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Abstract: In this study, graphene nanoplatelets (GNPs) and
titanium dioxide nanofillers were added to epoxy resin
P-5005 at five different weight percentages (wt%), viz., 1,
5, 10, 15, and 20 wt%. The tensile properties of the nano-
composites were experimentally tested following ASTM
D638-14. Then, the above-mentioned nanocomposites were
applied as adhesives for an overlap joint of two A5055 alu-
minum sheets. The apparent shear strength behavior of
joints was tested following ASTM D1002-01. Moreover,
experimentally obtained results were applied to train and
test machine learning and deep learning models, i.e., adap-
tive neuro-fuzzy inference system, support vector machine,
multiple linear regression, and artificial neural network
(ANN). The peak tensile strength (TS) and joint failure load
(FL) values were observed in epoxy/GNP samples. The ANN
model exhibited the least error in predicting the TS and FL
of the considered nanocomposites. The epoxy/GNP nano-
composites exhibited the highest TS of 28.49MPa at 1 wt%,

and the peak overlap joints exhibited an FL of 3.69 kN at
15wt%.

Keywords: graphene nanoplatelets, titanium dioxide, mechan-
ical characteristics, machine learning

1 Introduction

Epoxy resin is one of the most vital structural adhesives,
widely popular in aerospace, automotive, electronics, civil,
and packaging industries. Recently, the adhesive industry
has changed significantly by including new formulations,
raw materials, substrates, operation conditions, applica-
tions, and curing processes [1]. Therefore, properties such
as resistance to failure at vibration and fatigue loading,
resistance to thermal cycling and high service temperatures,
and optimum curing conditions have to be considered in
epoxy adhesives. Numerous studies aimed to develop multi-
functional epoxy adhesives by mixing epoxy with a second
material as a filler, such as carbon nanotubes (CNTs), gra-
phene, Al2O3, CaCO3, SiO2, ZrO2, titanium dioxide (TiO2) and
so on. In recent years, the size of fillers has shifted from
micro- to nano-scale, resulting in much superior multifunc-
tional characteristics in nanocomposite adhesives compared
to neat adhesives and their composites having conventional
micro-particles [2,3]. The addition of nanoparticles to epoxy
adhesive joints improves their mechanical properties, joints’
failure load (FL), thermal stability, and electrical conductivity
[4–7]. However, it varies based on several parameters, such
as particle characteristics, functional groups on the nano-
particle surface, size distribution, size, content, and shape,
defining its compatibility with the epoxy matrix [8–12].

Graphene is a carbon allotrope that consists of a one-
atom layer and its lattice nanostructure is arranged in a 2D
honeycomb structure. Since 2004, it has been considered
one of the most stiff and strong materials. The Young’s
modulus and tensile strength (TS) of graphene are around
1 TPa and 130 GPa, respectively [13]; moreover, the thermal
conductivity is around 5,000W/mK [14]. Multilayered
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graphene, also known as graphene nanoplatelets (GNPs),
has become a very desirable polymer matrix filler with a
great price-to-performance ratio and is utilized in diverse
fields, i.e., energy, defense, electronics, transport, medi-
cine, etc. TiO2, which is also known as titanium, is a natural
mineral available in various crystalline structures, and its
applications include the textile industry, food products,
coatings, plastics, pharmaceuticals, and so on.

Multiple research studies have investigated the mechan-
ical, thermal, and electrical characteristics of epoxy adhe-
sives reinforced with GNP and metal-based TiO2. Singh
et al. [15] studied the effect of GNP and multi-walled carbon
nanotubes (MWCNTs) on the mechanical characteristics of
epoxy-based nanocomposites, and the results showed that
the epoxy/GNP composite provided greater tensile and com-
pressive strengths compared to MWCNT/epoxy composites,
while the latter exhibited a greater toughness compared to
epoxy/GNP. Hence, graphene possesses an outstanding spe-
cific surface area, in addition to significant mechanical and
electrical properties, which makes graphene the greatest
compared to other carbon allotropes for developing multi-
functional and structural-reinforced composites [16,17]. More-
over, the dispersion of graphene in the composites and the
surface friction force of graphene are the two main proper-
ties that have an impact on the ability of graphene to improve
damping [18–20].

Mustafa et al. [21] have studied the influence of MWCNTs
on mechanical characteristics and thermal stability of hybrid
nanocomposites. The hybrid polymer structure was made
from epoxy resin mixed with different weight percentages
of zirconium dioxide (ZrO2) and yttrium oxide (Y2O3). The
structure was further strengthened with 0.1 wt% MWCNT
through a hand lay-up casting process. It was reported that
the TS and Young’s modulus were improved by 24 and 37% in
comparison with pure epoxy resin. Kumar et al. [22] investi-
gated the tensile and dynamic mechanical properties of
epoxy/MWCNT/TiO2 hybrid nanocomposites at 0.25, 0.5, 0.75,
1, and 1.5 wt%. The results revealed that the TS of epoxy was
increased by 24% by the addition of 1wt% MWCNTs. Mod-
eling and simulation as well as artificial intelligence have
emerged in a wider spectrum for diverse science and engi-
neering applications [23–25]. Even though experimental
testing is drastically crucial for the development of new
material, machine learning reduces the computational
time and cost, since the needed platforms to run machine
learning algorithms mainly have free access and can be
found easily [26–28]. Artificial intelligence was recently
implemented by numerous studies to analyze the character-
istics of composite materials, natural fiber composites, and
nanocomposites [29–33]. Pati [34] utilized artificial neural
networks (ANNs) to predict the wear properties of glass/

epoxy composites, and the input data included the RBD con-
tent, erodent size, erodent temperature, impact velocity, and
impingement angle. Antil et al. [35] applied the response
surface metamodel and ANN to evaluate the erosion char-
acteristics of S glass composites, and the input parameters
consisted of the impingement angle, nozzle diameter, and
slurry pressure. Jayaganthan et al. [36] classified the con-
ductivity of epoxy reinforcedwith 66wt% silica fillers, 0.7 wt
% ion trapping particles and coated with four different coal
types by implementing a support vector machine (SVM),
logistic regression model, K-nearest neighbors, and a
multi-layer perceptron approach in their LIBS spectral
data. Rahman et al. [37] applied a convolutional neural
network for the analysis of the pull-out force of epoxy/
CNT nanocomposites.

The goal of the current research was to study the char-
acteristics of epoxy reinforced with GNP and TiO2 nanopar-
ticles for aluminum single-lap joint application by testing
the tensile properties of the considered nanocomposites,
examining nanocomposite joints’ FL, and developing an
SVM, multiple linear regression (MLR)-based metamodel,
adaptive neuro-fuzzy inference system (ANFIS), and ANNs.
The effect of increasing filler weight percentages of 1, 5, 10,
15, and 20 wt% was examined.

2 Methodology

TiO2 and GNP nano-particles were added into an epoxy
matrix with five different percentages, i.e. 1, 5, 10, 15, and
20 wt%. First, the tensile behaviors of these nanocompo-
sites were evaluated following the ASTM D638-14 tensile
testing standard, followed by scanning electron microscopy
for testing the fracture surface morphology. Moreover, the
aforementioned nanocomposites were applied as an overlap
adhesive between two aluminum plates. The apparent shear
strength properties of the adhesives were tested following
ASTM D1002-01. The experimental results were utilized to
train and test machine learning and deep learning models,
i.e., ANFIS, SVM, MLR, and ANN to evaluate the ability of the
aforementioned to predict the mechanical properties of
nanocomposites.

2.1 Experiment

Epoxy resin P-5005 by Polymex was utilized in this study as
a matrix for the nanocomposite adhesive. The resin-to-
hardener mixing ratio (2:1) and matrix-to-filler
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compositions were prepared using a high-precision elec-
tronic balance. Thus, in order to achieve a homogeneous
nanocomposite, the nanocomposites were prepared via the
following steps: a specific amount of epoxy was added into
the mixing container, then nanoparticles were added upon
a desired weight percentage, and the mixture was stirred
with a plastic spoon for 25 min. To ensure that the nano-
particles in the epoxy were evenly distributed, the mixture
was left at room temperature for an extra 2 h. After the
addition of the curing agent, the mixture was mixed for
3 min, and then poured into a mold to develop tensile test
specimens and to prepare lap-shear test samples The A5055
aluminum sheets (1 mm thick) were considered as an
adherent material. Moreover, the sheets’ surfaces were
wiped and treated aiming to enhance the bonding between
the nanocomposite material and the aluminum sheets.
GNPs and TiO2 were supplied from Nanografi. GNPs had
a purity of 99.9%, 5 nm thickness, 30 μm diameter, gray in
color, a conductivity between 1,100 and 1,600 s/m, and a
specific surface area of 170m2/g. TiO2 nanoparticles were
of 20 nm size, 99.9% purity, 4.26 g/cm3 density, white in
color, and 79.87 g/mol molecular weight.

2.1.1 Tensile test

The TS values of GNP and TiO2-reinforced epoxy nanocom-
posites were tested following the ASTM standard D638-14.
Dog bone-shaped samples were prepared with 200mm
length, 57 mm width, 3.2 mm thickness, and a gauge length
of 50 mm. First, the epoxy resin and its hardener were
mixed in a 2:1 ratio and then the nanoparticles were added
and stirred until the mixture became homogeneous. A layer
of releasing agent was sprayed into the woodenmold before
pouring the mixture. Then, the samples were cured at
room temperature for 12 h. The test was conducted on

an INSTRAM 338571 tensile machine with a testing speed
of 5 mm/min.

2.1.2 Lap joint

A5055 aluminum was selected as a substrate material.
Single lap joint specimens were prepared by first slightly
roughening the overlap area using an emery cloth to
strengthen the bonding between the adhesive and sub-
strates, followed by immersing the latter in a detergent
to prevent any unwanted dirt, grease, or oil. Then, the
samples were removed from the solution, washed with
deionized water, and dried using a tissue. An epoxy/nano-
particles mixture was then spread for a 25 mm × 25 mm
overlap area, keeping a grip length of 200 mm (Figure 1).
Thus, the thickness of the cured adhesive was around
0.5 mm. In order to ensure the results’ accuracy and avoid
undesired errors, three replicates were prepared for each
nanocomposite’s composition, i.e., 1, 5, 10, 15, and 20 wt%.
An INSTRAM 338571 tensile machine (10 kN) was utilized
for conducting the single lap joint test at a testing rate of
1 mm/min.

2.2 Machine learning and deep learning
predictions

Machine learning is derived from artificial intelligence,
which is a method that trains the computer to perform
tasks that are usually specific for humans and acquired
through experience. Increasing the amount of learning
samples usually enhances the precision of the algorithm.
Moreover, the implementation of deep learning in research
attained wide popularity since 2006, as it was applied to

Figure 1: The geometry of adhesively bonded aluminum joints.
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object recognition, machine translations, speech recogni-
tion, and image segmentation. Basically, due to their neural
network structures, most deep learning methods could be
considered deep neural networks. Although there are super-
vised and unsupervised machine learning algorithms, the
former is more suitable for manufacturing implementations
due to the labeled data it provides:
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An easy approach for evaluating the training model
precision is called prediction error, where the aforemen-
tioned is validated using novel input data, which were not
considered in the testing stage, which thereby contributes
to defining the error percentage. Hence, root mean square
error (RMSE) is a prevalent method used to define a
model’s error:

( )∑= −
−N

p qRMSE
1

,

i

N

i i

1

2 (2)

where N is the whole training data, pi is the predicted
deliberate information, and qi is the real value.

In this study, ANFIS, SVM, ANNs, and the response
surface metamodel were applied to evaluate and define
the most suitable approach for the prediction of the lap
shear strength and TS for input parameters not considered
in the experiment, as well as to determine the design space
based on the considered parameters. The proposed model
employs nanoparticle types and weight percentages as input.
The tensile test and shear lap experimentally obtained results
were considered for training, validation, and testing. The

precision of the prediction models was assessed by the
mean value of absolute percentage error.

3 Results and discussion

The tensile and shear characteristics obtained from experi-
mental and machine learning of TiO2 and GNP-reinforced
epoxy are presented in this section.

3.1 Tensile test

In this section, tensile test results are presented, whichmainly
highlight the TS values of epoxy/GNP and epoxy/TiO2 nano-
composites for five different compositions. Figure 2 illustrates
the impact of increasing TiO2 and GNP nanoparticles from 1 to
20wt% on the TS of the end nanocomposites.

As exhibited in Figure 2, increasing the TiO2 content
increased the TS from 17.96 to 25.23 MPa at 10 wt%, which
was the highest TS observed in TiO2-reinforced nanocom-
posites. Meanwhile, the addition of GNP in the epoxy
matrix reached the highest TS value of 28.49MPa at 1wt%
followed by a gradual decrease to reach 20.22MPa at 20wt%.
Close TS values of 25.23 and 25.07MPa were observed in both
nanocomposites at 10wt%, respectively. Thereby, GNP and
TiO2 nanocomposites followed a descending trend to reach
20.22 and 20.37MPa at 20wt%. The highest TS value recorded
in this study was observed in GNP-reinforced epoxy at 1 wt%,
whichwas quite similar to the results obtained by Nitesh et al.
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Figure 2: TS of epoxy/TiO2 and epoxy/GNP for 5 wt%.
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[38], where a 1wt% nanoparticle concentration exhibited the
highest tensile behavior, which was ∼60% higher than the
corresponding values obtained for neat epoxy. The decrease
in the TS when the filler content is further increased above
the optimal concentration is caused by the agglomeration of
the nanofillers, which thereby leads to weaker interface
bonding between the matrix and the fillers. Figure 3 illus-
trates SEM micrographs of the epoxy fracture surface at 1,
20, 5, 10, and 15wt% GNP.

Larger agglomerates were observed when the GNP
content exceeded 1%. The 20% GNP ductile epoxy specimen
exhibited a significant agglomeration. Referring to the ten-
sile test results, GNP/epoxy samples with GNP contents
exceeding 5% exhibited decreased tensile modulus and
TS, which could be due to the increase in the size and
amount of agglomerates inside the nanocomposite [39].

The fracture surface of the nanocomposites became mark-
edly rougher upon the increase of the nanofiller content.
Figure 4 shows the SEM of epoxy/TiO2 at five different
weight percentages.

As clearly shown in Figure 4, TiO2 exhibited a good
dispersion along with a good interface compatibility with
the epoxy matrix. Furthermore, scanning electron micro-
graphy of TiO2 showed that the manufactured nanoparticles
were made up of small, irregularly shaped, fine particles.
Peeling away from the grain boundaries indicates brittle
fracture, whereas the presence of many dimples indicates
ductile fracture surface. Fracture in composites is caused by
the initiation and expansion of dimples, fracture of the
layers or reinforcing particles, and interface detachment.
The SEM graphs show that these fracture surfaces exhibit
ductile and cleavage modes of fracture.

Figure 3: Fracture surface of nanocomposite epoxy with different GNP contents: (a) 0 wt%, (b) 1 wt%, (c) 5 wt%, (d) 10 wt%, (e) 15 wt%, and (f) 20 wt%.
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3.2 Lap joint

The results of the apparent shear strength of aluminum
specimens adhesively bonded with single lap joints are
given in this section. GNP and TiO2 nanocomposites at
five different weight fractions were considered adhesives
for aluminum overlap joints. Figure 5 shows FL versus
displacement of epoxy/TiO2 at 10 wt%.

As exhibited in Figure 5, ductile behavior was
observed in epoxy/TiO2 overlap joints; the force vs dis-
placement behavior started with a linear elastic increase
to reach a force of 1.108 kN at 0.075 mm. Then, the force
increased gradually along with a notable increase in the
displacement, where it attained a maximum value of
1.877 kN at 0.567 mm, right before its failure. Figure 6

displays the FL and displacement behavior of the epoxy/
GNP lap joint at 15 wt%.

As shown in Figure 6, the force vs displacement of the
epoxy/GNP nanocomposite at 15 wt% increased linearly to
reach a value of 1.553 kN at 0.119 mm. Then, it followed an
ascending trend to exhibit its peak force of 3.081 kN at
0.806mm,whichwas straight before its ductile failure. Although
the nanoparticles were evenly distributed throughout the har-
dened resin, the TS of the correspondingmodified resin likewise
significantly decreased [40]. The poorer interlocking system
caused by inadequate dispersion within the composite matrix
may be the cause of the decreased bond strength shown in
specimens.

Figure 7 shows the comparison of the impact of increasing
the filler content on the maximum FL.

Figure 4: Fracture surface of the nanocomposite epoxy with different TiO2 contents: (a) 0 wt%, (b) 1 wt%, (c) 5 wt%, (d) 10 wt%, (e) 15 wt%, and
(f) 20 wt%.
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As displayed in Figure 7, the addition of 1 and 5 wt%
TiO2 nanoparticles decreased the joint shear strength com-
pared to pure epoxy, revealing average FLs of 1.73 and 1.57
kN, respectively. Further increasing the weight percentage
of TiO2 led to an increase in the FL, which exhibited its
peak value of 3.07 kN at 20 wt%. A common behavior was
observed at 1 wt% GNP, where the joint FL decreased to
1.52 kN, which was around 60% lower than that of pure
epoxy joints. Hence, increasing the GNP content contrib-
uted to increasing joint FL to reach its highest FL of 3.69 kN
in the nanocomposite with 15wt% GNP, followed by a
decrease at 20 wt%. Throughout the considered composi-
tions, 20wt% revealed peak FL in TiO2 nanocomposites,
whereas 15wt% was an optimum composition for epoxy/
GNP nanocomposites, which was also considered as highest
FL in this study (3.69 kN). The opposite FL behavior of both
nanocomposites at 20wt% can be explained by adapting
some of the important properties of nanocomposites, i.e.,
matrix to particle interface quality. In other words, if the
interaction between the matrix and nanoparticles is weak,
the particles are unable to withstand a part of the applied
external loads to the nanocomposite, thereby the yielding of
amorphous glassy polymers switches from cavitational to
shear, leading to a brittle to ductile transition. It is worth men-
tioning that there are two types of damage, i.e., adhesion and
cohesion, and their occurrence is strongly correlated to the

homogeneous dispersion of nanoparticles in the epoxy matrix.
Therefore, the adhesion strength can be affected by physical
and chemical reactions between the epoxy and nanofiller
materials.

3.3 Machine learning and deep learning

MLR, ANNs, ANFIS, and SVM were applied in the current
study to define the most suitable machine learning method
to predict shear force and TS of nanocomposites, as well
as specify design spaces of corresponding parameters.
The results of the aforementioned machine learning tools
in predicting TS and overlap joint FL of GNP and TiO2

nanocomposites are listed in this section. A regression
model was applied in this study by the curve fitting tool
(Cftool) in MATLAB. Response surface models of GNP and
TiO2 nanocomposites were projected via cubic polynomial
prediction functions. Moreover, output data were TS and
FL, while input data were weight percentage and fiber
type. Furthermore, the response surface metamodel cre-
ates a surface fit, which considers the whole design space,
providing the ability to predict responses using input para-
meters not considered in the experiment. Figure 8a and b
shows the developed response surfaces.

The Cftool in MATLAB was used to develop the RSM
for the TS and overlap FL of TiO2 and GNP nanocompo-
sites. The RMSE, R-square adjusted, and sum of square
error (SSE) were considered to evaluate goodness of
fit. For proper surface fit, the values of SSE and RMSE
should be as close as possible to 0. Meanwhile, the
adjusted value of the R-square ranges from 0 and 1, and
a good fit should be close to 1. Moreover, the function
utilized to develop the response surface of the TS of nano-
composites is
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Figure 5: Force vs displacement of the epoxy/TiO2 lap joint at 10 wt%.
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where x is the nanoparticle type, y is the weight percent,
and p00 =12.92, p10 = 4.418, p01 = 285.6, p11 = −22.2, p02 =

−2,560, p12 = 7.554, and p03 = 6,555. The goodness of fit
attained an RMSE of 2.896, adjusted R-square of 0.3909, R-
square of 0.7232, and SSE of 41.94.

For the RSM model of overlap joints FL, the applied
function was

( ) = + × + × + × × + ×

+ × × + ×

f x y p p x p y p x y p y

p x y p y

, 00 10 01 11 02

12 03 ,

2

2 3

where x is the nanoparticle types, y is the weight percent,
and p00 = 2.708, p10 = −0.3022, p01 = −62.74, p11 = 22.09, p02
= 555, p12 = −97.93, and p03 = −1,213. In addition, SSE = 1.168,
RMSE = 0.4832, adjusted R-square = 0.4671, and R-square =
0.7578.

All components of the prediction model in this study
were trained using the Levenberg–Marquardt algorithm,
which exhibited a stable and swift convergence. Figure 9
illustrates the ANNmodel design: it consisted of 2 inputs, 10
hidden layers, and a single output.

A neural network fitting tool in MATLAB was utilized for
the generation of the ANN models. Nanoparticle types and
weight percentages were considered as input data, whereas
the TS and FL were the model outputs. Experimental results
of the tensile test and overlap shear test were considered to
generate two corresponding models, and 70% of the data

were utilized for training, 15% for validation, and 15% for
testing. Figure 10 shows the schemes of TS regressions for
TiO2 and GNP nanocomposites for five different weight per-
centages, i.e., 1, 5, 10, 15, and 20wt%. This graph provides a
correlation between experimental data (target) and ANN
output data.

As shown in Figure 10, the dotted line denotes the best
achievable correlation, while the solid line represents the
correlation between output and target values. The overall
regression coefficient of the TS ANN model was 0.93712 and
that of the FL ANN model was 0.92341, which can be con-
sidered satisfactory as the values are close to 1. The
MATLAB regression learner tool was used to generate the
SVM model, and input parameters included two nanopar-
ticle types and five weight percentages. Testing and training
output datasets created by the FL SVM model are shown in
Figure 11: yellow dots illustrate predicted data, while blue
dots are the true data.

Furthermore, SVM models were trained using tensile
and FL experimental results, Gaussian was considered as
the kernel function, and fine Gaussian SVMwas the selected
preset. However, for the TS SVM model RMSE = 4.2839, MSE
= 18.352, and R-square = −0.36, while for the FL SVM model
RMSE = 0.75973, MSE = 0.57719, and R-square = −0.13. The
considered ANFIS models include two inputs (nanoparticle
type and weight percentage), and two and five membership

Figure 8: Response surface fitting for the (a) TS and (b) joint FL.

Figure 9: The ANN model structure.
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Figure 10: Regression plot of the ANN model.

Figure 11: FL predict versus real SVM data. Figure 12: The ANFIS model structure.
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functions for the first and second inputs, respectively. Figure
12 illustrates the ANFIS model structure.

ANFIS models were generated using the MATLAB Neuro-
fuzzy designer tool. The models were trained using 75% of

tensile and joint FL experimental results, yet the remaining
25%were for testing. The Gaussmfmembership function with
fixed output was used to create the FIS model. Training was
completed at epoch 1, with an average testing error of 1.5265 ×
10−6. Figure 13 displays the TS ANFIS model plot, which shows
the FIS output and training data.

3.3.1 ML vs experimental results

Table 1 lists TS results and predicted data using machine
learning models of TiO2 and GNP nanocomposites. As
shown in Table 1, the predicted TS using ANN showed a
drastic compliance with experimental TS results, exhi-
biting 3.67% prediction error, while TS values obtained
from MLR, SVM, and ANFIS revealed a significant agree-
ment with errors of 5.27, 5.37, and 6.74%, respectively. This
highlights the ability of these models to be trained and

Figure 13: Plot of ANFIS for TS prediction.

Table 1: Predicted TS values using MLR, ANN, SVM, and ANFIS

Matrix Wt% Experiment (MPa) MLR (MPa) ANN (MPa) SVM (MPa) ANFIS (MPa)

TiO2 0 17.96 17.34 18.3 18.9419 17.96
TiO2 1 19.29 19.72 17.8 19.5465 19.29
TiO2 5 24.28 24.95 24.44 23.8802 22.3731
TiO2 10 25.23 24.71 24.91 24.8235 25.23
TiO2 15 21.60 21.54 20.52 22.0001 21.6
TiO2 20 20.22 20.36 20.26 20.623 20.22
GNP 0 17.96 21.76 21.24 22.5004 17.96
GNP 1 28.49 23.92 26.4 23.8548 21.1485
GNP 5 28.38 28.27 28.41 27.2574 28.38
GNP 10 25.07 26.98 24.86 24.6729 13.2474
GNP 15 24.06 22.80 24.11 23.667 24.06
GNP 20 20.37 20.64 20.5 20.7634 20.37
Error% 5.27% 3.67% 5.37% 6.74%

Table 2: Predicted joint FL values using MLR, ANN, SVM, and ANFIS

Matrix Wt% Experiment (kN) MLR (kN) ANN (kN) SVM (kN) ANFIS (kN)

TiO2 0 2.53 2.41 2.475 2.459 2.53
TiO2 1 1.73 2.04 1.909 2.2343 1.73
TiO2 5 1.57 1.36 1.573 1.6695 1.57
TiO2 10 2.01 1.70 2.014 2.0799 1.3538
TiO2 15 1.96 2.50 1.959 2.0263 1.96
TiO2 20 3.07 2.85 2.664 3.0036 3.07
GNP 0 2.53 2.10 1.952 2.4637 2.53
GNP 1 1.52 1.95 1.937 2.2611 1.52
GNP 5 1.90 1.92 1.901 1.9664 1.5719
GNP 10 2.44 2.63 2.223 2.3993 2.44
GNP 15 3.69 3.31 3.692 3.0663 3.69
GNP 20 2.89 3.05 2.887 2.8201 0.8201
Error% 13.00% 7.21% 10.33% 10.24%
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used for the prediction of the TS of nanocomposites. More-
over, GNP nanocomposite at 5 wt% exhibited the highest TS
between all implemented machine learning models. The
most convenient machine learning technique for the pre-
diction of the TS of nanocomposites is ANN as it exhibited
the least prediction error of 3.67%. Table 2 displays experi-
mental overlap FL results and predicted data using machine
learning techniques of TiO2 and GNP nanocomposites.

As shown in Table 2, MLR, SVM, and ANFIS models
exhibited prediction errors of 13.00, 10.33, and 10.24%,
respectively. However, the overlap FL obtained from the ANN
model showed the least prediction error, a value of 7.21%, which
therefore can be considered themost suitable prediction approach
across all the utilized models for predicting the overlap joint FL of
the nanocomposites. Peak FL values were observed in the GNP
nanocomposite joints at 15wt%.

4 Conclusion

In this study, the tensile properties of TiO2 and GNP nano-
composite were evaluated following the ASTM standard
D638-14. Moreover, the considered nanocomposites were
utilized as an adhesive for an overlap joint of two A5055
aluminum sheets. Then, their apparent shear strength
properties were evaluated following the ASTM D1002-01
standard. Five weight percentages of different nanoparticles
were considered (1, 5, 10, 15, and 20wt%). Furthermore, for
evaluating the capability of deep learning and machine
learningmodels in predicting the mechanical characteristics
of nanocomposites, the results obtained from the experi-
ment were applied to train and test the considered models,
i.e., ANFIS, SVM, MLR, and ANN.

However, a maximum TS behavior was witnessed in
epoxy/GNP at 1 wt%, which exhibited a value of 28.49MPa,
whereas for the overlap joints FL, the highest value
recorded in this study was 3.69 kN, which was observed in
epoxy with 15wt% GNP. ANN can be considered a conve-
nient machine learning model for the prediction of the joint
failure shear load and TS of nanocomposites since it showed
the least prediction error of 3.67% in predicting TS and 7.21%
in the prediction of FL.
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