively target the CD134
(0X40) receptor [102]. Cholesterol is another example of a
ligand that can be used, as it is naturally present in animal
cell membranes and plays a role in membrane fluidity. As a
result, it is readily available and has a low cost.
Furthermore, several types of molecules based on ster-
oids can be derived from cholesterol for this purpose [103].
Polysaccharides are another type of modification that can
be used. Chitosan, for example, is commonly utilized due to
its adhesive properties, lack of toxicity or harmful effects
on biological functions, and ability to be biodegradable in
the environment [105]. Hyaluronic acid (HA) is another
example of a polysaccharide used for drug delivery due
to its biocompatibility and biodegradability. Many tumor
cells express the CD44 receptor on their cell surface, which
can bind to HA. Therefore, HA is often used for targeting
cancer cells. During cell reproduction, folic acid (FA) is a
crucial substance for base synthesis, and as a result, many
cancer cells, such as lung, kidney, and breast cancer, express
FA on their surfaces. Compared to healthy cells, tumor tissue
overexpresses the folate receptor (FR), leading to increased

uptake of FA [106]. Zhang et al synthesized polyethylene
oxide and polycaprolactone (PEO-PCL) micelles and loaded
docetaxel inside them, which is used for prostate cancer.
Subsequently, they modified the surface of the micelles
with the N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-lysine
(DCL) ligand, which targets prostate membrane antigen, and
the TAT peptide (HIV-1 TAT protein peptide). The modifica-
tions mentioned in the study did not disrupt the structure of
the PEO-PCL micelles due to their weight. The DCL ligand
was used to target prostate cancer cells, while the TAT pep-
tide was used to facilitate the transit of the micelles through
the cell membrane. The study showed that these modifica-
tions improved the effectiveness of prostate cancer treatment
[107]. In another study conducted by Kalinova and Dimitrov, a
poly(2-hydroxyethyl methacrylate)-b-poly(i-lysine) block copo-
lymer was synthesized, and curcumin (Cur) was loaded into it.
The copolymer was then modified with poly(ethylene glycol)-
b-poly(r-aspartic acid) copolymer to improve its targeting and
durability [108]. Zhang et al implied in their article that using
the CD44 receptor and FR simultaneously as a ligand can not
only facilitate cell infiltration but also make cargo release
more challenging. Some nanocarriers are designed with the
ability to respond to extrinsic or intrinsic stimuli to address
this issue [106].

The utilization of ligand-mediated targeting in smart
micelles poses challenges, primarily stemming from the lim-
ited availability and specificity of suitable ligands for target
cells. Additionally, incorporating ligands onto micelle surfaces
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can alter their physicochemical properties, potentially influ-
encing stability, drug loading capacity, and release kinetics
[109,110]. The variability and potential mutation of target
cells and receptor downregulation further complicate ligand-
mediated targeting. These factors can impact the effectiveness
of targeted drug delivery by influencing the interaction
between ligands and receptors. Consequently, the develop-
ment of ligand-mediated targeting strategies should con-
sider these challenges and strive to offer adaptable and
resilient approaches to overcome them [109,110]. Table 2
presents a summary of ligands used in the preparation of
targeted micelles.

3.2 SRM

Stimuli-responsive systems operate based on the physico-
chemical changes, instability, and disintegration of NPs in
response to stimuli [111-113]. Stimuli can be classified as
internal or external. Internal stimuli include redox reac-
tions [114], changes in pH [115], enzymes, and reactive
oxygen species (ROS) [116] (Figure 3). External stimuli
include light [117], temperature [28], US, and magnetic field
[62] (Figure 4).

3.2.1 Internal stimuli

3.2.1.1 pH-responsive PMs

pH-responsive PMs are a class of polymeric materials that
demonstrate a reversible chemical response to alterations
in the pH of their surrounding environment. These mate-
rials have significant applications in DDS, where they can
trigger drug release in response to pH changes specific
to certain biological conditions, such as tumor tissues
or inflamed regions. By harnessing pH responsiveness,
PMs enable a more controlled and targeted drug release,
thereby enhancing the effectiveness of drug therapies
while reducing the potential for undesirable side effects
[118-120]. Some special properties of tumor cells include
a high level of enzymes [121], high temperature [101],
hypoxia [122], low pH [123], an eminent measure of lactate,
and a light level of glucose [124]. Among the stimuli, pH is
utilized more frequently than other stimuli for DDS. The
pH of cancer cells is lower than that of normal cells due to
the Warburg effect, ranging from 6.5 to 7.2 [125]. The War-
burg effect is induced by the tendency of cancer cells to
favor aerobic glycolysis in the cytosol over the citric acid
cycle and oxidative phosphorylation in mitochondria for
energy production. This metabolic pathway leads to the
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generation of lactate, consequently causing the surrounding
environment to become more acidic [124]. This acidic pH allows
drug-loaded delivery to the cancer site [126]. Consequently,
drug-loaded distribution occurs at cancer sites [127]. There are
two reasons for drug release: the first is related to the depro-
tonation [128] or protonation of a particular group and disin-
tegration [129], while the second is related to the destruction of
pH-sensitive bonds [101], such as acetal, hydrazine, cis-aconityl
[127], methyl maleate [124], and ketal [130]. Dominski et al
synthesized nanocarriers by combining poly(ethylene glycol)
with poly[R,S]-3-hydroxybutyrate and inserting the hydrazone
bond between them, which imparted self-assembling properties
to the resulting micelles. The diblock copolymer used in this
approach is biodegradable and has a diameter of approxi-
mately 55 nm. Doxorubicin (DOX) was conjugated with 8-hydro-
xyquinoline glucose and galactose and loaded in the core of
the micelles as an anticancer drug. The authors observed
that the micelles remained stable at pH 7.4. However, the
hydrazone bond was destroyed at acidic pH, leading to
micelle disintegration and cargo release [131]. Ameli and
Alizadeh synthesized micelle-based NPs with pH-sensitive
properties by combining cyclodextrin and copolymers to
deliver capecitabine (CAP) for colon cancer treatment. The
release of CAP was studied at various pH levels, and it was
finally demonstrated that the micelles completely disinte-
grated at a pH of 7.4 [132]. Table 3 presents a compilation
of selective pH-sensitive polymers that have been investi-
gated for cancer remedies. Liu et al. designed a pH-sensitive
amphiphilic block copolymer, poly(acrylic acid)-b-polyca-
prolactone (PAA-b-PCL) micelle, and loaded it with Gambo-
genic acid (GNA). They then studied its effects on cancer,
both in vitro and in vivo. Given the positive results obtained,
they asserted that this type of system holds potential for
future cancer treatment.

3.2.1.2 Redox-responsive PMs

It has been observed that various types of cancer cells
persist and proliferate by elevating the production of
ROS. In response, cells increase the production of GSH to
counteract and neutralize ROS [148]. GSH serves as an
endogenous reducing agent in the human body [28] and
possesses antioxidant properties [149]. It plays a role in pre-
venting the aggregation of ROS in diseased cells through its
thiol group [128]. Due to their stable blood circulation, some
redox-responsive nanocarriers have been designed to con-
trol cargo release [150].

Redox-responsive PMs are a class of polymeric mate-
rials that demonstrate sensitivity to changes in the redox
state of their surroundings. These PMs undergo reversible
chemical transformations upon exposure to reactive
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Figure 3: Internal SRMs. Micelles can be designed to respond to different intrinsic stimuli and release their cargo at the activation site. Internal stimuli
can be natural characteristics of cancer cells, such as low pH and high levels of ROS, glutathione (GSH), and some enzymes (e.g., matrix metallo-

proteinases: MMPs) and high temperature.

molecules like oxygen or hydrogen peroxide. In the context
of drug delivery, redox-responsive PMs can be engineered
to release drugs in response to variations in the redox
environment of specific pathological tissues, including
tumors or inflamed areas [101,151]. This unique property
of redox-responsive PMs holds significant promise for
achieving precise and targeted drug delivery, enabling
enhanced therapeutic outcomes. By harnessing the redox
responsiveness of these PMs, researchers are exploring
innovative strategies to optimize drug release and improve
treatment efficacy while minimizing off-target effects [152].

Consequently, through the utilization of redox-respon-
sive carriers in conditions rich in redox agents like GSH,
the disulfide bond is disrupted. This results in the release
of the loaded drug, specifically targeting and destroying
cancer cells [149]. Zhou et al. demonstrated that under
GSH conditions, the disulfide bond is broken, leading to
the release of paclitaxel (PTX) from redox-responsive diP-
PSSP micelles [153].

Pang et al synthesized three types of micelles con-
taining NPDOX and F-NPDOX without ditelluride bonds
and F-TeNPDOX with ditelluride bonds. They loaded DOX
in each of them and examined in vitro loading release in
20 mM phosphate buffer at pH 7.4 and 37°C in the presence
or absence of 10 mM GSH. They found that the release of
DOX from F-TeNPDOX was approximately 76.71 + 2.8%

after 24 h in the presence of GSH, whereas it was 26.87 +
2.06% after 72 h in the absence of GSH. On the other hand,
the release of the drug from NPDOX and F-NPDOX micelles
was slow. Thus, they concluded that the rapid drug release
occurred due to the breakage of ditelluride bonds under
redox conditions [154]. Table 4 presents a compilation of
selective redox-responsive micelles that have been studied
for cancer therapy applications.

Yu et al. synthesized redox-sensitive AS1411 aptamer-
modified chondroitin sulfate A-ss-deoxycholic acid (ACSSD)
micelles, loaded with doxorubicin, and tested them in vivo
in mice. The results indicated that this system can be used
to treat lung metastasis with minimal toxicity [170].

3.2.1.3 Enzyme-responsive PMs

Enzymatic polymers belong to a class of NPs that exhibit
sensitivity to biological factors. These biomolecule-sensi-
tive nanocarriers find utility in both therapeutic and diag-
nostic applications as they respond to stimuli inherent in living
systems or arising from cellular signaling. Bioresponsive polymer
systems release their payload by binding to biologically rele-
vant entities that share complementary functional groups
with them. Examples of this polymer class include ATP-
responsive polymers, glucose-sensitive polymers, and antigen-
responsive polymers [171].
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temperature can also be applied from outside the body with a heat source.

Enzymes have various biological and metabolic func-
tions, and their deficiencies can cause pathological states
and illnesses. Cancer cells exhibit high proliferation, the
development of blood vessels, invasion, and metastasis due
to the overexpression of many types of enzymes, such as
proteases, peptidases, lipases [101], phospholipases, hydro-
lases, glucosidases [62], oxidoreductases, and trypsin [128].
Enzymes can also serve as effective triggers for cargo
release [172]. Several types of polymeric nanocarriers have
been designed to release drugs in response to the presence
of enzymes. Drug release can occur through shell subver-
sion and disintegration or regulation of the surface proper-
ties of the nanocarriers through physicochemical variations
[62]. Enzymatic degradation can be modulated by changing
the hydrophobicity and amphiphilicity of the carrier [173].
Proteases are considered the most important among dif-
ferent enzymes [128].

MMPs are endopeptidase enzymes that function in the
extracellular matrix [62]. MMPs are well known for their tumor
prognostication properties. They are often overexpressed in

various types of cancers and are associated with tumor growth,
invasion, and metastasis. The expression level of MMPs in
tumors can be used as a prognostic factor for cancer progres-
sion and patient survival [128]. MMP plays a role in metastasis
and is highly expressed in tumor cells. This is the reason that
loading release is controlled by MMP usage, especially MMP2
and MMP9 [127]. For example, Wan et al fabricated the
TPGS3350-GPLGVR  (D-o-tocopherol PEG 3350 succinate-Gly-
Pro-leu-Gly-Val-Arg) micelle that was sensitive to MMP-9 and
folate-DEVD micelle (folate-Asp-Glu-Val-Asp), which was sen-
tient toward caspase-3. They loaded DOX into the micelles, dis-
solved them in a phosphate-buffered solution (PBS), and added
MMP-9. Next they incubated the solution at 37°C for 0, 2, 4, 8, 16,
and 24 h. They observed that MMP-9 affected the GPLGVR pep-
tide in cancerous cells and eliminated the outer layer of
TPGS3350. Therefore, the micelles were able to penetrate the
tumor tissue due to the exposed folate-targeting molecule. The
DEVD peptide was then intercepted due to the presence of
caspase-3 in cancer cells, resulting in the delivery of DOX
from the micelles [174].
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Table 3: Selected pH-sensitive polymers for cancer remedy

Reference

Result

Drug load Cancer type

Polymer

[133]

With pH reduction, drug release increased

Breast

DOX

DSPE-PEG/OA6
mPEG-b-PAE
PLGA-D-P

[134]

With pH decline, zeta-potential growth and pH sensibility increased

With pH decrease to 5.0, DOX release is at ~80%

Multiple
Multiple
Lung
Lung
Liver

PTX/DOX
DOX
PTX

[135]

[136]
[137]

Declining pH and zeta-potential variation augmented drug delivery

Framework transformation enabled DOX release
With pH reduction, drug release is enhanced

DA-P-SS-T/C6

DOX
DAS
DAS

TPGS, PBLG, TPH, and TPM

HA-Cur-TPGS
HDO-NPs

[138]

[139]

After 48 h, moiety release was ~50%; the ligand was CD44

Improved release upon cell uptake
Improved anti-tumor efficiency
Amplifies anti-tumor immunity

Breast

[140]

[141]

Lysozyme protein Breast cancer

Granzyme B

Polycarboxylate-PEG

Murine melanoma cells (melanoma)

Colorectal

Polyhistidine-polyglutamate

PDHA-PEG

[142]
[143]
[144]
[145]
[146]

Irinotecan and imiquimod

Tirapazamine
Emodin

Precise delivery and enhance the therapeutic effect

Good thermal stability and pH responsiveness

Hela and HepG2

Breast cancer

PMPC-b-P(DEGMA-co-FPMA)

PEG-b-HES-b-PLA
P(PAA-co-GLU)

Effective tumor inhibition, and fewer adverse effects

4T1 (breast cancer)

DOX and imiquimod

DOX

Efficiently suppresses the proliferation of tumor cells

Hela and MCF-7 cells

HepG2

P(DMAEMA-co-MaPCL)
HA-Cur polymer
P2VPgy-b-PEO39g

[138]

Accumulates efficiently at the tumor site and reduces the toxic side effects

Increase release efficiency

Dasatinib

[147]

Human dermal fibroblasts adult cell line (HDFa)

Cur and 5-Fluorouracil
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Barve et al. synthesized a cabazitaxel-loaded micelle
comprising cholesterol-PLGVRK-PEG2000 (Pro-Leu-Gly-Val-
Arg-Lys). They dissolved the micelles in PBS and added
human MMP-2 protein. They found that cabazitaxel diffu-
sion occurred in the presence of 200 ng/mL MMP-2. When
MMP-2 was present, the drug release was about 80% after
24 h, whereas in the absence of MMP-2, the drug release
was approximately 10%. In summary, the PLGVRK linker
was broken upon encountering MMP-2, causing the micelle
structure to collapse and the cabazitaxel to be released
[175]. The synthesis of PEG-MMP2-cleavable peptide—pho-
sphatidylethanolamine (PEG-pp-PE) micelles, responsive to
MMP2, has shown promise. The utilization of this model is
anticipated to be beneficial for targeting resistant cancer
cells in vivo [176].

3.2.1.4 Temperature-responsive PMs
Temperature-responsive DDS are designed to release drugs
in response to changes in temperature, specifically when
the temperature is above a certain threshold. In the case of
cancer treatment, the tumor microenvironment (TME) has
a slightly higher temperature than healthy tissue, which
allows for targeted drug release. These systems can be
based on various materials, including polymers, lipids,
and inorganic materials, and can be designed to respond
to different temperature ranges depending on the specific
application. It is necessary to use safe polymers that are
sensitive to even slight changes in temperature to make
DDS that can respond to temperature. This can be a chal-
lenging task [128]. In various diseases such as cancer,
inflammation, or infection, certain tissues are exposed to
a temperature shift, and this temperature change can be
exploited to trigger the destruction of the micelles and
release the drug [101]. The temperature higher than the
lowest critical solution temperature (LCST) of PNIPAAm
poly(N-isopropylacrylamide) induces a transition in its
coil structure, changes it into a spherical shape [117]. As a
result of the destruction of the hydrophobic-hydrophilic
balance caused by the ambient temperature being higher
than the LCST, the polymer structure is destroyed, and the
drug is released [28].

PEO-PPO block copolymers are known as Pluronic or
poloxamers, and they are widely used for temperature-
sensitive drug delivery. PEO—polyesters such as polylactic
acid and PCL are also commonly used for drug delivery
due to their biocompatibility and biodegradability. Block
copolymers based on PNIPAAm poly(N-isopropylacryla-
mide) are also popular for temperature-sensitive drug
delivery due to their LCST behavior [177]. Poly(N-vinylalk-
ylamide), poly(V,N-diethylacrylamide), Pluronics, Tetronics,
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Table 4: Selected redox-responsive micelles for cancer therapy

Stimuli-responsive micelle NPs for drug delivery = 11

Polymer Drug load Results Reference

PEO113-b-PCL35-b-PEO113 and PAA13-b- CAPE Cargo release because of disulfide-group destruction [155]

PCL35-b-PAA13

FHSV micelle PTX At high GSH levels, micelles were destructed [156]

POEG-co-PVDSAHA TAM Cell poisoning elevated [157]

DA-P-SS-T PTX At high-level GSH, fast PTX release was found [136]

HA-ss-FA DOX 20 mM GSH resulted in fast DOX release, the ligand was CD44  [158]

HA-ss MTX Drug release in redox-sensitive micelles was higher than in ~ [159]

HA-ss-TOS non-sensitive micelles

HA-ss-TOS PTX Used for breast cancer and melanoma treatment [160]

RGD-PEG-ss-PCL DOC/ICG (RGD acts as a ligand) efficiency of anticancer drugs was high  [161]
in in vivo study

FA-ss-P/A PTX/ADD (FA use as a ligand) high uptake and efficient anti-tumor [162]
effect for MDR

Methoxy poly(ethylene oxide)-b-poly DOX/SN-38 Hydrolysis of hydrazone bond and drug release [163]

(aspartate-hydrazide)

HA-ss-BF DOX Disassemble of micelles in redox condition [164]

mPEG-SS-PzLL/TPGS DOX Disulfide bond can be destructed by reduced GHS [165]

PEG-b-P(CPTM-co- INOAMA) Polymer prodrug Disintegration of redox-responsive disulfide bonds and drug  [166]

micelles release

HA-ss-PTX PTX Fast drug release in tumor cells in response to GSH [167]

Gal-PEEP-g-PCL-ss-PDMAEMA DOX Redox-triggered drug [168]

P(HEMA-g-PCL-SS-POEGMA) DOX Cargo release under redox condition [169]

Abbreviation: PSSP: Star-shaped polymeric prodrug; RGD: Peptide (arginine-glycine-aspartic acid); PCL: Polycaprolactone; DOC: Docetaxel; ICG:

Indocyanine green; FA; Folic acid; and ADD: Adjudin.

polysaccharide derivatives, phosphazene, and chitosan deri-
vatives are examples of temperature-sensitive polymers that
have been used as vehicles for drug or gene delivery [117].
Temperature-sensitive polymers have been extensively explored
as DDS, primarily due to their capacity to undergo confor-
mational changes in response to temperature variations. For
instance, block copolymers like Pluronics and Tetronics
exhibit the ability to self-assemble into micelles at lower
temperatures, and disassemble at higher temperatures, thereby
facilitating the release of encapsulated drugs.

Similarly, chitosan derivatives have been employed as
temperature-sensitive carriers for drug delivery as they change
solubility and viscosity in response to temperature fluctuations.
Notably, PNIPAAm, with an LCST of approximately 32°C, clo-
sely resembles the natural temperature of the human body
[178]. Therefore, it is widely used as a micellar polymer that
can respond to temperature changes. PNIPAAm can be copo-
lymerized with various monomers to enhance tissue targeting
and drug release to optimize LCST [101].

3.2.2 External stimuli
3.2.2.1 Magnetic field-responsive PMs

Magnetic field-responsive PMs, a type of smart-responsive
PM, exhibit responsiveness to magnetic fields. Magnetically

responsive micellar structures can be formed by incorpor-
ating magnetic NPs such as iron oxide, magnetite, or cobalt
ferrite into the core or shell of polymer micelles. These
structures combine the advantages of polymer micelles
and magnetic NPs [101,179]. Upon exposure to an external
magnetic field, the magnetic NPs within the PMs generate a
magnetic moment, causing the PMs to align with the direc-
tion of the magnetic field. The magnetic properties of these
micelles can be harnessed to target specific tissues in the
presence of an external magnetic field, allowing precise
and non-invasive control over cargo distribution [101,179].

Incorporating magnetic NPs into the structural char-
acteristics of the micelles allows for targeted delivery,
which holds great promise for minimizing the side effects
of conventional chemotherapies [180,181]. To create mag-
netic sensitivity, superparamagnetic iron oxide nanoparti-
cles (SPIONs) such as magnetite (Fes0,) and maghemite
(Fe,03) are used, which are typically smaller than 10 nm
[182,183]. An exciting feature of SPIONS is that they exhibit
magnetic properties in the presence of a magnetic field. Still,
when the field is removed, it loses its magnetism and can be
easily redispersed [181]. SPIONs have various biomedical
applications, including magnetic resonance imaging, mag-
netic transfection, and magnetic hyperthermia (MH) [184].
The sensitivity difference between magnetically responsive
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materials and cells or tissues in a magnetic field gradient is
essential in drug release and NP aggregation. These magne-
tically responsive materials exhibit minimal interference
with the biological environment and demonstrate good
penetration because of the non-magnetic properties of cells
and tissues.

The contactless activation of magnetic polymeric
micelles is another advantage, which minimizes potential
harmful effects such as reduced cell integrity and viability
[101,185]. Magnetic stimulation can be applied in a constant
or time-varying magnetic field. A fixed field is used in cases
where a specific area is intended for drug accumulation,
such as a tumor. Permanent magnets can apply a constant
external field. It is also possible to generate an alternating
field by moving the charge in solenoids or by using elec-
tromagnetism. Time-varying magnetic fields can be used to
induce controlled payload release and thermal treatments,
such as hyperthermia or thermal ablation. SPIONs can be
classified as low- or high-frequency based on the speed at
which the magnetic field changes over time [181]. Under
alternating magnetic fields, they can induce direct destruc-
tion of tumor cells through local temperature increases or
sensitize them to chemotherapy agents [101].

Due to the positive effect of hyperthermia on in vivo
drug diffusion, Wang et al. designed a magnetothermally
sensitive micelle (MTM) that integrates magnetic targeting
(MT), MH, and magnetothermally responsive drug release
to facilitate simultaneous drug accumulation and penetration
in tumors. They synthesized a thermosensitive polymer mod-
ified with cyanine-7 to prepare MTMs loaded with drugs. The
drugs were encapsulated with superparamagnetic MnFe,0,
NPs and DOX. The DOX-MTMs obtained had high DOX (9.1%)
and MnFe;0, (38.7%) contents and several advantages, such
as superparamagnetism, high saturation magnetization, an
excellent magnetocaloric effect, and magnetothermal-depen-
dent drug release. The study’s authors demonstrated that
DOX-MTM enhances DOX endocytosis with the assistance
of MH and increases DOX cytotoxicity. Furthermore, in the
presence of DOX-MTM accumulation and penetration, MT
and MH inhibited tumor growth by 84% in vivo while exhi-
biting excellent biosafety [186].

Gao et al. developed a rod-like magnetic micelle that
provides good nanoplatforms for the precise and highly
efficient delivery of therapeutic agents to the tumor site
for effective cancer treatment. The self-assembly of a copo-
lymer forms the micelle functionalized with phenylboronic
acid (PBA) and simultaneously loaded with the anticancer
drug DOX and magnetic NPs Fe30,4. The presence of mag-
netic NPs in the micelles enhances their accumulation at
the tumor site by applying an external magnetic field.
Additionally, it improves the contrast difference between
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the polymer micelles and cell compartments, allowing for
the evaluation of the distribution of the nanocarriers. The
presence of PBA targeting ligands allows the DOX-loaded
NPs to be selectively recognized by sialic acid-positive
tumor cells, which endocytose the NPs. This, combined
with the magnetic responsiveness of the micelles, resulted
in an 83% inhibition of tumor growth in an H22 hepatocar-
cinoma model [187].

3.2.2.2 US-responsive PMs

US waves are mechanical waves with a frequency greater
than 20 kHz. Due to their non-ionizing and non-invasive
characteristics, they have found many uses in imaging,
focused US surgery, and tumor ablation [188,189]. Since
the report on the application of US in drug delivery in
1989 [190], its use has expanded as an effective technique
to stimulate drug delivery at targeted sites by adjusting the
power density, frequency, exposure time, and position of
the targeted acoustic transducer [191,192]. US-responsive
PMs represent an up-and-coming category of DDS capable
of responding to external US stimuli for controlled drug
release. These systems generally consist of a polymer
matrix that encapsulates the drug and incorporates gas-
filled microbubbles or NPs capable of expanding and con-
tracting in response to US waves [193,194]. US can be used
to trigger drug release and enhance it by utilizing either
the thermal properties (hyperthermia) or the mechanical
properties (cavitation and microflow) [195].

One of the mechanisms that can induce the release of
drugs in a specific area is local hyperthermia, which
involves stimulating temperature-sensitive NPs in smart
drug delivery. US waves can absorb energy in the target
tissue, causing a local increase in temperature without
causing significant thermal damage to surrounding natural
tissues. Additionally, hyperthermia induced by US can increase
the permeability of tissues and vessels in the tumor, leading to
drug accumulation in these areas [196-198]. The use of thermo-
responsive poly(N-alkylacrylamide) blocks in the micellar
structure or the polymerization of hydrogels inside the
micellar cores with a low critical solution temperature are
some of the design solutions for these DDS [189,199].

Another method for drug release by US is cavitation, in
which the interaction of sound waves causes the perturba-
tion of materials, which leads to the displacement of less
dense materials and the formation of bubbles. The cellular
delivery of molecules by US has been widely reported
through processes called transient cavitation and sono-
poration. These processes increase the cell membrane’s
transient permeability by forming transient pores or
defects in the lipid bilayer. This is accomplished through
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the growth and collapse of gas bubbles, which ultimately
release molecules such as drugs from certain structures
[190,200]. Liu et al. examined US’s impact on ROS-respon-
sive micelles loaded with hypocrellin (HC). By tracking the
fluorescence intensity of the HC-encapsulated micelles,
they discovered that the exposure of PEG-PPS-HC micelles
to US significantly increased fluorescence intensity. Conse-
quently, US can considerably expedite the release of HC by
disassembling the micelles [201].

The study conducted by Wu et al. investigated drug
release by US from P123/F127 Pluronic (M) polymer micelles
loaded with Cur. For in vivo experiments, a focused US
transducer with a frequency of 1.90 MHz was used, and
the load power (LP) was adopted as 1 (US1), 2 (US2), and
3 W (US3). The study found that local US radiation did not
cause adverse effects in xenograft mice. The results demon-
strated that using US at a LP of 3W (US3) significantly
increased the release of Cur from P123/F127 Pluronic (M)
polymer micelles. This was indicated by an increase in the
intensity of the fluorescence markers for Cur, suggesting
that the micelles were disrupted by US irradiation, and
the drug was released. They found that the intensity of US
is a crucial factor in initiating drug release from P123/F123
mixed micelles, and this release may be related to US-
induced cavitation. The drug release percentage was found
to be 19.78, 28.34, and 38.64% at LPs 1 (US1), 2 (US2), and 3W
(US3) in 30 min, respectively, indicating that higher US inten-
sity leads to a greater drug release. The drug release in
response to US was completed rapidly within approximately
5min, thereby making this method superior to pH-respon-
sive and light-sensitive systems that are constrained in the
TME. The stimulation of local drug release with US signifi-
cantly inhibited tumor growth, and the reduction in tumor
weight was approximately 6.5-fold higher than when NPs
were not exposed to US radiation [202].

The rapid drug release and targeted localization
enabled by US-responsive PMs hold significant promise for
cancer treatment, potentially mitigating the systemic toxi-
city associated with conventional chemotherapy. However,
several challenges must be overcome before US-responsive
PMs can effectively translate into clinical applications. One
major challenge pertains to the non-uniform distribution of
the ultrasound field, which can result in inconsistent drug
release. Moreover, the mechanical stress induced by US may
cause premature damage to the micelles, leading to subop-
timal therapeutic outcomes [193,194,198,203]. Another chal-
lenge that needs to be addressed is the limited penetration
depth of US in biological tissues, which may hinder the
application of US-responsive PMs in treating deep-seated
tumors. In addition, it is crucial to thoroughly evaluate the
safety of US exposure in humans to ensure that the potential
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benefits of this technology outweigh any associated risks.
Comprehensive studies are necessary to assess the depth
of US penetration and to determine appropriate strategies
for delivering US energy to target tissues safely and effectively
[193,194,198]. Therefore, extensive research is required to opti-
mize US parameters, such as frequency, intensity, and expo-
sure duration, to ensure uniform drug release and minimize
micellar damage.

3.2.2.3 Light-responsive PMs

Light-responsive polymer micelles in their polymer struc-
tures contain chromophores, such as azobenzene, pyrene,
cinnamoyl, spirobenzopyran, or nitrobenzyl groups. These
chromophores can control the spatiotemporal drug release
in response to various light sources, including ultraviolet
(UV), visible, and near-infrared (NIR) light. Furthermore,
these micelles can be created by incorporating these chro-
mophores into their structures [204,205]. Various para-
meters, including light intensity, emission wavelength, pulse
duration, and exposure time, can modulate light-induced
reactions [206]. The use of light as an external stimulus in
biomedicine is ideal due to its remote control capability,
high spatial and temporal resolution, and non-invasive
nature [101]. The wavelength of the emitted light is pivotal
in its ability to penetrate the human body. NIR wavelengths,
which fall within the range of 650-900 nm, are widely used
due to their capability to penetrate up to 10 cm deep into the
tissue. Conversely, radiation with a wavelength of fewer
than 650 nm can only penetrate up to a depth of 1cm due
to absorption and scattering by hemoglobin, water, and tis-
sues [207-209].

Light stimulation can trigger drug release through var-
ious mechanisms. The rigidity of trans-oriented isomers
is greater than that of cis-oriented isomers, and the cis
structure increases polarity. Therefore, one approach for
destabilizing and disrupting the integrity of micelles is to
induce a structural transition from trans to cis through UV
light exposure, known as photoisomerization. Retinoyl,
spiropyran, azobenzene, and stilbene are examples of
photoswitchable chemicals that can undergo a trans-to-cis
transformation upon light irradiation [209]. Another
mechanism by which light can induce drug release involves
a photosensitizer material that becomes excited by
absorbing photons and produces ROS, which can be either
radicals (such as hydroxyl and superoxide) or non-radicals
(such as singlet oxygen). If the photosensitizer is located close
to an oxidizable lipid, it can trigger local instability in the lipid.
In photo-cleavage, incorporating light-sensitive materials and
oxidizable lipids into the composition of nanocarriers enables
drug release upon exposure to light radiation [210,211].
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Modifying the hydrophobicity of amphiphilic poly-
mers is another approach that involves converting them
into more hydrophilic forms. This can be achieved through
light-sensitive materials, such as organic chromophores,
which undergo a radiation-induced transformation into
hydrophilic forms, leading to an increase in CMC and, ulti-
mately, micelle instability. This photochemical reaction to
alter the hydrophobicity of molecules results in the ther-
modynamic instability of micelles and subsequent drug
release [208]. The use of crosslinks to enhance the stability
of micelles and preserve the drug payload has been exten-
sively investigated in numerous studies. In the process of
de-crosslinking, nanocarriers that incorporate photosensi-
tive crosslinks can release drugs spatiotemporally upon
light stimulation [207].

Chen et al. developed a light-responsive doxorubicin-
conjugated polymer (Poly-Dox) tethered to PEG. Upon radia-
tion exposure, the amide bond linking Dox with PEG is
cleaved, leading to enhanced cellular uptake of Dox. In their
investigation, using UV radiation with varying exposure
times, they determined that the optimal illumination dura-
tion for Poly-Dox to exert its maximal lethal effect should be
around 5 min [212]. Feng et al. synthesized amphiphilic bio-
polymers by incorporating hydrophobic methyl succinate
(7-diethylaminocoumarin-4-yl) onto the hydrophilic carbox-
ymethyl chitosan (CMCS) backbone. These biopolymers
were then used to fabricate CMCS-DEACMS micelles, which
were subsequently loaded with 2,4-dichlorophenoxyacetic
acid (2,4-D) as a model pesticide. Under simulated sunlight,
the coumarin moieties in the CMCS-DEACMS micelles were
cleaved from the CMCS backbone, thereby altering the
hydrophilic-hydrophobic balance of the micelles and indu-
cing their destabilization. Consequently, the 2,4-D pesticide
payload was released [213]. Zhang et al. employed the self-
assembly of the amphipathic polymer P-DASA to fabricate
NIR light-responsive nanocarriers. The micelles were loaded
with upconversion nanoparticles and DOX. The micelles
were fully disassembled after NIR exposure, leading to a
marked increase in the DOX release rate. The drug release
reached 83.7% within 30 min after 5 min of NIR irradiation.
It has been demonstrated that exposure to 5min of NIR
results in the efficient production of NO, which inhibits
the expression of P-gp and prevents the release of the
drug from the target cells through P-glycoprotein [214].

Despite the considerable potential of light-responsive
PMs in drug delivery, several obstacles exist. Concerns
regarding biocompatibility arise because light-responsive
PMs may induce adverse immune responses or exhibit toxi-
city. Before clinical applications can be pursued, exhaustive
biocompatibility studies must be conducted. In addition, the
limited depth of light penetration into biological tissues
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limits the application of light-responsive PMs in deep tissues
[215-217]. The lack of established protocols for synthesizing
and characterizing light-responsive particles hinder com-
paring results across studies. Consequently, developing and
certifying light-responsive photonic microparticles as medical
devices or drugs require extensive safety and efficacy data and
the ability to navigate a complex and time-consuming regula-
tory process. Successfully translating light-responsive PMs into
clinical practice necessitates additional research and collabora-
tion. Efforts should focus on enhancing biocompatibility,
improving light penetration, establishing standardized
protocols, and meeting regulatory requirements [216,217].

3.3 Multi-responsive PMs

PMs can respond to various environmental stimuli, such as
temperature, pH, light, enzymes, and redox potential, allowing
for the controlled and triggered release of therapeutic agents.
By leveraging these responsive mechanisms, drug delivery
can be optimized to improve efficacy, specificity, and safety,
resulting in improved therapeutic outcomes. The main goals
of nanocarriers responsive to multiple stimuli are the same
as those of nanocarriers responsive to a single stimulus
[218-220]. These goals include achieving long circulation
times, high accumulation in the target tissue, penetration
into the target tissue, and controlled drug release. However,
they release their cargo more precisely and efficiently.
Incorporating multiple stimuli-responsive substances into
a single NPs enables the release mechanism to be triggered
by more than one stimulus, either simultaneously or sequen-
tially [218,220]. This feature facilitates multi-stage drug delivery
(as shown in Figure 5), allowing for greater control over the
timing and location of drug release [222,223]. Multimodal car-
riers have shown great potential for drug delivery and targeted
cancer therapy by integrating different stimulation strategies
(Table 2).

Photothermal and photodynamic therapies represent
two light-responsive approaches displaying potential in
multimodal systems for treating cancer. These strategies
leverage light to precisely target and eliminate cancer cells
over specific spaces and time intervals. Photothermal
therapy works by transforming light energy into thermal
energy, which is capable of facilitating drug release and
prompting alterations in the chemical structure of nanoma-
terials. In contrast, photodynamic therapy employs photo-
sensitive agents to produce ROS when exposed to light,
facilitating drug release and enhancing the effectiveness of
cell-killing mechanisms. Yan et al synthesized dual photo/
thermo-responsive micelles by hydrolyzing poly(methacrylamido-
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Figure 5: An example of a multi-responsive PM. (a) Different parts of nanocomplexes self-assemble in the aqueous environment. Low pH degrades the
outer layer, and high levels of GSH could destroy the core and release the drug. Moreover, these nanocomplexes are labeled with a magnetic resonance
imaging contrast agent that gives them theranostic properties. (b) The nanocomplex is stable in the normal pH of the circulatory system (stage I). In tumor
tissue, low pH causes the degradation of the outer layer and the release of small positive NPs (stage II). Next NPs enter cancer cells, and high levels of GSH
in cytosol promote NP degradation and release of loaded cargo (stage III). Adapted with permission from [221] (copyright 2020 American Chemical Society).

azobenzene) to obtain a random amphiphilic polymer (metha-
crylamido-azobenzene)ran-poly(2-hydroxyethyl acrylate)
(PMAAAB-ran-PHEA), which comprises thermo-responsive
PHEA hydrophilic moieties and photo-responsive hydro-
phobic PMAAAB moieties. The hydrophobicity of the micelle
core changes upon UV and visible light irradiation, and with
an increase in external temperature, there is a noticeable
decrease in the hydrodynamic radius. Moreover, the tem-
perature can regulate the size and dissolution capacity of
the micelles [243].

Liu et al. synthesized a biodegradable anionic copo-
lymer with side carboxylic groups named methoxy-poly
(ethylene glycol)-block-poly(a-carboxyl-ecaprolactone). The
synthesized samples demonstrated superparamagnetic
behavior with an appropriate magnetic saturation value,
proving their efficacy as a magnetically guided drug delivery
system. Upon comparing the release of PTX/mPEG45-b-
PCCL15@Fe304 and PTX/mPEG45-b-PCCL15, it was found that
PTX/mPEG45-b-PCCL15@Fe;0, exhibited reduced burst release
due to enhanced hydrophobic interactions. They also found
that increasing the molecular weight of the PEG fragment
could further reduce the burst release and result in a sustained

release. The release of PTX from the nanocomposites is faster
at pH 6.5 than at pH 7.4, which is attributed to the protonation
of carboxylic groups and PEG segments on the surface of the
nanocomposites. Therefore, these nanocomposites exhibit a
pH:-responsive release pattern [244].

Dual targeting polymer micelles were generated through
the self-assembly of camptothecin (CPT), which was chemi-
cally conjugated to monomethyl poly(ethylene glycol) (mPEG)
via a redox-responsive linker and an enzyme-responsive
copolymer. An enzyme-responsive copolymer was obtained
by connecting hydrophobic PCL segments and hydrophilic
PEG segments with azo bonds. It was observed that the
amount of CPT release increased by 30% when the concen-
tration of GSH was increased from 10 uM to 10 mM. As a
result of the breaking of azo bonds and dissociation of
micelles in the presence of 10 mM GSH and azoreductase,
approximately 80% of CPT was released within 48 h. Zhang
et al. demonstrated that PBA-PEG-Azo-PCL/mPEG-ss-CPT could
achieve rapid intracellular release and active targeting for
cancer therapy [245].

Although multi-responsive particles (PMs) hold signifi-
cant promise for targeted drug delivery, there are several
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obstacles to overcome in advancing their development.
Formulating and synthesizing PMs that can effectively respond
to multiple stimuli while maintaining stability, controlled
release properties, and biocompatibility poses a substantial
challenge. Achieving the optimal response to each stimulus is
crucial for ensuring the precise and punctual release of the
drug at the desired site. In addition, the clinical translation of
multi-responsive PMs necessitates a thorough examination of
their pharmacokinetics, toxicity, immunogenicity, scalability,
and reproducibility. In addition, regulatory approval is a
challenge, as there is no established framework or regula-
tions for DDS with multi-responsive properties. A rigorous
evaluation of the safety and efficacy of these PMs will be
required to meet regulatory requirements and ensure their
clinical viability. Furthermore, in vivo studies assessing the
sensitivity of nanomicelles to pH/ROS have demonstrated
that this model can be utilized for cancer treatment [246].

4 Conclusion

Given cancer’s substantial effect on mortality rates, devel-
oping and applying new therapeutic approaches is essen-
tial in cancer treatment. DDS are crucial among established
treatment modalities such as chemotherapy and radio-
therapy. These systems facilitate the precise and regulated
delivery of chemotherapy drugs to cancer cells. Smart PMs
have emerged as a promising platform for drug delivery,
responding to various internal and external stimuli. The
utilization of smart PMs not only enhances drug efficacy
but also mitigates toxicity. These systems regulate drug
release by incorporating stimulus-responsive elements into
NP structures. The targeted release mechanism of stimuli-
responsive PMs allows them to accumulate in malignant
tissues while minimizing their exposure to healthy tissues,
thereby reducing adverse effects on healthy tissues and
improving the efficacy of cancer treatment. Continuing
research and development are essential for optimizing sti-
muli-responsive PMs, gaining a more profound comprehen-
sion of their behavior in vivo, and ensuring their safety and
efficacy for clinical applications.

5 Future perspectives

Recent studies delve into the design of micelles responsive
to specific biological stimuli in the TME. These stimuli-
responsive micelles aim to enhance the efficacy of cancer
therapies, particularly immunotherapies, by facilitating
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precise drug delivery to the target site. The TME’s unique
characteristics, such as acidity, high GSH concentration,
hypoxia, overexpressed enzymes, and excessive ROS, can
be leveraged by intelligent DDS to release drugs specifically
into tumor tissues. For instance, stimuli-responsive nano-
particles can maintain stability under physiological condi-
tions but can be triggered to release drugs rapidly in
response to these unique TME characteristics. PMs show
promise in cancer immunotherapy by effectively addres-
sing challenges associated with conventional cancer immu-
notherapies. These micelles can respond to and remodel
the TME, modulate immunosuppressive cells within the
TME, enhance immune checkpoint inhibitors, utilize cancer
vaccine platforms, modulate antigen presentation, manipu-
late engineered T cells, and target other components of the
TME. Moreover, micelles have been employed to deliver
specific drugs, like DOX, to tumor cells. For example, a
mixed-micelle system composed of polyHis-co-phenylalanine-
b-poly(PEG) and poly(i-lactic acid)-b-PEG-folate was used to
reverse MDR in cancer. Additionally, the emergence of tar-
geted PMs for siRNA treatment marks a significant advance-
ment in pursuing safe and effective cancer therapy. These
micelles, designed for gene silencing, show promise in inhi-
biting tumor growth in experimental cancer models, opening
new avenues for personalized medicine. A recent study dis-
cusses using PMs self-assembled from amphiphilic block copo-
lymers as promising carriers for cancer targeting. PMs have
been reported for tumor-specific delivery of drugs and siRNA
in response to overexpressed MMPs.

It should be highlighted that PMs have made signifi-
cant strides in drug delivery applications, boasting a robust
core-shell structure, kinetic stability, and the ability to
solubilize hydrophobic drugs. They have been utilized in
various DDS, including oral, parenteral, transdermal, and
intranasal, as well as for tumor-targeted delivery. However,
challenges remain, such as the instability of micelles in the
physiological environment, limiting their effectiveness as drug
carriers. Micelles tend to disassociate and prematurely release
encapsulated drugs, reducing delivery efficacy and raising
toxicity concerns. Efforts to enhance micelle stability have
primarily focused on reducing the critical micelle-forming
concentration and improving blood circulation. Despite
increased targeted delivery methods for cancer therapeutics,
only a small percentage of nanocarriers accumulate in high-
EPR xenografted tumors, possibly due to physiological bar-
riers and randomness in nanocarrier extravasation through
the tumor vasculature.

One key area of focus for future studies involves the
development of new compounds for use in micelles to
improve their safety. This entails utilizing biocompatible
and biodegradable materials in micelle construction to
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minimize the chances of adverse reactions and long-term
toxicity. Researchers are exploring materials like polymers,
lipids, and peptides to enhance the safety of micelle-based
DDS. For instance, PMs containing cisplatin have been cre-
ated by forming a polymer—-metal complex between cis-
platin and poly(ethylene glycol)-poly(glutamic acid) block
copolymers, which were then tested as a targeted drug
delivery system for tumors. A novel PM system for PTX-
loaded micelles has also been developed, demonstrating
excellent biocompatibility and superior antitumor activity
in mice with tumors. These promising results suggest the
potential of PTX-loaded micelles as a safe and effective
method for cancer therapy, providing a glimpse into the
future of oncological treatment.

Moreover, ongoing research emphasizes the refine-
ment of micelle formulations to achieve better distribution
to targeted tumors, aiming to adjust the size, surface
charge, and stability of micelles to prolong their circulation
time in the bloodstream and improve their accumulation
in tumor tissues through the EPR effect. Additionally,
efforts are being made to incorporate targeting ligands
onto the micelle surface, enabling precise identification
and binding to cancer cells, thereby enhancing the accu-
racy of therapeutic payload delivery.

Even though promising findings are presented, the
clinical implementation of NPs as a drug delivery platform
encounters numerous obstacles. One of the primary
challenges is the necessity of developing stable and repro-
ducible PMs to ensure consistent drug release and thera-
peutic efficacy. Precise formulation and manufacturing of
NPs are crucial for guaranteeing their uniformity and
reliability. Incorporating new compounds into the struc-
ture of PMs can enhance their properties, including drug
solubility, bioavailability, and circulation time. However,
conducting systemic toxicology studies is essential to assess
biocompatibility and safety, aiming to prevent potential
toxicity and immunogenic reactions. Furthermore, com-
prehensive research is necessary to assess the long-term
effects of these NPs and their potential accumulation in vital
organs. Achieving optimal drug release kinetics entails selecting
appropriate stimuli and fine-tuning their response rates.
Additionally, consideration must be given to the potential
development of drug resistance and the emergence of adap-
tive responses to PM interventions in order to achieve long-
term efficacy.

Improving the efficiency of smart NPs in the future is
conceivable. Designing multi-responsive and targeted NPs
appears to be a promising approach, as they exhibit greater
efficacy than single-stimulus and targeted NPs. Combining
therapies can further enhance treatment efficacy by redu-
cing the likelihood of drug resistance. The growing field of
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personalized medicine holds substantial potential for the
future. Designing smart PMs based on the disease stage, as
well as the genetic and physiological characteristics of the
patient, is a promising avenue. Moreover, artificial intelli-
gence (Al) is one of the fastest-growing fields, applicable to
virtually any domain. Al approaches can be employed by
researchers to design and optimize smart PMs and predict
their responses to different environments. On the other
hand, advancements in nanotechnology and materials science
have enabled the design and synthesis of compounds with
tailored properties for micelle formation. These advancements
address current challenges in drug delivery, such as off-target
effects and limited therapeutic efficacy. As our understanding
of tumor biology and the tumor microenvironment deepens,
the customization of micelles for specific cancer types and
patient populations is expected to advance.

Finally, the field of stimuli-sensitive micelles is advan-
cing, focusing on micelles responsive to specific biological
stimuli in the TME. This responsive behavior could poten-
tially customize drug release and distribution, offering a
refined and targeted approach to cancer treatment. Progress
in this area addresses the need for enhanced safety and pre-
cision in DDS. Therefore, despite promising results, multiple
challenges should be addressed in facilitating the translation
from bench to bedside.
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