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Abstract: In the present analysis, we have analyzed the
three-dimensional flow of an electromagnetohydrodynamic
copper–aluminum/water hybrid nanofluid flow on a Riga
plate. The heat and mass flux model proposed by Cattaneo-
Christov is deliberated here. Thermal radiation, thermo-
phoretic diffusion, Brownian motion, and chemical reaction
phenomena are considered in analyzing the flow problem.
Thermal convective, mass convective, and velocity slip con-
ditions are adapted in this analysis. Suitable resemblance
variables are implemented for the conversion of the model
equations to dimension-free form. The homotopy analysis
method is adopted to solve the modeled equations. The
obtained results show that the velocity profiles are reduced
with an increasing estimation of the slip factors. Additionally,
the nanoparticles’ concentration and the temperature of the
hybrid nanofluid increase with higher values of thermal and
solutal Biot numbers. The Nusselt number is increased with
an increase in the radiation factor and thermal Biot number.

Keywords: nanofluid, hybrid nanofluid, electromagnetohy-
drodynamic, Riga plate, slip conditions, convective condi-
tions, HAM

Nomenclature

a b, constants
u v w, , velocity components
C

p
specific heat

h
T

convective heat transfer coefficient
h

C
convective mass transfer coefficient

λ
E

thermal relaxation time coefficient
λ

C
mass relaxation time coefficient

∞C ambient concentration
Tw surface temperature
C C,fx fy skin frictions
Q

T

thermal-dependent heat source factor
Q

E

space-dependent heat source factor
Nt thermophoresis parameter
Nb Brownian motion parameter
A modified Hartman number
j
0

current density
( )M x

0
magnetization strength

D
B

Brownian diffusivity
∗

k mean absorption coefficient
E activation energy factor
k thermal conductivity
Pr Prandtl number
Sc Schmidt number

Greek words

ρ density
β

1

thermal Biot number
β

2

solutal Biot number
∗

σ Stefan-Boltzmann constant
λ ratio factor
μ dynamic viscosity
ξ similarity variable
γ

1

thermal relaxation parameter
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γ
2

mass relaxation parameter
α α,

1 2
slip parameters

Sc Schmidt number
Π volume fraction of the nanoparticle
σ electrical conductivity

Subscripts

Al O , Cu
2 3

nanoparticles
hnf hybrid nanofluid
nf nanofluid
f base fluid
∞ free stream

1 Introduction

Nanoparticles have significant applications in the industry
due to their thermal and rheological characteristics in base
fluids, which attracted the attention of many researchers.
This type of fluid is known as nanofluid, which can be
designed by dangling a monotype of nanoparticles in
base fluids. Due to the vast thermal conductivity behavior,
these fluids are used for cooling purposes such as electrical
devices, nuclear reactors, the coolant of heat exchangers,
and the coolant of auto engines, etc. To increase the
thermal conductivity of nanofluids, Choi and Eastman [1]
have studied the nanoparticles in pure fluids. Ayub et al.
[2] observed the upshot of slip-on electro-magnetohydro-
dynamic nanostructures stream upon a Riga plate. Pal and
Mandal [3] considered the behavior of thermodiffusion on
a magnetized stagnation point stream over an extending
sheet with suction. They found that skin friction reduces
with the material factor of the Sisko fluid. Bhatti and
Michaelides [4] considered the Arrhenius activation energy
feathers on the thermo-bio-convection nanoliquid spreads
through a Riga plate. The feathers of variable thermal con-
ductivity and viscosity of a three-dimensional unsteady
Maxwell nanofluid on an extending surface were discussed
by Ahmed et al. [5]. The results reveal that the Nusselt
number shows a decreasing influence because of the unstea-
diness factor. Hussain et al. [6] examined the mass and
thermal transmission feathers of the MHD rotating nano-
fluid flow on an extending surface. Makinde and Aziz [7]
examined the flow of a boundary layer induced in a nano-
liquid on an extending sheet with convective boundary con-
ditions. The decreasing influence is seen in the thermal
profile through the Lewis number. Khan et al. [8] explored

the two-dimensional aligned MHD motion of nanofluids
towards an extending surface with slip condition. From the
analysis, it is explored that the flow sketch decays with the
slip factor.

A hybrid nanofluid is a kind of fluid that consists of a
base fluid such as oil or water, and different types of nano-
particles such as polymers, metals, and ceramics distrib-
uted within it. The accumulation of nanostructures into
base fluids increased the heat, electrical, and mechanical
properties of the fluid. A hybrid nanofluid has many
requests in different areas such as in heat exchangers,
cooling in an electronic system, medicine distribution,
and power plants. Devi and Devi [9] deliberated on the
inspiration of suction on the hydromagnetic hybrid nano-
fluid stream upon a stretching sheet. They concluded that
in a magnetic field, the rate of the heat flux of the nanoli-
quid is more than that of the nanoliquid flow. Yousifi et al.
[10] tested the hybrid nanostructure flow of aqueous cop-
per–titanium nanoparticles upon a wavy cylinder. Swain
et al. [11] exposed variable magnetic field impressions on a
hybrid nanofluid upon a shrinking surface with slip con-
ditions. It is seen that the skin friction falls with a higher
slip factor. Joshi et al. [12] inspected the magnetized hybrid
nanofluid flow with suction influence in a Darcy–Forch-
heimer permeable medium. Ramzan et al. [13] investigated
the magnetized hybrid nanofluid stream on an extending
surface subjected to the influence of velocity and thermal
slip conditions. The results reveal that the improvement in
the Eckert number increases the Nusselt number. Dawar
et al. [14] performed a comparative analysis of the magne-
tized hybrid nanoliquid upon a spreading surface with slip
and convective conditions. The analysis indicated that the
flow profile increased with the increasing stretching para-
meter. Ghadikolaei et al. [15] inspected the magnetized
stream and thermal transmission of the micropolar hybrid
nanofluid upon a surface with a thermal radiative effect.
Gul et al. [16] examined the thermal transmission by an
irreversibility study of the couple stress hybrid nanofluid
upon a spreading sheet. Md Basir et al. [17] considered the
flow of a hybrid nanofluid with the melting thermal trans-
mission and thermal radioactivity effect. They concluded
that the thermal transfer rate increases with a larger
thermal radiation factor.

The Riga surface, also identified as the Riga plate, is a
significant actuator synthesized of magnets and electrodes
that produce Lorentz forces, which rapidly move away
from the Riga surface. Due to several applications at the
industry level, researchers have conducted different ana-
lyses for the flow on a Riga plate. Bhatti and Michaelides
[4] studied the effect of the Arrhenius activation power
on the bioconversion nanofluid stream on a Riga sheet.
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The results reveal that the microorganism’s outline is
decreased with an advanced bioconvection Schmidt
number. Rasool et al. [18] considered the Marangoni-based
Casson model nanofluid flow under the impact of the Lor-
entz force produced by the Riga plate. A significant decrease
was observed in the flow profile by including the Casson
factor. Naseem et al. [19] used the Cattaneo-Christov model
to study the third-grade nanofluidic flow upon a Riga plate.
The investigation revealed that the higher thermal relaxa-
tion factor decreases the temperature profile. Khashiʼie et al.
[20] examined the impression of combined convection and
suction factors at the stagnant point flow of a hybrid nano-
liquid toward a Riga sheet. Alotaibi and Rafique [21] dis-
cussed the mass and thermal transferring phenomena of a
micropolar nanofluid upon a Riga plate. It has been noticed
that the modified Hartman number increases the energy
and mass flux rates. The feathers of nonlinear thermal
radiation of the electromagnetohydrodynamic (EMHD) fluid
flow stream between two Riga surfaces are investigated by
Ahmad et al. [22].

In the transportation of heat, thermal radiation plays a
key role. The influence of these radiations is attractively
dominant in higher thermal practice. A relative study of
thermal transmission of the magnetohydrodynamic Jeffery
fluid on thermal radiation is studied by Rahman et al. [23].
Eid and Nafe [24] analyzed the influence of the generation
of heat and variable thermal conductance on the MHD
fluid flow on a permeable medium. The results indicate
that the temperature is increased with a large heat genera-
tion parameter. Ashraf et al. [25] observed the Darcy–
Forchheimer stream of the nanofluid upon an extending
revolving inclined disk with the inspiration of thermal
radiation. It is noted that with an advanced volume frac-
tion parameter, the fluid temperature is increased. Mandal
[26] investigated the radiated convective thermal transmis-
sion of the micropolar nanofluid upon an elongating sur-
face. Saeed et al. [27] examined the magnetohydrodynamic
Casson hybrid nanofluid stream upon a spreading sheet
on a permeable medium with thermally radiative effects.
The results show that the concentration panels reduce
with the impact of the chemical factor. Dawar et al. [28]
studied the two-dimensional electrical conduction nano-
fluid upon a spreading surface with a strong magnetic
field and thermal radiation using a porous medium.
It is noted that with nonlinear thermal radiation, the
thermal sketch is more highly affected than those of
linear thermal radiation.

Brownian diffusion, which is also known as molecular
diffusion, is the irregular flow of atoms in a fluid by colli-
sions with other particles. This type of phenomenon occurs

in all types of fluids such as gases, liquids, and some solids.
Brownian diffusion is the movement of atoms in a fluid due
to a temperature gradient. The fluids that have tempera-
ture differences will experience a thermophoretic force,
which tends to move them from a higher area of tempera-
ture to a lower area of temperature. Shah et al. [29]
observed the impression of Brownian diffusion and ther-
mophoresis on the suspension of nanoparticles in the
convective Maxwell nanofluid. The results show that the
thermal conductivity of nanoparticles increases with Brow-
nian motion, which significantly increases the motion of
nanoparticles. Kalpana et al. [30] observed the feathers
of the MHD fluid flow in a rough channel with the effect
of Brownian motion and thermophoresis. This reveals that
the increasing magnetic field increased the thermal transfer
rate. Iqbal et al. [31] studied the behavior of Brownian and
thermophoretic diffusions in the MHD Burger nanofluid with
convective boundary conditions on an extending cylinder.

From the above study, we observed that no work based
on 3D EMHD hybrid nanofluid over a Riga plate with the
impacts of thermal-dependent heat source, space-dependent
heat source, velocity slips, and thermal and mass convective
conditions has been conducted. Therefore, the authors have
proposed this analysis to investigate the water-based hybrid
nanofluid containing copper and alumina nanoparticles
past a Riga plate. Additionally, the Cattaneo-Christov
heat and mass flux model along with thermophoresis
and Brownian motion has been implemented in the present
analysis. To convert the set of the governed flow equation
into dimensionless form, suitable similarity variables are
used. The homotopy analysis method (HAM) has been imple-
mented for the current flow solution of the hybrid nanofluid
flow model. The article is composed of several sections.
Section 1 contains the introduction. Section 2 encompasses
the problem formulation, where the PDEs are transformed
into ODEs using similarity variables. Section 3 includes the
HAM solution. Section 4 includes the HAM convergence.
Section 5 includes the result and discussion. Section 6
includes the concluding points. The original research ques-
tions that are predictable to report in the supposed study are
the following: (I) What are the influences of modified
Hartman number, stretching ratio, and slip factor hybrid
nanofluid flow velocities and skin friction? (II) What are
the consequences of thermal relaxation and thermal radia-
tion factors on the hybrid nanofluid flow temperature and
heat transfer rate? (III) What are the consequences of the
mass relaxation time factor, chemical reaction, and activa-
tion energy on the mass concentration profile? (IV) In which
case (nanofluid or hybrid nanofluid) do the velocities and
thermal profiles show maximum behavior?
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2 Problem formulation

Consider the three-dimensional EMHD hybrid nanofluid
flow over a bi-directional Riga plate. The sheet stretches
along x- and y-directions with velocities ( ) =u x axw and

( ) =v x byw where a and b are constants. The surface and
the infinite temperatures of the fluid are denoted byTw and

∞T , and the fluid concentrations are denoted by Cw and ∞C .
The geometrical representation of the considered flow pro-
blem is described in Figure 1. Moreover, the following
assumptions are considered:
• Riga plate
• The exponential and thermal-based heat sources
• Slip and convective conditions
• Cattaneo–Christov heat and mass flux phenomena
• Arrhenius activation and thermal radiation effects
• Thermophoresis diffusion and Brownian motion.

Given the aforementioned assumptions, the primary
governing equations can be written as follows: [32–34].
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2.3 Temperature equation
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2.4 Concentration equation
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In Eqs. (4) and (5), the Cattaneo–Christov heat flux (σ
E
) and

mass flux (σ
C
) equations are defined as

⎜ ⎟ ⎜

⎟ ⎜ ⎟

=

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

∂
∂

+
∂
∂

+
∂
∂

+
∂

∂ ∂

+
∂

∂ ∂
+

∂
∂ ∂

+⎛
⎝

∂
∂

+
∂
∂

+
∂
∂

⎞
⎠
∂
∂

+ ⎛
⎝

∂
∂

+
∂
∂

+
∂
∂

⎞
⎠
∂
∂

+ ⎛
⎝

∂
∂

+
∂
∂

+
∂
∂

⎞
⎠
∂
∂

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

σ

u

T

x

w

T

z

v

T

y

uv

T

x y

wu

T

x z

wv

T

y z

u

u

x

v

u

y

w

u

z

T

x

v

v

y

u

v

x

w

v

z

T

y

v

w

y

u

w

x

w

w

z

T

z

2

2 2

,
E

2

2

2

2

2

2

2

2

2

2

2 2

(6)

⎜ ⎟ ⎜

⎟ ⎜ ⎟

=

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

∂
∂

+
∂
∂

+
∂
∂

+
∂

∂ ∂

+
∂

∂ ∂
+

∂
∂ ∂

+⎛
⎝

∂
∂

+
∂
∂

+
∂
∂

⎞
⎠
∂
∂

+ ⎛
⎝

∂
∂

+
∂
∂

+
∂
∂

⎞
⎠
∂
∂

+ ⎛
⎝

∂
∂

+
∂
∂

+
∂
∂

⎞
⎠
∂
∂

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

σ

u

C

x

w

C

z

v

C

y

uv

C

x y

wu

C

x z

wv

C

y z

u

u

x

v

u

y

w

u

z

C

x

v

v

y

u

v

x

w

v

z

C

y

v

w

y

u

w

x

w

w

z

C

z

2

2 2

.
C

2

2

2

2

2

2

2

2

2

2

2 2

(7)

The radiative heat flux (q
r

) is defined as
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Eq. (6) represents the Cattaneo–Christov heat flux
model, Eq. (7) represents the Cattaneo–Christov mass flux
model, and Eq. (8) represents the thermal radiation heat
flux phenomenon.

2.5 Boundary conditions

The boundary conditions are defined as
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Table 1 demonstrates the thermophysical relations of
the hybrid nanofluid and nanofluid, and Table 2 lists the
experimental values of the thermophysical properties.

Here, Π
1
and Π

2
represent the volume fractions of Cu

and Al2O3 nanoparticles, s
1
represents the Cu nanoparticle,

and s
2
represents the Al2O3 nanoparticle. The density,

dynamic viscosity, specific heat, electrical conductivity,
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and thermal conductivity are denoted by ρ, μ, C˜
p
, σ , and k ,

respectively. The subscripts f , nf , and hnf represent the
fluid, nanofluid, and hybrid nanofluid, respectively.

The similarity variables are defined as
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Table 1: Thermophysical relations of the nanofluid and hybrid nanofluid [35,36]

Properties Nanofluid

Viscosity
( )

=μ

μ

Πnf
1 ‒

f

2.5

Density ( )= +ρ Π ρ Πρ1 ‒
snf f

Heat capacity ( ) ( ) ( ) ( )= +ρC ρC Π Π ρC˜ ˜
1 ‒

˜

sp nf p f p
,

( )= +ρ Π ρ Πρ1 ‒
shnf f

Electrical
conductivity

( )

( ) ( )
= + + +1

σ

σ

Π σ

σ Π σ Π

3 ‒ 1

2 ‒ 1

nf

f

, where =σ
σ

σ

s

f

Thermal
conductivity

( ) ( )( )

( ) ( )
= +

+ +
k

k

k n k Π k k n

k k n k k Π

‒ 1 ‒ ‒ ‒ 1

‒ 1 ‒

s s

s s

nf

f

f f

f f

Properties Hybrid nanofluid

Dynamic viscosity
( )

=μ

μ

Π Πhnf
1 ‒ ‒

f

2 1

2.5

Heat capacity ( ) {[( )( ) ( ) ]( )} ( )= + +ρC Π ρC Π ρC Π Π ρC˜
1 ‒

˜ ˜
1 ‒

˜

s sp hnf 1 p f 1 p 2 2 p
1 2

Density {[( ) ]( )}= + +ρ Π ρ Π ρ Π Π ρ1 ‒ 1 ‒
s shnf

1
f

1 2 2

1 2

Electrical conductivity ( )

( )
=

+
+ +

σ

σ

σ σ σ σ Π

σ σ σ σ Π

2 ‒ 2 ‒

2 ‒

s s

s s

hnf

bf

2
bf bf

2
2

bf
2

bf
2

2

, where
( )

( )
=

+
+ +

σ

σ

σ σ Π σ σ

σ σ Π σ σ

2 ‒ 2 ‒

2 ‒

s s

s s

bf

f

f
1

1 f
1

f
1

1 f
1

Thermal conductivity ( ) ( ) ( )

( ) ( )
=

+
+ +

k

k

k k n n Π k k

k k n Π k k

‒ 1 ‒ ‒ 1 ‒

‒ 1 ‒

s s

s s

hnf

bf

2
bf 2 bf

2

2
bf 2 bf

2

where ( ) ( )( )

( ) ( )
= +

+ +
k

k

k k n n k k Π

k k n k k Π

‒ 1 ‒ ‒ 1 ‒

‒ 1 ‒

s s

s s

bf

f

1 f f 1 1

1 f f 1 1

Figure 1: Geometry of flow problem.
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0 0, 0 0, 0 1 0 ,

0 0 ,

0 0 1 , 0 0 1 ,

0, 0, 0, 0,

f

1

2

hnf

1 2

(15)

where
( )

=A

πM J

aρ u x8
f w

0
0 is the modified Hartman number,

=
∗

∞
∗Rd

σ T

k k

16

3 f

3

is the thermal radiation factor,
( )

=Pr

μC

k

˜

p f

f

is

the Prandtl number,
( )

( )

( )= − ∞
Nb

ρC

ρC

D C C

v

˜

˜

p np

p f

B f

f

is the Brownian

motion factor,
( )

( )

( )= − ∞

∞
Nt

ρC

ρC

D T T

T ν

˜

˜

p np

p f

T f

f

is the thermophoresis

factor,
( )

=Q
T

Q

a ρC˜

0

p f

is the thermal-dependent heat source

factor,
( )

=Q
Q

a ρCE ˜

1

p f

is the space-dependent heat source

factor, =γ λ aE
1

is the thermal relaxation parameter,

=Sc

v

D

f

B

is the Schmidt number, =γ λ aC
2

is the mass relaxa-

tion parameter, =Kr

K

a

r

2

is the chemical reaction para-

meter, = − ∞

∞
δ

T T

T

f is the temperature difference factor,

=
∞

E
E

kT

a is the activation energy, =λ
b

a
is the ratio factor,

=α αa

v

a
1

f and =α αb

v

a
2

f are the velocity slip parameters,

and =β
h

k

v

a
1

T

f

f and =β
h

D

v

a
2

C

B

f are thermal and concentra-

tion Biot numbers.
The physical quantities are defined as

∣

( ) ( )

= =

=
− +

−
= −

−

∂
∂ =

∂
∂ =

∂
∂ =

=

∞

∂
∂ =

∞

C

μ

ρ u

C

μ

ρ v

xk q

k T T

xD

D C C

, ,

Nu , Sh ,

u

z
z

w

v

z
z

w

x

T

z
z

z z

x

C

z
z

fx

hnf

0

f

2
fy

hnf

0

f

2

hnf

0

0

f f

B

0

B f

(16)

where

( ) ( )

( ) ( )⎜ ⎟

= ″ = ″

= −⎛
⎝ + ⎞

⎠
′ = − ′

C

μ

μ

f C

μ

μ

g

k

k

θ ϕ

0 , 0 ,

Nu

Re

Rd 0 ,

Sh

Re

0 .

x

x

x

x

fx

hnf

f

fy

hnf

f

hnf

f

(17)

with ( )=Rex

u x x

v

w

f

and ( )=Rey

v y y

v

w

f

being the local Reynolds
numbers.

Table 2: Thermophysical characteristics of the nanoparticles and pure
fluid [37–39]

Physical properties H O2 Al O2 3 Cu

[ ]ρ kg/m

3 997.1 3,970 8,933

[ ]C˜ JK/gK
p

41,790 765 385

[ ]σ S/m 0.05 1 × 10−7 5.96 × 10−7

[ ]k W/mK 0.613 40 401

2.0 1.5 1.0 0.5 0.0 0.5

100

0

100

200

hf ,g

f''
0
g'
'0 g'' 0

f'' 0

Figure 2: ℏ-curves for velocity profiles ( )f ξ″ and ( )g ξ″ .
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' 0

Figure 3: ℏ-curves for temperature and concentration profiles ( )θ ξ

and ( )ϕ ξ .
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3 HAM solution

HAM is a very effective solution tool for the solution
of nonlinear problems, which was first introduced by
Liao [40] in 1992. The concept of homotopy is taken
from topology to obtain the convergence solution of non-
linear systems. To solve the modeled equations, the initial
assumptions are defined as

( ) ( ) ( ) ( )

( )
( )

( )

=
+

− =
+

−

=
+

=
+

− −

−

−

f ξ

α

e g ξ

λ

α

e

θ ξ

β

k k β

e

ϕ ξ

β

β

e

1

1

1 ,

1

1 ,

/

,

1

.

ξ ξ

ξ

ξ

0

1

0

2

0

1

hnf f
1

0

2

2

(18)

The linear operators are delineated as

( ) ( )

( ) ( )

= ‴ − = ‴ −
= ″ − = ″ −

L ξ f f L ξ g g

L ξ θ θ L ξ ϕ ϕ

, ,

, .

f g

θ ϕ

(19)

With the following properties:

( )

( )

( )

( )

+ + =
+ + =

+ =
+ =

−

−

−

−

L Δ Δ e Δ e

L Δ Δ e Δ e

L Δ e Δ e

L Δ e Δ e

0,

0,

0,

0,

f

ξ ξ

g

ξ ξ

θ

ξ ξ

ϕ

ξ ξ

1 2 3

4 5 6

7 8

9 10

(20)

where −Δ Δ
1 9

are constants. For further insights into the
HAM, one can refer to previous studies [41–43].

4 HAM convergence

In this section, we discuss the convergence of the series
solution of the problem through the auxiliary factor ℏ. The
ℏ-curves for the velocities, thermal, and concentration

profiles are shown in Figures 2 and 3. The area of conver-
gence of ℏf , ℏg , ℏθ, and ℏϕ are − ≤2.15 ℏ 0.25,f − ≤1.5 ℏ 0.25,g

− ≤1.45 ℏ 0.25,θ and − ≤1.75 ℏ 0.28ϕ , respectively.

5 Results and discussion

The section presents the physical discussion of some embedded
factors on the flow velocities, temperature and concentration
profiles, skin friction, and Sherwood and Nusselt numbers. The
results are shown in Figures 4–19 and Tables 4–8.

5.1 Velocity profiles

The increasing value of slip factors is affected by decreasing
both the velocity profiles ( )′f ξ and ( )′g ξ of the hybrid nano-
fluid, as shown in Figures 4 and 5. Physically, with the larger

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

f' 1 4
1 3
1 2
1 1

Figure 4: Variation in the velocity profile ( )f ξ′ via the slip parameter α
1
.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

g' 2 0.4
2 0.3
2 0.2
2 0.1

Figure 5: Variation in the velocity profile ( )g ξ′ via the slip parameter α
2
.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

f' A 4

A 3

A 2

A 1

Figure 6: Variation in the velocity profile ( )f ξ′ via the Hartman
number A.
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slip factor, certain stretching velocities imparted to the
liquid particles result in the retardation of fluid motion in
all directions. The slip factors reduced the momentum
boundary layers along both directions, which resulted in
the decrease of ( )′f ξ and ( )′g ξ . Figure 6 shows the behavior

of the modified Hartman number on the velocity profile.
The velocity profile shows an increasing effect through a
higher modified Hartman number. With a higher modified
Hartman number, the momentum boundary layer thickness
increases which in turn increases the velocity profile ( )′f ξ .

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
g' 0.4

0.3

0.2

0.1

Figure 7: Variation in the velocity profile ( )g ξ′ via the stretching ratio
parameter λ.
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Figure 8: Variation in the temperature profile ( )θ ξ via the thermal heat
source parameter Q

T
.
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QE 0.4

QE 0.3

QE 0.2
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Figure 9: Variation in the temperature profile ( )θ ξ via the exponential
heat source parameter Q

E
.
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Figure 10: Variation in the temperature profile ( )θ ξ via the thermal
relaxation parameter γ

1

.
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Figure 11: Variation in the temperature profile ( )θ ξ via the thermal
radiation parameter Rd.
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Figure 12: Variation in the temperature profile ( )θ ξ via the thermal Biot
number β

1

.
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Figure 7 shows the effect of the ratio factor on ( )′g ξ , which
has an increasing influence on ( )′g ξ . This is because there
is a direct proportionality between the ratio factor λ and
stretching velocity constant b. Due to this reason, an
increasing trend is seen in ( )′g ξ .

5.2 Temperature profiles

Figures 8 and 9 show the outcomes of the thermal and
exponential heat source factors on the thermal profiles.
Since the heat source parameter explains the heat

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

2 4
2 3
2 2
2 1

Figure 13: Variation in the concentration profile ( )ϕ ξ via the mass
relaxation parameter γ

2

.
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Sc 0.7

Sc 0.5

Sc 0.3

Sc 0.1

Figure 14: Variation in the concentration profile ( )ϕ ξ via the Schmidt
number Sc.
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Figure 15: Variation in the concentration profile ( )ϕ ξ via the chemical
reaction parameter Kr.
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Figure 16: Variation in the concentration profile ( )ϕ ξ via the activation
energy parameter E .
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Figure 17: Variation in the concentration profile ( )ϕ ξ via the concen-
tration Biot number β
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Figure 18: Variation in the concentration profile ( )ϕ ξ via the Brownian
motion parameter Nb.
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production in the system, it is predicted that ( )θ ξ will be
increased with the growth of the heat source factors.
Figure 10 shows the reducing influence of the thermal
relaxation factor on the thermal profile. This is because
the material particles require more time to pass heat
to their adjacent sides. Also, the higher thermal relaxation
factor shows a non-conducting behavior, which causes
the decay in the thermal profile. The behavior of Rd

on ( )θ ξ is shown in Figure 11, which presents an
increased behavior in the temperature distribution.
The increase in Rd indicates the increase in the volume
of heat radiated from the sheet and this heat is again
absorbed by the hybrid nanofluid. Thus, the increasing
behavior is observed in ( )θ ξ . Figure 12 shows the effect of
the thermal Biot number on ( )θ ξ . An increasing tendency
is observed in ( )θ ξ . The thermal resistance occurs among
the nanoparticles at the surface of the Riga plate, which
explains the intensification of the thermal scattering at
the Riga surface, which increases the temperature pro-
file ( )θ ξ .

5.3 Concentration profiles

The effect of γ
2

on ( )ϕ ξ is shown in Figure 13. A declining
tendency is seen here. The mass relaxation factor is used as

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Nt 0.7

Nt 0.5

Nt 0.3

Nt 0.1

Figure 19: Variation in the concentration profile ( )ϕ ξ via the thermo-
phoresis parameter Nt.

Table 4: Numerical results of CRex fx

1

2 and CRey fy

1

2 for different values of Π
1

and Π
2
for the nanofluid and hybrid nanofluid

Π1 Π2 ==Π Π1 2

CRex fx

1

2
CRey fy

1

2

0.01 0.496072 0.533125
0.02 0.5111 0.550863
0.03 0.525928 0.567931
0.04 0.540556 0.584308

0.01 0.528494 0.59307
0.02 0.572849 0.670668
0.03 0.614665 0.747638
0.04 0.654523 0.823918

0.01 0.54336 0.610765
0.02 0.602194 0.704113
0.03 0.658681 0.794561
0.04 0.713755 0.881822

Table 6: Numerical results of Re Nux x

‒1

2 for different values of Π
1
and Π

2

for the nanofluid and hybrid nanofluid

Π1 Π2 ==Π Π1 2

Re Nux x

‒1

2

0.01 0.19493
0.02 0.196474
0.03 0.197741
0.04 0.198725

0.01 0.194937
0.02 0.196492
0.03 0.197774
0.04 0.198778

0.01 0.196483
0.02 0.198752
0.03 0.199873
0.04 0.199984

Table 5: Impact of λ, α
1
, and α

2
on CRex fx

1

2 and CRey fy

1

2

λ α1 α2

CRex fx

1

2
CRey fy

1

2

0.2 0.54336 0.71162
0.3 0.56236 0.812475
0.4 0.57126 0.91333

0.2 0.403535 —

0.3 0.291494 —

0.4 0.200147 —

0.2 — 0.522499
0.3 — 0.453119
0.4 — 0.397523

Table 3: Comparison of the present results with previously published
results for different values of λ when all other parameters are zero

λ (( ))f‒ ″ 0 (( ))g‒ ″ 0

Bilal Ashraf
et al. [44]

Present
results

Bilal Ashraf
et al. [44]

Present
results

0.0 1.000000 1.000000 0.000000 0.000000
0.1 1.020260 1.020260 0.066847 0.066847
0.2 1.039495 1.039495 0.148737 0.148737
0.3 1.057955 1.057955 0.243360 0.243360
0.4 1.075788 1.075788 0.349208 0.349208
0.5 1.093095 1.093095 0.465205 0.465205
0.6 1.109946 1.109946 0.590528 0.590528
0.7 1.126397 1.126397 0.724532 0.724532
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an indicator for the increase in time required for mass
diffusion from the area of upper to lower concentration.
The higher γ

2

indicates that a large time is required for
transferring mass from an upper region to a lower region,
which consequently decreases the concentration of the
hybrid nanofluid. Figure 14 shows the effect of the Schmidt
number on ( )ϕ ξ . The Schmidt number and Brownian diffu-
sion coefficient have an inverse relation with each other.
Therefore, with higher Sc, the concentration profile and
the concentration boundary layer thickness decrease. The
increase in Kr decreases the chemical molecular diffu-
sivity, and less diffusion occurs over the mass passage in
the reactive flow, and the concentration profile decreases
with the increase Sc. The increased values of Kr decreases

( )ϕ ξ as shown in Figure 15. The increase in Kr causes the
delay of mass diffusion, which decreases the concentration
boundary layer thickness. Figure 16 shows the effect of the
activation energy factor in decreasing the concentration
profile. A majority of molecules that involve a minor
amount of energy help diffusion of mass with the increase
in E . Thus, the concentration profile increases with the
increase in E values. Figure 17 shows the effect of the con-
centration Biot number on the mass profile. An increase in
the concentration profile via the concentration Biot

number is shown. The larger Biot number increases the
concentration distribution, which causes an increase in the
concentration boundary layer thickness. Figure 18 shows how
the mass concentration behaves for Nb. A decreasing influ-
ence of Nb on ( )ϕ ξ is observed here. Physically with larger
Nb, the random dispersion of nanoparticles increases in the
liquid, causing the increase of kinetic energy of nanoparticles,
which consequently decreases themass concentration profile.
The variation in ( )ϕ ξ via Nt is shown in Figure 19. The con-
centration field increases with higher values ofNt. Physically,
the higher Nt causes the nanoparticles concentration from a
higher concentration region to a lower concentration region,
which increases ( )ϕ ξ .

5.4 Discussion of tables

Table 3 shows the comparison of the present results with
the previously published results for different values of λ

when all other parameters are zero. From this table, we
observe that the results of the present investigation are
closely related to those of published results, which confirm
the validity of the current investigation. Tables 4–8 signify
the physical factors such as slip factor, volume fraction,
thermal and concentration Biot number, Schmidt number,
and thermal radiation parameters that affect the skin fric-
tion, heat transfer rate, and mass transfer rate. Table 4 lists

the results of the volume fraction on CRex

1

2

fx
and CRey

1

2

fy
.

With the increasing volume fraction, the nanoparticles col-
lide with each other and lead to an increase in the fluid
motion. Hence, the momentum boundary layer thickness
decreases, and as a result the drag force at the surface
increases. Table 5 shows the numerical result of skin fric-
tion through the slip and stretching ratio parameters. The
increased slip causes a decrease in the skin friction and the
increasing stretching rate increases the skin friction. It is
known that the shear rate increases with an increase in the
stretching rate, which results in higher skin friction. Table
6 shows the result of the effect of the volume fractions on

−
Re Nux x

1

2 . With increasing volume fractions, the thermal
conductivities of the nanofluids and hybrid nanofluids
increase, which has an increasing impact on the heat
transfer rate. Table 7 displays the behavior of distinct para-

meters such as Rd, γ
1

, and β
1

on
−

Re Nux x

1

2 . An increase in Rd

causes an increase in
−

Re Nux x

1

2 . It is because the resistive
strength of the fluid motion increases with the higher
values of Rd. The thermal Biot number increased the

heat flux. The effects of Sc, γ
2

and β
2

on
−

Re Shx x

1

2 is shown
in Table 8, which indicates that higher values of Sc and γ

2

Table 7: Impact of Rd, γ
1

, and β
1

on Re Nux x

‒1

2

Rd γ
1 β

1
Re Nux x

‒1

2

0.6 0.170308
0.7 0.170911
0.8 0.171515

0.2 0.187027
0.3 0.177572
0.4 0.168117

0.2 0.388611
0.3 0.569451
0.4 0.737999

Table 8: Impact of Sc, γ
2

, and β
2

on Re Shx x

‒1

2

Sc γ
2 β

2
Re Shx x

‒1

2

0.6 0.443151
0.7 0.443147
0.8 0.443144

0.2 0.180788
0.3 0.180754
0.4 0.18072

0.2 0.331942
0.3 0.460122
0.4 0.570216
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decrease
−

Re Shx x

1

2 while higher values of β
2

increase
−

Re Shx x

1

2 .

6 Conclusion

In the present analysis, we reflected the 3D EMHD flow of a
copper–aluminum/water hybrid nanofluid flow on a Riga
plate. The heat and mass flux model proposed by
Cattaneo–Christov is deliberated here. The influences of
thermal radiation, thermophoretic diffusion, Brownian
motion, and chemical reactions are considered in the
energy and concentration equation. The velocity slips,
thermal convective, and mass convective conditions are
adapted in this analysis. Suitable resemblance variables
are implemented for the conversion of modeled equations
to reduce the PDEs into ODEs. During the transformations
of the set of nonlinear PDEs into ODEs, some physical para-
meters appeared, which are discussed physically. Some of
the key points from the present analysis are the following:
1) The results indicate that the slip factors have a

decreasing impact on the velocity and skin friction coef-
ficients, while the increasing modified Hartman number
increases the velocity profile along the primary direction.

2) An increasing behavior is observed in the thermal and
heat transfer profiles through the maximum values of
thermal radiation and thermal Biot number.

3) The concentration profile and mass transfer rate are
increased with an increase in the solutal Biot number.

4) The concentration profile increases with the activation
energy factor, while an opposite effect of the chemical
reaction factor on the concentration profile is observed.

5) The skin friction increases with the estimated values of
the stretching ratio factor.

6) The mass and thermal transfer rates are increased via
higher values of thermal and solutal relaxation factors.
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