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Abstract: The world’s energy demand has significantly
increased as a result of the growing population and accom-
panying rise in energy usage. Fortunately, the innovation
of nanomaterials (NMs) and their corresponding proces-
sing into devices and electrodes could enhance the function-
ality and/or advancement of the current battery energy
storage systems (BESSs). Patent landscape analysis (PLA)
can offer a comprehensive overview of technological devel-
opment trends and enable discussion in interdisciplinary
areas that facilitate more rational technology planning in
the future. In this study, PLA of recent advancements in
the NM-based BESS was critically analyzed, future technol-
ogies forecasted, and potential challenges outlined. A search
was performed in the Lens database using “energy storage
system,” “battery,” and “nanomaterial,” and related patents
under the simple family were extracted. Finally, after
excluding duplicates and irrelevant patents, a total of 89
patents were selected for analysis using various parameters.
The article provides a current technical overview along with
an extensive bibliographic review of the patent family,
trends of patent growth, key inventors and owners, patent
legal status, patent jurisdiction, top cited patents, etc., as well
as technological updates. Overall, nanotechnology has great
potential for the future; however, further research and
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studies are necessary to accelerate the widespread usage
of NMs in energy storage systems using cost-effective and
environmentally friendly technologies.

Keywords: nanomaterials, patent landscape analysis, bat-
tery energy storage, nanostructured materials, technology
updates

1 Introduction

The primary power source for most energy use is moving
quickly and dramatically toward electricity. The demand for
portable consumer devices, medical devices, electric vehi-
cles, and electric grids, as well as the growing Internet of
Things and wearable devices, has made reversible electri-
city storage and release an important technology. These
uses, the requirement to store power energy generated by
piezoelectric and triboelectric generators, wind turbines,
heat sources, solar panels, and moving machinery all neces-
sitate significant advancements in and diversification of the
technology of energy storage [1,2]. New, inexpensive, and
environmentally acceptable energy conversion and storage
devices must now be developed in order to meet the
demands of contemporary society and growing ecological
concerns; this is the reason for the field’s fast advancement
of research. The features of the materials used in these
devices have a significant impact on their operational effi-
ciency. The key to the advancements in energy conversion
and storage that have already been accomplished is the
chemistry of innovative materials. In this instance, materials
with large electrochemically active surfaces and nanometer-
sized structural characteristics can shift the usual approach
for energy storage [3]. Numerous forms of research and
studies have been focused on the creation of ideal energy
storage systems (ESSs) worldwide as a result of the rising
demand for attractive ESSs. Energy storage and conversion
technologies, including batteries, supercapacitors, and solar
cells, have undergone substantial development in response
to the looming depletion of traditional fossil fuels and the
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growing challenge posed by the carbon dioxide footprint.
These erratic and intermittent sources must be seamlessly
incorporated into the power grid system, which calls for an
experienced, substantial, and reasonably priced ESS. Due to
their special characteristics, such as high energy density,
long life, availability, low cost, and high safety, batteries
have received a lot of interest from academics, scientists,
and researchers throughout the world [4]. Conte [5] pre-
sented an overview of the performance of the various
electro-static discharges (ESDs) (Table 1). It is obvious that
lithium-ion batteries (LIBs) have higher power and energy
densities than other energy storage technologies. It also has
certain appealing characteristics including high efficiency, a
long life cycle, a low discharge rate, and a high voltage.

Nanomaterials (NMs) have characteristics that allow
them excellent candidates for a variety of energy storage
technologies. NMs can differ greatly from one another in
their properties, giving researchers countless opportunities
to enhance devices for energy storage. The superior elec-
trical conductivity and charge carrier mobility of certain
NMs, which allow electrons to move and be stored effec-
tively, is one of the key advantages of ESDs [6]. Due to the
remarkable mechanical, electrical, and optical features con-
ferred by restricting the dimensions of such materials, as
well as the contribution of both bulk and surface attributes
to overall behavior, nanostructured materials have gained
considerable interest in recent years. To understand the
possibilities of smaller-scale materials, one needs to look
at the incredible advances in microelectronics. Materials
with nanostructures are becoming more and more crucial
for electrochemical energy storage [3,7].

Due to their large specific surface area and excellent
electrical, physicochemical, and mechanical properties, NMs
have received a lot of attention for energy storage. A wide
range of innovative nanostructured materials and compo-
sites with customized morphologies have arisen thanks to
cutting-edge nanofabrication processes, and they have been

Table 1: An overview of the performance of the various ESDs
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investigated as electrodes for supercapacitors and/or LIB
and Na-ion battery applications [8]. In comparison to most
other shapes of substances, the structures of NMs, particu-
larly their length, large surface area, and high porosity, offer
distinct advantages, and their versatility in that they may be
adapted to particular needs and increase their utilization.
The employment of NMs as an anode and cathode will increase
surface reactivity and, consequently, the effectiveness of energy
products due to their vast surface area [9]. Therefore, current
progress in ESDs is due to the manufacturing of nanostructured
electroactive materials on a large scale.

A patent is a document that comprises technical infor-
mation that was created through scientific invention by its
creators and is registered with the appropriate interna-
tional agencies to safeguard its intellectual property rights
[4]. Patents are the rights to intellectual property that can
be given in exchange for the disclosure of an invention and
are used to protect inventions within the borders of spe-
cific jurisdictions. A granted patent has commercial signif-
icance since it grants the exclusive right to prevent anyone
from producing, using, or selling the invention in the desig-
nated territory. A patent’s capacity to keep competitors out
of a market or from using a protected technology has led to
the term “limited monopoly” being applied to it. Under-
standing which companies own patents and what technology
fields they cover can have a big impact on legislation and
corporate decision-making because of the potential commer-
cial and legal implications. In addition, patents are not avail-
able everywhere else; hence, it is considered critical sources
of innovation [10]. The application of patent data and the
analysis of this data is essential to the management of tech-
nology. Usually, the analysis of the technology revealed in
patents and the identification of the legal status and specific
features of patents provide an important tool that may be
properly understood [4].

A popular technique for analyzing current trends in
research, developments, and patenting patterns, as well as

Battery Temperature (°C) n (%) Energy Power Voltage (V) Self-discharge Cycle life at Cost estimation

types (W/kg) (%/month) 80%DOD -
(W h/l)  (Wh/kg) ($/kW h) ($/kwW)

Lead acid -30 to 60 85 50-70  20-40 300 2.1 4-8 200 150 10

Nickel metal ~ -20 to 50 80 200 40-60  1,300-500 1.2 20 >2,500 500 20

hydride

Li-ion -20 to 55 93 150-200 100-200 3,000-800 ~3.6 1-5 <2,500 800 50-75

Electric -30 to 65 97 5 5-20 1,500 ~2.5 30 Not 2,000 50

double-layer applicable

capacitor

Reproduced with permission from Conte [5].
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the regulations pertaining to the current technology, is the
patent landscape (PL) review. Inventors and researchers
can use patent landscape analysis (PLA) to gain important
technological insights that will help them create fresh solu-
tions to real-world problems [11]. In addition to assisting in
the understanding of current technology developments,
patent landscaping serves as a tool in locating key industry
players that potential rivals may encounter. These studies
may also be used to license or purchase prospects for busi-
nesses with patents on their names. PLs identify areas for
future growth and provide data that enable decisions to be
made with knowledge and based on evidence. The main
advantage of a PLA is an in-depth understanding of the
product, technology, and competition in the chosen geo-
graphic region for the search [12].

A tried-and-true multistep process known as PLA-often
defined as “patent mapping” — uses both human intelli-
gence and computer tools to filter through, compile, and
extract value from this vast amount of data. In summary,
PLA clarifies the discoveries that serve as the foundation
for goods and technologies. A complete PL analysis project
consists of a set of technological references and accompa-
nying analytics from which important legal, technical, and
commercial data can be obtained. Large organizations,
research centers, universities, investors, and startups may
comprehend and make informed decisions before investing
time and money in new innovation and product develop-
ment alternatives [13]. Researchers and decision-makers
from a variety of disciplines are interested in statistical
analyses based on patent data because patents can act as
quantitative indicators of phenomena that are challenging
to evaluate such as knowledge spillovers, innovation, colla-
boration, and technical space [14]. Therefore, institutions,
companies, and organizations could benefit significantly
from the analysis of patent documents.

There are numerous internet databases available to sim-
plify and facilitate PLA such as the United States Patent Office,
the European Patent Office, the United States Food and Drug
Administration (Orange Book), Google Scholar, the Lens data-
base, ClinicalTrials.gov, etc. [15]. Among these databases, Lens
currently attracts more attention from researchers due to its
abundant facilities. With the addition of OpenAlex and
UnPaywall open-access information linkages and more
than 200 million academic records collated and managed
by Microsoft Academic, PubMed, and Crossref, Lens offers
a wealth of information. For the first time, the entire Scho-
larly Citation Map is accessible as a free public resource. To
locate the most pertinent and significant patents, the Lens
patent search feature provides advanced Boolean opera-
tions, structured search, biological search, taxonomy search,
filtering, and sorting choices. Make shareable collections,
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notes, and visualizations that may be annotated (see https:/
www .lens.org/lens/). To create an open map of the world of
knowledge-directed innovation, the Lens will enable the
sharing, aggregation, and embedding of document collections,
aggregates, and analyses. In the end, this will reinstate the
patent system’s function as a learning tool to educate and
motivate businesspeople, citizens, and decision-makers [16].
Until now, numerous PLA reviews have been reported
for various fields of research. However, no PLA review has
been introduced related to technological advances in NM-
based battery energy storage systems (BESSs). However,
demands for the NM-based BESS are increasing day by
day. According to Stratview Research, the global market
for ESS is anticipated to reach 440.71 GW in 2028, expanding
at a common annual growth rate of 11.1% from 2022 to 2028.
The present study aims to summarize the historical devel-
opment of scientific literature and the PL beyond the inven-
tion of NM-based BESS in order to provide an overview of
current advancements in basic and applied research using
the Lens database. To the best of our knowledge, this study
is the first analysis of the NM-based BESS PL. Herein, an
overview of patents and scientific articles is provided, incor-
porating the advancement of scientific knowledge with the
PL for NM-based BESS. In general, reviewing the technology
revealed in patents and determining its legal status and
features yield a useful tool that can be easily comprehended.
Therefore, the following contributions, objectives, and novelty
are achieved by this article:
* Conducting a comprehensive search and retrieval of
relevant patents related to an NM-based BESS.
The identification of markets that are safeguarded by
competitors within the realm of technology.
This study provides an overview of innovation in a spe-
cific technical field at any given period. It may also depict
the trajectory of technologies, key players (top interna-
tional companies), and locations of innovation.
Scientists and researchers acquire crucial information
and recent awareness about a certain technology in
order to develop, modify, or improve it.
It provides an obvious depiction of how the novel idea
would function in practice.
Teams of business developers identify the significant
assignees (owners) of the pertinent technology, which
is useful information to take into account when consid-
ering potential merger and acquisition partners, in- and
out-licensing prospects, clients, or suppliers, as well as
when determining whether it would be more profitable
to develop the technology.
+ A great forum of thoughts to exchange ideas on impor-
tant commercial challenges is provided by PLA. A com-
prehensive and unified internal business process that
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spans the entire organization is stimulated by PLA, which
also improves communications between departments.

* This analysis supports academic institutions, large cor-
porations, new ventures, and the like in making the right
decisions prior to investing time and resources in the
development of an innovative concept in the field.

2 NM-based energy storage
technology updates

Nowadays, the consumption of energy in all its forms is
unavoidable and increasing. Fossil fuels currently make up
the majority of energy sources. The growth of renewable
energy sources has, however, gained much attention due to
the serious condition of global warming. The employment
of nanoparticles as an anode and cathode will increase
surface activity and, consequently, the efficiency of energy
products due to the huge surface area. Already, advances
in nanotechnology are enhancing the conversion, storage,
and transfer of energy. Future developments in the energy
sector may heavily rely on nanotechnology solutions, par-
ticularly when it comes to the creation of novel methods
for energy storage [17]. Through innovative technological
solutions and improved manufacturing technologies, nano-
technologies play a significant role in improving energy
effectiveness in every sector of the industry and boosting
the economic viability of renewable energy generation.
Innovations in nanotechnology may have an impact on
all sectors in the value-added chain of the energy field.

2.1 Energy conversion

Nanotechnology can improve how effectively and sustain-
ably basic energy sources, such as the sun, are converted
into electrical, thermal, and kinetic energy. Currently, new
techniques such as size/facet control, atomic regulation,
vacancy engineering, structural engineering, and the crea-
tion of nanocomposites change the active sites’ physico-
chemical characteristics (e.g., optical, electronic, textural,
and band properties). Consequently, this leads to a signifi-
cant increase in the ability of NMs to convert and store
energy [18]. Nanostructured materials and nanotechnology
are making significant contributions to the field of solar
photovoltaics, or solar cells, which convert sunlight into
electricity. A successful study could lead to a significant
decrease in the cost of making these solar cells while simul-
taneously increasing efficiency.
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It has been proposed to use colloidal quantum mate-
rials made of nanoparticles based on semiconductors as
photocatalysts to convert solar energy into chemical work.
Water splitting is one of the primary photocatalytic pro-
cesses that has been studied. It tries to use the energy
absorbed by nanocrystals to directly produce hydrogen
gas and oxygen by reducing and oxidizing water, respec-
tively. The hydrogen gas can then be managed to react
with oxygen to create backwater in a fuel cell, producing
power and creating a cycle with no emissions. Being able to
tune and tailor the electronic band structure of the nano-
particles by composition, shape, and size, the high surface-
to-volume ratio and the capability to use tiny particles either
directly in solution or incorporated into a matrix have all
led to the investigation of various systems for water split-
ting, primarily by separation of the two half-cell reactions.
Furthermore, because of their properties’ adaptability, sys-
tematic investigations might be carried out to identify the
key variables that control their performances and under-
stand their mode of operation [19].

Nanostructured materials that are less than 100 nm in
at least one dimension are referred to as low-dimensional
materials (LDMs). Metals, insulators, and semiconductors
are examples of LDMs. The LDMs can be categorized into
various groups based on their morphologies such as zero-
dimensional (0D), one-dimensional (1D), two-dimensional
(2D), and three-dimensional (3D) [20-22]. LDMs have excep-
tional chemical, electrical, mechanical, and optical character-
istics that result from the quantum confinement effect, and
their large surface area-to-volume ratio greatly enhances the
opportunity to be used in energy conversion and storage.
Comparable to their bulk counterparts, low-dimensional
semiconductor materials have distinctive optical and elec-
trical characteristics. A brief discussion of LDMs is given
below, and relevant diagrams are illustrated in Figure 1.
The quantum confinement effect describes how the nanos-
tructures of LDMs constrain the motion of electrons. Low-
dimensional NMs have special features as a result of
quantum confinement, which might improve the effi-
ciency of photocatalysts [23]. Due to their extremely small
size (usually 1.2-10 nm), quantum dots (QDs), which exhibit
distinctive optical and electrical properties, are 0D nanos-
tructures in which the transport of electrons is spatially
constrained in three dimensions. Numerous QD photocata-
lysts have been shown to work with a variety of materials,
including graphene [24], ZnSe [25], CdS [26], CulnS; [27], NiS,
[28], PbS [29], etc., all of which exhibit these advantageous
features as well as excellent candidates for effective CO,
conversion.

Materials with a 1D structure have 2D confinement to
the electron’s mobility. For 1D NMs, nanowires (NWs),
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Figure 1: Overview of different types of LDMs based on their morphology: 0D, 1D, 2D, and 3D NMs. An illustration of the chemical, structural, and
morphological features, advantages, and limitations of the LDMs that can be used for ESDs with improved performance. Reproduced with permission

from Pomerantseva et al. [1].

nanotubes, and nanorods are typical morphologies. The 1D
structure gives materials exceptional charge transport and
longer carrier lifetimes because of the special state density
distribution and innately higher reactivity resulting from a
larger surface area compared to bulk materials [30-32].
Numerous semiconductor materials have been created
with a 1D structure to take advantage of these intriguing
properties, and these nanostructures have drawn a lot of
interest in increasing the photocatalytic conversion of CO,
into solar fuels [33]. Due to its low cost, nontoxicity, and
chemical stability, TiO, is one of the photocatalytic mate-
rials for CO, conversion that has been studied the most [30].
Another material with promise for photocatalytic CO, conver-
sion is graphitic carbon nitride (g-C3N4). A polymeric semi-
conductor photocatalyst without metals is called g-C3N4. Due
to its excellent photocatalytic efficiency, g-C3N, has attracted a
lot of attention in photocatalysis research. The photocatalytic
activity of g-C3N, has been greatly enhanced by means of
nanostructuralization, elemental doping, surface modifica-
tion, and hybridization [34,35]. 2D NMs have promising appli-
cations for developing ESSs having high power density and
volumetric energy [36]. Nanosheets (NSs) are 2D materials
with flake-shaped morphologies and thicknesses ranging
from a few atoms to about 100 nm [37]. Due to their large

surface area, excellent ion transport efficiency, and abun-
dance of easily accessible active sites, 2D materials are
highly suitable for ESDs [38,39]. Because of the quantum
confinement phenomenon, 2D materials exhibit different
electrical and optical characteristics from bulk materials.
However, when these materials are thinned to extremely
thin NSs (monolayers), the optical and electrical properties
of NS are further enhanced [33]. In addition, graphene pos-
sesses a range of exceptional properties due to its distinctive
2D planar structure. These properties include the half-
integer quantum Hall effect, ultrahigh carrier mobility as
predicted by theoretical calculations and observed in elec-
tronic devices, high thermal conductivity, large specific sur-
face area, and the utmost durability [40]. Due to its great
charge carrier mobility, graphene, the most prevalent 2D
material, has been researched in a variety of domains,
including photocatalysis [41]. Materials composed of 2D
NSs exhibit several distinctive characteristics that make
them highly desirable for future energy storage devices.
These properties include an ultrathin thickness and a sub-
stantial lateral size, resulting in a layered structure. Addition-
ally, these materials possess an abundance of catalytically
active sites that are easily accessible. Furthermore, they
exhibit unconventional physical, chemical, and electronic
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properties, further enhancing their appeal as potential candi-
dates for next-generation energy storage [42]. Researchers
demonstrated numerous 2D materials to produce solar fuels
including boron-nitride (BN) [43], bismuth-based materials
[44,45], WS, [46], MoS, [47], etc. There are some challenges
to overcome for 2D transition metal oxides and hydroxides,
such as the few types of 2D parent materials that are available
in bulk, the controlled synthesis of 2D nanostructures with
unlayered structures, and the capacity to regulate the char-
acteristics of layers by adjusting the chemistry and nano-
scopic features [48].

Recently, in the production of electrodes for high-per-
forming electrochemical ESSs, 3D structures have received
greater interest. In contrast to other types of LDMs, 3D
materials have the ability to speed up electron transporta-
tion by reducing conductive pathways. In addition, 3D
materials improve the performance of the devices because
their porous composite structure and large surface area
create large contact areas with the electrolyte and contin-
uous paths for ions to move through the whole area [49]. It
is essential to create 3D architecture that is optimized for
both electron and ion transport in order to create thicker
electrodes (e.g., 100-200 mm) with high area and volumetric
storage properties. These architectural designs would
reduce the number of passive components such as current
collectors and separators, which take up extra space and
dead weight-in cells [1]. In order to assure incredibly effi-
cient charge distribution to and from the electrodes, 3D
architectural material provides interpenetrating transport
channels for ions and electrons. To convert the remarkable
performance of 3D materials into macroelectrodes with sig-
nificant mass loading, several transport pathways are
required [50]. Furthermore, the 3D graphene networks
exhibit a significantly porous structure, hence enhancing
the rate of reaction kinetics and resulting in elevated energy
and power density [51]. Until now, numerous 3D materials
have been developed to enhance the performance of ESSs
[50,52-54]. However, fabricating 3D architecture material-
based energy storage system devices in an efficient and
cost-effective manner is still challenging. To fabricate dense
and high-mass-load electrodes with convenient 3D struc-
tures, new techniques and methods need to be developed.
Among fabrication techniques, holographic patterning and
3D printing are considered rapid, inexpensive, and scalable
methods for manufacturing. Another method involves using
biological materials as templates to create ultra-thick elec-
trodes having 3D hierarchical structures [50,55]. Due to their
considerable energy capacity and lower toxicity, 3D transi-
tion-metal oxides, particularly Fe;0,4, have received a lot of
interest recently as anode materials. For example, Yang et al
[56] synthesized 3D nanostructured and hollow sphere
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Fe30,/C composites using porous spongy carbon and FeCl;:6H,0
raw materials and a facile solvothermal method. The
composite showed remarkable electrochemical proper-
ties that achieved relatively large reversible specific
capacity, strong cycle stability, and significant rate cap-
ability. A brief discussion is given below, and relevant
diagrams are illustrated in Figure 1.

2.2 Energy storage

Batteries and supercapacitors in particular can benefit
greatly from the use of nanotechnology in ESSs. When
not linked to the electricity grid, such as when a mobile
phone is being used, batteries are required to supply elec-
trical energy. Nanotechnology can be used to develop
materials to create heat-resistant, flexible, and high-perfor-
mance electrodes for LIBs. Nano-porous materials like
zeolites, which might be employed as heat stores in both
residential and commercial grids, could also be better uti-
lized for thermal energy storage. Nanotechnologies have
the potential to significantly increase the capacity and
security of LIBs, as demonstrated by innovative ceramic,
heat-resistant, and stiff-flexible separators and high-per-
formance electrode materials, for example [57].

Another significant advancement in energy research is
the use of nanotechnology to improve ESSs. For example,
nickel-cobalt metal-organic framework (NiCo-MOF) NSs
with several layers were developed by Chi et al [58] as
durable electrode materials for enhanced electrochemical
energy storage over 3,000 cycles at 5Ag™". In a silicon
oxycarbide (SiOC) matrix, Dubey et al. [59] reported a gen-
eration of homogeneously implanted Sb nanoparticles that
were able to offer a very large Li-ion storage capacity. For
improved charge storage capacity and rate performance
for LIBs, Gu et al. [60] developed the intercalative hybridi-
zation of MoS, with chromium hydroxide nanoclusters,
which stabilizes the open porous stacking structure, speeds
up charge kinetics and basal spacing. In addition, the
separator was built by Jiang et al. [61] using a thin porous
carbon NS with embedded TiO, nanoparticles as an inter-
layer, which promotes faster Li-ion diffusion while concur-
rently inhibiting polysulfide diffusion.

Carbon is considered an excellent energy storage material
due to its unique properties, including its high availability,
lower specific weight, and high electronic conductivity.
Furthermore, a variety of carbon structures and morphologies
are easily obtainable as a result of sp/sp./sps; hybridization.
However, nanostructured carbons often offer little redox
potential, generally exhibiting redox capacity after being
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functionalized. Consequently, instead of being used as the
active material for ESDs, they are typically used as a con-
ducting support backbone or as a material for double-layer
capacitors [62,63]. Conversely, graphite, which is made up of
layers of ordered graphene, shows exceptional properties; it
has a capacity of 372mA h g™* for storing Li ions in the spaces
between the layers [64].

2.2.1 NMs for anodes

The theoretical capacity (TC) of Si is much higher than that
of other NMs; for example, its TC is ten times higher than
that of graphite (372 mA h g™). Consequently, Si is a widely
used and favorite anode material for the ESSs of future
generations. This higher capacity of Si NMs is due to their
alloying mechanism, which enables single Si to host up to
4.4 Liions. Moreover, Si NMs are capable of providing poor
cyclability because of their ability to expand the volume
significantly (>300%) during lithiation [65-67]. The tension
caused by the volume change causes the electrode to crack
and possibly get pulverized, which results in a loss of elec-
trical contact and fast capacity fading. Furthermore, the
solid—electrolyte interphase (SEI) can be disrupted by con-
tinual expansion and contraction during cycling, which
leads to lower Coulombic efficiency (CE) because of repe-
titive SEI production [68,69]. The Si anode serves as an
excellent example of how nanotechnology can be used to
solve material problems in battery development. The pul-
verization problem was solved by decreasing the Si mate-
rial size down to the nanoscale. According to previous
reports, Si is able to contract and expand except in pulver-
ization at sizes less than 300 nm, termed as the crucial
fracture size [70]. For instance, Guo et al. [71] used the
thermal burst method for synthesizing Si nanotube sheets.
The Si nanotube sheets exhibit a discharge specific capacity of
712.7 mA h g ! at a current density of 5A g™. More recently,
arrays of Si micropillars were developed by employing photo-
lithographic patterning and optimized deep reactive ion
etching procedure utilizing a Si wafer. The Si micropillar
electrode (length of 14 ym) exhibited a notable specific capa-
city of 2,600 mA h g™ and a significant areal capacity of 3 mA
h cm 2, which remained stable for more than 100 cycles [72].
For instance, Si NWs grown directly on the current collector
using a vapor, liquid, and solid approach were used in the
first-generation Si anode that our group reported at the end
of 2007, and a noticeable improvement in electrochemical
performance was found compared with thick films and big
particles. However, there are a few challenges for using
silicon anodes, including (i) destabilization of the SEI and
structural degradation due to the significant volume change
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(~300%) that occurs during cyclin, (ii) incidence of electrolytic
side reactions, and (iii) with the poor volumetric capacity that
results from the material’s reduction in size to the nanometer
scale [73-76].

To overcome these challenges, Batool et al. [77] fabri-
cated nanostructured composites consisting of a silicon
core and a carbon shell (Si@C) consisting of a thin and homo-
geneous porous carbon layer at the interface (Figure 2a and b).
The utilization of mesoporous conductive carbon efficiently
regulated the mechanical strain of silicon NPs, hence preser-
ving the structural integrity of Si@C nanocomposites. Addition-
ally, it facilitated easy access to electrolytes and facilitated the
efficient transport of short Li ions. The innovative Si@C anode
demonstrated a consistent specific capacity of around 868
mA h g at a current rate of 0.1 Ag™ for up to 500 cycles,
with a columbic efficiency of 99%. Similarly, Ding et al. [78]
effectively synthesized the SiO,@a-TiO,@Ag composite with a
core-shell structure using a simple sol-gel technique. The com-
posite plays a role in mitigating the expansion of the electrode
and offers additional pathways for Li-ion diffusion due to the
elastic behavior of the TiO, layer. Furthermore, Ag NPs have
excellent electrical conductivity.

Conversely, due to its largest TC (3,860mAh g™) and
lowest electrochemical potential (3.04 V vs the conventional
hydrogen electrode), Li metal is the ideal anode. The signifi-
cant interfacial variation, which internally impairs the deli-
cate SEI layer, promotes a dendritic Li deposition that may
result in an internal short circuit and damage battery safety.
The repetitive Li plating/stripping (deposition/dissolution)
operations produce a lot of Li dendrites on the anode sur-
face and have a lower CE, according to previous studies [79].
Furthermore, the recurrent SEI breakdown/repair and high-
surface-area dendrites drastically reduce the cycle life. Li
metal research has recently seen a resurgence thanks to
the advancement of nanotechnology, and the results of
this study have been well-reviewed in various reviews
[79-82]. They were aiming to determine characterization
techniques suited for in situ observation and study of SEI
development to gain insight into the electrochemical pro-
cesses occurring in the cell while eliminating the parameters
that favor the generation of this type of surface structures.

In order to get over the aforementioned issues, the
main objective is to provide homogenous Li deposition
throughout Li plating and stripping, protecting Li metal
against dendrite growth. To date, numerous approaches
have been put forth to produce high-performance Li metal
anodes. Figure 3 summarizes the process and related
method or rationale for enhancing the Li metal anodes’
long-term cycle stability using an ionically conductive
coating that is thick, thin, and protective (either before
or during cycling) (Figure 3a). A protective layer or matrix
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Figure 2: (a) A schematic mechanism for the fabrication of phenolic resins-based interfacial coating on commercial silicon nanoparticles through

ultrasonication and (b) further pyrolysis for anode material preparation

for the electron conductor was also used on the Li metal
anode in addition to the ion conductor (Figure 3b). In order
to further enhance the stability of the reaction contact and
prevent the formation of Li dendrites, much effort was
made into designing lithiophilic hosts with complex topol-
ogies containing active Li (Figure 3c). Moreover, electrolyte
modifications (Figure 3d), various binder designs (Figure 3e),

and modified separators are more effective for preventing Li

dendrite penetration (Figure 3f) [79].

A brief description of the process and related method
for enhancing the long-term cycle stability of Li metal
anodes is given as follows:

a) Ionic conductor: Movement of ions from one place to
another according to an ionic gradient. This phenom-
enon is described in elementary science as a character-
istic of liquid electrolyte solutions. Example: Type I and
type I batteries, fuel cells, electrochromic windows and
displays, solid-state sensors, etc.

b) Electron conductor: Movement of electrons or charge
from one place to another in response to an electric
field such as metals and semiconductors.

c) Lithium host: Lithium (Li) hosts, which may electroche-
mically deposit Li in existing pores of 3D frameworks,
have been studied as a sophisticated electrode structure
for Li-metal batteries with high energy density. The Li
metal anode undergoes a substantial change in volume

and application in LIBs. Reproduced with permission from Batool et al. [77].

throughout the plating/stripping process, leading to the
fracturing of the SEI the production of dendrites, the
depletion of electrolytes, and a low CE. By employing a
suitable Li host matrix that possesses consistent Li
nucleation sites, it is possible to reduce the significant
change in the volume of Li metal and achieve uniform
regulation of Li dendrites throughout the cycling pro-
cess [79].

d) Electrolyte modification: Upon contact between the metal
anode and the nonaqueous electrolytes, it was discov-
ered that a thin film of intricate composition was spon-
taneously generated. The electrolyte composition has a
crucial role in the creation of the SEI, which is thin,
stable, dense, and elastic. Hence, altering the composi-
tion of electrolytes, such as solvents, salts, and additives,
has been considered the most efficient approach to enhance
the stability of Li metal anodes. There are several methods
for modifying electrolytes, such as ion doping and substitu-
tion, coating, composite method, etc. [79].

e) Binder design: Binder designs have been utilized as suc-
cessful approaches to reduce volume changes and inhibit
the growth of Li dendrites in LIBs. Applying an appro-
priate binder can effectively mitigate the formation of
cracks in Li metal anodes throughout the cycling process,
leading to the establishment of a consistent and stable
interphase [79]. For example, a binder made of poly
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Figure 3: By preventing lithium metal from the formation of Li dendrites during Li plating and stripping, a uniform Li deposition may be achieved,
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conductor layer and (b) electron conductor layer on Li metal anode, (c) design of Li hosts, (d) modification of electrolyte, (e) binder design, and (f)
modification of separator. Reproduced with permission from Wang et al. [79].

(acrylic acid) incorporated with polyrotaxane is used to
enhance the mechanical integrity of the electrode in an
Li metal anode. This binder is able to tolerate the large
stress caused by repeated Li uptake and release, pre-
venting the formation of cracks during operation [83].
f) Modified separator: Modifications to separators have been
used as effective solutions to address volume change and
inhibit the formation of Li dendrites in LIBs. A separator
that is thermodynamically stable and strong is able to
withstand the thermal runaway resulting from an internal

short circuit and the mechanical penetration caused by Li
dendrites [79]. For example, a commercially available
separator coated with thermally conductive BN NSs effec-
tively addresses safety concerns. It exhibits a high CE of
over 100 cycles at 0.5mA cm ™ in a standard organic car-
bonate-based electrolyte [84].

The benefits of carbon-based materials include low

cost, simple processing, and a variety of shapes. Carbon-
based materials are currently thought of as more realistic
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anode materials as a representation of the Li-ion insertion/
extraction mechanism. Although graphite carbon, often
known as soft carbon, has good crystallinity, its specific
capacity is only 372 mA h g%, This is because Li ions inter-
calate into graphite carbon in stages to generate LiCq. The
drawback restricts the use of graphite carbon as a material
for negative electrodes in hybrid and electric automobiles.
Hard carbon, often known as non-graphite, has disorga-
nized interior crystallites. Although it has high reversibility
and capacity loss issues, it has good stability. According to
studies, the main determinants of its great reversibility
include particle size, additives, and high porosity. The Li-
ion diffusion length can be significantly decreased thanks
to the carbon’s nanoscale size, which can also boost spe-
cific capacity and structural stability [85].

2.2.2 NMs for cathodes

Since the design and capacity of the majority of LIBs are
cathode-constrained, optimizing LIB performance requires
careful consideration of the cathode materials. In order to
meet this need, cathode materials can be designed and
engineered in fundamentally new and diverse ways thanks
to nanotechnology. With an energy density of 800 W h kg™
and a cathode capacity of only 250 mA h g™, LIBs based on
insertion cathodes no longer meet the criterion of 500 km
between charges for all-electric vehicles. Researchers are
looking for alternative cathode materials like sulfur and
oxygen that can give capacities that are orders of magni-
tude more than those of traditional insertion cathodes like
LiCoO, and LiMn,0, (>1,500 mA h g’l) in order to increase
energy density [86]. Due to its enormous advantage in spe-
cific energy (2,600 W hkg ™) and capacity (1,675mAh g™,
which is five times more than that of state-of-the-art cath-
odes, sulfur stands out as a suitable cathode contender [87].
Additionally, one of the most prevalent elements on the
globe, sulfur, is a substance that is electrochemically active,
and its electron acceptance capacity per atom is up to two
at 2.1V versus Li/Li". Consequently, lithium-sulfur (Li-S)
batteries have a theoretical energy density of about
2,600 Wh kg'l, while sulfur cathode materials have a high
TC of 1,675mAh g™. Contrary to typical insertion cathode
materials, cycling causes sulfur to go through a number of
compositional and structural modifications involving both
soluble polysulfides and insoluble sulfides. Consequently,
researchers have encountered challenges in maintaining a
stable electrode structure, utilizing the active material to its
maximum potential, and obtaining a sufficient cycle life to
ensure excellent efficiency of the system. Although the last 10
years have seen great progress in the study of rechargeable
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Li-S batteries, issues with cycle life and efficiency limit their
application in commercial cells. Researchers will need innova-
tive Li-S cell designs and sulfur composite cathodes with favor-
able performance and characteristics to solve these enduring
issues [86].

Carbon-based materials are the widely applied alter-
native for confining sulfur due to their high pore volume
and strong electrical conductivity. Ding et al. [88] contri-
buted to this field by using the simple sulfur vapor adsorp-
tion method to develop S@CNT hybrid film cathode.
Conversely, a binder-free cathode has been developed
from a freestanding thin-film composite consisting of sul-
furized polyacrylonitrile with a conducting backbone of
carbon nanotubes (CNTs) using an electrospinning tech-
nique followed by vulcanization by Razzaq et al [89].
The composite material exhibited a significant preliminary
discharge capacity of 1,610 mA h g™ at a rate of 0.2C and
exceptional cycle stability with a discharge capacity of
1,106 mA h g™ at a rate of 1C throughout 500 cycles. In
addition, Hwa et al [90] fabricated a nanocomposite
called cetyltrimethylammonium bromide-modified sul-
fur-graphene oxide—CNT (S-GO-CTA-CNT) by freeze-drying
as a highly efficient cathode material. The nanocomposite
exhibited efficient usage of S, with a capacity of 1,128 mA h g™*.
In order to introduce a straightforward, economical, and
scalable method for producing micro-mesoporous structure
cathodes composed of sulfur and N, S-codoped carbons,
Sevilla et al. [91] used sodium thiosulfate and polypyrrole
for homogeneously distributed sulfur throughout the
carbon host. The sulfur-carbon composites have a high spe-
cific capacity of 1,100 mA h g™ when subjected to a low C-
rate of 0.1C and a capacity of over 500 mA h g™ when
exposed to a high rate of 2 C. Furthermore, Kim et al. [92]
designed and fabricated 3D sulfur papers that incorporate
interconnected carbon materials with excellent conductivity
(Figure 4a). These papers serve as flexible cathodes for Li-S
batteries without the need for binders. The sulfur-carbon
composite paper cathode demonstrated a notable reversible
specific capacity of 1,386 mA hg ™, along with a commend-
able rate capability of up to 5C.

The main factor enhancing the long-term electroche-
mical stability of the sulfur cathode would be the electro-
chemical reaction restricted only to the small micropores
described here. The primary factor enhancing the long-
term electrochemical stability of the sulfur cathode would
be the electrochemical reaction restricted only to the small
micropores. In addition to porous carbon, 2D-nanostruc-
tured graphene exhibits considerable potential due to its
substantial surface area and varied surface chemistry
[100,101]. A sandwich-style structure, a gradient structure,
unstacked graphene double layers, etc., are some further
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examples of characteristic graphene—sulfur structures [65].
Furthermore, 1D carbon nanostructures have received a
lot of attention. To enhance the electrochemical perfor-
mance, sulfur-coated CNT coaxial architectures [102] and
vertically aligned CNT-sulfur composites [103] have been
investigated. However, it was difficult to prevent sulfur
residues outside of CNTs from dissolving while cycling.
The production of hollow carbon nanofibers using anodic
aluminum oxide template was consequently suggested as a
more successful encapsulation technique, allowing sulfur
infusion to be contained solely inside the nanofibers [104].
Since a significant amount of research demonstrated that
batteries using sulfur—carbon composites perform well,
Zheng et al. [105] observed the weak interactions between
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polar LPS species and nonpolar carbon. Active materials
are significantly detached as a result of the weak physical
binding. Therefore, polar hosts are therefore favored for
more powerful sulfur anchoring.

Adopting conductive polymers (such as poly-(3,4-(ethy-
lenedioxy)-thiophene) (PEDOT), polypyrrole, polyaniline,
etc) as coatings or binders is another method for reducing
the shuttling effect and enhancing the electrical conductivity
of sulfur. Following thorough research on polymer-coated
hollow sulfur nanospheres, it was discovered that PEDOT
had the best electrochemical performance due to its theoretical
models’ predictions of its strongest sulfur binding [65]. These
observations may assist in the design of sulfur electrodes for
Li-S batteries to attain high capacity and long cycle life.
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achieve better ESS performance. () and (d) The diagram illustrates the morphological changes in Si that result from electrochemical cycling. (c)
Approximately 400% volume of silicon anodes changes while cycling which tends to pulverize in Si films and particles. The arrow shows how much of
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diameter without cracking. Each NW on this NW anode is connected to the current collector, enabling effective 1D electron transport throughout the
length of each NW. Reproduced with permission from (a) Kim et al. [92], (b) previous studies [93-98], (c) and (d) Chan et al. [99].
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Besides this, some other materials are also used as a
cathode for the LIBs. For example, LiCoO, is widely used as
a cathode material. Although LiCoO, is an effective cathode
material, however, cobalt is costly, as it is not available
compared to other metals like iron, nickel, and manganese.
In addition, LiCoO, can also fail or perform poorly when
overcharged since it is not as stable as other potential
electrode materials [106]. Moreover, LiCoO, activities at
high voltage are impeded by increased structural dete-
rioration and electrode/electrolyte interface breakdown.
In order to address these difficulties, researchers have
successfully created co-modified LiCoO, materials that com-
bine Mg pillar structures and amorphous CoxBy with inter-
face shielding (CB-Mg-LiCo0O,). This synthesis method allows
for the production of cathode materials that have both high
energy density and structural stability [107]. Conversely,
nanostructured LiFePO, was accountable for one of the first
successful alternative cathodes. This olivine demonstrates a
much higher power density, longer longevity, and improved
safety despite having a lower energy density than LiCoO,
[108]. Consequently, LiFePO, is a highly popular cathode
compound that has been commercially successful due to
its excellent safety characteristics and its high TC of 170
mA h g™, even at moderate current densities [109]. For
example, the fluorine-doped carbon-coated LiFePO, cathode
material was innovated using polyvinylidene fluoride,
resulting in the formation of a 3D conductive network
structure. The structure offers benefits such as efficient
electrical contact between grains, reducing the distance
for Li* diffusion across grain interfaces, and enabling fast
electron transfer during charge—discharge cycles [110].
LiMn,0,4, which forms a spinel structure with manganese
occupying the octahedral sites and Li primarily occupying
the tetrahedral sites, is another potential cathode mate-
rial. Instead of planes, like in the a-NaFeO, structure, the
pathways for lithiation and delithiation in this instance
are a 3D network of channels. Although LiMn,0, is cheaper
and more affordable than LiCoO,, its capacity is lower than
other cathodes that can be formed of a-NaFeO, structure
[106]. In addition, LiMnPO, [111], Fe-doped LiCoPO, [112],
LiFePO4-graphene composites [113], AlFs;-coated MOF-
derived LiCoO, wrapped by CNTs (LiCoO,/CNTs@AIF3)
[94], carbon-coated LiFePO, (C-LFP) [95], ultrahigh-capa-
city, fire-resistant LiFePO, [96], carbon-encapsulated lithium
cobalt oxide [97], LiFePO, microparticles encapsulated in
0,F-codoped carbon matrix (LFP@OFC) [98], reduced gra-
phene oxide encapsulated Se NP (Se@RGO) [114], etc. NMs
are also applied for cathodes to enhance the ESSs (Figure 4b).
Table 2 gives a summary of energy storage NMs as well as
their morphologies, synthesis strategies, and electroche-
mical performances.
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2.3 Energy distribution

The significant losses that occur during power distribution
can be lessened with the aid of nanotechnology. Electricity
cables and power lines can be made using nanoparticles’
exceptional electric conductivity, such as CNTs. Microwaves
and lasers are two examples of wireless energy delivery that
use nanotechnology [124]. Moreover, superconductive mate-
rials can be improved using nanotechnological methods for
lossless current conduction. Electricity systems with dynamic
load and failure management, demand-driven energy supply
with adjustable price mechanisms, and the ability to feed
through a variety of decentralized renewable energy sources
are all necessary for the distribution of electricity in the
future. Nanotechnologies, including nano-sensory sensors
and power electronic components capable of handling the
extraordinarily complicated control and monitoring of such
grids, could make a significant contribution to the realiza-
tion of this goal [57]. Si NPs could be a useful and attractive
material in energy distribution because researchers have
shown that Si anodes have a ten times higher charge density
and a low discharge potential than carbon and other oxides
and nitrite anodes. However, Si bulk films and micron-sized
particles employed as electrodes in Li batteries have shown
capacity fading and short battery lifetime due to pulveriza-
tion and loss of electrical contact between the active mate-
rial and the current collector (Figure 4c). To overcome the
limitation, Chan et al. (2008) synthesized Si NWs on stainless
steel substrates using gold catalysts. The synthesized NWs
featured short Li insertion lengths, good electronic contact,
and conduction and stood up to high strain instead of pul-
verization (Figure 4d). In contrast to anodes made of bulk
silicon, these researchers discovered that silicon NWs do not
crack even if they swell as Li ions are absorbed upon a
battery’s discharge and contract as they leave during a bat-
tery’s recharge [99].

2.4 Energy usage

In addition to the efficient use of existing energy sources,
increasing energy efficiency and reducing needless energy
usage are required to establish a sustainable energy supply.
This holds true for both individual families and all sectors of
industry. Numerous strategies for energy conservation are
offered by nanotechnologies. For example, NMs could play a
significant role in reducing the fuel consumption of auto-
mobiles by (i) developing nanocomposites-based under-
weight construction materials for vehicles, (ii) optimizing
fuel combustion through wear-resistant, lightweight
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engine components, nano-fuel additives, and low rolling
resistance tires [57]. Nanotechnology may also be able to
increase energy efficiency and decrease wasteful use,
which will help ensure a sustainable energy supply.
Materials that are wear-resistant, lightweight, anti-cor-
rosive, etc., can be manufactured using nanotechnology
to ensure that they are best suited for the job at hand.
This has an impact on everything from building and
construction technology, insulation, and lighting to better
fuel combustion [125].

There is every reason to expect that advances in tech-
nology like fuel cells and solar cells that could help us
become less dependent on fossil fuels, such as nano-based
technologies, offer substantial prospects for assisting in the
achievement of desirable environmental objectives. Our
energy systems can benefit from finding a mechanism to
store energy-dense gases. Highly porous organic matrices
known as MOFs are capable of storing natural gas or
hydrogen. The cube-shaped nanostructures are made of
an organometallic framework, and their interiors are lined
with many pores with a diameter of a few nanometers. The
surface area of nanopores is large. These structures may
also serve as power sources for many gadgets, including
laptops. Small fuel cells might be used as a form of
rechargeable storage. Furthermore, the functioning of
lighting in our homes and places of employment today
consumes enormous quantities of energy. Nanotechnology-
based lighting technologies would significantly improve the
environment [126].

3 Methods of NM-based ESS patent
search

The Lens website (https://www.lens.org/) was used to
retrieve the patents on NM-based BESS as well as these
patents were used for analysis and landscape review. The
Lens is an open worldwide cyberinfrastructure to improve
the effectiveness, fairness, transparency, and inclusivity of
the innovation system. The LENS provides access to virtually
all the global patent documents as freely accessible, anno-
tated digital universal materials that combine technical and
scholarly literature as well as regulatory and commercial
information. To create an open map of global knowledge-
driven innovation, the Lens enables the sharing, aggrega-
tion, and embedding of document collections, aggregates, and
analysis [127]. The LENS includes 146.1 million patent docu-
ments from over 106 jurisdictions. The extraction methods of
NM-based BESS patents are described below.

DE GRUYTER

3.1 Research design structure

To explore the relevant patents from the Lens database,
specific keywords were used including “energy storage
system,” “battery,” and “nanomaterial.” The Boolean
operator “AND” was applied to connect the above keywords
to search for appropriate patent documents on the Lens
website. The patent searches were conducted on the last
week of May 2023 without filtering the year of publication.
The patents are then screened, and only those belonging to
the NM-based BESS simple family are chosen. A simple
patent family is a group of patent applications that collec-
tively are thought to cover a single invention. The applica-
tions’ technical content is regarded as being similar. Every
member of a simple patent family will have the same
priority. In most cases, the family mode is more suitable,
as PLAs typically based on distinct inventions represented
by a collection of documents compiled into a patent family
[128]. Finally, multiple selection and exclusion criteria are
employed to obtain the final patent database of NM-based
BESS for study.

3.2 Selection procedure

Published patents related to NM-based BESS were retrieved
from the United States, World Intellectual Property
Organization (WIPO), and European Patent databases by
applying keyword searches using Lens software. Only the
patent documents pertaining to the NM, nanocomposites,
NM colloids, and nanocomposite colloids are considered
throughout the analysis. Searches are conducted using key-
words on the Lens website, and the most relevant patent
documents are retrieved through step-by-step searching.
First, the keyword “energy storage system” was used, and
a total of 2,032,461 (n = 2,032,461) patents were retrieved.
Next, “battery” was applied in the titles and abstracts, and
a total of 193,601 (n = 193,601) patents were found. Finally,
we searched “nanomaterial” in the titles and abstracts to
further refine the patent numbers and came up with a total
of 255 (n = 255) patents. Following that, only the simple
family of patents was chosen, and a total of 132 (n = 132)
patents were taken into account.

The selected patents of the simple family were verified
based on relevant International Patent Classification (IPC)
and Cooperative Patent Classification (CPC) codes. B82Y
(specific uses or applications of nanostructures; measure-
ment or analysis of nanostructures; manufacture or treat-
ment of nanostructures), YO2E 60/10 (Energy storage using
batteries), and HO1M (processes or means, e.g., batteries,
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for the direct conversion of chemical energy into electrical
energy) codes were used to screen the retrieved documents
and a total of 24 patents were excluded due to mismatches
with the relevant codes. Therefore, a total of 108 (n = 108)
patents were found for further analysis. After extensive
reviews, 12 patents were disregarded because they were
duplicates (same patent with different patent numbers),
while another 7 were excluded due to not being relevant.
Finally, a total of 89 patent documents were obtained for
the PLA on NM-based BESS. The complete patent selection
procedures are illustrated in Figure 5.

.
R

Initially, 255 patents were obtained from
various platforms based on the
keywords (Energy storage system,
Battery and Nanomaterials).

In second evaluation and screening,
132 patents were found based on the
simple family.
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found by using IPC & CPC codes
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3.3 Generating graphic representations and
analyzing patent data

After screening, a total of 89 patents were found to analyze
data from related innovations at strategic, competitive, and
technological levels using statistical and analytical charts.
The data were subsequently extracted and analyzed using
Microsoft Office Excel. The data that were obtained was
subsequently organized into a spreadsheet and dashboard
created in Microsoft Excel. This compilation included many
pieces of information, such as the Title, Abstract, Application
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chosen by excluding the
duplicate and irrelevant
patents.
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Figure 5: Graphical illustration of the search strategy and review findings in the present study.
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Number, Inventors, Publication Date, Application ID, and
Applicants. Subsequently, a comprehensive examination was
conducted on all facets of the listed patents, followed by a
meticulous categorization process to assign them to their
respective categories [129]. The obtained patent information
was analyzed in various parameters including patent growth,
key players in the markets, legal status, patent co-classifica-
tion, top cited patents, and co-inventorship network. Table 3
presents a summary of key features in highly cited 60 patents
among the selected documents.

3.4 Limitation

A popular technique for analyzing a specific field of research,
assessing the consequences on other fields, and appraising
current advancements is PLA. Identifying and tracking
patents is challenging work. Therefore, it is important to be
aware of some potential limitations in our analysis. The first
limitation has to do with the method of searching for perti-
nent patents. When researching mostly specific areas of
study, using keywords can be complicated because an ade-
quate number of unrelated patents end up in the sample
[130]. Consequently, a comprehensive review of retrieved
documents should be conducted to avoid irrelevant patents.
An in-depth manual screening of the documents might reveal
that there are just a few instances of patent documents being
included that are unrelated to the designated technical field.
Second, patent documents that are not included on the Lens
website are likely to be missed. Future recommendations
could include more publicly accessible patent databases,
including the Derwent World Patent Database and the Scopus
database. Third, the analysis did not include patents that
might have been relevant to NM-based BESS but did not
have any of the keywords in their titles, abstracts, or claims.
Fourth, the study of the database only takes into account
simple patent families. Overall, an understanding of global
research, commercialization structures, and market trends
under a specific field of research using PLA is highly critical.

4 PLA

This article attempts to briefly introduce and discuss the
crucial role of patents in current advanced societies related
to the production of batteries. Considering the significance
of the role played by patents in the commercialization,
promotion, and protection of information in all technical
sectors, including the provision of ESDs, like batteries.

DE GRUYTER

4.1 The growth of NM-based BESS patents

The number of patent applications filed throughout time
that have an eternal impact on the related field for poten-
tial future study and research advancement is referred to
as the growth of patents. Academic and business research
increasingly use patents to protect their inventions.
Consequently, patenting has grown substantially over the
past few decades. For instance, patent documents under
NM-based BESS also increased gradually over time. All gener-
ated patents fall into three categories such as published, filed,
and granted. To determine overall growth, patents from these
three groups have been combined and presented in Figure 6a.
Conversely, these three groups (published, filed, and granted)
have also been depicted separately (Figure 6c). In addition,
patent applications and granted categories are shown in
Figure 6b. The growth rate was stable up to 2008, and it started
to rise from 2010 (Figure 6a). The number of patents increased
from 2 in 2010 to 7 in 2012. After that, the number of patents
gradually decreased to 2 in 2015; however, it increased again
to a maximum (11) in 2020. Conversely, the aggregate diagram
(Figure 6¢) compares the numbers of NM-based BESS patent
documents by published, filed, and granted date in each year
until 2023. The numbers for all kinds of patents gradually
increased over time. The upward trend began in 2009 and
reached a peak in 2018. The highest number was under filed
with 13 patents in 2018, the next rank was for published
patents with 11, and patents under granted categories were
6 in 2020. Overall, an upward trend of the NM-based BESS
patents was observed. In contrast, Figure 6b clearly shows
that the number of patents granted was 15 (17%), which was
much less than that of the applications (74; 83%). This is
because it takes approximately 3 years to get a patent from
the patent office. Because the USPTO organizes patent applica-
tions depending on the technology of the invention and
assigns patents to technology groups of examiners at the
USPTO for examination, some technical areas have a longer
or shorter wait period.

4.2 Patent families

A patent family is a set or compilation of patent applica-
tions that cover the same or related technical material,
while there is no one definition for what a patent family
is, and patent families frequently differ from database to
database. One of the primary objectives of patent families
was to make it simpler for people who like analyzing
patent data to quickly identify patents connected to or
related to a certain innovation from anywhere in the
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Table 3: Continued

Legal status

Document type Jurisdiction Cited by

Contribution

Publication year Inventors

Ref.

patent count

Active

us

Patent

Surface area and porosity for catenated carbon nano-

onions (cnos)

Cross Danny; Kirby Larry Herbert; Bailey

Thomas Frank

[185] 2020

application
Patent

Discontinued

us

Blended active materials for battery cells

Johnson Paige L

[186] 2020

application
Patent

Pending

us

High-energy rechargeable Al-CO, battery for CO, capture/

conversion and electric power generation/storage
Conductive composition for secondary battery

Belcher Angela; Qi Jifa; Wei Shuya

[187] 2021

application
Patent

Pending

WO

Ho Kam Piu; Jiang Yingkai; Sun Xinying

[188] 2021

application
Patent

Pending

us

Nanocarbon material and applications of nanocarbon

material

Skoptsov George L; Zeller Kurt W; Mantri

Aayush; Viswanathan Vignesh

Johnson Paige L

[189] 2022

application
Patent

Pending

us

Alkaline and AMO blended active materials

[190] 2022

application

DE GRUYTER

world. The use of patent families is also advantageous
when doing patent searches and extracting patent data
from numerous patent offices. In order to connect the
patent applications in a patent family, priority claims are
frequently used [191].

4.3 Key players in markets

Market actors’ ways are evolving as a result of the chan-
ging nature of innovation, the globalization of markets, the
fragmentation of industrial value chains, and the develop-
ment of new players. In order to maximize the balance
between private and social advantages and support eco-
nomic progress and societal welfare, patent systems are
constantly evolving [192]. In Figure 7, the top ten innovators,
owners, and applicants are shown to identify the leading
organizations in the NM-based BESS market. Among the
ten innovators, Johnson Paige L was in the first position by
contributing nine patents (Figure 7a). Between the remaining
inventors, two inventors have three patent documents each,
and the rest seven inventors have two patent documents
each. In contrast, Hheli LLC was in first position in both
owners and applicants contributing nine and ten patents,
respectively (Figure 7b and c). The second top owner was
Nanoproducts Corporation patenting three documents. Cali-
fornia Institute of Technology, Massachusetts Institute of
Technology, Ppg Industries Ohio INC, and The Board of Trus-
tees of the Leland Stanford Junior University each possesses
two patents. The rest of the owners have one patent each. In
contrast, Massachusetts Inst Technology came in second
applicant having three patents. Other applicants have two
patents each.

4.4 Patent documents by legal status

The legal status of patents has not been taken into consid-
eration in most PL studies. The inclusion of patents that are
no longer valid legally makes it seem evident that conclu-
sions from such studies could result in incorrect interpre-
tations [193]. Patents are divided into six groups based on
their legal status, including active, inactive, pending, discon-
tinued, expired, and unknown patents. The active patent is
the patent that has been approved or granted; the owner
can implement or monetize from it in accordance with its
strategy. Conversely, inactive patents are, to put it simply,
patents that are no longer in effect. These patents have
expired, been abandoned, or been withdrawn. The inactive
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patents are no longer enforceable or commercially viable.
This indicates that the patent holder no longer has the right
to use the patent exclusively. Anyone may utilize the patent
after it is released into the public domain [194]. A patent
pending is an obvious sign of an inventor’s desire to protect
their concept and indicates the beginning of the process of
applying for the sole right to use, sell, or license their crea-
tion. There is no inherent legal significance to a patent
pending notice. At that moment, neither the product nor
the technique is legally protected. In addition, it proves
that a patent application has been submitted, in which
case it would take precedence over any later-filed patent
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application for a nearly identical idea. Companies generally
use a closed patent strategy intended to protect and extend
the utilization of existing inventions from commercial com-
petitors. The length of a patent’s term determines how long
it can remain in effect. It might differ depending on the
jurisdiction and the type of patent, but it is typically given
in years beginning either with the filing date for the patent
or with the date the patent was granted. The majority of
jurisdictions require ongoing payment of maintenance or
renewal fees to keep a patent in effect. When a patent’s
maximum term expires or the grant holder fails to pay
the renewal fee on time, the patent is considered to be
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Figure 6: The overall growth of patent documents under NM-based BESS. (a) The growth of generated patents from three groups (filed, granted, and
published) by year, (b) the number of patent applications and granted patents, and (c) the number of patents in each group (filed, granted, and

published).
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ten applicants.

expired. The term discontinued patent refers to a patent that
is no longer continued (rejection, withdrawal, refusal, etc.)
and can be revived. Unknown patents are those that the
requester is unaware of or does not recognize. The 89
patents that were registered in the NM-based BESS application
are shown in Figure 8a in terms of their level of legal protec-
tion status. The pending group had the highest number of
patents, 38 in total (43%), while the number of active patents
was 27 (30%). This is because, based on the complexity of the

invention, this stage of the patent process may take 1-3 years
or longer. For example, patent applications under software or
electronics commonly have patents pending for 5 years or
longer. In addition, the length of time the patent is pending
can also be influenced by the USPTO’s backlog of applications
and the complexity of the invention [195]. In contrast, discon-
tinued patents took up the following position, with 19 numbers.
Conversely, the number of inactive and expired patents was
very low, consisting of 3 and 2, respectively.
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Both granted and pending patents are covered by legal
protection. The term “granted patents” refers to patents
that at least one patent authority has approved for registra-
tion. Patents that have been granted have undergone exam-
ination and approval by the Patent Office, placing them in a
high position in terms of technical expertise and potentially
qualifying them as technically sound patents.

4.5 Patent documents by jurisdiction

Patent jurisdiction refers to the convention nation and/or
area in which the expected patent has already been filed or
approved or will be filed or approved and for which the
licensee will pay for the prosecution, application, defense
against illegal attempts, and maintenance. According to the
data shown in Figure 8b, all of the registered patents in this
field have been registered in three different jurisdictions.
The United States holds the top position in patent jurisdic-
tion for this topic with 57 patents (64%) that have been
registered there. The WIPO was listed next in rank; 31
patents (35%) were registered under this jurisdiction. Con-
versely, only 1% of patents was registered under European
patents jurisdiction in NM-based BESS. It is noted that the
place of registration can be a sign of both the country
consuming the technology and the country producing it,
depending on whether the knowledge holders want to file
their patent in their own country or in a country other
than the one where the technology was created [4].

4.6 Patent co-classification analysis based
on the IPC code

A fresh understanding of the relationships and underlying
interaction dynamics of knowledge domains within a par-
ticular technology domain can be gained through an ana-
lysis of co-occurring patent classification codes. Patent
categorization codes can be used to establish the intercon-
nection of knowledge sectors, analogous to how technolo-
gical knowledge flow is measured. In general, the degree of
knowledge interaction dynamics between two patent cate-
gorization codes is reflected by how frequently those codes
co-occur in patent documents. As a result, it can make it
easier to understand intuitively how technological knowl-
edge bases are interconnected and how they affect PL [196].
The main and most crucial purpose of the patent applica-
tion is to prevent competitors from copying newly devel-
oped innovations. A system using distinctive codes like IPC
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and CPC is used to categorize patents into various techno-
logical fields, providing individuality and making it sim-
pler for others to browse through the current patent docu-
ments. CPC is a global patent classification scheme that was
established in 2012 by the European Patent Office (EPO) and
the United States Patent and Trademark Office (USPTO). IPC
is a different international categorizing system that was
launched in 1971 and is still in use today in 62 nations,
although it contains 70,000 codes, which makes it difficult
to find information. The CPC offers over 250,000 codes that
were constructed with 90% European and 10% US patent
classifications, as well as additional classifications based
on technological advancements, such as a B section code
for Performing Operations and Transporting, whereas B82
subsection for Nanotechnology. [197]. Currently, more than
30 offices throughout the world - including the IP Australia
of Australia, the KIPO of Korea, the INPI Brazil of Brazil, the
CNIPA (often referred to as SIPO) of China, and others — use
the CPC code. These offices include the USPTO of the USA
and the EPO of the EU (Figure 8c) [198].

To retrieve the specific patents under NM-based BESS,
B82Y, YO2E 60/10, and HOIM codes were used. According to
the IPC codes assigned to the analyzed patents, Figure 8c
depicts the technical subsections of patents registered in
this area and the distribution of patent documents across
various CPC sub-groups on NM-based BESS. It needs to be
pointed out that any patent may have more than one IPC
code because each one might be associated with several
fields or subfields. According to Figure 8c, the most common
YO02E60/10 codes, which account for 69 patents, are related to
energy storage using batteries. The following ranks also
include the codes HO01M10/0525 and B82Y30/00, which are
associated with LIBs and nanotechnology for materials or
surface science (e.g., nanocomposites), respectively. It is
important to point out that due to the potential for multiple
areas or sub-fields to be associated with one invention, it is
possible for a patent to possess more than one IPC code.

4.7 Top cited patents

References or citations of other patent publications in the
same or different technological disciplines are known as
patent citations. They are presented as both backward and
forward citations. Backward citations are references to
patent documents that were published and made publicly
accessible before the filing date of the cited patent applica-
tion. These are additionally known as “prior art.” Ideally,
all of the patent information that is publicly accessible
prior to the date a patent is filed is referred to as prior
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art or backward citations. Backward citations also have an
impact on the range of a given application’s claims. Conversely,
forward citations are references to a patent application that
has recently been published in a patent document. Therefore,
after a patent application is submitted, it can be referenced in
publications such as new patent applications, journals, aca-
demic papers, etc. These would fall under the category of a
forward citation. These are considered the class of forward
citations [199]. Patent citations are crucial because inventors
use them to describe the state of earlier technologies that the
current invention builds upon and patent examiners use them
to find earlier innovations that may have been overlooked or
concealed in the application or to reject it entirely [200].

The technical and commercial strength of a patent can
be reasonably extrapolated from the number of forward
citations to that patent. The number of patent citations
(forward citations) is used to assess the importance of
the related technological knowledge domains as a founda-
tion for ensuing technological breakthroughs. Citation data
offer the chance to evaluate a patent’s technical significance
for future advances, with widely cited patents appearing to
have higher economic value. Thus, taking into account the
number of citations can help determine how directly inno-
vative effort has affected the direction of future knowledge
accumulation. The amount of citations that a patent docu-
ment or patent family achieves is a measure of its social and
economic significance; hence, study on citations of patent
papers is a major area of interest. Analysis of patent cita-
tions can also reveal related patent documents, technology
spillovers, and technology trajectories in a specific field of
technology [201]. Top-cited patents could be used as an indi-
cator for patents covering basic aspects of technologies as
they are able to demonstrate their importance to subse-
quent advances and, therefore, signify knowledge flows.
Figure 8d depicts the number of patent citations under
NM-based BESS. It is shown that only 2 out of the 89 patents
registered in this technological area have more than 100
citations. The patent titled “Energy storage device” had the
highest citation number (105) and was registered under
US jurisdiction in 2010. The patent with the next citation
number (103) was entitled “Method of depositing silicon
on carbon,” which was registered in the same jurisdiction
in 2012. There were only 3 patents under the group of 40-100
citation numbers. They are titled “Method of depositing
silicon on carbon nanomaterials and forming an anode for
use in lithium-ion batteries,” “Nanotube-based nanomaterial
membranes,” and “Nanotechnology for electrochemical and
energy devices,” with citation numbers 91, 64, and 48,
respectively. Conversely, 10 patents were found in the cita-
tion number range of 20-40. However, 25 patents have not
yet been cited. The rest of the patents were in the 1-40
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citation range. Therefore, most of the patents cited were
under US jurisdiction and subsequently under WIPO.

4.8 Co-inventorship network analysis

Scientific collaborative networks are considered concur-
rent academic research. Scientific collaboration is the con-
nection between two or more scientists that occurs in the
context of society and allows the exchange of meaning and
task completion in relation to a common objective. Due to
the access to various fields that scientific collaboration
provides, it may assist in increasing the scope of research
and fostering innovation. Scientists today operate as part
of scientific networks collaborating rather than as indivi-
dual players to find solutions to the technological, social,
economic, and political issues that are typically referred to
as a multi-disciplinary approach. When researchers work
together, they can construct communication networks,
share resources, ideas, and information, produce and dis-
seminate novel findings, and eventually produce innova-
tions, which lowers the cost and boosts the output of
research. Due to the possibility of discovering novel con-
cepts, the growing specialization within science, the level
of complexity of the infrastructure needed, and the require-
ment of incorporating various types of knowledge, scientists
are motivated to collaborate [202,203].

Networks of patent co-inventorship are crucial for
information acquisition and have an impact on innovation
[204]. The concept of representing co-inventorship net-
works has been an area of significant interest since the
inception of the patent/bibliometric study. Representation
of co-inventorship networks has proven to be an effective
method for analyzing diverse patent networks, such as
networks that show co-inventorship among researchers
or inventors. Consequently, there has been a growing
interest among researchers, inventors, research institu-
tions, and funding agencies in visualizing co-inventorship
networks. The analysis of co-inventorship networks is cru-
cial to make visualizations of these networks accessible to
a broader audience, including individuals both within and
outside the patent research community. Within co-inventor-
ship networks, researchers are connected to one another
depending on the number of inventions they have collabora-
tively developed [205]. Analysis of the co-inventorship net-
work is performed to visualize the research networks
between the different inventors and to determine which
inventors have co-inventoried with the highest number of
other inventors in the data set [206]. An understanding of
the patterns of cooperation among organizations and
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individuals is provided by co-inventorship analysis in scien-
tific and technology partnerships. An official declaration
of the collaboration of two or more individuals or orga-
nizations is the co-inventorship of a technical document.
Co-inventorship analysis is still commonly applied to
understanding and evaluating patterns of scientific colla-
boration in spite of disagreements over its definition and
interpretation [202,207].

Several software tools, including R, Bibexcel, VOSviewer,
Publish or Perish, Ucinet, CiteSpace, Pajek, Scholarometer,
HistCite, etc., are available for data analysis and visualization
in relation to co-authorship and co-inventorship. Among
these tools, VOSviewer receives special consideration for
the visual depiction of bibliometric maps. VOSviewer is a
user-friendly computer application that integrates both the
VOS mapping approach and an updated viewer that is freely
available to the bibliometric research group (see www.vos-
viewer.com). Consequently, it is particularly effective for
easily interpreting larger bibliometric maps. For instance,
VOSviewer can be used to create maps of authors or journals
based on data from co-citations or create maps of keywords
based on data from co-occurrences. A map can be displayed
using VOSviewer in a variety of ways, each emphasizing a
distinct component of the map [208].

The VOSviewer software generates a co-inventorship
network with nodes and edges (links). The nodes can repre-
sent various entities, such as inventors, authors, or key-
words. The edges represent the connections between pairs
of nodes. By default, VOSviewer also automatically assigns
the nodes in a network to clusters. A cluster refers to a
collection of interconnected nodes that are strongly asso-
ciated with each other. Every node in a network is allo-
cated to precisely one cluster. An object can only be
assigned to a single cluster. VOSviewer utilizes colors to
represent the cluster assignment of a node in the viewing
of a co-inventorship network [205].

In the present study, a total of 251 inventors contrib-
uted to generating the patent documents in NM-based
BESS. The software included inventors in the network
map who had co-inventored with at least one additional
inventor in the data file. In Figure 9a, it is shown that the
inventors are organized into different clusters (74 clusters)
by the software. The inventors who are grouped together
suggest that they are closely tied to one another in terms of
their co-inventorship. Among these groups, cluster 1 (Figure
9b) has the most inventors (13), followed by Clusters 2
(Figures 9c¢) and 3 (Figure 9d) with (11) and (10), respectively.
The inventors “Christensen, Gary” and “Luo, Shuji” have co-
inventored with the highest number of authors (12) with the
greater total link strength in the data file, as seen in Figure
9a, and they are under cluster 1. Both inventors, “Klande,
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Tobias” and “Engheta, Behrouz,” under the same cluster
have co-inventored with 11 authors. Conversely, all authors
under cluster 2 have co-inventored with 10 innovators. The
generated network map demonstrates a strong commitment
to collaboration among innovators in NM-based BESS.

5 Key issues and challenges

Although the advantages of employing NMs in ESSs seem to
outweigh their drawbacks, it is crucial to understand the
inherent challenges involved in their synthesis and imple-
mentation. Here, we briefly outline the challenges and
issues that should be addressed during the design, synth-
esis, and application of NMs for ESVs. Here, we discuss
various key issues regarding NM applications in batteries
including the large volume changes of NMs during the
charge/discharge process, formation of SEI layer, electron
or ion transport, atom/molecule diffusion over the charge
and discharge event, etc. and illustrated in Figure 10.

5.1 Large volume changes of NMs during the
charge/discharge process

Due to the huge amounts of Li that are ingested throughout
the Liinsertion and extraction performance, the nanosized
electrode materials typically experience significant volume
changes, while conventional electrode materials have a
much lower amount of volume changes (<10%). One of
the main challenges impeding the use of high-capacity
nanostructured electrode materials has been recognized
as the significant volume change during the process of
charging and discharging. When electrochemical cycling
occurs, these large changes in volume cause mechanical
degradation in both the active components and electrodes,
greatly reducing the cycle life [209]. For example, the Si
anode displays very significant volume changes as well as
transformations of its structure during the charge and dis-
charge processes. When active particles cycle under such
obviously significant volumetric expansion and contrac-
tion, they crack, fracture, and pulverize, which results in
a disruption of electrical contact (Figure 10a) [211,212]. In
addition, major mechanical degradation of the electrode
occurs due to the displacement of the particle layers
(Figure 10b). The majority of bulk films and big particles
eventually experience severe capacity degradation due to
this mechanism of particle and electrode fracture, cracking,
and pulverization (Figure 10c) [213,214].
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Figure 9: The co-inventorship network map of various inventors conducting research on NM-based BESS based on total link strength. (a) The
inventors’ co-occurrence network map of all clusters (74 clusters). (b) Co-occurrence map of cluster 1, this group consists of the highest number of
inventors (13 inventors). (c) Co-occurrence map of cluster 2, this group consists of 11 inventors. (d) Co-occurrence map of cluster 3, this group consists
of 10 inventors. The size of nodes indicates the frequency of occurrence. Their co-occurrence in the same patent is represented by the curves

connecting the nodes.

5.2 Stable SEI formation

During the initial charging cycles of LIBs, an electroche-
mical reduction of the electrolyte results in the formation of an
SEL A passivation layer is provided on the anode surface by the
SEL preventing further electrolyte breakdown and enabling the
long battery life needed for many applications (Figure 10d)
[210,215]. Although SEI is a Li-ion conductor, it is also an

electronic insulator, resulting in the termination of SEI's growth
at a certain thickness [215]. Higher CE and a long lifespan of
anodes resulting from surface passivation are made possible by
a stable SEI layer. A significant movement and change occur on
the electrode and electrolyte interface due to the repeated mas-
sive volume changes during lithiation and delithiation, which
makes it extremely difficult to keep a stable SEI for high-capa-
city electrode materials [73,209].
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Figure 10: (a)-(c) Diagram of cracking and fracture of high-capacity active particles and electrodes during lithiation and delithiation cycling. The

mechanical degradation of high-capacity material at the particle level (a) and electrode level (b) during discharge and charge cycling. (c) SEM images
of an Si nanoparticle electrode before (left) and after (right) 20 discharge/charge cycles between 0.9 and 0.01V at C/10. The Si film electrode cracked
like mud in a dry lake bed bottom. The morphology of the Si nanoparticle electrode did not change much due to limited particle and electrode

fracture. (d) A schematic showing how the SEI initially formed on the graphite anode, how acid-mediated thermal decomposition reactions affected
the SEI’s structure, and how further electrolyte reduction caused the SEI to thicken are shown. (e)-(g) Schematic diagram for understanding electrode
atom or molecule transportation. (e) Solid-liquid phase transformation: dissolution and diffusion of polysulfide in sulfur cathodes. (f) Formation of
lithium dendrite in the anodes of lithium metal. (g) Volume expansion for high-capacity alloy-type electrodes. Reproduced with permission from (a),
(b), (c), (e), (f), and (g) Sun et al. [209]; (d) Heiskanan et al. [210].
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5.3 Rapid electron and ion transport

An extensive knowledge of the electrochemical principles
underlying batteries will make it easier to develop revolu-
tionary battery technologies that can solve the challenges
of powering intensive grid storage and transportation
applications. Herein, the understanding of the ion and elec-
tron movement is the main issue [216]. Battery performance
depends primarily on rapid charge carrier transpiration
both throughout the entire electrode and inside individual
particles. To attain high rates and activate insulating elec-
trode materials, short distances for ion transport and highly
conductive electron pathways can be useful. NMs have
considerably smaller dimensions than materials having a
micrometer scale. Due to the shorter transport distances
compared to those of microparticles, electron transport
and Li-ion insertion and extraction within the NPs are
greatly enhanced for every single particle [3]. For an elec-
trode to work properly, ions must move through a variety of
length scales; this is applicable to both anodes and cathodes.
Effective ionic conductivity for porous electrodes is inver-
sely proportional to electrode tortuosity [216].

5.4 Movement of molecules and atoms in
long-distance electrodes

During Li insertion and extraction, conventional insertion-
type electrode materials do not experience bond breakage
and only show slight structure alterations and a small
expansion of volume (10%). Therefore, they are stable host
materials. Conversely, the structure of high-capacity elec-
trode materials degrades due to extensive bond breakage
and entire crystallographic structure alterations. Thus, it has
always been thought that their usage in Li-based recharge-
able batteries is unfeasible. Due to the significant structural
changes, these high-capacity electrode materials have signif-
icant difficulties with active atom or molecule diffusion
throughout repeatedly occurring charge and discharge
cycles, leading to major challenges with battery efficiency.
The three types of electrode atom or molecule mobility are
as follows: First, phase conversion as well as atom or mole-
cule diffusion, for example, phase conversion of the gas—
solid-liquid state in the oxygen cathode of Li-O, batteries
and the solid-liquid state in the sulfur cathode of Li-S bat-
teries (Figure 10e). Second, Li dendrite formation within
second-generation Li metal batteries throughout electroche-
mical Li plating (Figure 10f). Third, the massive amounts of
Li consumed result in a significant volume expansion for
high-capacity alloy-type electrodes (Figure 10g) [209].
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6 Prospects and conclusion

A significant technological challenge for portable devices,
electric automobiles, and grid-scale energy storage is the
creation of next-generation NM-based rechargeable bat-
teries with lower cost, high energy density, and better
safety. Recent advances in nanotechnology over the past
decade have provided battery researchers with useful solu-
tions to some of the most significant challenges for subse-
quent-generation battery chemistries. A summary of the
main uses of nanotechnology in batteries includes

+ In addition to allowing electron/ion flow within the elec-
trode, decreasing the electrode material sizes can lower
the material’s cracking threshold upon lithiation.

» With a range of surface coatings and functionalization
layers, electrode materials could be effectively created
utilizing nanotechnology, protecting them from harmful
interactions in the battery system.

+ The ability to engineer all of the components of a battery
using nanotechnology allows for the development of
novel functionality for batteries that are not possible
using conventional approaches.

BESS has advanced significantly over the past decade
and is now viewed as a feasible technology with optimiza-
tion potential for the next smart grids and portable elec-
tronic devices. For this reason, academics, researchers,
professionals, and decision-makers must have a thorough
understanding of the technological knowledge landscape.
This study explored and analyzed the NM-based BESS-
related PL. This analysis is anticipated to be useful infor-
mation in the field of energy storage technologies. ESSs
will inevitably become increasingly popular as the world
moves toward renewable energy sources, which will neces-
sitate a thorough knowledge of every facet of this tech-
nology. The principal objective of this PLA was to enhance
awareness of the technical competitive advantages of NM-
based BESS. A collection of 89 patent files that are relevant
to the area of interest after thorough assessment using
the Lens database to determine the present condition of
grid-connected LIB ESS. Initially, a total of 89 patent files
relevant to NM-based BESS were collected through an
extensive evaluation using the LENS database to determine
the current status. The patent documents based on the area
of interest are statistically and technologically analyzed in
this study.

PLA was carried out under various parameters based
on the scope of the patent documents such as growth of
patents, patent families, key players in markets, legal
status, classification based on IPC code, top cited patents,
etc. According to trends in patent publication, the number
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of patents published overall is rising each year, particu-
larly over the last 10 years (2010-2020), when a significant
increase was seen. Patent families are addressed to rapidly
identify patents related to a specific innovation as well as
simplify the analysis. Hheli LLC (USA-based Company) was
the first key player in markets for both owners and applicants,
contributing a maximum number of patents. Thus, the United
States presently leads the world in patent publication, indi-
cating that it also leads in NM-based BESS. This statement is
also supported by the analysis of patent jurisdiction. A total of
56 patents (63%) have been registered under US jurisdiction.
Moreover, the majority of the cited patents fell within US jur-
isdiction. Under the legal status, it was observed that number
of pending patents is higher (43.82%) than active patents
(29.21%). This is because the patent approval process takes
longer to complete due to the complexity of the invention as
well as the application backlog at the USPTO. However, there
were remarkably few inactive and expired patents, indicating
that the research trend in NM-based BESS is increasing.
Important findings from the analysis of patent documents
and scholarly publications are listed below.

The PLA demonstrates the increasing trend of patents
related to NM-based BESS, which is partially reflected in
patenting activity. This PLA review focuses on the current
nanotechnology-based design concepts to address the chal-
lenges confronting future battery chemistries. Strategies
like nanostructuring, nanoconfinement, and surface pro-
tection have proven to be successful in developing highly
efficient energy storage materials. Furthermore, the design
of NMs can also have a significant impact on enhancing
battery safety, as well as boosting the stability and capacity
of large-scale ESSs. For instance, carbonaceous materials
continue to be the most prominent electrode materials
used in LIBs. In addition, the use of CNT and graphene
NMs has increased significantly. Nevertheless, due to the
high cost, lack of availability, and technical difficulties of
nanocarbonaceous materials, hard and soft carbon are still
dominating the market of commercial ESS. The NMs of
silicon, tin, aluminum, titanium, and silicon oxide are
interesting candidates for electrode materials to develop
high-energy-density ESS. Among these NMs, Si and Sn have
attracted more attention from researchers compared to Al,
Ti, and SiO,. Si is the only substance whose patenting
activity has not decreased recently, even surpassing Sn-
based NPs to take second place after carbonaceous NMs.
Therefore, NMs of Si are a highly promising element to
enhance ESS for researchers and industrialists, and Si has
emerged as the leading candidate for large-volume applica-
tions. However, only a small percentage of Si is applied in Si/
graphitic composite anodes in commercial ESS, indicating
that there are still significant challenges to raising the Si
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content in terms of durability and reliable performance.
This is because the percentage increase and accumulation
of Si induce significant volume expansion, cycle degrada-
tion, and pulverization. This opens up a wide range of pos-
sibilities for academia, researchers, and industrialists, with
the potential for ground-breaking innovation.

Overall, nanotechnology has a promising future, but
more research and studies are needed to expedite the
widespread use of NMs in ESS through inexpensive and
ecologically acceptable technology. To achieve future progress
in NM-based BESS, it is crucial to focus on cost reduction stra-
tegies, improve durability through material improvements,
scale up manufacturing processes, enhance energy efficiency,
and undertake research on novel materials. By resolving these
issues, the NM-based BESS can enhance its economic feasibility,
reliability, scalability, energy efficiency, and advancements in
technology. This would facilitate the wider acceptance and
utilization of sustainable energy sources. The notable expan-
sion of NM-based BESS is expected to continue and encourage
additional advancements. Therefore, the analysis of the PL in
the field of NM-based BESS is comprehensive and critical, as
this research field is being expanded by the potential for wide-
spread market deployment. Researchers have been closely
monitoring this trend, and they have quickly identified a few
primary development options, with Si and carbonaceous NMs
taking the highest priority. Researchers paid less attention to
other materials, like Al, Ti, Sn, Sh, etc., and are also less aware
of their commercial application. This demonstrates that the
inherent problems of these NMs have not yet been resolved
or that there are still challenges to be addressed before
applying them commercially as electrode materials to enhance
ESS. This might be an opportunity for innovative scientific
research to overcome existing issues and challenges as well
as open the door to commercialization.

Therefore, the PL of NM-based BESS might offer useful
information on potential future development directions.
Finally, this article provides some novel viewpoints for
potential future study opportunities. Future studies might
take into account including more information sources to com-
plement the PLA approach. A more fundamental science-
focused knowledge landscape can be mapped out using data
from patents and scientific publications. The mentioned
finding could be useful for determining potential research
gaps between scientists and industrialists.
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