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Abstract: COVID-19 was the most devastating pandemic
since the Spanish Flu of 1918, affecting 700 million indivi-
duals and causing 6.8 million fatalities globally. COVID-19
vaccines are currently in the research and development
phase. There is a need to investigate strategies pertaining
to expanding the testing capacity, developing effective
medicines, and creating safer vaccinations for long-lasting
protection. Nanoparticles are frequently employed in a
variety of medicine-oriented applications. The employ-
ment of nanotechnology in the development of novel med-
ications has improved the treatment outcomes for several
illnesses. The discovery of novel nanomaterials and the
elucidation of their physicochemical features in connection
to their cellular destiny and the relevant biological activities
have received considerable attention. Hence, this review

gives an updated analysis and data on clinical trials that
are currently on-going for the development of drugs and
the existing ones that are in use to combat the COVID-19
virus. This article also discusses the clinical management
of COVID-19 at this juncture and highlights the influence
of nanotechnology on the improvement of conventional
COVID-19 treatments in the way of diagnosis and integrated
therapy with pharmacology and advanced science. This
review also brings to light on the limitations of nanotechno-
logical strategies in combating viral diseases.
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1 Introduction

1.1 Origin, epidemiology, and global current
status of COVID-19

One of the most devastating pandemics since the flu of 1918
[1,2], with its local center in Wuhan, China, was caused by
coronavirus in 2019 and designated COVID-19 [3,4]. As per
the World Health Organisation’s (WHO) declaration on
February 3, 2023, the disease was responsible for causing
illnesses in approximately 700 million individuals and
leading to 6.8 million fatalities globally. In December of
2019, a cluster of pneumonia cases of mysterious origin
was observed in Wuhan, China. Later on January 12,
2020, the sequencing of a novel coronavirus known as
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) found from clustered cases of respiratory contagion
was announced and publicized as the etiological agent for an
unknown Pneumonia [5]. Due to the lack of rigorous epide-
miological investigations, evaluating the risk of this occur-
rence was apprehensive with great uncertainty, despite a
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common link to a wet market in Wuhan’s Huanan Seafood
Wholesale Market was reported [6]. As a result of the
increasing number of fatalities, irrespective of age and the
uncertainty encompassing the antidote discovery, the WHO
labeled the COVID-19 outbreak a public health emergency of
worldwide alarm on January 30, 2020, and a pandemic on
March 11, 2020 [7].

The high pathogenicity of human coronavirus (HCoV)
has put forward this specific respiratory infection causing
pathogen to the spotlight of research community[8]. Per-
taining to this concern, coronaviruses are positive-sense,
single-stranded, enclosed RNA viruses of 60–140 nm in dia-
meter [9]. Among the six human betacoronaviruses species,
four species including HCoV-229E, OC43, NL63, and HKU1 can
cause upper respiratory tract infections like the common cold
similar to the symptoms caused by rhinoviruses [10]. Other
two coronaviruses species include severe acute respiratory
syndrome coronavirus (SARS-CoV) and middle east respira-
tory syndrome coronavirus (MERS-CoV), with fatality rates
9.6 and 35%, respectively [11]. Among the outbreaks of these
two viruses, SARS-CoV outbreak of 2002–2004 was believed to
have its primary host as bat, mutating to infect the transitional
host Civet cats, and finally spreading to humans [12]. The
pathogenesis was better understood through host-pathogen
interaction, in which case the virus was found to infect and
cause a range of respiratory ailments eventually leading to
death [13]. Originating in the primary reservoir (horse shoe
bats), the virus typically transmitted to humans. Furthermore,
it did spread among humans, through infected body fluids
including respiratory droplets (saliva, breathing, coughing,
sneezing, and talking) [14–16].

Benign coronavirus has been reported to be harmless,
being the reason for common cold alone. But the species
that mutated and transitioned from their natural reser-
voirs have been declared virulent, inflicting excessive
infection and mortality in the affected individuals [17].
Despite the majority of cases being asymptomatic or self-
recovering, the disease’s clinical spectrum includes chronic
pneumonia with acute respiratory distress syndrome (ARDS),
a deadly illness which demands mechanical ventilation and
treatmentwith critical care [18]. This has caused a severe impact
on the human population with severe mortality around the
globe. The lack of specific regimen for this disease has provoked
or steered the research andmedical community toward a neces-
sity in identifying solutions that can be taken to stay healthy
[18,19]. Real-time mapping has demonstrated that differential
transmission prototypes and infectivity are related to alteration
in lineages, clades, and strains of COVID-19 virus. This is despite
the fact that the community spread studies of SARS-COV-2
exposed implausible transmission patterns between places
which are not even connected geographically [13,20].

According to theWHO’sWeekly Epidemiological Update
on the survey of COVID-19 pathogenicity, along with other
relevant infectious disease information, over 4.8 million
fresh cases and 39,000 deaths were announced globally
over the duration of January and February months of the
year 2023. This has demonstrated a reduction in the number
of reported new cases and deaths (at 76% of new cases and
66% of deaths, respectively) compared to the preceding 28
days. At the end of February 2023, a total of approximately
758 million confirmed infections and 6.8 million fatalities
had been documented throughout the world [21]. A glimpse
at the global status of SARS-COV-2 infection among the
affected countries governed by WHO, as on March 22,
2023, Europe had 274,391,717 confirmed cases, 282,646 new
cases, and 2,203,052 fatalities. Western Pacific was reported
to be affected with statistics showing 201,913,013 confirmed
cases, 165,547 new cases, and 408,070 fatalities. Whereas, in
Americas, 191,185,511 confirmed cases, 189,265 new cases,
and 2,939,388 fatalities have been reported. In this regard,
Southeast Asia reported 60,784,561 confirmed cases, 8,336
new cases, and 803,971 fatalities. As the continent considered
to be least affected, Africa did report 9,509,869 confirmed
cases, 114 new cases, and 175,315 fatalities. The worst
affected countries include the United States, China, and
India as per the number of cases affected. In the United
States alone, 103,436,829 confirmed cases and 1,127,152
deaths were reported on September 21, 2023. As on the
same date in China, 99,309,232 confirmed cases and 121,679
fatalities were reported, whereas 44,998,162 confirmed cases
and 532,030 deaths were reported in India. As per the
number of deaths, Brazil ranks the second with 704,659
deaths after the United States, whereas India ranks the third
[22].

Even though personal cleanliness, maintaining social
distance, regular hand washing, and avoiding contact with
infected individuals are recommended practices, there are
evidences suggesting that adequate food, nutrition, and
other lifestyle factors increase the immune strength and
minimize susceptibility to infectious illnesses. Hence, this
review provides detailed insights into the medical manage-
ment of COVID-19 and the role of nanotechnology in
improving conventional treatment modalities for the dis-
ease. It also emphasizes the importance of understanding
the underlying health conditions (comorbidities) in the con-
text of COVID-19 and the role of biomarkers in disease man-
agement. Additionally, it discusses the extensive research
and clinical trials aimed at finding effective treatments
for COVID-19, which range from antiviral medications to
therapies that modulate the immune system, as well as the
development of vaccines. Moreover, updated information
of currently employed vaccines has been listed. Moreover,
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the review highlights the diagnostic advancements made pos-
sible by nanotechnology in the fight against COVID-19. These
innovations include NanoBeads, Protein Aptamer Sensors,
and magnetic levitation, which can enhance the accuracy
and efficiency of COVID-19 diagnosis. It also explores thera-
peutic approaches that employ nanotechnology-based
drugs to treat COVID-19.

1.2 Comorbid conditions and their relation
with COVID-19

Comorbidity is defined as the epidemiologic phenomenon
of a population or an individual exhibiting the simulta-
neous occurrence of two or more disorders or conditions
[23]. Understanding the co-occurrence is critical and benefi-
cial in developing effective treatment protocols. The COVID-19
pathogen, the SARS-CoV-2, has rapidly expanded and infected
over 180 countries [3]. As the novel coronavirus continually
develops, it is only possible to hypothesize as to who will
become infected. COVID-19 is a relatively newer and under-
studied disease, limiting the availability of such data on infec-
tion symptoms [24]. Studies have demonstrated that the
general symptoms vary from acute common cold [25] to
chronic lung infections such as bronchitis, acute respiratory
syndrome, and pneumonia, as well as various organ failures,
systemic dysfunctions, and eventual death [26,27].

According to the current statistics and clinical expertise,
irrespective of age, individuals with substantial pre-existing
clinical disorders are at a significant risk of contracting
COVID-19, particularly those obtaining long-term medical
treatment [3]. However, a meta-analysis of middle-aged
and elderly COVID-infected individuals revealed that the
geriatric population is more susceptible and pose a signifi-
cant death rate. This could be attributed to the alterations in
the structure and muscular atrophy of the lungs, which can
result in changes and a reduction in physiological processes
such as lung reserve, airway clearance, and immune barrier
functions [28].

In a retrospective review of 1590 laboratory-confirmed
Chinese hospitalized patients, 25% were found to have at
least one comorbid condition. This statistical information
was derived by evaluating the number of documented co-
morbidities in connection to composite outcomes such as
Intensive Care Units, ventilation, and mortality. Included
among these conditions were hypertension and diabetes.
The most prevalent comorbidity found was that of hyper-
tension with a percentage of around 17. Additionally,
smoking, diabetes, and cancer were found to increase the
probability toward a life-threatening stage. The number of

comorbidities was found to be directly proportional in
reaching the composite endpoints [29]. In yet another
research done in India on COVID patients, the same pre-
valence of hypertension was seen, followed by diabetes,
bronchial asthma, renal, and heart illnesses, in the order
as so mentioned. Additionally, it was noticed that males
were more prone in comparison to females in acquiring
symptomatology complexes. Males have a higher preva-
lence of hypertension than females, which could explain
why this pattern of death happened across gender [30].

Hypertension, obesity, and diabetes mellitus were the
most frequent comorbidities among COVID-19 patients with
fatal endpoints, according to another meta-analysis study on
the connection between comorbidities and fatal endpoints
among 14 countries around the globe. Even though cancer,
chronic renal disease, and chronic heart failure were inde-
pendently related to death in these individuals, obesity was
not reported as a factor in the associated mortality [31].
However, the precise processes through which pre-existing
diseases influence the vulnerability of the illness and its
severity are unknown. Inflammatory and hormonal path-
ways, and also social variables such as living in a populated
or regimented environment, are hypothesized to have a
role [32].

2 Combating SARS-COV-2

2.1 Biomarkers of COVID-19

A biomarker is a trait which is used to track changes in
regular or dysfunctional biological processes, or in phar-
macological responses to a treatment which provide objec-
tive values during the progression or course of a disease
[33,34]. Depending on the severity of a disorder, the symp-
toms or clinical presentation can provide clinicians with a
method for precise categorizing of patients as mild, severe,
and being critical, thereby predicting the outcome and
mortality on the basis of spectrum of the ailment. This
can enable early treatment [35]. In addition, this can assist
in identification of populations at high risk, justifying ther-
apeutics, assessing treatment response, developing criteria
for hospital ICU admission, and discharge [36].

Most of these biomarkers fall into fourmain groups: immu-
nological and inflammatory host immune response indicators,
hematological markers/coagulation factors, organ damage
markers (cardiac enzymes, liver markers, and renal function
markers), and general response markers (electrolytes). The
commonly employed biomarkers for COVID-19 with its identi-
fication levels in human body are listed in Table 1.
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2.2 Clinical management of COVID-19

In the months following the emergence of the new corona-
virus, pharmaceutical corporations and researchers of all
sizes endeavoured to combat the pandemic. This comprised

of innovative regimens and medicaments to treat COVID-19,
such as vaccines based on existing antiviral medications,
expediting development of new drug, plasma treatment,
and cell-based and monoclonal antibody convalescent ther-
apeutics [63]. During the epidemic, the FDA’s programs

Table 1: List of biomarkers for screening COVID-19

Biochemical component Biomarkers Changes in COVID-19
patients

Ref.

Blood
Hematological Hemoglobin Reduced [37]

Ferritin Elevated [38]
Lymphocytes Reduced [37]
Neutrophil: RETN, LCN2, HGF, IL-8, G-CSF Elevated [39]
CD4+ and CD8+ Reduced [40,41]
Neutrophil–lymphocyte ratio Elevated [42]
Platelets Reduced [37]
B cells, natural killer cells Reduced [37]
Eosinophil-derived neurotoxin Reduced [43]

Coagulation D-dimer levels Elevated [44]
Fibrinogen Elevated [45]
Fibrin degradation products Elevated [46]
Prothrombin time Elevated [44]
Activated partial thromboplastin time Elevated [44]

Inflammatory markers
Inflammation Cytokines: IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18, IL-33, TNF-α, and TGF-β Elevated [33]

Chemokines: CCL2, CCL3, CCL4, CXCL6, CCL7, CCL8, CCL11, CCL17, CCL20, CCL24,
CCL27, and CXCL11 [47]

Elevated [48]

Growth factors Reduced [49]
C reactive protein Elevated [33]
Procalcitonin Elevated [37]
Lactate dehydrogenase Elevated [33]

Immunity markers
Antigen Spike protein Elevated [50]

Nucleocapsid protein Elevated [51]
Receptor-binding protein Elevated [37]

Antibody IgG Elevated [52,53]
IgM
SigA

Receptor ACE2 Elevated [54]
IL2R Elevated [55]

Organs failure markers
Cardiac Cardiac troponin brain natriuretic peptide (BNP)/NT-proBNP myoglobin Elevated [56]
Hepatic Aspartate aminotransferase Elevated [57]

Alanine aminotransferase Elevated [57]
Bilirubin Elevated [58]
Albumin Elevated [59]
Gamma-glutamyl transpeptidase Elevated [60]

Muscle Creatine-kinase-myocardial band Myoglobin Elevated [61]
Renal Serum creatinine Elevated [59]

Urea Elevated
Cystatin C Elevated [50]

General response
Electrolytes Sodium Reduced Na [62]

Potassium Reduced K
Calcium Reduced Ca

4  Beibei Zhang et al.



enabling doctor’s access to experimental treatments were
indispensable. The expanded access and emergency use
authorization (EUA) initiatives enabled quick implementa-
tion of prospective experimental medicines and investiga-
tional drugs with growing evidence [64].

However, considering the current global health emer-
gency, the absence of verified clinical data on COVID-19
therapeutic agents, as well as the time, expense, and high
attrition rate associated with drug development indicate
that it is high time to identify a promising medicine. Due
to the fact that drug research is costly, time-consuming, and
has a high failure rate, time remains critical and of ultimate
importance. Significant interest in improvising the existing
medications and accelerating the production of vaccines can
enable the quick identification of therapeutic candidates.
More than 30 categories of substances, coming under con-
ventional pharmaceuticals, environmental and traditional
remedies, have been deemed via research to date as being
potentially effective against COVID-19 where several of these
agents have undergone rapid clinical testing and have
proven tentative effectiveness against COVID-19 [65]. As of
February 2023, there were 8,921 on-going clinical trials, 714
mapped medicines, 3,329 finished studies, and 199 com-
pleted vaccination studies [66].

As the introduction of mutant SARS-CoV-2 strains ren-
dered certain vaccinations less-effective and also limited
the worldwide availability of COVID-19 vaccines, it sup-
ported the rationale for exuberating efforts to discover
potential therapeutic approaches; this includes antivirals
such as remdesivir, chloroquine (CQ), Kaletra, favipiravir,
and hydroxychloroquine (HCQ) along with immunosuppres-
sive drugs such as tocilizumab, and tyrosine kinase inhibi-
tors such as mastinib. These drugs have been used to treat
hepatitis C and malaria and were used as monoclonal anti-
bodies for rheumatoid arthritis, HIV treatment, and kinase
inhibitors for mast cell tumors in animals [67,68].

2.2.1 Antivirals

Remdesivir, a monophosphate prodrug of an adenosine
analogue, has been initially used to counter the 2014
Ebola epidemic and was suggested as a possible COVID-19
antiviral drug (EC50 = 0.77 M) [69,70]. It possessed a strong
selectivity for viral polymerases, reducing the likelihood
that it would induce toxicity in humans; a significant obstacle
which can induce genetic resistance (obstructing mutation
generation) and a substantial half-life. Even though preli-
minary findings from a short observational trial revealed
that 68% of the hospitalized patients experienced clinical
improvement, the small number of case studies, and deficit

of control group restrict the applicability of remdesivir
administration. The US National Institutes of Health on April
29 reported 31% quicker recovery of disease-affected indivi-
duals administered with remdesivir than other infected
people. Additionally, the governments of the United States,
Japan, Australia, Singapore, and Europe have approved it as
the novel therapeutic practice for COVID-19 patient’s care-
taking. In a recent review of the Phase 3 trial as well as a
prospective observational analysis of chronic COVID-19-
infected individuals, remdesivir indicated a 62% decrease
in fatality probability as well as an increase in medical
rehabilitation. In Phase-1 investigation study, the medicine
was examined as an inhaled, nebulized version on outpati-
ents [71,72].

The anti-HCV medicine sofosbuvir (SFV) is another
most popularly employed antiviral drug which has shown
to be effective against the novel coronavirus SARS-CoV-2.
Approximately 12 clinical trials are currently recruiting
and evaluating the efficacy of this medication in combina-
tion therapy. Six total investigations, on Phases 2, 3, and 4,
have been completed. SFV originally inhibits the HCV NS5B
protein, which is homological to NSP12 RNA polymerases of
SARS-CoV-2. NSPs 1–14 are structural proteins that aid in
RNA binding, replication, protein phosphorylation, and
inhibition of the virus’ interferon pathway. Hence, anti-
virals can serve as prospective pharmacological therapeu-
tics for COVID-19 [73]. A Phase 2 multicenter prospective
trial for evaluating the effectiveness of coupled SFV/dacla-
tasvir (400mg/60 mg) in the therapy of COVID-19 subjects
with pneumonia is now complete. The primary endpoint
shows a reduction of staying admitted in hospital with
faster negative PCR [74]. Nevertheless, SFV/ledipasvir,
which has passed Phase 4, has been found to be less effi-
cacious in chronic COVID-19 individuals than in those
with mild COVID-19 [75].

Similarly, ribavarin, a guanosine analog first used to
treat hemorrhagic fever and respiratory syncytial virus,
inhibited viral RNA polymerase, and messenger RNA
(mRNA) capping. However, due to its lack of in vitro
activity against SARS, it was discovered to be substantially
less effective against SARS-CoV-2 compared to other anti-
virals. Nevertheless, it has been connected to the beneficial
effects in managing of hemolytic anemia, when supplied to
co-morbid patients who are reported to suffer from side
effects related to heart disease and infertility [76].

2.2.2 Protein inhibitors

Lopinavir/ritonavir (LPV/r) was the initially coupled protease
inhibitors employed for combating HIV. As lopinavir’s oral
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bioavailability is poor (it is rapidly metabolized by the
Cytochrome P450 enzyme system), ritonavir (a CYP3A4 inhi-
bitor) is administered to increase its plasma half-life. In vitro,
it was shown to be much less powerful than remdesivir and
CQ. In a randomized, open-label trial with 199 COVID-19
patients, LPV/r failed to lower both overall mortality and viral
load. This raises the question of whether LPV/r may have a
function in the treatment of COVID-19, resulting in the drug’s
removal from the treatment arm due to its inability to demon-
strate a beneficial effect on clinical recovery and mortality
reduction [77,78]

Another medication initially used during the onset of
epidemic to treat flu-like symptoms in COVID-19 patients
was oseltamivir. It is a neuraminidase inhibitor and is
commonly administered to treat influenza. However, due
to the absence of neuraminidase in coronaviruses, oselta-
mivir did not show any in vitro action against SARS-CoV-2
[79] and was found to be a failure through a retrospective
and in vitro assessment [29].

Another effective protease inhibitor for the treatment
of SARS-CoV-2 infection with a 60% survival rate is camostat
mesylate. Inhibiting the host cell serine protease TMPRSS2,
which in turn prepares the viral S protein for entrance into
human cells, was the main application of this medication for
chronic pancreatitis. In vitro testing has revealed viral
blockage, and eight COVID-19 studies are now being con-
ducted across the globe [79].

2.2.3 Anti-parasitic drugs

The drugs HCQ and CQ are another set of drugs, believed to
be antimalarial drugs with antiviral activity, as they demon-
strated potent in vitro activity against SARS-CoV-2 with an
EC50 of 6.14 and 23.90M, respectively. However, these drugs
were also not devoid of side effects, as they have impaired
fatality and adverse effects in the patients who have been
administered with these drugs. Furthermore, the viral load
was not found to have decreased, prompting the authors to
rule out the use of CQ at high doses [65,80,81].

Ivermectin is yet another medicine used to treat SARS-
CoV-2. This anti-parasitic medication is suggested for the
treatment of intestinal strongyloidiasis, onchocerciasis, lym-
phatic filariasis, scabies, pediculosis, rosacea, and other
neglected tropical illnesses [82]. Despite the fact that several
meta-analyses have shown that ivermectin reduces COVID-
19 symptoms and the associated death, the trials were not
reliable. As the efficacy of therapy remains ambiguous, with
both positive and negative findings, theWHO recommended
onMarch 31, 2021, that ivermectin can be used exclusively in
clinical studies. The manufacturer (Merck) then made a

statement on the resistance of the coronavirus to this anti-
infective treatment. In spite of this, ivermectin is still com-
monly utilized in several South American nations [83].

2.2.4 Monoclonal antibodies

In addition to these medications, supplementary pharma-
cological interventions, including immunomodulatory thera-
pies involving monoclonal antibodies, are being utilized for
the successful treatment of SARS-CoV-2. Tocilizumab and sar-
ilumab are common examples among these, which are cur-
rently available. Tocilizumab is a recombinant monoclonal
antibody that blocks IL-6 receptors and is used to treat immu-
nological response in patients with cytokine-release diseases,
which are linked to IL-6 [84]. People with thrombocytopenia
and neutropenia are particularly sensitive to the possible side
effects of this medicine, including hepatotoxicity and gastro-
intestinal perforation [85]. At present, there are currently 62
registered studies examining the safety and efficacy of tocili-
zumab in COVID-19 patients [86].

Despite evidence from recent studies demonstrating
tocilizumab’s efficacy on the improved survival rate and
clinical markers in cytokine release syndrome patients, a
retrospective cohort study revealed that tocilizumab did
not demonstrate a statistically significant advantage over
standard care in terms of clinical progression or mortality
[87]. Sarilumab, as an IL-6 receptor-inhibiting monoclonal
antibody, which was originally used to treat rheumatoid
arthritis [88,89], is presently being evaluated in more than
15 registered clinical studies against SARS-CoV-2. Neverthe-
less, a recent Phase 3 research revealed that the drug is
ineffective for COVID-19 patients requiring ventilation,
since it did not reach the study’s goals [63]. In addition,
FX-1 is a chimeric monoclonal IgG4 antibody that binds
to the soluble form of human complement protein-C5a
with great affinity. Currently, the intravenous administra-
tion of IFX-1 (vilobelimab) to adults with severe COVID-19 is
in effect. Its primary functions are the inhibition of ana-
phylatoxin and C5a. C5a inhibition with IFX-1 appeared to
be safe for chronic COVID-19 suspects in a phase two study.
Apart from this, the fact that the secondary outcome data
favoring IFX-1 are preliminary since the study was not
randomized on these endpoints, they encourage the inves-
tigation of inhibitory activity of IFx-1 in a 28-day mortality
checkpoint on Phase 3 trials [90].

However, hospitalized patients with COVID-19 who
were given lopinavir and interferon regimens alongside
HCQ in a big multi-center WHO Soliditary study recently
saw their death rates remain unchanged. The limited bene-
fits of remdesivir and the need for injectable administration
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make it all the more appealing to find new or complemen-
tary medication that can bring about comparable or even
higher therapeutic advantage and could be provided out-
doors of a hospital environment (i.e., orally) [91].

2.2.5 Anticancer drugs

The oral phosphoinositide 3-kinase (PI3 kinase) inhibitor
duvelisib (anti- cancer drug) is used for the treatment of
chronic lymphocytic leukemia, small lymphocytic lymphoma,
and follicular lymphoma [92,93]. In patients experiencing
these diseases, duvelisib has been found to dramatically
downregulate the expression of inflammatory cytokines
and chemokines like G-CSF, GM-CSF, macrophage inflamma-
tory protein-1 α and β, according to Phase II and III trials.
According to the researchers, duvelisib was found to reduce
COVID-19-associated pneumonia and ARDS by polarizing the
macrophages to M1 phenotype, decreasing cytokine signal-
ling/production, and eliminating viral persistence [94]. In
this connection, PI3K enzymes were originally found to reg-
ulate the cell cycle, apoptosis, DNA repair, angiogenesis,
senescence, and cell metabolism [95]. Therefore, it was evi-
dent that duvelisib is applicable to COVID-19 patients due to
its immune system-associated activity but not of its anticancer
efficacy. The effectiveness of duvelisib as monotherapeutic
agent in COVID-19 patients has been evaluated, and the trial
is now complete (NCT04372602) [96].

Zanubrutinib and opaganib are the other two anti-
cancer drugs used for treating COVID-19 [97,98], where
the former is a Bruton tyrosin kinase inhibitor (BTK)
used to treat mantle cell lymphoma and the latter is a
selective sphingosine kinase-2 (SK2) inhibitor used to treat
advanced cholangiocarcinoma and metastatic castration-
resistant prostate cancer [99]. Opaganib is a SK2 inhibitor
for advanced cholangiocarcinoma and metastatic castra-
tion-resistant prostate cancer [96]. Zanubrutinib was initi-
ally developed as a BTK inhibitor to treat mantle cell
lymphoma [100]. As of March 2022, a Phase II research
(NCT04382586) assessing the effectiveness of zanubrutinib
in enhancing the survival rate by avoiding respiratory
failure in hospitalized patients with COVID-19 and pul-
monary distress has concluded (https://clinicaltrials.gov/ct2/
show/NCT04382586) [101]. Acalabrutinib (NCT04497948), a
second-generation BTK inhibitor, has had its phase II trials
discontinued because the patients did not get fulfilled of
their key effectiveness goals [102]. However, opaganib has
been discovered to suppress viral replication, diminish the
hyperimmune inflammatory response, and lessenARDS-related
thrombosis. By suppressing viral replication in human lung
tissue, opaganib has demonstrated strong antiviral effectiveness

against SARS-CoV-2 in preclinical studies in vivo [96]. A Phase 2
clinical research has been completed to evaluate the
adverse effects and efficacy of opaganib in COVID-19
patients (NCT04414618) [103].

2.2.6 Corticosteroids

Methylprednisolone and dexamethasone are the two most
often used corticosteroids as anti-covid medications [104].
For methylprednisolone, as of November 2023, among
the 65 ongoing clinical trials against COVID-19, 35 have
been completed and 6 are under recruitment [105].
Methylprednisolone is a corticosteroid with significant
anti-inflammatory characteristics that is used for the
treatment of arthritis [106] and pneumonia [107]. Post-
COVID-19 syndrome patients receiving 20mg/5mg of predni-
solone are now being enrolled in a Phase III clinical research
examining the feasibility of randomized controlled trial in
primary care and the efficacy of therapy with prednisolone
and/or vitamin B1/6/12. The research also included neuro-
tropic vitamins, including vitamins B1, B6, and B12, to
determine the effectiveness of the combination therapy
(NCT05638633). This trial is still under recruitment and
not yet completed.

2.2.7 Vaccines

Added to conventional drugs, COVID-19 regimens also include
vaccines and miscellaneous drugs. Throughout the evolution
of vaccinations, the production of COVID-19 vaccines has pro-
gressed at an unprecedented rate. Presently, 199 vaccine can-
didates are in preclinical development and 180 are in clinical
development [108].

As of November 2023, a total of 50 vaccines have been
approved, and 12 vaccines have been granted emergency
use listing (EUL) status by the WHO, which falls under the
category of whole virus vaccines and component viral vac-
cines [109]. The EUL-approved 11 COVID-19 vaccines majorly
fall under the sub-divisions of being inactivated, protein
subunit, RNA, and non-replicating viral vector-based ones.
Yet, the authorized vaccination list also includes DNA-based
and virus-like particle-based vaccines [110]. A list of
approved vaccines for the three most severely affected
countries, including China, the United States, and India,
along with their respective dosage schedules, is provided
in Table 2.

U.S. Food and Drug Administration agency has approved
five COVID-19 vaccines for emergency use. These include
Pfizer-BioNTech COVID-19 Vaccines, Moderna COVID-19
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Vaccines, Janssen COVID-19 Vaccine, the Novavax COVID-19
Vaccine, and Spikevax COVID-19 Vaccine. The first COVID-19 vac-
cine, licensed by the FDA, is Pfizer-BioNTech COVID-19 Vaccine,
which was approved on August 2021 and marketed as comir-
naty for individuals aged 16 and older [111]. The vaccine is
also still available under EUA, including for individuals aged
12–15 and the administration of a third dose to certain immu-
nocompromised patients. The FDA has recently revised the
EUAs for the upgraded (bivalent) Moderna and Pfizer-BioN-
Tech COVID-19 vaccines to permit their use in infants as young
as 6 months and also authorized the Novavax COVID-19 vac-
cine, as adjuvants, as the first booster dose to adults of 18 years
of age and older for whom an FDA-authorized mRNA bivalent
COVID-19 booster vaccine is not accessible or clinically appro-
priate [112–114]. List of FDA-approved vaccines and key clin-
ical trials undergoing are listed in Table 3.

3 Diagnosing with nanotechnology

Nanotechnology is gaining ground against SARS-COV-2 through
infection prevention, diagnosis, and therapy [122]. It is a revo-
lutionary drug delivery technique that allows for the identifi-
cation and neutralization of the pathogen utilizing imperative
nanoparticles (NPs), which has several favourable effects such
as enhancing the treatment’s effectiveness, early diagnosis, and
improving safety [123,124]. Diagnosis and neutralization of the
COVID-19 virus by nanomedicine is essential, given that SARS-
COV-2 is transmitted via minute droplets that are expelled
during respiration, speaking, sneezing, and coughing. Conse-
quently, these NPs can be engineered to combat causative

microorganisms and eliminate viruses prior to their host entry
[125]. The preponderance of viral RNA testing techniques are
centered on the reverse transcription polymerase chain reac-
tion (RT-PCR) due to its simplicity, high sensitivity, and high
accuracy as a result of the exponential increase in RNA pro-
duced during the process [126]. Even though RT-PCR methods
are widely recognized as conventional techniques for corona-
virus detection, there are constraints that must be addressed,
such as low extraction efficiency, long drawn out procedures,
and contamination-induced false positives [127]. Since vac-
cine research for SARS shares major similarities with cancer
research [128], neither the therapeutic innovations nor the
problems associated with SARS-COV-2 infections should be
considered separately [129]. Thus, it is crucial to re-evaluate
the innovative application of nanotechnology in combating
COVID-19.

Metal NPs, magnetic NPs (MNPs), and quantum dots
(QDs) have been predominantly used to diagnose corona-
viruses. Other NPs, like aptamers, silica NPs (SiNPs), and
polymeric NPs, have also been studied for virus detection
[130] (Figure 1).

3.1 Metal NPs

Unique optical and electrical features (localized surface
plasmon resonance [LSPR]) of metals, particularly noble
metals such as gold, silver, and copper, have been consid-
ered in the development of metal NPs [131] to detect viral cells
in biosensing applications including disease marker detec-
tion, photocousting imaging, and near-infrared thermal abla-
tion [132]. This is due to the LSPR property for tunable

Table 3: Landscape of FDA approved COVID-19 drugs/vaccines

Drug/vaccine Type Status Year Clinical trials

Pfizer-BioNTech mRNA vaccine FDA approved (First
authorized COVID-19
vaccine)

2020 Multiple trials [115]

Moderna mRNA vaccine FDA approved 2020 Multiple trials [115]
Johnson & Johnson Viral vector vaccine FDA approved 2021 Multiple trials [115]
AstraZeneca Viral vector vaccine FDA approved 2020 Multiple trials [115]
Remdesivir Antiviral FDA approved 2020 Multiple trials, including

ACTT trials [116]
Dexamethasone Corticosteroid FDA approved 2020 RECOVERY trial [117]
Regeneron’s (REGN-
COV-2)

Monoclonal antibody FDA approved 2020 Multiple trials [115]

Sotrovimab Monoclonal antibody Phase III (NCT04545060) 2020 COMET-ICE trial and
others [118]

Molnupiravir Antiviral (Phase III) 2021 MOVe-OUT [119]
Paxlovid (Pfizer) Antiviral (Phase III) 2021 EPIC-HR [120]
Novavax Protein subunit vaccine (Phase III) 2021 PREVENT-19 [121]

Combating SARS-Cov-2 using nanomedicine  9



electromangnetic light absorption and scattering wavelength
in the visible region [133], in which the change in the LSPR
extinction maxima of metal NPs is dependent directly on the
refractive index of encircling media and the range of NP
aggregation, both of which are crucial for NPs to be used in
biological applications [134].

Gold NPs (AuNPs) are the most common NPs used in
coronavirus diagnosis or detection due to their unique
optical properties, stability, and biocompatible properties
[135,136]. Kim et al. created and utilized a simple colori-
metric hybridization technique to detect SARS-CoV, which
was based on the synthesis of dsDNA from viral ssRNA by
the interaction of viral ssRNA with citrate-coated AuNPs,
therefore stabilizing the particle [137]. AuNPs with modi-
fied surface properties by functionalizing with biomole-
cules are used for effective detection of COVID-19 variants
without cross reactivity including MERS-CoV, HCoV-HKU1,
HCoV-HKU4, SARS-CoV, HCoV-229E, and HCoV-OC43. AuNPs
conjugated with streptavidin were used for an RT-LAMP
(Reverse Transcriptase Loop-mediated isothermal amplifi-
cation) assay which in turn was then combined with a
vertical flow visualization strip (RT-LAMPVF), for detecting
the nucleic acid of COVID-19 variant (MERS-COV). Later,
the viral RNA made by RT LAMP was labeled with biotin
and fluorescein isothiocyanate (FITC) to make the labeled

amplicons, which could bind to streptavidin-functionalized
AuNPs to make a complex that changed color when an anti-
FITC antibody coated on the detection strip demonstrated it.
Within 35 min, the creation of the complex on the strip was
obvious to the naked eye. This technique was found to pro-
duce a high specificity and effective detection limit of 10 copies
of viral RNA/μL. Similarly, a study on using Plasmonic NP
study SARS-CoV-2’s N gene (nucleocapsid phosphoprotein)
was colorimetrically identified by Thiol modified antisense
oligonucleotides functionalized AuNPs [138].

3.2 MNPs

For the specific identifications of SARS-COV-2, the principle
of magnetic efficiency of nanometals is currently being
employed to prepare super-paramagnetic NPs (SMNPs)
conjugated with amplified viral DNAs and to identify
them with silica-coated fluorescent NP-based signalling
probes via hybridization assay. Recently, scientists have
used silica-coated SMNPs in PCR-based assays in order to
increase the specific selection of the target cDNA of SARS-
COV during the process, thereby allowing the identification
of the target cDNA with a limit of detection (LOD) of
around 2 × 103 copies in a time span of 6 h [139].

Figure 1: Various nanomaterial-based methodologies employed for diagnosis of COVID-19.
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Nanotechnological approaches, such as protein corona
detector panels and magnetic levitation, have also been
highlighted by Mahmoudi in his study as having great pro-
mise for identifying chronic patients during the early
phases of the COVID-19 infection [140]. According to the
study, a biomolecular corona is generated in which the
introduction of NPs happens in a human environment
(e.g., blood plasma) and can lead to instantaneous associa-
tion with numerous biomolecules, such as proteins, which
in turn forms an outer covering of NPs. This can assist in
distinguishing the protein corona biomolecule from the
others. As a result of the increased affinity of other proteins
and the recruitment of additional particles onto the NPs
that have previously been included, this method is still
susceptible to a number of lacks in correlation. As a conse-
quence, disease-specific protein corona biomolecules were
created, the molecules in which the protein corona sensor
array technology can define the plasma protein and biomo-
lecule patterns that indicate catastrophic COVID-19 infection
at its earliest stages [140]. And also colorimetric nano-
technologies, such as optoelectronic nose [141] and plas-
monic NP (AuNPs) technologies [142], can be enhanced or
updated for identification of the virus in susceptible indivi-
duals at an earliest time point, based on the fingerprint
protein corona biomolecular pattern.

A typical MagLev device consists of a pair of perma-
nent magnets with identical poles positioned opposite to
one another along the gravity vector. Serving this purpose
better, superparamagnetic iron oxide NPs were able to
circumvent the instability of proteins in the paramagnetic
solution and thereby levitate plasma proteins [140]. A het-
erogeneity mapping study revealed that the MagLev system
cannot only separate corona-coated NPs but also examine
the homogeneity/heterogeneity of the protein corona and
aid in rapid screening of the homogeneity of corona-coated
NPs prior to quantitative analysis of the disease [143].

3.3 QDs

Conventional luminous NPs known as QDs are gaining
popularity because of their unique photonic and electrical
properties. These properties include a substantial
quantum yield, anti-photo bleaching action, broad absor-
bance range, tunable emission wave length, and excellent
stability. In addition, it is projected that these QDs will con-
tribute to the advancement of virus detectors and antiviral
medications through their enhanced broad-spectrum action,
point-of-care (POC) diagnostics, and profitable manufac-
turing [144–146].

3.4 Electrochemical aptamer sensors

A QD-conjugated RNA aptamer particular to the SARS-COV
N protein has revealed greater sensitivity for coronavirus
detection. In the respective study, authors employed QD-
605 with maximum emission at 605 nm to achieve an
exceptional detection limit of 0.1 pg/mL SARS-COV N pro-
tein mounted on a glass chip. The authors suggest that an
optical QDs-based RNA aptamer chip may be able to get
around the limitations of other techniques because it is
sensitive, specific, easy to use, and can monitor one spot
[147]. In another study for detecting N‐gene of SARS‐COV‐2,
a surface plasmon resonance aptasensor was constructed
where N‐gene‐targeted aptamer was attached on thiol‐
altered niobium carbide MXene QD bioplatform. This apta-
sensor thereby exhibited an LOD of 4.9 pg/mL for N gene
through a concentration range of 0.05–100 ng/mL [148]. In addi-
tion, photoelectric aptasensorswere developed for quantifiable
detection of RBD SARS-COV-2. The design included a modified
ITO electrode with chitosan/cadmium sulfide (CdS)–graphitic
carbon nitride (gC3N4) nanocomposite (gC3N4 and CdS) with
immobilized amine-terminal aptamer probes. Results indicated
that the aptasensor may be utilized to quantify Sars-Cov-2
RBD concentrations between 0.5 and 32.0 nM, with 0.12 nM
LOD [149].

3.5 QD-conjugated chiral plasmonic NPs

Another nanohybrid structure with optical resonances that
have crucial role in viral detection is chiral plasmonic NPs
integrated with QDs. This include far-field coupling and
near-field processes, as well as enhanced chiroptical char-
acteristics [150]. In nanostructures, cumulative oscilla-
tions of free electrons produce plasmonic phenomena
that enable the nanoscale confinement of light, which in
turn can enhance the chiroptical interactions [151]. A sen-
sitive chiro-immunosensor, conjugated QDs with chiral
gold (Au) nanohybrids, was developed on the view of
achieving low values of LOD. Based on self-assembly tech-
niques, an asymmetric plasmonic chiral nanostructure
hybrid will broaden the spectrum of circular dichroism
reaction to achieve an exclusive plasmonic resonant asso-
ciation with the energized state of QD for LOD. The devel-
oped probe was originally utilized for the highly sensitive
picomolar level detection of avian influenza A (H5N1)
virus. Thus, the applicability of this sensing system was
also examined on other viral cultures, including avian
influenza A (H4N6), poultry adenovirus, and also corona-
virus in respective blood/serum samples [150].

Combating SARS-Cov-2 using nanomedicine  11



Chiral zirconium NPs assembled with L(+)‐ascorbic acid
are another example for conjugated plasmonic NPs which is
predominantly employed for SARS-COV with LOD of 79.15
EID/50 μL. In this technique, in addition to self-assembly and
circular dichroism, these QDs might be conjugated with COV
antibodies like bronchitis virus (IBV) to generate an immune
link in the vicinity of anti-IBV antibody coupled magneto-
plasmonic NPs and a tagged analyte. This in turn produced
high sensitivity optical detection for COVs with LOD about
79.15 EID/50 μL [152]. As it has been demonstrated that exci-
ton–plasmon interactions may influence chirality, employing
integrated nanostructures as an approach for improving the
responsiveness of optical (nano)sensors seems to be a pro-
mising idea.

3.6 QDs‐based Förster resonance energy
transfer

A recent study explores a highly sensitive biosensing approach
using QD-Förster resonance energy transfer, relying on the
resonance energy transfer patterns between distinct partners
to pick out the inhibitors of SARS-COV-2. The study focuses on
the development of a versatile imaging probe involving the
spike receptor binding domain of SARS-COV-2 conjugated to
fluorescent QDs. This probe is designed tomonitor the binding
of the spike protein to the host cell’s ACE2 receptor, which is
the initial step in SARS-COV-2 infection. The probe can
undergo energy transfer quenching while interacting with
ACE2-conjugated AuNPs, allowing for the real-time moni-
toring of this binding event in solution. The study demon-
strates that neutralizing antibodies and recombinant human
ACE2 effectively block this quenching, indicating a specific
binding interaction [153]. For the identification of SARS-COV-
2 RNA, a ligand exchange-based CdTe QDs–DNA (Cadmium
telluride QDs) nanobiosensor was developed. This nano-
sensor might be utilized for the quick detection of RNA
from SARS-COV-2 in actual samples with results equivalent
to RT-PCR with high selectivity and sensitivity of LOD with
2.52 × 10−9 mol L−1 [154].

3.7 QD nanobeads (QBs)

A portable smartphone imaging stage that automates quan-
titative QD barcode immunoassay and interacts utilizing an
internally developed data dashboard was developed for the
quantitative assay of SARS-COV-2. Here, a database and

dashboard were used to illustrate real-time reporting of
test results. The principle of the technique comprises (a)
previously coded QD microbeads to identify target antibo-
dies in human blood serum, so as to identify distinct anti-
body targets; several colors of QD barcoded microbeads
were constructed; (b) hand-held instrument to stimulate
and photograph the fluorescent microbead; and (c) an appli-
cation that transmits the data to a controlling facility. The
technology was certainly found to be highly sensitive and
specific in being reported with an LOD of 1.99 pM for nucleo-
capsid coated microbeads and 0.11 pM for S1-RBD coated
microbeads [155]. Also, lateral flow immuno assay (LFIA)
with POC treatment is gaining popularity attributed to its
simplicity, ease, speed, plus economic convenience for qua-
litative analysis [156]. Particularly, detecting SARS-COV-2
infection using colloidal gold NP-based LFIA (AuNP-LFIA)
has undergone rapid advancement. In a recent study, a
QB-based LFIA (QB-LFIA) for detecting total SARS-COV-2
antibodies in human serum was created. The QB-LFIA
makes use of immunoassay construction including two anti-
gens. During the assay process, SARS-COV-2 spike protein
conjugated with QB is employed as a detecting probe to
bind with specific antibodies in virtue of determining their
serum levels. After being prepared, QB-LFIA was approxi-
mately an order of magnitude more sensitive than AuNP-
LFIA [157].

4 Usage of NP regimen for
COVID-19

4.1 Inhibition of viral attachment and entry
into cell

A powerful approach for medication development and
therapy is by preventing the process through which the
virus attaches to the ACE2 receptor or restrict endocytosis
[158]. CQ is one of the medications that are regularly eval-
uated for this purpose [159]. CQ has been initially found to
hinder the NP endocytosis. As structurally SARS-COV-2 is
comparable to certain NPs, it has been reported that CQ
can prevent the endocytosis of SARS-CoV-2 virus parti-
cles [160].

This occurs in the following manner:
(1) CQ-induced inhibition of phosphatidylinositol-binding cla-

thrin assembly protein (PICALM), which in turn prevents
endocytosis-mediated absorption of NPs. Generally, in the

12  Beibei Zhang et al.



endocytosis pathway, PICALM is an accessory protein that,
together with clarithrin, facilitates endocytosis.

(2) encasing the molecule inside polymeric NPs like the
often used poly lactic acid [161].

The ability of 1.6 nm cationic carbon dots (CDs) pro-
duced from curcumin to prevent the invasion of a corona-
virus model, porcine epidemic diarrhea virus (PEDV), has
been reported in a recent study [162]. At 125 μg/mL, the inhi-
bition efficiency was over 50%, preventing viral entrance at
an early stage. The blockage is probably thought to be
brought about by electrostatic reactions among the anionic
PEDV and the cationic CDs, which negate the effective charge
on the virus particles and produced viral aggregation, together
with this, the CDs also prevented the formation of reactive
oxygen species (ROS), and thereby minimized cell death
[162,163]. In cases of respiratory viruses, curcumin-conjugated
AgNPs have been reported to possess the ability of viral inhi-
bition and entry [163].

AuNPs have been found to be directly linked with the
blockage of cell entry apart from the viral aggregation
function. When considering NPs, AuNPs are less toxic
than AgNPs. Huang et al., demonstrated the inhibitory
activity of AuNPs in his recent study, in which he found
a homologous protein that mimics the structural identity
with one of the viral protein that is essential for cell fusion
and invasion [164]. Pregnancy-induced hypertension (PIH),
a peptide that mimics the structure of HR2, was discovered
by him. Hence, this peptide can interact with HR1 of virus
and prevent the creation of 6HB (six-helix bundle), which
is supposed to draw the viral encapsulation within the
cell. Through preventing 6HB, the process of cell fusion
and subsequent infection are effectively inhibited. Gold
nanorods coated with PIH displayed 10 times more sup-
pressive activity at the optimum dose, completely blocking
cell fusion [164].

In addition to AuNPs, other biocompatible and less
toxic NPs with antiviral action such as SiNPs and sele-
nium NPs (SeNPs) are effectively utilized. Engineered
NPs including porous SiNPs break down to form non-toxic
silicic acid and are favoured for their antiviral impacts
due to their extraordinary biocompatibility and biode-
gradability properties. These particles, when functionalized
separately or conjugated to different moieties (mesoporous
SiNPs), act as scavengers of enveloped infection particles
and prevent cellular invasion [165,166]. SeNPs remain pro-
minent example for biocompatible NPs against SARS-COV-2
with antiviral efficiency by blocking viral entry when admi-
nistrated [167]. In a recent study using the anti-inflamma-
tory drug Ebselen, an organic Se species, it was found that
the drug can block coronavirus by covalently binding to the

virion through cell membranes, when administrated at a
concentration of 10 μm. However, when administrated at
high concentrations, it was found to be toxic; therefore,
nanoselenium or low toxicity selenium for their biocompat-
ibility are considered for their antiviral efficacy in the fight
against viral infections [167].

Previous investigations have showed that natural com-
pounds like green tea catechins inhibit encapsulated
viruses. Its hydroxyl, galloyl, and pyrogallol groups on B-
ring can alter viral antigen expression or genome replica-
tion at various phases of viral entry. Green tea polyphenols,
like epicatechin gallates, have been identified as powerful
viral entry inhibitors efficient of inhibiting the host’s glyco-
protein CD4 interaction with glycoprotein gp120 of HIV-1,
thereby preventing viral infections [168]. Similarly, cur-
cumin, a polyphenol isolated from the plant Curcuma longa,
has been shown to have antiviral action due to the presence
of phenolic hydroxyl groups. Also, ionic gelation was used to
encapsulate curcumin in chitosan NPs, which increased its
bioavailability after oral administration along with it is in
vitro antiviral efficacy in feline immunodeficiency virus-
infected cats [162]. High-efficiency (homogeneous and stable
with polar groups) anti-PEDV coronavirus delivery systems,
consisting of glutathione-capped Ag2S nanoclusters and glu-
tathione-modified zinc-sulfide NPs, were produced via the
curcumin pyrolysis procedure [169,170].When tested against
PEDV, natural compounds like curcumin and glycyrrhizin were
found to have multisite inhibition mechanisms, including: (a)
blocking the entry of virus by altering the viral surface protein
morphology, preventing pathogen’s genomic RNA production
and replication; (b) reducing ROS production; and (c) stimu-
lating IFN-stimulant genes and downstream of pro-inflamma-
tory cytokines to lower the multiplication of virus. Similarly,
the strong interaction of griffithsin (antiviral lectin) with the
MERS-COV and SARS-COV-2 glycoprotein regions has also been
hypothesized to prevent the cellular entry of viral particles
[171,172].

4.2 Blocking the viral replication and
proliferation

Rectifiers that slow down the rate at which viral particles
reproduce or reduce their infectiousness are at consum-
mate significance, as this will prevent the proliferation of
these infectious particles and thereby provide time for
response of body’s first-line immune system to function
effectively in combating the virus. This will also prevent
the infectious particles from generating mutated versions
as their replication is blocked. Several viruses with
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positive-sense ssRNA genetic material, phospholipid envel-
opes, and proteins resemble SARS-CoV-2. Recent corona-
virus research has employed several of these viruses as
models, and NP efficacy on these viruses may be important
for therapeutic development toward SARS-CoV-2 [160].

A recent study has shown that the transmissible gas-
troenteritis virus (TGEV), one member among the corona-
virus family, is much less infectious in the presence of
AgNPs and silver nanowires at a concentration below the
toxicity limit. In addition to this, AgNPs have been found to
limit apoptosis induced by viral inhabitation. This happens
when Ag NPs suppress TGEV-induced Pi-p38 protein pro-
duction to control p38-MAPK-p53 mitochondrial signalling,
which in turn regulates TGEV-induced cell death [173].
Furthermore, Du et al. have reported that AgNP-modified
graphene oxide suppresses porcine reproductive and respira-
tory syndrome virus (PRRSV), a model virus utilized in
coronavirus research, with 59.2% inhibitory efficacy. To
add, GO-AgNPs nanocomposite treatment was found to boost
IFN-α and ISG production, which directly restricted viral
growth [174]. In another investigation, Tong et al., synthesized
a glycyrrhizic-acid-based CDs with multisite PRRSV suppres-
sion of up to five orders of virus titers. Themultiple inhibitory
mechanisms include viral invasion and replication inhibition,
cell IFN stimulation, and ROS generation inhibition [175]. The
work has exemplified the undefined potential of CDs in viral
inhibition, which could help in the development of novel
strategies of NPs conjugated antiviral therapies.

Haam et al. employed porous AuNPs to aim the heme
agglutinin (HA) protein on several influenza viruses by
exploiting effective goldthiol interconnection (PoGNPs) as
it has been one of the most intensively researched viruses
due to many worldwide pandemics over the past decades.
Because of recurring mutations and growing treatment
resistance, influenza A viruses are considered the focus
of numerous NP-based medicinal research initiatives. In
that particular study, Haam found that PoGNPs suppress
the viral infectivity and increased host cell viability to
96.8% from 33.8%. In addition, viruses like H1N1, H3N2,
and H9N2 were used to demonstrate the approach’s uni-
versal effectiveness [176]. In a recent study, Haag et al.
employed electron microscope imaging to visually demon-
strate that AuNPs functionalized with sialic acid-termi-
nated glycerol dendrons effectively and inhibited viral
multiplication by targeting the viral HA protein [177]. A
benzoxamine-monomer-derived CDs have been found to
reduce Zika virus, the causative of a 2015 pandemic in
South and North America which in turn shares structural
similarity with coronavirus [178]. The CDs have been also
found inhibitory to other viruses that are structurally similar
to coronavirus, dengue, and Japanese encephalitis virus. Also,

they have been found to inhibit adeno-associated virus and
porcine parvovirus, non-enveloped viruses, which in turn
emphasizes the spectrum of antiviral potential of NPs [178].
Alphaviruses, a similar genus of RNA viruses to corona-
viruses, were substantially repressed in Vero (B) cells
by cellulose nanocrystals treated with tyrosine sulfate
mimetic ligands, whereas human cells were found to
be unaffected [179].

4.3 Viricidal NPs

Another method of preventing viral infections in addition
to blocking the host cell contact, genetic material replica-
tion and proliferation of virus is inactivating or destroying
the virus directly. In a sophisticated reversible viral inves-
tigation, AuNPs coated with 3-mercaptoethylsulfate (MES)
produced an inhibitory concentration at EC90 (nanomolar
range). This in turn is identical to the outcome of heparin, a
popular antiviral substance that inhibits pathogen and
host contact. However, the authors also discovered that
replacement of MES with a 2:1 combination of undecane-
sulfonic acid (MUS) and 1-octanethiol (OT) could elicit per-
manent/irreversible viral inactivation of several viruses
that specifically target humans, including herpes simplex
virus, respiratory synctial virus, dengue virus, as well as
human papiloma virus, and lentivirus [180]. As the study
reported no cytotoxicity during ex vivo and in vivo studies
on mice and humans, respectively, and as the broad-spec-
trum model viruses employed in the study shared struc-
tural and functional similarities with the coronavirus, this
study emphasizes the potential use of MUS:OTAuNPs in
SARS-Cov-2 treatment [160].

In a recent study, it was demonstrated that a functio-
nalized mock virus receptor nanodisc, a self-assembled
discoidal membrane covered in an amphipathic mem-
brane scaffold protein, can neutralize the infected influ-
enza virus (H1N1) by specific inhibition of viral surface
proteins and thereby produce permanent damage to the
viral envelope. As a result of various associations with
viral target proteins, conjugating sialic acid onto nanodiscs
enhanced their antiviral efficacy. It was reported that the
functionalized nanodiscs also prompted the virus’s fusion
machinery to self-disrupt its envelope. This approach is
promising for in vivo studies due to the biocompatibility
of the NPs and the decoy molecules [181]. Gao and collea-
gues reported the existence of iron oxide NPs with broad-
spectrum antiviral activity against flu viruses (H1N1, H5N1,
and H7N9). Using the catalytic, enzyme-like, and peroxi-
dase-catalyzing properties of ferromagnetic NP with an
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average diameter of 200 nm, it was possible to cause lipid
peroxidation of the viral envelope, therefore eliminating
the viral surface protein. Interestingly when put on face-
masks, these iron oxide nanozymes demonstrated broad
spectrum antiviral efficacy [182]. The site of activation of
various nanoformulated drugs employed for combating
COVID-19 has been illustrated in Figure 2.

Recently, lipid NP (LNP)-based mRNA vaccines are
being considered for clinical management for COVID-19.
mRNA is a promising therapeutic tool for COVID-19, requiring
safe, stable, and targeted delivery systems together with endo-
somal escape for in vivo use. In this way, LNPs, especially in
combination with mRNA vaccines, have made clinical strides,
notably in combating COVID-19, marking a milestone for
mRNA therapeutics. When comparing with cationic lipids
and ionizable lipid conjugated vaccines, LNP-mRNAs excel in
the safe delivery of mRNAmolecules without degradation and
effective facilitation of cellular uptake by cell membrane and
functional immune response [183]. Two successful vaccines
viz: Pfizer-BioNTech (Comirnaty) vaccine (BNT162b2) and
Moderna (mRNA-1273) COVID-19 vaccine are examples of
LNP-mRNA vaccines [184]. In a recent study focused on the
development of LNP-mRNA vaccine through in vivo studies in

mice, researchers were successful in developing an adjuvant
lipidoid for LNP-mRNA-based vaccines that could enhance the
adjuvanticity of mRNA molecules. This innovation proved
effective in improving the safe delivery of mRNA and simul-
taneous activation of toll-like receptor 7/8-agonistic properties,
thereby enhancing the innate immune response [185].

5 Limitations of applying
nanomedicine in battling SARS-
COV-2

Despite the fact that the use of nanomedicine can demon-
strate a wide variety of applicability and has received
attention from research organizations around the globe,
there is nevertheless an obstacle between superior scien-
tific breakthroughs and the sustainable implementation
of nanotechnology-based therapeutics. Issues have been
raised about their applicability in several physicochemical
contexts. Moreover, the surface of nanomaterials can be
modified with moieties that might alter their behavior and

Figure 2: Site of activation of nanoformulated drugs at different stages of viral life cycle.
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characteristics, further complicating the issue of their
safety. Until recently, several start-ups were responsible
for driving the commercialization of nanotechnology-based
medicines. Even now, major drug makers are not showing
much enthusiasm for funding the cutting-edge nanotech-
nology-based therapies. Finding funding to assist the
research and development of these novel medications is
challenging for small enterprises. Additionally, businesses
making nanomedicine-based items are likely to incur signif-
icantly higher per-unit expenses [186]. Together with cost,
reliability in terms of toxicity and surface functionalization
[187] can arise as significant limitations in the use of nano-
medicine for the management of COVID-19. Nanotechnology
has the potential to revolutionize illness treatment, but like
all drugs, nanomaterials must be tested and regulated for
safe human usage. This is because, nanomedicine-based
reformulation of current medications or usage of inorganic
materials that are safe in micron size may have unexpected
unfavourable and toxicological consequences due to parti-
cles’ unique characteristics at the nanoscale. Epidemiolo-
gical studies that looked at the connection between adverse
health outcomes and ambient particulate air pollution were
largely responsible for raising public alarm about the usage
of NPs in consumer items [187]. Significantly, fine particulate
analysis conducted by Samet et al. reported that an increase
of 10 g/m3 in the concentration of PM10 (particulate
matter with a diameter of less than 10 μm) was linked
to a 0.68 percentage point rise seen in deaths caused by
cardiac and respiratory illness in 20 cities across the
United States [188].

Ominously, nanowires and nanotubes have promising
applications in medication delivery and therapies. However,
their structural similarities to asbestos raise safety concerns
that they might cause fibrosis and mesothelioma when they
are not degraded and cleared from the body after extended
contact. In an in vivo investigation in which carbon nano-
tubes were directly applied to the pleural and peritoneal
mesothelium, results indicated the formation of fibrosis
and granulomas in mice [189]. In a similar study conducted
by Sakamoto et al., development of peritoneal mesothelioma
in rats following the carbon nanotube intrascrotal injection
was observed [190]. Several researches have demonstrated
that extended and frequent inhalation of carbon nanotubes
results in same toxicological outcomes as mentioned before.
Like, 3 months of administration of polydispersed multi-
walled CNTs (0.1–10m) did cause pleural inflammation
and granuloma development in rats [191]. Nevertheless,
other research have shown that this is the result of clumped
and poorly scattered CNT bundles rather than to any intrinsic
poisonous characteristic of the bundles assumed to be pre-
cisely specified previously [192].

6 Outlook beyond COVID-19:
diagnostics and pandemic
response

The COVID-19 pandemic has yielded valuable insights into
pandemic readiness, public health, and healthcare sys-
tems, offering guidance for addressing future acute pan-
demics. Key considerations include the advancement of
diagnostic technologies for rapid and accurate testing,
the proliferation of accessible POC testing devices, and
the integration of digital health tools for real-time moni-
toring and contact tracing. In vaccine development, the
success of mRNA vaccines has set the stage for expedited
vaccine creation against various infectious diseases and the
exploration of universal vaccine concepts. Collaboration on
a global scale and equitable vaccine distribution are crucial
for swift access. Antiviral therapies will advance through
drug discovery and prophylactic treatments. Being prepared
for a pandemic entails improved global surveillance, stock-
piling of medical essentials, and strengthened public health
infrastructure. Behavioral changes may include enduring
hygiene practices, sustained remote work and education
options, and adaptable travel and social norms. International
cooperation and data sharing will be essential, reflecting a
proactive and collaborative approach to future pandemics,
with investment in research, healthcare infrastructure, and
global unity at its core.

7 Conclusions

Each year, infectious diseases cause a staggering number
of fatalities. Diversification has resulted in the emergence
of numerous new diseases, including bacterial and the
majority of them being viral. However, respiratory ail-
ments caused by viruses are one of the key contributors
to the rising mortality rate globally. It is essential to remind
readers that novel materials are constantly being added on
clinical characteristics, analyses, treatment options, and
outcomes for COVID-19. Nonetheless, increased steady con-
sideration remains the cornerstone of therapy, and the
practical viability of the outcomes is still being evaluated
or tested in clinical studies. Nanotechnology has shown to
be of great relevance and shown great potential in the
realms of antiviral activity and treatment. In modern mate-
rials science, nanotechnology is a prominent domain of
study. NPs display entirely unique or exceptional proper-
ties due to their physical characteristics and morphology.
Crystal NPs have been shown to have amazing uses in
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areas such as high-sensitivity bio-molecular detection, dis-
ease and biochemical diagnostics, and antimicrobial and
pharmaceutical chemicals. Thus, nanotechnology has shown
both prophylactic and curative efficacy against several dif-
ferent viruses. NP vaccination has the potential to improve
healthcare worldwide, and nanotechnologymay lead to new
approaches in the treatment of clinical patients. NP-based
vaccinations can elicit superior protective immune responses
than traditional antigen-based immunizations. In addition,
studies have shown that nanosized particle based diagnostics
can help in the quicker identification of viral infestation in its
initial phase, as they offer higher sensitivity and specificity
than the currently existing approaches.
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