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Abstract: In this study, polyvinyl alcohol (PVA) fibers and
nanoparticles were incorporated to enhance the durability
of geopolymer mortar (GM) with metakaolin (MK) and fly
ash (FA). The dosage of nano-SiO2 (NS) was 0–2.5% and that
of PVA fiber was 0–1.2%. The durability of GM includes
resistance to chloride ion penetration, freeze–thaw cycles,
and sulfate erosion. Compared with the single BP neural
network (BPNN) model, a particle swarm optimized BPNN
(PSO-BPNN) model was utilized to predict the resistance to
chloride ion penetration, freeze–thaw cycles, and sulfate
erosion of GMs with different dosages of nanoparticles and
PVA fibers. In the model, the dosage of NS, PVA fiber, FA,
and MK were used as input layers, and the durability para-
meters of electric flux, mass loss, and compressive strength
loss of GMs were used as output layers. The result exhibits
that the root mean square errors (RMSEs) of BPNN for
resistance to chloride ion penetration, freeze–thaw cycles,
and sulfate erosion of GM mixed with nanoparticles and PVA
fibers are 145.39, 6.43, and 2.19, whereas RMSEs obtained from
PSO-BPNN are 76.33, 2.87, and 1.03, respectively. The NN opti-
mized by particle swarm algorithm has better prediction
accuracy. The PSO-BPNN can be utilized for estimating dur-
ability of GM reinforced by NS and PVA fiber, which can
provide a guide for the proportion design of GM with PVA
fiber and NS as well as for the engineering practice in the
future.
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1 Introduction

As the economy develops by leaps and bounds, it is neces-
sary to implement a large number of construction projects
throughout the world. This requires that the technology of
construction industry accelerates its development towards
high efficiency, high performance, and sustainable devel-
opment [1]. As one of the most important materials in the
construction of building projects, cementitious materials
are essential for the production of concrete [2]. Currently,
the most widely used cementitious material in the world is
silicate cement [3,4]. Cement not only consumes huge
energy in the production process but also releases a large
amount of greenhouse gas CO2 [5–7]. According to incomplete
statistics, an estimated 1.35 billion tons of CO2 are released
annually by the cement industry worldwide, making up 7% of
total anthropogenic carbon emissions. In recent years, with
the continuous growth of the world population, the demand
for housing has followed the rapid rise, and the demand for
cement in the construction industry has also shown a linear
upward trend. Against this background, there is a more diffi-
cult time in environmental management all over the world,
with the prominent problem of CO2 emissions seriously
exceeding the standard [8]. Therefore, it is particularly impor-
tant to utilize resources efficiently and recycle them. In order
to realize this important historical mission, new avenues for
geopolymer materials have been opened up [9,10]. Geopo-
lymer, a possible substitute for cement, is a kind of non-
crystalline inorganic polymeric material prepared by alkali
excitation of silica-aluminate wastes such as fly ash (FA),
metakaolin (MK), and blast furnace slag [11,12]. The bonding
within the cement hydration products is dominated by van
der Waals and hydrogen bonds, whereas the bonding within
the geopolymer products is dominated by ionic and covalent
bonds, supplemented by van der Waals bonds. Therefore, the
geopolymer has higher strength [13–15], better durability
[16–18], and high temperature resistance [19,20], and are
more environmentally friendly than conventional silicate
cements. Liang and Ji [21] found that the red mud-burnt
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furnace slag geopolymer mortar (GM) has better corrosion
protection for steel reinforcement compared to cement
mortar. Shadnia et al. [22] studied PCM incorporated GM
and found that PCM incorporated GM can reduce cooling
and heating energy consumption and increase the thermal
inertia of the building effectively. GM is configured by
mixing appropriate amount of geopolymer with sand [23],
which has higher gel strength than geopolymer, stronger
bond than geopolymer concrete, and better corrosion resis-
tance [24], fire resistance, and high temperature resistance
[25,26] compared to the ordinary silicate cement mortar, and
it is an excellent material for building repair.

With the development of society, the acceleration of
the building construction process, as well as the aging of
existing building facilities, the performance of building
materials put forward new and higher requirements. In
previous studies, the pursuit of building materials proper-
ties is mainly based on high strength and high toughness,
while the problem of structural durability was ignored.
However, in the actual engineering, many building struc-
tures are damaged before they reach the service life due
to the lack of durability for the structures [27]. As a result,
the lack of durability caused by the problem of structural
damage has always attracted attention. Chen et al. [28]
explored the durability of hydraulic concrete, and pro-
posed the methods for improving the durability of
hydraulic concrete. Wang et al. [29] studied the connec-
tion between the durability and the corresponding resis-
tance of hydraulic concrete members, and proposed
related repair measures to improve the durability. Man-
sourghanaei et al. [30] found that nanoparticles can
improve the durability of geopolymer concrete. There-
fore, the study of durability of GM is very necessary for
the safety of concrete structures.

The use of geopolymers in actual engineering, such as
MK-based geopolymers, is still limited due to the disadvan-
tages of relatively high porosity and low interfacial bonding
compared with Portland cement. For this reason, scholars
have carried out a great deal of research work to enhance
related properties of geopolymer composites. The composite
reinforcement for blending of fibers and nanomaterials in
building materials can effectively enhance the performance
of the materials. The commonly used fibers are steel fibers
[31–34], basalt fibers [35–37], polypropylene (PP) fibers [38–40],
polyvinyl alcohol (PVA) fibers, etc. The PVA fibers have a
higher modulus of elasticity and abrasion resistance com-
pared to PP fibers, and the adhesive properties are also
superior to the steel fibers and basalt fibers. Besides, the
PVA fibers exhibit well dispersibility and the cost is lower
than that of steel fibers at the same time. Zerfu and Ekaputri
[41] explored the performance of concrete containing PVA

fibers, and found that geopolymer concrete specimens with
and without PVA fibers have better bond strength than
ordinary silicate concrete. Jiang et al. [42] investigated the
formulation and basic mechanical characteristics of high-
strength concrete reinforced by PVA fibers and it was found
that PVA fibers can improve splitting tensile strength of con-
crete and enhance the toughness of concrete. At present, it is
known that mixing PVA fibers into concrete has improved the
compressive strength, abrasion resistance, resistance to free-
ze–thaw cycle, and impact resistance of concrete to a certain
extent.

Besides fibers, nanoparticles have also been used as a
reinforcing material to enhance properties of cementitious
composites [43]. Nanoparticles with high specific surface
area and small particle size have the ability to promote
early hydration reaction and fill in the micropores in the
matrix. Adding a certain amount of nano-SiO2 (NS) will
reduce the calcium-silicon ratio of concrete, improve the
densification, and enhance the adhesion of fibers to the
matrix. Kaya [44] investigated that the optimal mixing
ratio of NS/Al2O3 for the strength of geopolymer paste
was 1.60%. Riahi and Nazari [45] studied the compressive
strength and abrasion resistance of concrete with NS and
CuO, and the specimens with NS were found to have a
better increase in abrasion resistance. Zhang and Li [46]
found that chloride ion permeability resistance of concrete
pavements was enhanced by significant enhancement of
nanoparticles. Combining NS with PVA fibers, making full
use of the respective advantages of these two materials,
and combining the green and environmentally friendly
characteristics of GM will bring a broad prospect for the
application of GM in civil engineering. Zhang et al. [47]
investigated the mechanical characteristics of concrete
incorporated with PVA fibers and NS, and they found
that both NS and PVA fibers could greatly affect the
mechanical properties. Malik et al. [48] investigated PVA
fibers/NS doped geopolymers and discovered that PVA
fibers and NS could enhance the structural properties
and durability as well as fire resistance of geopolymer
composites. Therefore, NS and PVA fibers are able to
enhance the durability of GM effectively.

As the machine learning becomes more popular in
recent years [49], more and more scholars have predicted
and analyzed the material performance and achieved rela-
tively satisfactory results [50–52]. Machine learning can
reduce the amount of experimentation and save time by uti-
lizing known datasets to train networks to predict unknown
data and structural properties [53]. With a high degree of
accuracy, Shao et al. [54] predicted the slump, modulus of
elasticity, and compressive strength of recycled concrete using
a BP neural network (BPNN). Hola and Schabowicz [55]
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demonstrated that artificial NNs have good applicability in the
evaluation of concrete compressive strength. Tian and Zhu
[56] used deep belief network in predicting the durability of
concretes with an accuracy of 98%. Huang et al. [57] developed
a hybrid model of particle swarm optimization (PSO) algo-
rithm and simulated annealing and demonstrated that the
algorithm can better predict the strength of rubberized con-
crete. Jiang et al. [58] combined the support vector machines
with PSO and predicted the splitting tensile strength of inter-
faces. Although a lot of experimental research on geopolymer
composites and prediction research on concrete composites
have been conducted, there is little literature and results can
be found on prediction of the durability of geopolymer com-
posites. The PSO-BPNN is applied in this study to predict the
durability of GM modified by PVA fiber and NS according to
the available experimental results, which can provide a guide
for further research on the durability of GM with nanoparti-
cles and PVA fibers.

2 Experiment program

In this study, combined with parameters such as dosage of
FA, water reducing admixture, quartz sand, alkali-acti-
vator, MK, water, PVA fiber, and NS, particle swarm opti-
mized BP neural network (PSO-BPNN) was utilized to pre-
dict and analyze durability of nanoparticles modified GM
with PVA fiber. Four material parameters including PVA
fiber dosage, NS dosage, MK dosage, and FA dosage which
affect the durability of GM were selected as input para-
meters, and the values of electric flux, loss of compressive
strength, and loss of mass of GMs were selected as output
values.

The aim of this study is to examine the impact of
dosages of NS and PVA fibers on the resistance of chloride
ion permeability, freeze–thaw cycles, and sulfate erosion
of GMs reinforced with PVA fiber and NS. Therefore, mix
proportionswere designed using the control variablemethod,
i.e., keeping the dosage and modulus of water glass, water–
cement ratio (w/c), and sand ratio unchanged, the dosage of
PVA fibers or NS dosage was changed singularly. The water-
binder ratio (the ratio of the mass of binding materials to the
mass of water in alkali stimulant and additional water) was

selected as 0.65, and the ratio of binding material to ratio was
1:1. A comparable quantity of FA was used to replace 30% of
the mass of MK. Sodium hydroxide, sodium silicate solution,
and water were combined to create the alkali-activator solu-
tion in advance. Sodium silicate solution had an initial mod-
ulus of 3.2. Flaked sodium hydroxide was added to bring it
down to 1.3. Then, water was added to raise the sodium oxide
mass fraction to 15% [59]. The NS dosage of 0.5, 1.0, 1.5, 2.0, and
2.5% and PVA fiber volume dosage of 0.2, 0.4, 0.6, 0.8, 1.0, and
1.2% were used for the experiments in this study. Based on
their mass ratio, NS was taken in equal proportions of FA
and MK.

The main physical properties of the MK are exhibited
in Table 1. Besides, the main chemical composition is
exhibited in Table 2. The FA used for the experiments
had a water absorption of 105%, a bulk density of 0.77
g/cm3, a standard consistency of 47.1%, and a density of
2.16 g/cm3. The chemical composition of FA contains 52%
SiO2, 18% Al2O3, 6.5% Fe2O3, 12.4% CaO +MgO, and 4.3% K2O
+ Na2O. The sodium silicate solution, also known as water
glass, had the solid content of 34.3%, and the modulus was
adjusted from 3.2 to 1.3 using flake NaOH solids with purity
up to 99.0%. The range of particle sizes in the quartz sand
was 75–120 μm. PVA fiber measured 40 μm in diameter,
6.5% in elongation and 12 mm in standard length. The ten-
sile strength is 1,560 MPa. The NS was 99.7% pure. The
specific surface area is 200 m2/g, apparent density is 54 g/l,
and average particle size is 30 nm. Besides the value of PH is
6.21. Both the cauterization and heating reductions were 1.0%.
The pH value of the polycarboxylic acid water reducing agent
was 4.52, with the water reduction rate of 21%, and its density
was 1.058 g/cm3.

In this study, different aspects of durability of GMwere
tested by the sulfate wet and dry cycling test, rapid free-
ze–thaw cycling test, and electrical flux method, respec-
tively. The resistance to sulfate erosion was measured

Table 1: Main physical properties of MK

Lime activity (ml) Strength activity index (%) Mean particle size (μm) Whiteness (%) Loss on ignition (%)

1,350 12 1.2 70–80 0.5

Table 2: Main chemical composition of the MK

Chemical
constituents

SiO2 Al2O3 Fe2O3 CaO +

MgO
K2O +

Na2O

% 54 ± 2 43 ± 2 ≤1.3 ≤0.8 ≤0.7
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through tests of sulfate dry-wet cycles. The test was carried
out using HC-LSB type automatic dry-wet cycles testing
machine for concrete. The mass change rate for the spe-
cimen after 90 times dry-wet cycles in the sulfate was
determined as the result of assessing the resistance to sul-
fate erosion of GM. The larger the mass change rate is, the
worse the resistance to sulfate erosion of the GM is, and
vice versa, the better the resistance to sulfate erosion of the
GM. Fast freezing method was used for the freeze–thaw
cycles resistance, in which the specimens were subjected to
25 times of rapid freeze–thaw cycle. The compressive
strength loss rate after freeze–thaw cycles of the specimen
was used to assess the freeze–thaw cycle resistance of GM.
The greater the loss rate, the worse the freeze–thaw cycle
resistance of the GM, and vice versa, the better the free-
ze–thaw cycle resistance of the GM. The chloride ion per-
meability resistance of GM was tested using electric flux
method, and the electric flux value was used to assess the
chloride ion permeability resistance of GM. The larger the
value of electric flux, the worse the chloride ion perme-
ability resistance of GM, and vice versa, the better the
chloride ion permeability resistance of GM. The mixing
proportions of GMs reinforced by nanoparticles and PVA
fiber are shown in Table 3. The related durability indices
are shown in Table 4.

Table 3: Mixing proportions of NS and PVA fiber reinforced GM [60]

Mix no. FA MK NaOH Water Quartz sand Water glass NS PVA fiber Water-reducing agents
kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 % % kg/m3

1 184.1 429.5 71 106.2 613.6 445.4 0 0 3.07
2 184.1 429.5 71 106.2 613.6 445.4 0 0.2 3.07
3 184.1 429.5 71 106.2 613.6 445.4 0 0.4 3.07
4 184.1 429.5 71 106.2 613.6 445.4 0 0.6 3.07
5 184.1 429.5 71 106.2 613.6 445.4 0 0.8 3.07
6 184.1 429.5 71 106.2 613.6 445.4 0 1.0 3.07
7 184.1 429.5 71 106.2 613.6 445.4 0 1.2 3.07
8 183.1 427.2 71 106.2 613.6 445.4 0.5 0 3.07
9 182.2 425.0 71 106.2 613.6 445.4 1.0 0 3.07
10 181.2 422.7 71 106.2 613.6 445.4 1.5 0 3.07
11 180.2 420.4 71 106.2 613.6 445.4 2.0 0 3.07
12 179.2 418.1 71 106.2 613.6 445.4 2.5 0 3.07
13 182.2 425.0 71 106.2 613.6 445.4 1.0 0.2 3.07
14 182.2 425.0 71 106.2 613.6 445.4 1.0 0.4 3.07
15 182.2 425.0 71 106.2 613.6 445.4 1.0 0.8 3.07
16 182.2 425.0 71 106.2 613.6 445.4 1.0 1.0 3.07
17 182.2 425.0 71 106.2 613.6 445.4 1.0 1.2 3.07
18 183.1 427.2 71 106.2 613.6 445.4 0.5 0.6 3.07
19 182.2 425.0 71 106.2 613.6 445.4 1.0 0.6 3.07
20 181.2 422.7 71 106.2 613.6 445.4 1.5 0.6 3.07
21 180.2 420.4 71 106.2 613.6 445.4 2.0 0.6 3.07
22 179.2 418.1 71 106.2 613.6 445.4 2.5 0.6 3.07

Table 4: Durability indices of PVA fiber and NS reinforced GM [60]

Mix no. Mass
loss rate

Compressive strength
loss rate

Electric flux
value

% % C

1 −3.74 18.8 1426.31
2 2.75 17.7 1294.38
3 2.46 15.9 1216.08
4 1.81 14.7 1185.84
5 1.44 12.6 1150.24
6 1.64 10.1 1158.52
7 2.07 8.9 1195.41
8 −2.31 17.1 1220.82
9 −1.12 15.0 1185.06
10 1.6 12.4 1121.13
11 2.1 13.5 1164.84
12 1.9 15.7 1190.52
13 2.06 13.7 1147.62
14 1.47 11.1 1107.48
15 0.82 8.2 1071.78
16 0.99 6.8 1076.94
17 1.38 5.4 1102.36
18 1.67 11.2 1157.88
19 1.21 9.7 1096.02
20 0.92 7.5 1055.16
21 1.15 11.6 1107.06
22 1.49 14.4 1166.98
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3 Establishment of prediction
model

3.1 BPNN

BPNN is a unidirectional propagation of multi-layer feed-
forward NN, which can be traceable to the 1980s. Three
layers make up a typical BPNN. An S-type function serves
as the input layer to hidden layer of the transfer function’s
neurons, and the input and output quantities are from 0 to
1. The essence is to transform a set of input-output pro-
blems into nonlinear mapping problems, and through the
gradient descent algorithm to solve the weight shot itera-
tively. The essence is to transform a set of input-output
problems into a nonlinear mapping problem, and the
weights were iteratively solved through the gradient des-
cent algorithm. The least squares method is the funda-
mental idea of the BPNN, in which the mean square error
(MSE) of the network between the actual and intended
output values was minimized by using the gradient search
technique.

The learning process is divided into two sections. One
section is forward transmission, in which the processing of
the hidden layer provides input information through the
input layer, and the actual output value can be calculated.
The other part is error back propagation, in which the
difference between the actual and expected output will
be recursively calculated layer by layer if the output layer
does not get the expected value, and this difference will be
used to adjust the weights and thresholds. To minimize the
error signal, these two processes run repeatedly until it

reaches the design tolerance within the error range, and
then the learning process is over. Figure 1 depicts the BPNN
model structure.

BPNN can be trained, and it can verify, and predict a
large amount of data. The procedures below are involved
in setting up a BPNN in MATLAB. At first, the input layer
neurons are determined, and then the input data are nor-
malized through the mapminmax function. On this basis of
the previous work, the tangent function of S-type tansig
serves as the activation function, and the back propagation
of learning algorithms is selected as the feedforward algo-
rithm. Subsequently, to build the BPNN, the newff function
is called. Then, the maximum number of training cycle
steps, learning rate, and learning training minimum error
are set. Finally, the sim function is called to have simula-
tion and prediction using the trained model.

3.2 PSO algorithm

Based on an analysis of bird flock feeding behavior, the
PSO algorithm was developed, which is also known as bird
flock foraging algorithm. PSO algorithm belongs to a kind
of evolutionary algorithms, similar to simulated annealing
algorithms, starting from a random solution, searching
for its best outcome by iteration, and evaluating the quality
of the solution through its degree of fitness, which seeks
for the global optimum by following the best quality of
the current search. The advantages of the PSO algorithm
include simplicity and ease of implementation, high accu-
racy, fast convergence, and no regulation for many para-
meters. Figure 2 depicts the fundamental steps of the PSO
algorithm.

The PSO method is based on the individuals in the
swarm sharing information so that a disordered to ordered
evolution process is produced in the space of problem solu-
tion due to the motion of the whole swarm, and thus the
best outcome of the problem can be obtained. When
updating the velocity vectors and position vectors of par-
ticles, combined with the individual extremes and popula-
tion extremes of the previous generation, the individual
velocities and individual positions can be obtained as
follows:

( ) ( )= + − + −+
V ωV c r P X c r P X ,

k k k k k k

id

1

id 1 1 id id 2 2 gd id
(1)

= ++ +
X X V ,

k k k

id

1

id id

1 (2)

where ω is the inertia weight, r1 and r2 are the random
numbers from zero to one, c1 and c2 are the learning coef-
ficients, V

k

id
is the individual particle velocity for the k-thFigure 1: The structure of BPNN.
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generation, X
k

id
is the individual particle position for the k-

th generation, P
k

id
is the individual particle extreme for the

k-th generation, and P
k

gd
is the population extreme of the

particles in the k-th generation.

3.3 PSO-BPNN

It has the advantages of simple structure, high accuracy
approximation of arbitrary functions, good self-learning
ability, and strong nonlinear mapping ability in BPNN.
However, this algorithm will show the shortcomings of
poor stability, prone to local minima, and slow learning
speed when the structure of BPNN is more complex. The
PSO algorithm, which carries out learning through popula-
tion intelligence, has a better global optimization cap-
ability. This study combines BPNN and PSO algorithm
and proposes a PSO-BPNN model, which produces better
computational results, and accelerates the convergence
speed of the traditional BPNN algorithm. The steps of
PSO-BPNN model establishment are as follows:
(1) Data preprocessing and initialization of the network

model parameters.
The training set and test set are separated from the

original data. To improve the training speed and sen-
sitivity and simplify the operation, the mapminmax

function in MATLAB is used to normalize the data.
For the input and output layers, the quantity of

nodes m and n is determined based on the data speci-
fics, and for the implicit layer, equation (3) is used to
determine the ideal quantity of nodes l.

= + +l m n α, (3)

where α represents the conditioning constant, which is
usually taken as an integer.

The initialization PSO parameters can be set as initial
population size number, dimension, and the initial posi-
tion and velocity of each particle is randomly generated
within the allowed range. The number of particles, the
population size, in the PSO is usually taken as tens to
hundreds. The particle dimension D can be defined as
the sum of the number of thresholds in implicit and
output layer and the number of connection weights
between two adjacent layers.

The maximum value of the particle position X
max

and velocity V
max

should be set in advance, and the par-
ticle position and velocity is initialized randomly within
the range of particle position [ ]−X X,

max max
and velo-

city [ ]−V V,
max max

.
(2) Calculation of the fitness value for every particle.

The fitness value of all particles is initialized to be
0, and then the function is called to calculate the fitness
of the particles. The following are the specific steps: a

Figure 2: Flow diagram of PSO algorithm.
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particle is input first, and then, the mean square devia-
tion of all the samples is calculated, which is the fitness
value. Similarly, all the other particles are input until
their fitness value is calculated.

(3) Comparing the fitness values to identify the individual
and global optimal extreme point for each particle.

If < = =P P P Xpresent , present,i i i
k

id
; otherwise, Pi

unchanged,
If < = =P P P Xpresent , present,g g g

k

id
; otherwise, Pg

unchanged,
where present denotes the fitness of the current par-
ticle. Initialize the best fitness obtained in each itera-
tion, and Pi and Pg denote the individual and global
extreme value for particles, respectively.

(4) Determining whether the adaptation value satisfies the
preset accuracy.

If the algorithm converges, the thresholds and
weights in Pg of the final iteration are mapped to the
thresholds and weights of the network. Then, the gen-
eralization ability can be verified directly with the test
set in the network, otherwise, the next operation will
be continued.

(5) Updating the velocity and position of the particles.
The velocity and position of the particles are updated

through the formula, and whether they are still within the
corresponding limits after the updating will be considered.

Updated location: = ++ +
X X V

k k k

id

1

id id

1. If >+
X X

k

id

1

max
,

then =+
X X

k

id

1

max
; if < −+

X X
k

id

1

max
, then = −+

X X
k

id

1

max
.

Updated speed: ( )= + − ++
V ωV c r P X

k k k k

id

1

id 1 1 id id

( )−c r P X
k k

2 2 gd id
. If >+

V V
k

id

1

max
, then =+

V V
k

id

1

max
; if

< −+
V V

k

id

1

max
, then = −+

V V
k

id

1

max
.

(6) Determining whether the iteration can be ended.
Whether the MSE accuracy meets the require-

ments or whether the number of iterations attains
maximum allowed should be determined. The algo-
rithm converges and the thresholds and weights in Pg

of the final iteration are mapped to the thresholds and
weights of the network when the prediction accuracy is
met. Otherwise, the algorithm will be iterated continu-
ously and the operation will be repeated.

(7) Checking the network generalization ability.
The results are input into the test set after the

PSO is optimized and BPNN is trained. According to
whether the test set adaptation meets the accuracy
requirements, the generalization ability is determined.
If the adaptability does not meet the accuracy require-
ments, the preset parameters or the network structure
need to be changed to adjust the network, and the
above steps are repeated.

(8) Comparing the prediction accuracy.

The prediction accuracy on the test set with PSO-BPNN
and unoptimized BPNN is compared, based on which the
final conclusion can be drawn.

4 Results analysis and discussion

In this study, the durability of the GM was predicted, using
the PSO-BPNN and unoptimized BPNN, respectively. The
dosage of water reducer, sodium silicate solution, quartz
sand, NaOH, and water were kept constant. The input layer
was chosen to includeMK dosage, FA dosage, NS dosage, and
PVA fibers dosage in the NN, and the values of fluxes were
used, while mass loss rate, and compressive strength loss
rate were used as the output layers to predict the chlorine
ion penetration resistance, freeze–thaw cycle resistance,
and sulfate erosion resistance of GM, respectively. The 22
sets of data were divided, 16 sets served as training samples
and the rest 6 sets served as test samples for prediction. The
NN prediction results were compared with the experimental
results to verify the scientificity and rationality of the NNs.
Figures 3–5 display the contrast between the predicted and
real results for resistance to chloride penetration, free-
ze–thaw cycle resistance, and sulfate erosion NNs.

According to Figures 3–5, both the NN models have
better prediction effect on the GM doped with NS and
PVA fiber, but in terms of fitting effect, the PSO-BPNNmodel
is better. Both NS and PVA fibers made a more significant
difference on the durability of GM. When the dosage of PVA
fibers was constant, the resistance of chlorine ion penetra-
tion, freeze–thaw cycle, and sulfate erosion of GM were

Figure 3: Prediction result of chloride ion permeability resistance of GM.
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better, i.e., the durability was superior while the dosage of
NS was from 1.0 to 2.0% in GM. When the dosage of NS was
unchanged and that of PVA fiber was from 0.6 to 1.0%, the
durability of GM was better. Besides, when the NS dosage
was 1.0% and the PVA fiber dosage was 0.6%, the GM had the
best durability. Liu et al. [61] found that when the volume
fraction of PVA fibers was 0.4%, the mechanical properties
and resistance to erosion and wear of the FA based polymer
were optimally enhanced, and the resistance to sulfate ero-
sion was improved. Shcherban et al. [62] discovered that the
optimum PVA fiber dosage in geopolymer composites was
0.6%. While Deng et al. [63] found that the optimum dosage
of PVA fibers was 0.45 vol% with the highest engineering

benefit. Gao et al. [64] found that 1.0% of NS resulted in
lower porosity and higher strength of geopolymermaterials.
The above is in agreement with the conclusions of current
studies. However, the following studies are not compatible
with this study. Li et al. [65] reported that FA based geopo-
lymer has the best carbonation resistance when the PVA
fiber doping is 2.0%. Bi et al. [66] found that the geopolymer
containing nano-material has the best performance when
the NS content is 0.25%.

In order to facilitate the comparative analysis and
draw the prediction conclusions, this study chooses to ana-
lyze the three kinds of errors: MSE, mean absolute value
error (MAE), and RMSE, which are calculated using the
following formulas:

( )∑= −
=n

A FMSE

1

,

i

n

i i

1

2 (4)

| |∑= −
=n

A FMAE

1

,
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n

i i
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(5)

( )
=

∑ −= A F

n
RMSE ,

i

n

i i1

2

(6)

where Ai is the true value, Fi is the value predicted by the
model, and n is the number of samples. The error analysis
of the prediction of chlorine ion penetration resistance,
freeze–thaw cycle resistance, and sulfate erosion resistance
of GM by PSO-BPNN and BPNN is exhibited in Tables 5–7.

Table 5: Errors in the prediction of chlorine penetration resistance
of GM

NN models MSE MAE RMSE

BPNN 21139.40 142.77 145.39
PSO-BPNN 5826.96 72.67 76.33

Figure 5: Prediction result of resistance to sulfate attack of GM.

Figure 4: Prediction result of freeze–thaw cycle resistance of GM.

Table 6: Errors in the prediction of freeze–thaw cycle resistance of GM

NN models MSE MAE RMSE

BPNN 41.31 6.43 6.06
PSO-BPNN 8.21 2.87 2.72

Table 7: Errors in the prediction of resistance to sulfate attack of GM

NN models MSE MAE RMSE

BPNN 4.79 2.19 2.16
PSO-BPNN 1.06 1.03 0.98

8  Xuemei Zhang et al.



According to Tables 5–7, the durability prediction error
of PSO-BPNN for GM is less than that of BPNN. Therefore,
PSO-BPNN is feasible for accurate and scientific prediction
of the durability performance of GM. This confirms the idea
that the PSO-optimized artificial neural network model opti-
mized better in the study by Mashhadban et al. [67]. The
PSO-BPNN model has higher accuracy and fitting effect in
predicting the chlorine ion penetration resistance, freeze–
thaw cycle resistance, and sulfate erosion resistance of GM,
and it can satisfy the prediction requirements for the loss
rate of mass and compressive strength, and the electric flux
value, which can provide guidance for the durability study
of GM. However, this study has some shortcomings and the
study only predicts the durability of GM and should be sup-
plemented with other civil engineering materials as well as
other properties to further demonstrate the generalizability
of this model. In summary, PSO-BPNN can provide guidance
for the durability study of GM blending in PVA fiber and NS,
and offer a novel method to predict the performance of GM
blending in PVA fiber and NS in the future.

5 Conclusions

1) Strong nonlinear mapping ability and high precision
approximation of arbitrary functions are the benefits
of the BPNN, but it has low learning speed and poor
stability. PSO algorithm has better global optimization
ability. PSO-BPNN combines the advantages of the two
methods, which can produce better calculation results
and speed up the convergence rate of traditional BPNN
algorithm.

2) The PSO-BPNN predicts the sulfate erosion resistance,
freeze–thaw cycle resistance, and chloride ion perme-
ability of GM with the better fitting effect, smaller
errors, and a higher prediction accuracy compared to
a single BP neural network.

3) The PSO-BPNN can meet the requirements for the pre-
diction of the loss rate of mass and compressive strength
and electric flux value, and can provide guidance for the
durability study of GMwith PVA fiber and NS, as well as a
novel approach to predict the performance of GM
blending in NS and PVA fibers in the future.
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