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Abstract: In this study, we conducted the hydrothermal
synthesis of cobalt (Co)–doped NiWO4, resulting in the
formation of Co–NiWO4 nanoparticles (NPs), followed by
calcination at 550℃ for 12 h. Comprehensive analyses were per-
formed to characterize the composition, structure, and
morphology of the synthesizedmaterial. X-ray diffraction results
confirmed the successful inclusion of Co in the NiWO4 lattice,
with the presence of characteristic peaks of CoWO4. The crystal-
lite size, determined using the Scherrer equation, wasmeasured
to be 22 nm. Using UV-Vis spectroscopy and Tauc’s equation, we
calculated the band gap energy (Eg) to be 3.75 eV for NiWO4 and
1.75 eV for Co–NiWO4. The potential application of the synthe-
sized material as a photocatalyst was investigated for the degra-
dation of the diazo dye Congo red (CR). Under optimized reaction
conditions, Co–NiWO4 NPs demonstrated outstanding efficiency,
degrading a total of 95% of CR. The degradation kinetics were
well-described by the Langmuir–Hinshelwood (L–H) kinetic
model, indicating that photoabsorption played a crucial role in
the rate-controlling step. These encouraging results suggest that
Co–NiWO4 NPs hold promise as a viable option for addressing
other pollutants in various applications.

Keywords: semiconductor photocatalysis, nanocomposites,
hydrothermal synthesis, monoclinic structure, photoabsorption

1 Introduction

In the current context of robust globalization and indus-
trial growth, the decline in clean water quality is evident,
primarily due to the introduction of hazardous pollutants
like heavy metals and dyes from direct and indirect sources
[1,2]. Azo dyes, a group of synthetic compounds containing
one or more azo groups (–N]N–) as chromophores, are
particularly noteworthy among these pollutants [3,4]. Their
distinctive colors, ease of synthesis, high solubility, and
excellent fastness rating make them favored colorants in
industries such as food, pharmaceuticals, and textiles [5,6].
However, despite their advantageous properties, azo dyes
are known to be toxic, allergenic to human skin, and carci-
nogenic, leading to strict regulations governing their use in
many countries [7,8]. One specific azo dye of concern is
Congo red (CR), an anionic bis azo dye containing benzidine
salt, which poses a significant health risk due to its tendency
to bioaccumulate in the human body and contribute to var-
ious neurological and respiratory ailments [1,9]. Therefore,
there is a pressing need to develop efficient and environ-
mentally friendly methods and materials capable of effec-
tively degrading the CR dye in wastewater before its release
into water bodies or the environment.

The literature presents various methods for CR removal
from wastewater, including biodegradation, ultrafiltration,
adsorption, and chemical oxidation. However, the production
of secondary-level sludge, the generation of pollutants, and
complex operational procedures have limited their practical
application [10,11]. To address these challenges, a promising
approach is the photocatalysis-based advanced oxidation pro-
cess. This method harnesses solar light to interact with a
catalyst material, leading to the generation of electron–hole
(e‒/h+) pairs. These active e−/h+ pairs effectively attack CR
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molecules, breaking them into smaller, non-toxic compounds
such as CO2 and H2O [12,13]. Designing materials with the
ability to efficiently generate and stabilize these e‒/h+ pairs
is crucial for the success of this eco-friendly and sustainable
process.

Various semiconductor-based nanomaterials have been
synthesized and used as photocatalysts for the degradation
of CR such as V2O5–TiO2, ZnO, plasmonic metal nanoparti-
cles (NPs) (Ag, Au, Pd, and Pt), ZnO–ZnS–CdO–CdS, ZnS:Fe,
Fe2(MoO4)3, etc. [14–19]. Among all these metal oxide and
metal sulfide NPs, a high rate of charge recombination
and wide band gap hinders the efficiency of TiO2, the aqu-
eous medium instability of ZnO NPs at variational pH
values, toxic sulfide release under illumination rules out
the utilization of sulfide catalyst water decontamination
[14,17,18]. These discrepancies between metal oxide and sul-
fide NPs draw the attention of scientists and researchers
toward the utilization of multi-metal component-based
photocatalytic materials. The materials, such as SrTiO3

[20], NaTaO3 [21], BaTi4O9 [22], CaIn2O4 [23], and La1–XCrxFeO3

[24], have been reported to decontaminate wastewater
One of the classes of multi-metal-based oxide attracting

the attention of the scientific community is tungstate-based
nanomaterials with the empirical formula MWO4 (M = Co,
Ni, Cu, and Fe) [25,26]. They have been proven to be a pro-
mising agent for environmental decontamination and solar
water splitting due to narrow band gaps with extraordinary
light absorption quality [27,28]. They are widely applied in
various industrial processes such as scintillation, microwave
technology, fiber optics, catalysis, and photoluminescence
[29,30]. Among all these, NiWO4 with an energy band gap
value of 2.6 eV is one of the important tungstate family
members having very high demands in fields like laser
hosts, humidity sensors, catalysis, and microwave applica-
tion [31]. Appreciable work has been reported in the litera-
ture corresponding to the utilization of ZnWO4 as a photo-
catalyst toward the degradation of toxic dyes and amplification
in photocatalytic efficiency through hetero atom doping
[32–35]. The photocatalytic behavior of other tungstatemate-
rials such as PbWO4 and Bi2WO4 was also explored in the
literature [36,37]. However, no studies are reported in the
literature regarding the utilization of Co-doped NiWO4 NPs
toward photocatalytic degradation of CR. Therefore, this
research gap provides the opportunity to elaborate the
information regarding variations in the structural, morpho-
logical, optical, and photocatalytic properties of Co-doped
NiWO4. Although pristine NiWO4 exhibits very good photo-
catalytic performances for the mineralization of organic
contaminants, however, because of its high purity, the
high e‒/h+ recombination rate limits its photocatalytic effi-
ciency [30]. To address these issues and improve the overall

catalytic performance of NiWO4, various chemical techni-
ques such as semiconductor coupling, [31], doping [29],
noble metal deposition [35], and morphology control [30]
were considered. In the present study, the method of doping
with a suitable metal atom in the pure crystal lattice of
NiWO4 was chosen to reflect changes in the structural
matrix to achieve the required optical properties. From
the literature, various studies have been reported on the
metal doping of NiWO4 for multidisciplinary applications
such as Cu doping, Mn doping, Bi doping, etc. [38–40]. In
this study, cobalt (Co2+) was specifically chosen as a dopant
due to its similar ionic radius and strong magnetic moment
(μCo = 1.8 μB d7 low spin configuration) [41,42]. By introdu-
cing Co2+ into the NiWO4 solid matrix, we aimed to inhibit
e‒/h+ recombination and enhance photocatalytic activities
via Ni d‒d transitions and Co‒W metal charge transfer
mechanisms [43]. Several methods have been reported in
the literature for synthesizing NiWO4 and mixed metal-
based tungstate nanomaterials, including sol‒gel processing
[44], solid-state reaction [45], a hydrothermal method [46],
and polymerized complex method [47]. These methods have
shown enhanced stability, improved electron transport
mechanisms, and higher energy density in the resulting
nanostructures. In this study, we employed a hydrothermal
route to synthesize pure phase (Co, Ni, Cu, Zn)-tungstates
with a uniform particle size distribution, and we explored
their potential as a photocatalyst for degrading the diazo
dye CR. Additionally, we investigated the impact of various
reaction parameters, such as irradiation time (minutes),
pH, catalyst dose, visible light intensity, temperature, and
leaching experiments, on the photocatalytic efficiency of
Co–NiWO4 NPs in degrading CR. These investigations aimed
to understand the factors influencing the photocatalytic pro-
cess and optimize the performance of Co–NiWO4 NPs as an
effective photocatalyst for CR degradation.

2 Materials and methods

2.1 Chemicals

Sodium tungstate dehydrate (Na2WO4·2H2O, 98%) was pur-
chased from Loba Chemie. Nickel nitrate hexahydrate
(Ni (NO3)2·6H2O, 98%) and cobalt nitrate hexahydrate (Co
(NO3)2·6H₂O, 98%) were purchased from Merck. CR (99%)
and ammonia solution (25%) were purchased from Otto
Chemie. Double distilled water was used throughout the
experiments, and the chemicals received were used as
such without any further purification (Figure 1).
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2.2 Preparation of the Co–NiWO4

nanocomposite

The pristine NiWO4 and Co–NiWO4 NPs were synthesized
using the hydrothermal method as described in a previous
study [46]. To prepare the NPs, a solution containing equi-
molar (1:1) amounts of Ni (NO3)2·6H2O and Co (NO3)2·6H2O
(both 5 mmol) was prepared in 25 mL of deionized (DI)
water and stirred for 1 h at 25℃ until a clear solution
was obtained. This solution was labeled as Solution A.
Next, Solution A was added dropwise to a 10 mmol solution
of Na2WO4·2H2O (Solution B). The resulting mixture was
stirred on amagnetic stirrer until homogeneity was achieved.
To maintain the pH ∼8–10, 10mL of a 25% ammonia solution
was added to the mixture (Solution A + Solution B). After
30min of stirring, the mixture was transferred to a 100mL
Teflon-lined autoclave and placed in a digital oven at 190℃
for 12 h for the hydrothermal treatment. Subsequently, the
material was obtained by centrifugation andwashedmultiple
times with DI water until the effluents exhibited a neutral pH.
The washed material was then dehydrated in an oven at
100℃ for 6 h and subsequently calcined at 500℃ for 4 h under
an N2 atmosphere.

2.3 Material characterization

Various analytical techniques were employed to charac-
terize the synthesized material and confirm the successful
formation of the desired Co–NiWO4 nanocomposite. Fourier
transform infrared spectroscopy (FTIR) was used to investi-
gate the bond formation between Co and WO4

2− and the
peak shifting upon Co inclusion in the NiWO4 matrix, with
measurements taken in the range of 4,000–400 cm−1 using a
Perkin Elmer Spectrum 2 ATR spectrometer. The X-ray dif-
fraction (XRD) method, conducted with a Rigaku Ultima 1 V
X-ray diffractometer, provided insights into changes in the
lattice, crystallite size, and interplanar distance resulting
from Co doping in the NiWO4 crystal lattice. Scanning elec-
tron microscopy (SEM) in conjunction with energy X-ray

diffraction (EDX) and mapping (JEOL GSM 6510LV, Japan)
were utilized to study the surface morphology and elemental
composition of the synthesized material. Transmission elec-
tron microscopy (TEM) using a JEM 2100 microscope (Japan)
allowed the observation of variations in the crystallite size
and crystal structure after solid-state reactions. To analyze
the electron shift occurring upon Co doping and to assess
the concentration of CR remaining after the photocatalytic
experiment, ultraviolet-visible spectroscopy (UV-Vis) was
employed with a Shimadzu UV-1900 spectrophotometer.
These comprehensive characterizations contributed to a
thorough understanding of the material’s properties and
its potential application as an efficient photocatalyst for
CR degradation.

2.4 Photocatalytic activity

The photocatalytic performance of the as-synthesized nano-
composite material as a catalyst was evaluated by studying
the degradation of CR (30, 50, and 70 ppm) under visible
solar radiation. An aliquot of 10mL of 20 ppm CR dye was
treated with 10mg of Co–NiWO4 NPs sonicated for 3min
and then placed under dark for 1 h to maintain absorption–
desorption equilibrium. Then, themixture was placed under
visible light radiation (350W, Xe lamp with 100mWcm–2

intensity, λ > 420 nm) for an optimum amount of time,
and the concentration of CR post-reaction was assessed by
taking 3mL of aliquot using UV–Vis spectrophotometer at
λmax = 494 nm. All the experiments were repeated three
times to get better precision and suppress maximum error
in the data. The photocatalytic efficiency of Co–NiWO4 NPs
toward the CR dye was evaluated by the following equation:

⎜ ⎟( ) = ⎛
⎝

− ⎞
⎠

×
C C

C
Degradation % 100,

0 e

o

(1)

where Co and Ce are the concentration of CR at the initial
state and each time interval, respectively.

3 Results and discussion

3.1 Material characterization

Figure 2(a) displays the FTIR spectra of NiWO4, CoWO4, and
Co–NiWO4 NPs in which pristine NiWO4 shows the char-
acteristic peaks at 470 cm–1 (stretching vibrations of Ni–O
bond), 535 cm–1 (W─O bonds), 620 and 706 cm–1 (bending

NH2

SO3
-Na+

N N

H3C CH3

N N

NH2

SO3
-Na+

Congo Red

Figure 1: Chemical structure of the CR dye.
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and stretching vibrations of W–O bond in WO6
6– octahe-

dron), and 821 and 886 cm–1 (bending and stretching vibra-
tion of the WO2 entity associated with W2O8 groups) [48]. In
addition, the peaks at 3,430 and 1,629 cm−1 (stretching and
bending vibrations of –OH groups) suggest the presence of
a notable amount of surface-adsorbed water. The FTIR
spectra of Co–NiWO4 NPs reveal all the peaks like pristine
NiWO4 with some shifted values due to doping of Co in the
solid lattice. The observed absorption bands are in good
agreement with IR data on NiWO4 with the wolframite
structure [43,49].

Figure 2(b) shows the XRD spectra of as-synthesized
Co–NiWO4 NPs, which exhibit the characteristic peaks at
2θ values of 15.62, 19.45, 24.03, 25.05, 27.86, 30.92, 32.96,
36.45, 41.75, 44.92, 46.71, 52.45, 54.62, 58.81, 62.39, 65.95,
and 72.84° corresponding to Miller indices values of (010),
(001), (011), (110), (200), (111), (020), (002), (102), (112), (211),
(130), (132), and (302) (JCPDS No. 15-0755), respectively.
From the literature, the Miller indices values for pure

NiWO4 have been reported as (010), (100), (011), (110),
(111), (021), (200), (121), (112), (211), (022), (220), (130), (202),
(113), (311), and (041) with wolframite monoclinic structure
associated with JCPDS No. 72-0480. Based on the Miller
indices data, it was observed that XRD spectra of Co–NiWO4

represented the maximum of Miller indices values from
NiWO4, except (002) and (310), which belong to the hkl
planes associated with CoWO4 (JCPDS No. 15-0867). The
obtained values of Miller indices suggested that the synthe-
sized material is a solid solution instead of the mixture of
CoWO4 and NiWO4, implying that Co2+ ions have success-
fully taken the lattice position in NiWO4 due to the closeness
of ionic radii of both Co2+ and Ni2+ ions [42]. The XRD spectra
of Co–NiWO4 NPs were composed of sharp peaks suggesting
a crystalline nature with a wolframite monoclinic phase
[50]. Further, the crystallite size and interplanar distance
of Co–NiWO4 were determined by the Scherer equation
given by the following equations [51]:

=D
λ

β θ

0.9

cos
, (2)

( ) =d
nλ

θ
Interlayer Spacing

2 sin
,111

(3)

where D is the size of the crystal, λ is the wavelength used
(i.e., 1.5 Å), β is the half-width of the intense peak, and θ is
the diffraction angle. Using the XRD data in equation (2),
the average crystallite size (D) was found to be 22 ± 0.05 nm
with the interplanar distance d111 = 0.21 Å, which is found
to be lesser than reported in the literature.

Themorphology and topography of NiWO4 and Co–NiWO4

NPs were investigated using scanning electron microscopy
(SEM) and their images are displayed in Figure 3(a) and (b).
The pristine NiWO4 (Figure 3a) appeared as a porous aggre-
gation of small particles while Co–NiWO4 NPs also appeared
porous with the corrugated surface with some flakes with
voids (Figure 3b). Therefore, SEM results supported the Co
doping in the NiWO4, which was further verified by ele-
mental composition analysis using EDX (Figure 3(c) and
(d)). The EDX spectra of NiWO4 in Figure 3(c) revealed the
elemental composition as O (70.03%), Ni (14.75%), and W
(15.22%); while the EDX spectra of Co–NiWO4 NPs (Figure 3d)
have the elemental composition as O (74.63%), Co (4.09%), Ni
(5.88%), and W (15.40%). The EDX results revealed the presence
of elements in stoichiometry and purity of the pristine and doped
material. The uniformity of elemental distribution in the solid
lattice was checked by elemental mapping analysis given in
Figure S1, which suggests that all the elements are uniformly
distributed over a range of space selected by the SEM image.

Further information about the shape and distribution
of particles in the nanocomposite material upon doping of
Co was assessed by TEM analysis, and the results are given
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Figure 2: (a) FTIR of NiWO4 (black line), CoWO4 (red line), and Co–NiWO4

NPs (red line). (b) XRD spectra of NiWO4 (red line) and Co–NiWO4 NPs
(blue line).
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in Figure 4(a) and (b). Figure 4(a) represents the TEM image
of Co–NiWO4 NPs at 100 nm magnification bar showing the
distribution of nanorods of size 24 ± 0.35 nm. Further mag-
nification at 20 nm bar TEM image ( Figure 4(b)) suggested a
mitigated hexagonal type of geometry of the particles. The
obtained value of particle size by TEM analysis is also
approximately close to the Scherrer crystallite size.

The change in optical properties of the material upon Co
doping was investigated by UV–Vis spectroscopy and the
results are given in Figure 5(a). The UV–Vis profile of NiWO4

(black line) has been given in the range of 200–600 nm and the
presence of a small peak at 268 nm suggested the material to
be UV light active. The type of transition could be attributed to
the excitation of electrons from W and O within the WO6

Figure 3: SEM–EDX image of (a, c) NiWO4 and (b, d) Co–NiWO4 NPs.
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matrix [51]. The UV-Vis spectra of CoWO4 given in Figure 5(a)
(red line) exhibited a low-intensity broad spectrum at 588 nm,
suggesting thematerial is visible light active. The UV spectra of
Co–NiWO4 NPs exhibited two broad spectra, one in the range
from 200 to 600 nm with absorption maxima at 354 nm and
another at 667 nmwith a low intensity suggesting the material
to be both UV and visible light active. These bands could be
attributed to the electron transition from 3A2g to 1Eg and 3A2g to
1T2g, respectively, in the Ni2+ O6 matrix [52]. The change in
optical properties after doping of Co and the appearance of
a broad spectrum is a direct reflectance of contribution from
the Co–Wmetal charge transfer and Ni d–d transition [53,54].
Furthermore, the energy band gap (Eg) value of the pristine
and doped material was calculated by the following equa-
tion [55]:

( ) ( )= −αhν A hν E ,g
n (4)

where h is the Planck constant, α is the absorption coeffi-
cient, A is a constant, ν is the frequency of radiation, and n
is the constant of transition variation corresponding to n =

2 as indirect transitions and n = 1/2 belonging to direct
transitions. The energy band gap value was obtained by
extrapolating the linear part of the curve which cut the hν
(eV) axis as illustrated in Figure 5(b). The values of Eg from
Tauc’s plot were obtained as 3.54 eV for NiWO4, 3.05 eV for
CoWO4, and 1.58 eV for Co–NiWO4 NC. From the literature,
the band gap values of NiWO4 have been reported as 2.53,
3.7, and 3.6 eV depending upon the synthesis protocols
[43,56]. Therefore, the calculated value in the present study
is in good agreement with the reported values. The

Figure 4: TEM images of Co–NiWO4 NC: (a) 100 nm and (b) 20 nm magnification range.
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outcomes suggested that the Co doping in NiWO4 created
intermediate impurity level formation inside the band gap
structure of NiWO4, which reduced its band gap and
turned it into a promising catalyst for photocatalytic appli-
cations in visible light [57]. The UV–Vis analysis suggested
that the optical properties of NiWO4 can be tuned by Co
doping, which results in greater light absorption capacity
due to low band gap values.

Thermogravimetric analysis (TGA) was carried out to
evaluate the thermal stability of the synthesized material
Co–NiWO4 NPs. Figure 6 shows the TGA profiles for NiWO4,
CoWO4, and Co–NiWO4. The initial weight loss at a tem-
perature of 200℃ is due to the loss of water molecules and
adsorbed gases. Further weight loss in the temperature
range between 248.63 and 489.86℃ is due to the loss of
metal hydroxides or breakage in M–O linkages. The final
weight loss beyond 490℃ is due to the formation of inter-
mediate products [58,59]. NiWO4 shows a total weight loss of
43.28%, CoWO4 shows 44.23%, and Co–NiWO4 shows 45.69%.

3.2 Photocatalytic applications

3.2.1 Selectivity test

To evaluate the photocatalytic efficiency of pristine NiWO4

and synthesized Co–NiWO4 NC, experiments were con-
ducted using 10mg of the catalyst with 10mL of 50 ppm
organic pollutant solution such as bromophenol (BP), methyl
orange (MO), CR, malachite green (MG), crystal violet (CV),
and methylene blue (MB) under visible solar radiation.

From the results shown in Figure S2(a–c), it was found
that the synthesized material was most effective toward
the degradation of the CR dye (88.20%) as compared to pris-
tine NiWO4 (38.13%) under the given conditions as com-
pared to other organic pollutants. Therefore, Co doping in
NiWO4 has tuned the photocatalytic activity of Co–NiWO4 NPs
toward the CR dye. Hence, further photocatalytic experiments
were designed for CR degradation by Co–NiWO4 NC such as the
effect of irradiation time, pH of the media, catalyst dose, and
kinetics of the photocatalytic reaction with the mechanism.

3.2.2 Effect of dye concentration and irradiation time

Figure 7(a–c) represents the UV-Vis spectra having varia-
tion of CR concerning irradiation time. With an increase in
the irradiation time from 5 to 90 min, the absorbance
values of the dye decrease indicating an increase in the
photocatalytic degradation of the dye. A similar effect
was observed with various dye concentrations of 30, 50,
and 70 ppm having photocatalytic efficiencies of 91.45,
95.72, and 89.35% (Figure 7d). As can be seen, increasing
the dye concentration from 30 to 50 ppm results in an
increase in the photocatalytic efficiency from 91.45 to
95.72%, and with 70 ppm, it decreases to 89.35% [60]. There-
fore, 50 ppm CR concentration was chosen as the optimized
concentration for further photocatalytic experiments. The
decrease in photocatalytic efficiency at high pollutant con-
centrations is due to the formation of an active layer of dye
molecules above the surface of the catalyst acting as a
screen. This screening effect hinders the path of light
toward the surface of the catalyst and thus inhibits the
generation of reactive oxidant species (ROS) such as •OH
or •O2

─ radicals to degrade the dye molecule [61].

3.2.3 Effect of catalyst dose

The amount of catalyst to be utilized during the photoca-
talytic reaction is a very important factor in verifying the
efficiency of the synthesized material. Photocatalytic experi-
ments were carried out using 50 ppm CR concentration with
5, 10, 15, and 20mg of Co–NiWO4 NPs under visible radia-
tions. The results obtained are shown in Figure 8(a and b),
suggesting the 10mg catalyst dose is optimal and exhibits a
maximum photocatalytic efficiency of 91.81% under the
given experimental conditions. Initially, as the catalyst
dose increases from 5 to 10mg, the photocatalytic efficiency
increases from 77.81 to 91.81% due to a drastic increase in
the number of active sites on the surface of the catalyst
accommodating a greater number of dye molecules. As the
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catalyst dose increases from 10 to 20mg, the degree of
agglomeration also increases, which reduces the number
of surface-active sites of the catalyst, thereby lowering the
photocatalytic efficiency observed [62].

3.2.4 Effect of pH

The pH of the solution plays an important role in the degra-
dation of dyes on the surface of the catalyst. To evaluate
the optimized value of pH at which maximum photocata-
lytic activity can be achieved, experiments were performed
by varying the solution pH from 2 to 8 under optimized
reaction conditions. The results obtained are shown in

Figure 9(a) and (b), which suggests that maximum photo-
catalytic efficiency was achieved at pH 4 associated with
96.25% of CR degradation. Further increase in the pH value
beyond 4 results in a decrease in photocatalytic efficiency.
The trend can be explained based on the point of zero
charges (pHpzc), which is equal to 5.4 as shown in Figure
S3. At pH < 5.4, the surface of the catalyst is positive and
susceptible to the negatively charged CRmolecules via elec-
trostatic forces of attraction, and thereby under the radia-
tion degrades them using •OH radicals. At pH > 5.4, the
surface of the catalyst is negative, which would exert a
negative repulsive force between the negatively charged
CR molecules and the surface of the catalyst. So, fewer
molecules of CR will adhere on the surface of the catalyst,
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and thereby a lower value of photocatalytic efficiency is
obtained [63]. Hence, pH 4 was chosen as the optimized pH
for further photocatalytic experiments.

3.2.5 Effect of temperature

Photocatalytic experiments were conducted at tempera-
tures from 298 to 328 K under the optimized reaction

conditions. The results obtained are shown in Figure 10(a
and b), which suggests that an increase in the temperature
of the system from 298 to 328 K reflects the increase in
photocatalytic efficiency of Co–NiWO4 NC to 86.63, 90.38,
93.14%, and finally 94.31%. The trend can be explained
based on the fact that as the temperature increases, mole-
cules gain more thermal energy, which results in greater
collision frequency at high temperatures between the CR
molecules and the surface of the catalyst. Moreover, the
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Figure 8: (a) UV–Vis absorption spectra for the effect of variable catalyst doses on CR degradation, and (b) bar graph representing the % CR
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molecules can gain sufficient energy, which enables them
to cross the activation energy barrier and thus high photo-
catalytic activity is obtained [64].

3.2.6 Effect of visible light intensity

The intensity of the radiation source (λ > 420 nm) greatly
influences the decolorization reaction, and to observe this
photocatalytic experiments were performed under the
optimized reaction conditions for various light intensities

such as 26.4, 45.5, 78.3, and 92.5 mW cm–2. The results
obtained are shown in Figure 11(a and b). It can be seen
from the results that as the light intensity increases, the
photocatalytic efficiency of the synthesized material also
increases achieving an optimized value of 95.29% CR degra-
dation at 92.5 mW cm–2. The trend can be explained based
on the fact that an increase in light intensity causes an
increase of more amount of light on the catalyst surface
and thus a high rate of photoabsorption, which produces a
greater number of hydroxyl radicals resulting in high
photocatalytic activity [65].
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3.3 Kinetics of the reaction

The kinetic data obtained from photocatalytic experiments
were adjusted to L–H first-order kinetic model, as given by
the following equations [66,67]:

⎜ ⎟− ⎛
⎝

⎞
⎠

= ×
C

C
k tIn ,

e

0

app
(5)

= × =
+

V k C
k k C

k C1
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app

s

s

(6)

= +
k k k

C

k

1 1
,

app r s r

(7)

where C0 and Ce are the concentrations of CR at the initial
state (t = 0) and each time interval, kapp is the rate constant,
ks (L/mg) is the adsorption constant, and kr (mg/L min) is the
reaction rate. Figure 12(a) represents a plot of –ln(Ce/C0)
versus irradiation time for all studied concentrations of
CR, which gives the apparent constant (kapp) values as listed
in Table 1 with correlation coefficients (R2). The value of kapp
(0.034min−1 for 30 ppm, 0.028 for 40 ppm, and 0.025min−1

for 50 ppm CR) decreases with an increase in the CR con-
centration. The value of photocatalytic half-life value (t1/2 =
ln2/kapp) was evaluated as 20.38min for 30 ppm, 24.75min

for 40 ppm, and 27.72 min for 50 ppm CR concentration. The
values of kapp are very significant in correlating the char-
acteristics of the photocatalytic reaction with the L–Hmodel
at low dye concentrations. Figure 12(b) represents the graph
(1/kapp) versus CR concentration, which appears as linear,
suggesting the validity of the L–Hmodel with photocatalytic
data of CR degradation. Using equation (7), the value of the
adsorption constant (ks) and the reaction rate (kr) were
found to be 0.42 L/mg and 0.76mg/L min, respectively. The
value of kr was found to be greater than the value of ks
which suggests that photoabsorption is the rate-determining
step, i.e., the photocatalytic reaction starts with the absorp-
tion of light by the surface of the catalyst [68].

3.4 Scavenger experiment and mechanism
of photodegradation

To evaluate the type of ROS involved in CR degradation,
scavenger experiments were performed by taking 10 mg of
Co–NiWO4 NPs with 30 ppm of CR with 1.5 mmol each of
isopropyl alcohol (IPA) for •OH radical, benzoquinone (BQ)
for •O2

− radical, acrylamide (AA) for e–CB, and potassium iodide
(KI) for h+vb under visible solar radiation for 90min [56,69]. The
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Figure 12: (a) –ln(Ce/C0) versus irradiation time for all studied concentrations of the CR plot. (b) L–H plot for (1/kapp) versus CR concentration.

Table 1: L–H first-order kinetic parameters for photocatalytic degradation of CR by Co–NiWO4 NPs

CR concentration (ppm) kapp Error t1/2 R2 kr ks

30 0.034 2.07 × 10−4 20.98 0.999 0.76 0.42
40 0.028 1.66 × 10−4 24.75 0.999
50 0.025 2.66 × 10−4 27.72 0.999
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obtained results after the reaction are shown in Figure 13
which suggested that it is •OH radicals that act as primary
ROS in CR degradation as, in the presence of IPA, maximum
suppression of photocatalytic efficiency (63.34%) occurs.

The hypothetical reaction mechanism of CR degrada-
tion is given as [3–5] follows:
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As the solar radiation falls on the surface of the cata-
lyst, the photoabsorption process occurs in which the exci-
tation of an electron from the valence band (VB) to the
conduction band (CB) occurs, thus creating a hole (h+) in
VB and photogenerated e– in CB. The holes interact with
water molecules of the media and thus oxidize them to
highly excited •OH radicals. Similarly, photogenerated e–

in CB interacts with the surface adsorbed oxygen on
Co–NiWO4 NPs and thus transforms them to highly reac-
tive •O2

– radicals, which further combine with protons (H+

ions) to form •OH2 radicals. These •OH2 radicals further
unite to form H2O2, which is further attacked by photogen-
erated e– and thus form •OH radicals, which are respon-
sible for the mineralization of CR [60,70].

3.5 Effect of leaching experiments

Various radiation processes such as photolysis (CR solution
under radiation without catalyst), adsorption (CR solution
with the catalyst in the dark), and CR solution with cata-
lyst under UV and visible light were tested under opti-
mized conditions. The results obtained are shown in
Figure S4(a and b), which suggest that under visible light
radiation CR is degraded to a maximum (94.96%). The
effect of photolysis (2.13%) was negligible while adsorp-
tion plays a significant role by adsorbing 64.23% of the
CR dye and UV light resulted in 86.19% of CR degradation.
Therefore, for the best possible results, visible light as radia-
tion was chosen for further photocatalytic experiments.

Figure 13: Effect of scavengers on the photocatalytic efficiency of
Co–NiWO4 NPs under optimized conditions.
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3.6 Reusability and TOC test

The stability and reusability of the synthesized material are
important aspects of experimental studies and to evaluate
this, photocatalytic experiments were performed under
optimized reaction conditions in a cyclic mode. In cycle 1,
10mg of Co–NiWO4 NPs was dispersed in 20mL of 50 ppm
CR solution at pH 4, a temperature of 328 K, visible light
power intensity of 92.5mW cm–2 for 90min. After the com-
pletion of the reaction, the material was separated by cen-
trifugation and the supernatant was utilized under a UV–Vis
spectrophotometer for the remaining concentration of CR
after degradation. The collected material was washed with
distilled water and ethanol and dried in a hot air oven at
50℃ for 2 h. The material was again utilized for cycle 2 of CR
degradation and regeneration. This procedure was repeated
till four cycles of regeneration and the obtained results are
shown in Figure 14(a), which suggests even after four con-
secutive cycles of reuse, the photocatalytic efficiency of the
material decreased from 96 to 92%. The reusability experi-
ments suggested that the synthesized material is highly
stable toward photocatalytic degradation of CR dye.

The mineralization of CR by Co–NiWO4 NPs was fol-
lowed by total organic carbon (TOC) analysis using a TOC
analyzer (Matelar Toledo). The results obtained are shown
in Figure 14(b), which suggest that as the irradiation
time increases, the TOC removal (%) increases continu-
ously and finally the material achieves a total of 72% TOC
removal. The TOC (%) was calculated using the following
equation:

⎜ ⎟( ) = ⎛
⎝

− ⎞
⎠

×TOC %
TOC TOC

TOC
100.

0 f

0

(8)

3.7 Comparison with the literature

To check the add-on information concluded by the present
study to the literature, the reaction conditions with maximum

efficiency toward organic pollutants were compared and are
given in Table 2.

4 Conclusion

The current study focuses on the hydrothermal synthesis
of Co-doped NiWO4 NPs at 180℃, utilizing a Teflon-lined
autoclave. The results revealed significant morphological,
crystallographic, and spectroscopic changes induced by Co
doping in the nanocrystalline solid. The XRD spectra of
Co–NiWO4 NPs displayed sharp peaks, indicating a crystal-
line nature with a wolframite monoclinic phase. The UV
spectra of Co–NiWO4 NPs exhibited two broad bands at 354
and 667 nm, suggesting that the material is active in both UV
and visible light regions. EDX analysis confirmed the presence
of elements in stoichiometric proportions, ensuring the purity
of the pristine and doped materials. The synergistic effect of
dopants led to alterations in various parameters such as d
spacing, atomic positions, orientations, average crystallite
size, surface morphology, and thermal stability. Notably,
the energy band gap reduced from 3.75 (for NiWO4) to
1.75 eV in Co–NiWO4 NPs, resulting in enhanced photocata-
lytic activity toward CR degradation. The photocatalytic effi-
ciency increased from 38.13% with pristine NiWO4 to an
impressive 88.20% with Co–NiWO4 NPs, reaching 95% after
optimizing the reaction conditions. The optimized para-
meters included 50 ppm CR concentration, 10mg catalyst
dose, pH 4, an irradiation time of 90min, a temperature of
328 K, and a light intensity of 92.5 mW cm–2. The photocata-
lytic data fit well with the L–H pseudo-first-order model,
with kapp values of 0.034min–1 for 30 ppm, 0.028min–1 for
40 ppm, and 0.025min–1 for 50 ppm CR, displaying a correla-
tion coefficient of 0.99. Trapping experiments revealed that
•OH radicals primarily acted as ROS in CR degradation.
Moreover, reusability experiments demonstrated the high
stability of the synthesized Co–NiWO4 NPs for photocatalytic
CR degradation. The findings strongly support the out-
standing efficiency of Co–NiWO4 NPs in treating organic

Table 2: Comparison with the literature

Materials Light source used Dye used Irradiation time (min) %CR degradation Ref.

Ag/ZnO UV light CR 180 81.60 [61]
Graphene−TiO2 Sunlight CR 60 90.00 [71]
MnFe2O4/TA/ZnO Xenon lamp CR 90 84.20 [72]
P−ZrO2CeO2ZnO LED light CR 250 85.85 [73]
Doped ZnO-Gd Visible light CR 120 68.02 [74]
CS-BiOCl/ZnO UV light CR 40 93 [75]
Co–NiWO4 Visible light CR 90 95.00 Present study
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pollutants in wastewater. As prospects, we intend to explore
the photocatalytic water splitting and hydrogen production
potential of these multi-metal tungstate NPs.
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