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Abstract: The timing and location of senescent cells in vivo
is a leading candidate explanation for human aging. A
rapidly developing scientific field with the potential to slow
the aging process is the creation of pharmacologically active
medicines that target senescent cells. Senotherapeutics have
been developed to selectively or preferentially target and
eliminate senescent cells. Senolytic compounds that delay
aging in animal models are being explored in humans with
great hope. Nanoparticle (NP) drug delivery strategies for
targeting senescent cells are in their infancy, but advance-
ments have been made, and preliminary anti-aging appli-
cations are promising. However, using nanomedicine
effectively requires an understanding of how NPs behave in
senescent cells. Senescence theranostics could offer a variety
of information, including a prognostic predictor in cancer
patients after treatment. The NPs have a much better outlook
for translating it to the clinic for aging. Reversing aging
pathologies may only require a percentage reduction in
senescent cells to achieve therapeutic success, in contrast to
cancer, where it is essential to eradicate the tumor. This
review provides an overview of the factors that lead to senes-
cence and different therapeutic approaches, focusing on the
use of nanocarriers/particles in senotherapy.
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1 Introduction

Cellular senescence is a cellular state caused by the natural
aging process or environmental stress. Many changes in
cellular functions occur as a result of cellular senescence,
including the loss of the ability to proliferate, changes in
the architecture of the cell nucleus, and morphological
changes in the cellular structure [1,2]. Hayflick and Moor-
head were the first researchers to study and describe the
phenomenon of cellular senescence in 1961, and subse-
quent research published in 1965 resulted in the later
coining of the term “Hayflick limit” to indicate the period
at which human fibroblasts cease to divide [3,4]. Apoptosis,
also known as programmed cell death, is one way the cells
respond to stress and damage [5]. Conversely, cells can age
as opposed to dying by activating the senescence pathway,
which is triggered by persistent DNA damage and involves
a network of proteins that participate in cell cycle arrest [6].
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This review aims to provide a general view of cellular senes-
cence, the factors that lead to senescence, and different
therapeutical approaches, focusing on the state-of-the-art
nanocarrier (NC)/particle interaction with senescence cells
and nanoparticle (NP)-based therapies. This work serves
as an introductory compendium of relevant aspects of cell
senescence and nanomedicine for senotherapy for the com-
munity working on materials science, nanobiotechnology,
and nanosciences. We also provide a fresh view of develop-
ments in the field and outline some of the perspectives and
research opportunities.

2 Senescence

Many changes not observed in young cells can be high-
lighted during cellular senescence. Depending on the cell
line and the way of senescence induction, morphological
changes in cells can be enormous or very subtle. The most
fundamental changes are shown in Figure 1, compared to a
non-senescent cell. Cell enlargement is caused by cell cycle
arrest at certain time points during cell growth [7]. For
example, the size of cancer cell lines before and after senes-
cence induction was shown by Bojko et al., which was clearly
noticeable in fluorescence-stained cells [8]. Nucleus formation
changes as the heterochromatin is redistributed and DNA
parts are tightly compressed, and as a result, it forms

senescent-associated heterochromatin foci (SAHF). This spe-
cific formation can be seen in a microscope with simple
nuclei fluorescence staining, depending on cell lines [9,10].
Interestingly, constitutive heterochromatin regions are not
included in SAHF formation. Its role is to separate genes
promoting proliferation to successfully arrest the cell cycle
and protect cells from going through apoptosis by hiding
excessive DNA damage [11]. Mitochondria have reduced
mitochondrial membrane potential, increasing proton leakage
and generating high reactive oxygen species (ROS). Due to
hyper-fusion, the mitochondrial mass of senescent cells is
much higher, while that of non-senescent cells is continuously
going through fissions and fusions to maintain metabolic bal-
ance [12].

Cell metabolism and dynamics change drastically after
the induction of cellular senescence. The potential of
the mitochondrial membrane is decreased, which conse-
quently compromises the ability to produce ATP, which is
highly reduced [13]. Other organelles that are affected by
cellular senescence are lysosomes. Their size increases,
and as the cell tries to recompensate dysfunctional lyso-
somes with newer ones, its number also greatly increases.
When cells go through cellular senescence, lysosomes start
excessive production of β-galactosidase, which will be dis-
cussed further in this review.

One of the features of senescent cells is their ability to
enhance their microenvironment by producing and secreting
multiple cytokines and chemokines, various growth factors,

Figure 1: Schematic of the most basic changes between senescent and non-senescent cells, examples of cellular senescence occurring naturally or
induced and example of the difference in β-gal expression by Foroozandeh et al. [26].
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proteases, and many soluble proteins, most of them pro-
inflammatory. This heterogeneous mix is called senescent-
associated secretory phenotype (SASP), whose compartments
are listed in Table 1. SASP composition is not always the same
depending on cell line and way of senescence induction, but a
few SASP components are very characteristic for induced
senescence-like IL-6 and IL-8 [14]. It is known that SASP is
crucial in tumorigenesis because it can influence tumor
development progression by enhancing the proliferation of
cells and immunosuppression or regression, thanks to the
proliferation arrest [15,16]. Regulation of secretion of those
components is compromised by the dysfunctional activity of
mitochondria [13]. In addition, SASP is involved in the patho-
genesis of age-related diseases like chronic kidney disease
(CKD) [17] or/and cancer [18].

Modulating immune cells with the help of senescent
cells becomes a point of interest in biology. Immune check-
point blockage (ICB) shows beneficial properties in several
cancer types, but the majority of cancers show a very low
response rate to ICB, like ovarian tumors [19]. Several stu-
dies showed the opportunity of using cellular senescence,
especially SASP to amplify ICB and make cancer cells more
visible to the immune system [19–21]. Marin et al. showed
that senescent cells and SASP can act as activators for
dendritic cells (DC) and CD8+ T cells with very high effi-
ciency, where DC and CD8+ cells are a crucial part of the
antitumor immune response [20].

2.1 Biomarkers

To identify and measure biological states, processes, and
responses, it is possible to introduce certain biomarkers
into the biological model to examine their state. Many
known biomarkers can give quantitative and/or qualitative

data [22]. Senescent cells have a variety of biomarkers,
which can give morphological, genetic, or secretive data.
To identify cellular senescence, it is essential to use a few
methods, as the use of only one is not sufficient evidence.

One of the most basic known biomarkers for identifying
cellular senescence is senescence-associated β-galactosidase
(SA-β-gal), whose activity is a very characteristic feature that
is common among all senescent cell types. β-Galactosidase is
a glycoside hydrolase enzyme, which the senescent cells
overexpress in lysosomes. At pH 6.0, β-galactosidase reacts
with X-gal (5-bromo-4-chloro-3-indoyl-β-galactopyranoside)
and, due to hydrolysis, yields a visible, usually blue product
[23,24]. Depending on the SA-β-gal staining kit, the analysis
can be performed with a simple optical microscope, an
inverted optical microscope [25,26], or can be identified
with flow cytometry or confocal microscopy [27,28].

Morphologically, simple fluorescence staining methods
can identify many features characteristic of some of the
senescent-type cells. The cytoskeleton or membrane staining
can highlight the changes in the size of cells [8] while
staining the nuclei can show SAHF, as mentioned earlier.
However, it is important to remember that those features
cannot be taken as biomarkers for certain, as they depend
on the cell type and type of induction. Other morphological
changes that can be observed are enlargement and an
increase in the number of lysosomes, which can also be
stained with fluorescence reagents [13]. The stability of the
nucleus is dependent on the presence of nuclear laminas.
Lamin B1 is one of the filament proteins located on the
inner layer of the nucleus. The level of this lamin B1 is a
hallmark of cellular senescence because its loss occurs
upon activation of either p53 or pRB pathway, which
are highly responsible for senescence induction. It was
discovered that lamin B1 loss is independent of ROS-
induced senescence [29,30].

Table 1: SASP components with classification

SASP classification SASP components [1,13,16,31,176] Ref.

Chemokines ENA-78/CXCL5, MCP-1/CCL2, MIP-1 α/CCL3, MIP-3 α/CCL20, CCL-28, GCP-2/CXCL6, I-TAC/
CXCL11, MCP-4/CCL13, NAP2/CXCL7, GRO α/CXCL1, GRO β/CXCL2, GRO γ/CXCL3, MCP-2/
CCL8, RANTES/CCL5, SDF-1/CXCL12

[35,40,71,86,177–187]

Cytokines and
interleukins

MIF, GM-CSF, IL-6, IL-7, IL-8, IL-1 α, IL-1 β, IL-11, IL-13, IL-15, Leptin, I-309 [35,179–189]

Growth factors HGF, VEGF/VEGFA, bFGF/FGF-2, AREG, KGF/FGF-7, PDGF-BB, SCF, PIGF, GDNF [35,181–184,186–190]
Proteases MMP1, MMP2, MMP3, MMP10, MMP13, MMP14, tPA, uPA [40,180–182,187,191,192]
Receptors uPAR, sTNF RI, sTNF RII, Axl, GITR/TNFRSF18, TRAIL-R3/TNFRSF10C, Osteoprotegerin,

IL-2R α, IL-6R
[35,185–187,193]

Regulators spg130, STING, SPINK1, TIMP-1, TIMP-2, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-5,
IGFBP-6, IGFBP-7, PAI-1/SEPINE1, ICAM-1

[35,178,182–186,190,191,194]

Others Angiogenin, COX2, ALOX5, SERPINB2/PAI-2, SERPINB4, PGE-2 [35,184,190,191,195–197]
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DNA damage is the main cause of cellular senescence.
DNA damage induces the expression of kinases, such as
ataxia telangiectasia mutated (ATM), that are recruited to
the site of damage and mediator proteins like the phos-
phorylated form of histone H2AX (γ-H2AX), which is a pro-
tein designed to repair damaged DNA [31,32]. As cell cycle
arrest is a very characteristic feature of cellular senes-
cence, the use of BrdU (5-bromo-2-deoxyuridine) or EdU
(5-ethynyl-2-deoxyuridine) is highly valuable as this assay
can be used in cell proliferation analysis. Those two assays
use an analogue of thymidine to highlight cells where
active DNA synthesis is still present [26,29,33,34].

The presence of SASP components, such as IL-6 or
IGFBP7, acts as a marker of cellular senescence, and it
can be detected with antibody arrays (e.g., ELISA, western
blot) [35–37] or liquid chromatography and mass spectro-
scopy [38]. Those elements can be analyzed with reversed
transcriptome PCR (RT-PCR), which shows the expression
level of the analyzed genes, or real-time PCR (RT-PCR),
which shows the presence of genes. Both of these assays
are common for cellular senescence studies in many arti-
cles. It is possible to detect SASP components like IL-1α, IL-
1β, and IL-6, and proteins that are responsible for cell cycle
arrest, p16, p21, and p53 [39–41]. The previously mentioned
lamin B1 can also be analyzed with RT-PCR [40].

2.2 Cellular senescence induction

Cellular senescence can be divided into two main types:
natural and induced. One of the naturally occurring types
of senescence is replicative senescence, which is caused by
natural cell division and telomere shortening. Telomeres
are structures at the end of the linear chromosome created
with tandem repeated nucleotide sequences (TTAGGG)n,
which protect the DNA from degradation or breaking
and provide chromosome stability. Due to every cell divi-
sion, telomeres are subjected to shortening as during DNA
replication, telomeres undergo erosion. With continuous
erosion with each DNA replication, telomeres are at a point
where the cell can no longer pass through division. That is
the moment when the cell enters replicative senescence
[42–44]. Another natural type is senescence, which occurs
during embryonic development and pregnancy to pla-
cental syncytiotrophoblasts due to cell–cell fusion during
pregnancy and can be beneficial and dangerous in some
situations [45]. It supports regulation of the placenta’s growth
during pregnancy, thanks to cytokines in SASP secreted by
senescence cells [11], but diverse increases can lead to many
pregnancy pathologies, including stillbirths [47]. Fusion-

induced senescence is prompted by fusogenic, like the
ERVWE1 protein, which mediates the formation of multi-
nuclear syncytriophoblasts in the placenta. This formation
is crucial in the maternal–fetal connection [45]. Other aspects
are also wound healing and tissue remodeling, where the role
of senescent cells is outstanding. Healing and remodeling are
multistage processes involving cytokines, chemokines, and
growth factors present in SASP. Experiments on Zebra fish
have shown that senescent cells are present during the whole
tissue regeneration process after amputating fin and disap-
pear when the process is over, which was confirmed by
various markers. Moreover, the regeneration process is ham-
pered after treating them with senolytics, which indicates
that cellular senescence is essential in limb regeneration for
Zebra fish [48].

Environmental stress caused by a group of many pos-
sible stress stimuli is responsible for the activation of stress-
induced premature senescence (SIPS), with therapy-induced
senescence (TIS) as one of them, which is the subject of
many studies [46,49]. Any type of stress causes damage to
the cell nucleus and, hence, to the DNA contained in it. DNA
damage response is responsible for stress-induced prema-
ture cellular aging. As previously mentioned, a few path-
ways are responsible for cellular senescence, but the most
known are tumor suppressor pathways, p53/p21CIP1 and pRB/
p16INK4a [50,51]. One of many sources of stress that can lead
to cellular senescence is ROS derived from O2-like oxygen-
based free radicals. Mitochondrial dysfunction and overpro-
duction of ROS in the cells can be caused by stress sources
such as ionizing radiation, chemotherapeutics, or general
environmental toxins. This can disrupt homeostasis, lipid
peroxidation, and promote DNA damage [52,53]. ROS-
induced DNA damage occurs due to guanine, whose oxi-
dation can cause modification and pairing with adenine
instead of cytosine, causing DNA mutations [52,54]. Overall,
ROS affects the structural integrity of DNA by the break-
down of nitrogen base-pairing and phosphodiester bonds
[52]. ROS generation and ROS-induced DNA damage are
responsible for cellular senescence, but constitutive produc-
tion of high ROS levels is crucial for senescent phenotype
maintenance, which creates a closed circle. Moreover, SASP
promotes ROS generation and induces senescence [52,55].

Many agents can induce cellular senescence, including
mustard gas, which causes DNA damage in the form of
single- and double-strand breaks and, due to a cascade of
reactions, leads to phosphorylation of p53 [56]. Various
scientific groups closely investigated cellular senescence
induction by mustard gas. Horn et al. studied the sensi-
tivity of primary human dermal fibroblasts (HDFs) to
sulfur mustard. Their study showed that senescence is trig-
gered after a single administration of sulfur mustard, and
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induction highly depends on time and concentration [57].
Soleimani et al. investigated the influence of nitrogen mus-
tard on mice’s cornea and discovered the connection between
cellular senescence after exposure to mustard gas and fibrosis
of the cornea. This gave a new insight into the possible therapy
with senolytic agents [58].

We can highlight one specific type of stress-induced
senescence, TIS, as cellular senescence can be induced
by common cancer treatments like radiotherapy or che-
motherapy [59].

2.2.1 Chemotherapeutics

Chemotherapeutics are known for their cytotoxic proper-
ties toward cancer cells in even very small concentrations.
Apoptosis is caused mainly by the inhibition of enzyme
topoisomerase II but also by ROS overproduction, which
causes genomic damage via oxidative stress. It generates
free radicals in cells, inducing and increasing DNA double-
strand breaks [34,60]. Doxorubicin (DOX) is one of many
chemotherapeutics commonly used in biomedicine; due to
its extensive use, it is not surprising that it was the first
reported chemotherapeutic to induce senescence [24,61].
Although DOX is a well-known chemotherapeutic, it also
has an unexpected drawback. It causes a high risk of
failure of different organs, not only targeted ones, which
can occur even after many years after treatment. Piegari
et al. confirmed this suspicion in vitro using cells isolated
from oncologic patients after autopsy. According to their
work, the cells they used, human cardiac progenitor cells,
are highly sensitive to anthracycline drugs, like DOX, which
results in increased apoptosis and decreased growth, and
the concentration of DOX is responsible for the cell’s viabi-
lity. It is very interesting to note that DOX did not affect the
expression of p21, which may suggest that DNA damage-
induced activation of p53 was not followed by p21 [34].

Hu et al. studied the time delay effect of DOX on HeLa
cell lines, which explains the importance of induction time,
especially the time with fresh medium after incubation
with DOX [62]. It is important to remark that not all drugs
cause cellular senescence. A study by Bojko’s team shows
that chemotherapeutics have different senescence induc-
tion effects on cancer cells. While drugs like DOX, irino-
tecan, and methotrexate were the strongest inducers,
oxaliplatin and 5-fluorouracil did not show any senescence
induction effects. These experiments were performed on
various cancer cells, and they showed that cells are more
or less sensitive to TIS. In this research, SHSY-5Y did not
show any signal of classic senescent markers, while MDA-

MB-231 was very sensitive to senescence induction [8].
Another type of drug used in chemotherapy is etoposide,
which was studied by Bang et al. on astrocytes extracted
from Rat’s brain cortex. This work showed many changes,
including induced DNA stress and mitochondrial dysfunc-
tion that led to cellular senescence, and was tested by
many biomarkers [39]. Interestingly, unknown properties
of chemotherapy-induced senescent cells about engulfing
neighbor non-treated cells were shown by Tonnessen-
Murray et al. while performing time-lapse observation in
vitro on cancer cells 4226 extracted from rats and on cell
lines MCF-7 and MPE600 [63].

2.3 Cellular senescence in diseases

There are many known diseases that are connected with
age. Here, we describe only a few of the most severe age-
related diseases [64–66]. Kidneys undergo structural and
functional change with age. Several cell types in kidneys
experience cellular senescence and secrete many factors
defined by CKD. This is a condition where kidneys are
damaged and cannot filter blood as efficiently as they
should, which can develop many health problems like car-
diovascular pathologies or mineral bone disorders due to
waste that should be filtered but remains in the body [67,68].
Chronic inflammation and oxidative stress in CKD lead to
the accumulation of senescent cells, but it is hard to deter-
mine whether cellular senescence is an after-effect of CKD
or, rather, the cause of CKD [69–71]. The presence of senes-
cent cells in CKD tissues was proven by using various senes-
cent markers [72]. Moreover, other research studies showed
that renal function in aging mice was restored, thanks to
senotherapy and removing senescent cells [73]. Cellular
senescence occurs in many known ophthalmology diseases,
which are strongly connected with aging. Cataract is the
most common disease, which is responsible for causing
blindness worldwide. The risk of cataract occurrence
increases with age due to the decrease of the lens stem
cells (LSC) level. Fu et al. showed that patients aged 50 and
above demonstrated high levels of senescent LSC, which
strongly inclined cataract development [74,75]. Another
known ophthalmology disease is glaucoma, which is
caused by retinol ganglion cell degeneration (RGC). Cel-
lular senescence of RGC is the main cause of exhaustion of
RGC, which is directly connected to glaucoma symptoms.
Skowronska-Krawczyk et al. studied primary open-angle
glaucoma, where gene SIX6 is a strong link to this disease,
and its connection with the expression of p16INK4a causing
cellular senescence was discovered [75,76]. Many studies
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already prove that diseases like Alzheimer’s disease and
Parkinson’s disease (PD) are strongly connected with
cellular senescence [77]. Characteristics of PD motor symp-
toms are the result of progressive degradation of dopa-
mine-producing neurons called dopaminergic neurons in
the midbrain with age [78,79]. Patients with PD present
high levels of senescent markers in astrocytes in brain
tissue. The high number of senescent cells and aged astro-
cytes in the PD brain suggests senescent-induced neuroin-
flammation might be an important mechanism for PD neu-
rodegeneration [80,81]. Alzheimer’s disease is an age-related
progressive degenerative neurological disease [82,83]. It is
recognized by certain hallmarks such as accumulation of amy-
loid β (Aβ) and aggregation of protein tau [84,85]. Multiple
studies have shown the presence of many senescence mar-
kers, which indicates the connection between senescent cells
and the progression of Alzheimer’s disease [86,87]. Neuroin-
flammation in this disease is caused by the overactivation of
microglia and the overproduction of proinflammatory cyto-
kines that are part of SASP. In addition, excessive expression
of IL-6 causes neurodegeneration. A high level of pro-inflam-
matory cytokines reduces the ability of the cells to remove Aβ,
causing its accumulation [81,88–90]. Senescence-accelerated
mice P8 (SAMP8) is a great model for a closer study of Alzhei-
mer’s disease, which was described in more detail in the lit-
erature [91]. Experiments performed on SAMP8 in general
focus on age-related diseases such as sarcopenia, character-
ized by loss of muscle mass and muscle function, which was
studied by Huang et al. [92], or age-related changes in the
small intestine, which was the subject of the work of Suzuki
et al. [93].

As mentioned earlier, cellular senescence is a defense
mechanism against cancer due to its growth arrest and
SASP, which sends signals to neighboring cells to suppress
tumor progression. Moreover, interleukins recruit macro-
phages and immune cells to eliminate cancer cells after
entering the state of cellular senescence [94]. However,
this is not a flawless mechanism, and what is supposed
to protect us from cancer can also be harmful to us.
SASP plays a very important role in tumor development
by sending signals that directly or indirectly block immune
surveillance [95,96]. The most recognized SASP compo-
nents that can promote cancer cell proliferation are IL-6
and IL-8 [95,97]. Studies have shown that IL-6 recruits mye-
loid-derived suppressor cells, which results in an immuno-
suppressive microenvironment [98]. Several studies proved
that senescent cancer cells can be highly connected with
cancer relapse [40]. Reprogramming caused by SASP sig-
naling might even lead to the development of stemness
properties. It is even more important to mention that the

generation of highly aggressive tumors is an essential fea-
ture of cancer stem cells [99,100].

Another interesting insight in connection of cellular
senescence with age-related diseases is the ability to upre-
gulate protein programmed death ligands (PD-L1). Studies
showed that PD-L1-positive cells are resistant to the activity
of lymphocytes T, which effectively makes our immune
system decline as PD-L1 causes the inactivation of immune
cells [101–104]. Two groups, Wang et al. and Onorati et al.,
carried out very interesting studies in this aspect and indi-
cated the possibility of creating a therapy to prevent age-
related diseases [103,104].

Many diseases are connected with cellular senescence
and are age-related. Senotherapies would be a great way to
promote healthy aging by eliminating senescent cells in the
target area, such as the brain. It is not known if senolytics
are able to cross the blood–brain barrier besides fisetin and
dasatinib+quercetin (D+Q), which were studied in vivo on
that matter [105,106]. It is also important to remember that
the correct dose of such drugs can help purge senescent
cells, but, on the other hand, some senolytics show senes-
cent-inducing properties, like Nutlin-3a [20,107,108].

3 Emerging therapies for cellular
senescence: Targeting senescent
cells for age-related diseases

There are three main approaches for targeting cellular
senescence. The first is killing senescent cells (senolytics),
the second is inhibiting the SASP (senomorphics or seno-
statics), and the last therapy is using the immune system
against senescent cells (immunosurveillance) [109]. Senes-
cent cells arise in almost all types of tissues and organs
with increasing age [110]. To better understand how cel-
lular senescence contributes to the emergence of disease,
research into new indicators or causes is ongoing. Several
genetic mouse models allowed for simultaneous tracking
and functional studies on senescent cells [111–113]. The
overwhelming amount of evidence points to the possibility
that the number of senescent cells in mice might affect long-
evity and that the trajectory of that lifespan is sensitive to
treatments that remove senescent cells from the body [114].

Navitoclax is an anti-cancer drug that inhibits the BCL-2
family protein and, together with galacto-conjugation (Nav-
Gal) results in a promising senolytic strategy. Muñoz-Espín
et al. showed that Nav-Gal is activated by increased SA-β-gal
activity and can induce programmed cell death. A combina-
tion of Nav-Gal and cisplatin (a drug used in senescence-
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inducing chemotherapy) results in the elimination of senes-
cent lung cancer cells and inhibition of tumor growth, simul-
taneously reducing thrombocytopenia, which is one of the
limitations of Navitoclax treatment [115]. Another example
of a new generation of senolytics is galactose-modified duo-
carmycin (GMD). Duocarmycin can bind to theminor groove
of DNA and alkylate adenine, resulting in cell death [116].
GMD can induce apoptosis in senescent cells in a lysosomal
β-galactosidase (GLB1)-dependent manner. Moreover, in the
mouse model, this prodrug could reduce β-catenin-positive
preneoplastic senescent cells and is considered a new anti-
cancer drug [117]. Cai et al. used a similar strategy to
develop a specific prodrug. Galactose-modified gemcitabine
(SSK1) is commonly used in chemotherapy [118]. SSK1 speci-
fically is cleaved by lysosomal β-gal into gemcitabine and
activates p38 to induce apoptosis in senescent cells. In aged
mice, SSK1 reduced the number of senescent cells and inhib-
ited senescence-associated signatures in the kidneys and liver.
Moreover, this compound decreased senescence-associated
gene expression, attenuated low-grade chronic inflammation,
and improved physical function compared to the control
mice. Recently, the elimination of senescent cells has become
a new approach to treating different diseases. It was shown
that atherosclerosis is an age-associate disease. Liu et al.
developed an aptamer-mediated senolytic that can target cells
with high lysosomal β-gal activity and induce apoptosis in
senescent endothelial cells [119]. Some of the specific-targeting
senescent cell senolytic are used in anticancer treatment. For
example, Jia et al. tested the neddylation (posttranslational
modification protein) inhibitor MLN4924 (MLN), which can
induce cellular senescence by suppressing p21 degradation in
cancer cell lines [120]. The combination of MLN and Navito-
clax successfully eliminated MLN-induced senescent A549
cells [121].

With the increasing knowledge about cellular senes-
cence and its impact on the pathogenesis of many different
diseases, the local elimination of senescent cells is becoming
insufficient [122]. Khosla’s team reported a transgenic mouse
model p16-LOX-ATTAC to clear senescent osteocytes specifi-
cally. Osteocyte senescence is a major factor in age-related
bone loss. Local elimination of senescent osteocytes inhibits
bone loss in the spine and improves bone formation without
impacting osteoclasts or marrow adipocytes. In comparison,
systematic senolysis in the p16-LOX-ATTAC mouse model
prevents bone loss in the spine and the femur and reduces
osteoclasts and marrow adipocytes. Furthermore, results
showed that SASP in the peritoneal cavity can induce cel-
lular senescence in distant host osteocytes. Khosla’s team
highlighted that the therapy may require a more systemic
approach [123,124]. It is necessary to distinguish senescent

cells from normal cells for better treatment and faster dis-
ease detection and/or prevention. However, there is a great
need for sensitive assay for the detection of cells causing
age-related diseases. Sancenón et al. developed a naphthali-
mide-based two-photon probe (AHGa) in mice tumor xeno-
grafts treated with senescence-inducing chemotherapy,
palbociclib. In senescent cells, AHGa is a naphthalimide
fluorophore, which is transformed into AH, resulting in a
5-fold enhanced fluorescence emission intensity [125].
Chronic renal failure (CRF) is a progressive decline in the
renal structure and functions of kidneys. Moreover, oxida-
tive stress and premature cellular senescence are found in
patient’s kidneys suffering from CRF. Abnormal accumula-
tion of senescent cells damages surrounding cells through
high levels of SASP secretion and can lead to organ failure
[126]. Li et al. reported a new theragnostic–senolytic prodrug
(TSPD) to induce senolysis in renal unilateral ischemia-
reperfusion injury murine model with a high risk of pro-
gression to CRF. This TSPD compound is made of coumarin
skeleton as a fluorescence carrier, b-galactosidic bond for
selectivity, and gemcitabine as a cytotoxic drug. Therag-
nostic approach allowed TSPD to detect and induce apop-
tosis in senescent cells specifically. Furthermore, in vivo
studies showed that TSPD treatment can improve renal
function in the mice model of CRF [127].

Based on extensive preclinical studies revealing the
advantages of senotherapy, multiple clinical trials in aging
and age-related diseases [128], as well as cancer treatment
[129], are developed. Current senotherapeutic strategies
include conventional senotherapeutics, prodrugs, protein
degraders, immunotherapies, and the use of NCs for the
delivery of senolytics. NCs offer a means to transport other-
wise insoluble drugs and to specifically target senescent
cell populations through the modification of their surface
with peptides, antibodies, or other biomolecules that recog-
nize motifs on the membrane of senescent cells. Recent
advances in nanoscience have impacted many areas of
therapy and can potentially improve present senotherapy
approaches. Several NP- and NC-based strategies have been
developed in the past few years, aiming to detect senes-
cence in vivo or induce the death of senescent cells as a
therapeutic approach. However, NPs can induce senes-
cence in certain conditions, which may be undesirable
in some therapies employing NPs, i.e., for NPs applied in
cancer therapy. While there is a large body of work on
NPs for cancer treatment and on the interaction of
NPs with cancer cells, and despite the potential of NPs
in senotherapy their interaction with senescent cells is
practically not considered in the literature on cellular
senescence.

Cellular senescence and NP-based therapies  7



3.1 NP-assisted senescence

3.1.1 Induction of senescence by NPs

NPs are small particles with sizes below 100 nm, are widely
used in many scientific and technological fields, and can
potentially be used in drug delivery, tissue engineering,
and sensing [130]. The term NCs refers to NPs when used
for drug delivery. In recent years, interest has increased in
developing a wide range of medical therapies based on
NCs. Delivery systems based on NCs have a significant
advantage compared to free drug administration, such as
(a) the possibility to deliver otherwise insoluble drugs, (b)
selective targeting of the disease cells and tissues, (c)
release of the entrapped therapeutics in the desired area,
and (d) significant decrease of the necessary drugs’ dose.

Only limited intravenously administered NCs could
reach clinical trials on humans, and even fewer were
approved by the Food and Drug Administration (FDA) or
European Medicines Agency (EMA). Among other types of
administration, such as oral, local, and topical, there are
more examples of already approved nanosystems [131–133].
Among the FDA- and EMA-approved NCs are Doxil®, Mer-
qibo®, Myocet®, or Abreaxane [131–133].

Apart from NPs and NCs, scientists worldwide are also
trying to develop nanomaterials for medical therapies. For
example, in ophthalmology, such nanomaterials could help
with corneal therapies connected to ocular injuries and
diseases. Corneal scaffold material could be used instead
of donor tissue, but such materials must meet many
mechanical and optical criteria to be considered for
further use [134,135]. Such information was described in
detail by Soleimani et al. [136]. Other nanomaterials, such
as hydrogel nanocomposites, are widely studied as wound
dressings. Li et al. studied the antibacterial properties of
chitosan, which has great properties that wound dressing
requires, such as biocompatibility, biodegradability,
water absorption, and more, combined with Au–Ag
NPs and discovered that this combination greatly pro-
motes the wound-healing process in vivo [137,185] Liang
et al. [138] greatly elaborated many other discoveries of
hydrogel nanocomposites.

Induction of cellular senescence by NPs is a rather new
concern for researchers working with NPs. The majority of
the groups focus on in vitro cytotoxicity of their newly
developed systems. However, before NPs become toxic,
they may cause stress-induced premature cellular senes-
cence. The accumulation of senescent cells can cause
age-related diseases. There is a need to consider the
effect of the accumulation of NPs in the environment
and their possible negative effect on the human body

after prolonged exposure to them. Notably, some groups
investigated NPs' possible induction of cellular senes-
cence with confirmed non-toxic concentrations during
unintended exposure. It was reported that prolonged
exposure to specific NPs could cause senescence of lung
cells [139,140]. Senescent lung cells are known to have an
effect on the progressions of age-related diseases, such as
idiopathic pulmonary fibrosis (IPF) or chronic obstructive
pulmonary disease.

Spannbrucker and colleagues reported that repetitive
exposure to the non-toxic concentration of carbon NP pol-
lution had an impact on the induction of a senescent-like
phenotype on the lung epithelial cells [140]. The group
highlighted the difficulties in reproducing human real-life
cumulative exposure to NPs. Thus, they proposed the sim-
plified in vitro model, where they observed the properties
of lung epithelial cells after cumulative exposure to NPs
over 14 days. The cellular senescence was confirmed after
recognition of several parameters: (a) accumulation of cell
clocking proteins p21 and p16; (b) decrease of the redox-
sensitive histone deacetylase SIRT1 and Connexin-43 at the
plasma membrane; and (c) inability to proliferate [140].

Chen and colleagues have investigated the induction of
lung cellular senescence due to prolonged exposure to
silver NPs (AgNPs) via inhalation [139]. A complete growth
arrest was observed after 6 days of exposure of human
MRC5 fibroblasts to AgNPs. Other cellular senescence char-
acteristics and markers were observed, such as enlarged
cell size, strong SA-β-gal activity, and the presence of SAHF.
The cellular senescence was induced via the upregulation of
the cyclooxygenase-2/prostaglandin E2 (COX2/PEG2) intra-
crine pathway. Moreover, AgNPs caused upregulation of
COX2 and an increase of lung cellular senescence in mice
and, consequently, mild fibrosis in the lung tissue [139].

Mytych et al. analyzed the effect of silica, silver, and
diamond NPs on the induction of cellular senescence [141].
NP treatment increased ROS production and glutathione
(GSH) reduction. Induction of oxidative stress caused
SIPS. All cell lines exposed to NPs showed a decrease in
the level of lamin B1 pools, accompanied by the upregula-
tion of the telomeric repeat binding factors 1 and 2 (TRF1
and TRF2) protein level, which is part of the telomere-
focused protective response. In cancer cells, the TFR-
based response was independent of the p53 pathway,
while in the fibroblast, the p53/p21 signaling was active.

Tian and co-workers investigated the senescence
induction pathways using the hydroxyl-modified graphene
quantum dots (OH-GQDs) on two lung carcinoma cell lines
with or without the presence of p53 (A549, wild-type p53 and
H1299, p53-null) [142]. They demonstrated that in both cell
lines, the production of ROS was enhanced by OH-GQDs. The
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group found that the induction of ROS production led to the
activation of the p21 signal pathway in both p53-dependent
and -independent manner. However, p21 is one of the p53-
activated factors. In p53-null cells, the p21 signal pathway
activation was initiated by different factors. The detailed
mechanism of p21 activation in p53-null cells needs further
investigation, which was highlighted in the work.

Other works also showed that the enhanced production of
oxidative stress, induced by NPs, is related to disruption of the
levels of p53 and p21 and can lead to premature senescence. Ye
and colleagues showed that silica NPs incubated with myocar-
dial H9c2 (2-1) cells led to upregulation of the expression of p53
and p21 and, in fact, to cell cycle arrest at the G1 phase [143].
Roy and colleagues reported that zinc oxide NPs (ZnO NPs)
induced macrophage cell death, mostly by increased ROS pro-
duction. They also observed p53, p21/waf1 signaling [144].
Deylam and co-workers confirmed that the cellular senescence
induction by ZnO NPs is dependent on the NP sizes (10–30 and
35–45 nm). Both sizes of NPs led to senescence of the mesench-
ymal stem cells (MSCs). However, smaller NPs caused the
production of larger amounts of senescence cells. Cellular senes-
cence was confirmed with increased lysosomal β-galactosidase
activity level and upregulation of NF-kB and p53 (Table 2) [145].

3.2 Targeting and therapy of senescent cells
by NPs

Many cancer treatments can effectively kill cancer cells,
but sometimes, cells undergo permanent cell growth arrest
instead of apoptosis or necrosis. Some groups introduced cel-
lular senescence as a successful cancer treatment [146–149]. In
fact, cellular senescence plays both beneficial and detrimental
roles in cancer and age-related diseases [150,151]. The SASP,
present in senescent cells, participates in the clearance of the
senescent cells, tissue regeneration, and repair. However, the
SASP can also promote the formation of secondary tumors
and cancer relapse by stimulating phenotypes associated
with aggressive cancer cells. The accumulation of senescent
cells can increase the risk of cancer and age-related diseases.
Some groups considered the use of senotherapy in combina-
tion with the current cancer treatment to minimize the risk of
cancer relapse [40]. There are two strategies to minimize the
negative effects of senescence:senolytic induction and SASP
neutralization [152,153]. Senolysis initiates the direct elimina-
tion of the senescent cells. The drawback of the potential
combined cancer and senolysis therapy lies in the current
lack of approved senolytic drugs and their high toxicity in vivo.

Thus, to bypass the side effects of the double therapy,
NPs can be used as NCs to encapsulate senolytic drugs

[151,154–156]. Reducing the necessary dose by encapsu-
lating the therapeutics in NPs may greatly decrease the
toxicity of the senolytic drugs. Using NCs to deliver drugs
may also improve their targeting abilities. Moreover, prop-
erly designed NCs can release their drug cargo in the tar-
geted senescent cells.

Agostini and co-workers investigated NC-based sys-
tems to deliver cargo and luorophores to the senescent
cells (Figure 2) [156]. The group used galacto-oligosac-
charide (GOS) capped mesoporous silica NPs (MSNs). SA-
β-gal present in senescent cells released the cargo in the
senescent cells (aged human fibroblast, DC1787; cells from
human Dyskeratosis Congenital patients, X-DC1774 and
X-DC4646). β-Galactosidase present in senescent cells digest
the sugar coating on the NPs, and cargo can be released
from the NCs to the senescent cells (Figure 2). In another
work, Muñoz-Espín and colleagues took advantage of the
previous findings to encapsulate the therapeutic agent into
β(1,4)-galacto-oligosaccharide-coated MSNs (GalNP) and to
ensure the release of the cargo within the senescent cells
(Figure 2) [155]. This group observed the effect of the senolytic
drug navitoclax on human cancer cell lines, which undergo
senescence after treatment with palbociclib (human mela-
noma cells, SK-MEL-103, and human squamous carcinoma
cells, NCI-H226). Navitoclax is a drug that strongly and speci-
fically inhibits Bcl-2, Bcl-w, and Bcl-xL, anti-apoptotic proteins,
to induce senolysis [151]. The group confirmed their previous
results in the in vivo experiments. Due to the design of the
coated NPs, navitoclax was only released in senescent cells
and not in healthy cells. Moreover, the treatment was only
effective on tumors formed from senescent cells and not from
growing tumors. These results indicate that the selolytic treat-
ment should not be applied together with anticancer treat-
ment but only after cancer cells undergo senescence. In
another work, they demonstrated the positive double
treatment of another cancer type with an anticancer drug,
followed by the administration of the senolytic drug encap-
sulated in NPs [151]. Galiana et al. discovered that mice with
aggressive triple-negative breast cancer treated with palboci-
clib and then navitoclax-encapsulated in β(1,4)-galacto-oligo-
saccharide-coated MSNs led to inhibition of tumor growth,
reduction of the size of metastases, and reduction in the
toxicity of navitoclax. A fascinating study was performed by
Chibaya et al., where they used NPs to boost the immune
system against pancreatic tumors to enhance interactions
between immune and tumor cells. Their method included
senescence induction using trametinib and palbiciclib com-
bined. They targeted the tumor microenvironment (TME)
with NPs loaded with agonists of stimulator of interferon
genes (STING) and toll-like receptor 4 (TLR4). Their research
shows that the combination of senescence induction and
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tumor-targeting therapy significantly enhances the produc-
tion of IFNβ and promotes activation of NK and T cells in
the tumor area due to SASP regulation with STING and TLR4
agonists [157].

Jatal et al. successfully prepared a biodegradable and bio-
compatible vitamin E-sphingomyelin nanosystem (SN) asso-
ciated with 4N1Ks peptide derived from thrombospondin 1
(TSP1) protein for targeting and eliminating senescent cells in
breast cancer [158]. The 4N1Ks peptide combines both proper-
ties by targeting the CD47 receptor expressed on the surface of
senescent cells and exhibiting senolytic activity. To overcome
the problem of short half-life and aggregation tendency of
peptide drugs, 4N1Ks peptide was chemically conjugated to a
PEGylated hydrophobic chain and attached to the SN. The
resulting SNs-4N1Ks (SNs-Ks) demonstrated an improved

cytotoxic effect on MCF7 cancer cells, decreasing cancer
cells' capacity to form colonies, as compared to free pep-
tides, and higher hemocompatibility. In addition, senescence
escape experiments indicated the enhancement of senolytic
activity of SNs-Ks in the chemotherapy-induced senescence
model of breast cancer cells.

TIS in tumor cells was previously reported to lack per-
manent cell fate. In fact, senescent tumor cells have the
ability to re-enter the cell cycle under some conditions
[159–161]. Often, tumors regrown from senescent tumor cells
have enhanced resistance toward already used therapy or
are more aggressive compared to the original tumor. Wies-
mann and co-workers demonstrated that cancer cell lines
(non-small cell lung cancer, H549; and hepatocellular carci-
noma, HuH-7) treated with the gamma irradiation with 16

Figure 2: (a) Graphic of material coated with galacto-oligosaccharide (GOS) and schematic of delivery mechanism with beta-gal. Right: Representative
TEM images of nanocarriers [156]. (b) Schematic illustration of the release mechanism of drug cargo from MSNs coated with 6-mer β(1,4)-galac-
tooligosaccharides [155]. (c) Schematic of synthesis coated mesoporous silica loaded with dye or drug. Nanoparticles are functionalized on their outer
surface so that GOS can be covalently bounded [151].
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Gy resulted in cell death and cell cycle arrest of the
remaining tumor cells [150]. Repeating the 16 Gy irradia-
tion on the remaining senescent cells did not lead to
further cell death. Moreover, the group demonstrated
that senescent cells re-enter the cell cycle within 2 to 4
weeks after irradiation. In addition, post-irradiation treat-
ment of senescent tumor cells with ZnO NPs led to a drastic
decrease in the senescent cell population. This showed the
significant toxic effect of ZnO NPs on senescent cells.

Ekpenyong-Akiba and colleagues used a different
approach to target senescent cells. They designed molecu-
larly imprinted NPs (nanoMIPs), polymeric NPs with one
binding site to target the extracellular epitome of one of
the senescence markers (β2 microglobulin, B2M) [154]. The
group demonstrated the efficient targeting of the senescent
cells in vitro and in vivo. NanoMIPs loaded with the senolytic
drug, dasatinib, has successfully killed senescent cells, while
the impact on other cells was minimal. Lewinska and col-
leagues utilized a natural senolytic compound, quercetin, to
functionalize the surface of Fe3O4 NPs (MNPQ) against oxi-
dative-stress-induced senescent human fibroblast cells [162].
The group reported eliminating the senescent cells in vitro
and decreasing the senescence-associated proinflammatory
responses. Xu and coworkers investigated the effect of chiral
gold NPs illuminated with NIR irradiation at 808 nm on the
clearance of senescent microglia cells to minimize the symp-
toms of PD [163]. The group demonstrated that NPs highly
accumulated in the senescent microglia cells in the brains of
the mice. Moreover, irradiation led to apoptosis and clear-
ance of the senescent cells. In fact, themice treated with L-P+

NPs exhibit a remarkable recovery of some functions pre-
viously disturbed by the PD, such as motor abilities, spatial
cognition, and memory. Another group also used chiral NPs,
chiral CuxCoyS NPs under an alternating magnetic field
(AMF), and NIR photon illumination to kill senescent lung
fibroblast cells [164]. Both AMF and NIR illumination of senes-
cent cells treated with chiral NPs were effective in killing
senescent cells. However, D-CuxCoyS NPs were more efficient
than L-NPs. Moreover, a combination of both AMF and photon
illumination shortened the treatment time. In addition, the
group confirmed positive effects in vivo and a lack of toxic
effects on normal cells. The application of NIR light in combi-
nation with upconversion-NP (UCNP)-centered Au20–Au30 NP
tetrahedron (UAuTe) was demonstrated to accelerate the
clearance of senescent cells [163] selectively. The beta-2-micro-
globulin antibody (anti-B2MG) conjugated with Au NPs was
used to recognize senescent cells, while the NIR light induced
the disassembly of the UAuTe. The release of the Granzyme B
exposed to UCNPs caused apoptosis in senescent cells. The in
vivo experiments resulted in the restoration of renal function,
tissue homeostasis, fur density, and athletic ability in a

senescence mouse model after 30 days of treatment with the
NIR-responsive tetrahedron. The anti-B2MG antibody was also
used to modify triphenylphosphonium (TPP) conjugated plas-
monic core–shell spiky nanorods (CSNRs) [165]. aB2MG-
TPP@CSNRs irradiated with NIR light selectively induced
mitochondrial damage and apoptosis of senescent cells. In
addition, the authors demonstrated the capability of CSNRs
to modulate the immune response in vitro and in vivo. The
photo-induced formation of ROS contributed to senescent-cell
apoptosis and the clearance of senescent cells in mice related
to the adjuvant immune effect.

Chronic exposure to cigarette smoke can cause prema-
ture senescence of airway epithelial cells. In the work of
Paudel et al., the protective effects of using berberine-
loaded liquid crystalline NPs (BBR-LCNs) against cigarette-
smoke-induced oxidative stress, inflammation, and senescence
were investigated [166]. BBR-LCNs showed potent anti-
oxidant activity by lowering the level of ROS and expression
of ROS-associated genes (Gpx2, Nqo1) in both broncho-
epithelial cells (16HBE) and macrophages (RAW264.7). The
anti-inflammatory effect of BBR-LCNs was caused by the
downregulation of IL-1β, IL-6, and TNF-α gene expression.
The antisenescence activity of BBR-LCNs was demonstrated
by X-gal staining, the gene expression of CDKN1A (p21), and
immunofluorescent staining of p21.

Diabetic wounds are highly associated with an increase
in cellular senescence. Zhao and co-workers explored tar-
geted therapy based on poly-L-lysine/sodium alginate (PLS)
modified with talabostat (PT100) and encapsulating a PARP1
plasmid (PARP1@PLS-PT100) to eliminate senescent fibro-
blasts (SFs) [167]. PT100 selectively inhibits the dipeptidyl
peptidase 4 (DPP4) receptor, which was shown to be com-
monly expressed on SFs. Treatment with PARP1@PLS-PT100
nanospheres revealed high selectivity for SFs over normal
fibroblasts, increased apoptosis of SFs, and the disappear-
ance of cellular senescence, resulting in wound healing with
increased M2 macrophages.

Another recent approach that we have proposed suggests
that senescent cells, due to their growth arrests and virtual
immortality, could play an important role in studying NCs
inside the cells [168]. Our previous study used fluorescent Si
NPs to track the uptake and retention of proliferation and
senescent cells (WI-38 fibroblast). The probes accumulate on
senescent cells that reside in the cytoplasm for an extended
period (weeks) (Figure 3). Conversely, the probes on prolifer-
ating cells get “diluted” during cellular division, and the
overall fluorescence of the cells decreases. The study poses
significant possibilities as, on the one hand, it allows for an
efficient NP-based long-term tracking method for senescent
populations. On the other hand, it provides a unique model
for studying NP fate in cellular models. Furthermore, we
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identified the retention kinetics of NPs, which not only allows
suggesting a pathway to address their off-targeting in prolif-
erative cells but also suggests a way of restricting drug toxi-
city to senescent cells.

4 Perspectives and conclusions

The single most significant risk factor for disease develop-
ment is aging. The reality that people are now living much
longer than ever before represents a significant healthcare
challenge. According to estimates, 92% of persons over the
age of 65 have one or more chronic conditions and require
specialized medical care [169]. For nations across the globe,
the increasing proportion of elderly persons in the populace
dramatically impacts economic expenditures and social bur-
dens. In the long run, further innovations and technologies
are forecasted to treat aging effectively. Several biotech
companies, realizing the demand, are involved in the devel-
opment of such anti-aging therapies [170]. The past few
years have been an exciting time for researchers working
on cellular senescence, which has yielded an incredible
wealth of knowledge on how targeting a unifying aging

mechanism is achievable. In order to extend life, modern
medicine, which formerly concentrated on treating just one
disease at a time, is increasingly focusing on treating the root
cause of numerous diseases at once.

Delivering therapeutic medicines based on SA-β-Gal+
shows vast potential. More drug targets may emerge spe-
cific to molecular mechanisms driving aging pathologies.
Heterogeneity within senescent cell populations was dis-
covered by utilizing techniques to determine gene expres-
sion profiles at a single-cell level [171]. As we learn more
about senescent cell functions being beneficial or detri-
mental to health, new approaches will be thought to exploit
the differences based on cell surface markers. NP-based
systems could be used to target certain organs affected
by conditions like Alzheimer's, heart disease, and liver
fibrosis.

The development of NPs has a much better outlook for
translating it to the clinic for aging. Reversing aging pathol-
ogies may only require a percentage reduction in senes-
cent cells to achieve therapeutic success, in contrast to
cancer, where it is essential to eradicate all tumor cells.
In general, side effects from anti-aging drugs should be
easier to deal with than those from cancer drugs.
Senolytic and senomorphic medications may rely on

Figure 3: Biological fate of SiNP inside the senescent cells. (a) Senescent cells without SiNP. (b) and (d) SiNP in the cytoplasm of senescent cells.
(c) SiNPs show inside the organelle after 24 h and (e) after 12 days [168].
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repurposing clinically approved drug delivery technologies
to address bioavailability or drug solubility concerns. For
various applications, encapsulation techniques for the well-
known senolytic drug fisetin have already been described
[172]. In recent years, emerging natural compounds from
fruits and vegetables have been discovered to be effective
senolytic agents [173]. These can be used in conjunction with
NPs in food products to take advantage of changing meta-
bolism for obesity and diabetic conditions. Supplementation
could come in the form of liposomal supplements that are
more absorbable by the body [174,175]. Preventive interven-
tions are the best course of action, and they may be as
simple as providing people with nanoformulations that pro-
mote healthy aging.
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