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Abstract: Green synthesis of zinc oxide (ZnO) nanoparti-
cles (NPs) using various plant extracts as reducing and
capping agents has gained attention in recent research.
The green synthesis of ZnO NPs offers several advantages
such as being simple, eco-friendly, safe, cost-effective, and
reproducible approach with high stability. Hence, this
article provides an overview of zinc metal and ZnO com-
pounds, and traditional chemical and physical synthesis of
Zn0 NPs with primary focuses on the green synthesis of
ZnO NPs. This study discusses various plant extracts used
and the proposed mechanisms in the green synthesis of
Zn0 NPs. Additionally, it explores the cytotoxic mechan-
isms of the green-synthesized ZnO NPs and addresses the
various biomedical applications of ZnO NPs, including anti-
bacterial, anticancer, antidiabetic, antioxidant, antifungal, anti-
viral, antiparasitic, anti-inflammatory, and wound healing.
Moreover, the review critically discusses the toxicity of ZnO
NPs and emphasizes the need for more toxicological studies to
ensure the safety and facilitate the risk assessments and risk
management of ZnO NPs. Furthermore, this review underlines
the challenges associated with the translation process of ZnO
NPs from bench to market, including the complex and time-
consuming regulatory approval process for ZnO NPs, which
requires a multidisciplinary approach involving scientists, reg-
ulators, and manufacturers.
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1 Introduction

Nanotechnology is the science of design, synthesis, charac-
terization, and development of nanomaterials [1,2]. Nano-
particles (NPs) are objects that range in size from 1 to
100 nm [3,4]. They are used to target drugs to a specific
site in the body by passive or active targeting strategies,
which helps reduce the side effects of drugs [5]. Presently,
metal oxide NPs (MONPs) are synthesized and are used in
many biomedical applications [6,7]. These MONPs include
iron oxide NPs (Fe,0O; NPs and Fe30, NPs), magnesium
oxide NPs, zinc oxide NPs (ZnO NPs), titanium dioxide
NPs, and copper oxide NPs [8-10]. MONPs are being used
in diverse fields, including medical treatments, industries
like solar and oxide fuel batteries for energy storage, cos-
metics and sunscreens, and in textiles [11,12].

Among other MONPs, ZnO NPs have received signifi-
cant attention due to their distinct physicochemical
properties and potential biomedical applications such as
antibacterial, anticancer, antidiabetic, antioxidant, anti-
fungal, antiviral, antiparasitic, anti-inflammatory, and in
wound healing [13-17]. The characteristic properties of
ZnO NPs including size, crystallinity, morphology, and che-
mical composition showed great potential in biomedical
applications [18,19]. The nanoscale size of ZnO NPs can
modify their mechanical, chemical, structural, morpholo-
gical, electrical, medicinal, and optical properties [19].

Recently, the green synthesis approach has been adopted
to provide biocompatible and biodegradable ZnO NPs, making
them suitable for various biomedical applications [15,20]. The
green synthesis approach avoids the production of unwanted
or harmful by-products, offering a reliable, sustainable, and
eco-friendly synthesis approach [21,22]. This approach mini-
mizes the waste and environmental pollution resulting from
toxic substances generated during the chemical synthesis
process. In addition, it reduces the use of toxic solvents or
chemical agents required for chemical synthesis, forming
biocompatible and environmentally friendly NPs [23]. More-
over, green synthesis emerges as an inexpensive and simple
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approach where no sophisticated pieces of equipment are
required [24]. Finally, reducing and capping agents, essential
for the stabilization of the green-synthesized ZnO NPs, are
obtained from natural compounds available in the plant extracts,
limiting the use of toxic and expensive reagents [25,26].

The growing interest in the green synthesis of ZnO
NPs, its potential applications in various fields, including
biomedicine, with the intrinsic properties of the environ-
mentally friendly nature and cost-effectiveness makes it an
attractive choice to be reviewed. Therefore, this review aims
to provide deep insight information of plant-mediated green
synthesis of ZnO NPs recently described in the literature to
clarify the unique properties of ZnO NPs that can achieve
their optimal bioactivities. This article provides a compre-
hensive review of the synthesis methods of ZnO NPs, with a
particular emphasis on green synthesis using plant extracts.
The authors explore the mechanisms involved in the green
synthesis of ZnO NPs, the cytotoxic mechanisms underlying
their bioactivities, and a thorough discussion of their
potential biomedical applications. Additionally, a concise
discussion is made on the toxicological studies of green-
synthesized ZnO NPs, emphasizing the need for safety, risk
assessment, and risk management strategies. Moreover,
the authors address the challenges associated with the
translation process of ZnO NPs from basic research to
successful clinical applications and commercial products,
where a multidisciplinary collaboration involving scien-
tists, regulators, and manufacturers is needed.

2 An overview of zinc and ZnO

Zinc is an essential mineral for the body and is present in
the brain, bone, muscles, skin, hair, nails, and immune
system [27]. Additionally, Zn is a cofactor of >300 enzymes
in the body that help in the synthesis of proteins and
nucleic acids, maintaining DNA replication and repair,
and cell cycle progression and apoptosis [28]. Moreover,
Zn plays an important role in host defense against the
initiation and progression of cancer [28]. Furthermore,
Zn exhibits an antioxidant activity via the catalytic action
of copper/Zn peroxide dismutase, stabilizes membrane
structure by competing with iron and copper which are
redox active metals and protects proteins from oxidation
by binding to sulfhydryl groups. Further, Zn upregulates the
metal-binding protein metallothionein expression which is
very rich in cysteine and is an excellent scavenger of the
hydroxy free radical (-OH) [29-31]. Finally, Zn acts as an anti-
inflammatory agent by regulating the tumor nuclear factor-
kappa B (NF«p) transcription via the anti-inflammatory
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protein A20 and the receptor signaling pathway activated
by peroxisome proliferator-a [31-33]. Deficiency in Zn may
lead to the release of vitamin A from the liver due to the
reduced synthesis of plasma retinol-binding protein [33,34].

Zn0 has been listed by the US Food and Drug Administration
as “generally recognized as safe (GRAS)” [35]. Hence, it can
be used as a food additive, where Zn is considered an essen-
tial trace element that plays a vital role in the growth and
development of humans and animals [35,36]. Additionally,
ZnO is a II-VI semiconductor, where Zn and O are found in
groups 2 and 6 on the periodic table, respectively [37]. ZnO
has distinctive properties including chemical, sensing, optical,
semiconducting, and electrical conductivity [38]. Moreover,
Zn0 is characterized by a direct wide band gap of 3.3 eV in
the near UV spectrum, high exciton binding energy of 60 meV
at room temperature, and a natural n-type electrical conduc-
tivity [39]. These characteristic properties make ZnO a poten-
tial material to be used for a broad range of applications in
electronics, optoelectronic devices, and photocatalysis [40].

Although ZnO has a slight covalent characteristic, it
has a strong ionic interaction between Zn and O with higher
selectivity and heat resistance, compared with other organic/
inorganic compounds. The small size of ZnO improves the
Zn*" dissolution rate, making it more biocompatible with
normal body cells and a potential antibacterial, anti-inflam-
matory, and anti-tumor agent [41].

3 Chemical and physical methods
for the synthesis of ZnO NPs

The multitudinous applications of ZnO NPs in various
fields have raised their production. It has been reported
that the global production of ZnO NPs was 570 tons/year in
2010 [42] and between 32,000 and 36,000 tons/year in 2014
[43]. Additionally, it was expected that the production
would be between 1,600 and 58,000 tons/year by 2020
[42]. Yashni et al [44] estimated the production cost of
Zn0 NPs (<100 nm) synthesized from orange peel extract
to be 20.25 USD per kg, which was considered a cost-effec-
tive method.

Traditional chemical and physical methods have been
employed in the synthesis of ZnO NPs [16,45,46]. Chemi-
cally, ZnO NPs can be synthesized by sol-gel [47,48], sol-
vothermal [49], vapor deposition [50], co-precipitation [51],
hydrothermal [52,53], thermal decomposition [54], and elec-
trochemical reduction methods [55]. Whereas physically, ZnO
NPs can be synthesized by laser ablation [56], ultrasonication
[57], photoirradiation [58], ball milling [59], evaporation
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condensation [60], microwave-assisted combustion [61], sono-
chemical [62], and mechanochemical methods [63] (Figure 1).
These methods have many disadvantages such as high cost,
high impurities, instability, and limitations in reproducibility
and reliability [64,65]. In addition, they require toxic chemi-
cals that are hazard to the environment and medical applica-
tions [66]. Therefore, to avoid these disadvantages, alternative
eco-friendly and cost-effective green methods have recently
been employed to synthesize ZnO NPs [67-69].

4 Green synthesis of ZnO NPs

The green synthesis of ZnO NPs exhibited many advan-
tages like simplicity, eco-friendly, and biologically safe
[70-72]. The green synthesis method reduces the need of
using toxic chemicals and increases the limit to produce
pure NPs [73]. By using plants or unicellular microorgan-
isms (algae, bacteria, fungi, yeasts, and viruses) for NP
synthesis (Figure 1), the addition of stabilizing agents can
be reduced [74]. This is because plant phytochemicals (e.g.,
alkaloids, flavonoids, and polyphenols) and proteins secreted
by microorganisms act as reducing and stabilizing agents
which provide colloidal stability and prevent agglomeration
of NPs [75-77]. It has been shown that plant leaves are the
best source for the synthesis of metal and MO NPs. This is
because the phytochemicals, especially those present in plant
leaf extracts, play a dual role in reducing the metal ions and
stabilizing the NPs [20,21]. Additionally, plant waste products
or by-products are safe and eco-friendly because they are
composed of the leftovers of natural plant extracts [21,78].
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Moreover, other green resources such as egg albumin, L-ala-
nine, and starch have been used to synthesize ZnO NPs [45].
Tjaz et al [79] reported that the best method for the synthesis
of NPs is one that is not harmful to the environment. Thus,
the green method is the most preferable method. Table 1
summarizes the advantages and limitations of the chemical,
physical, and green synthesis of ZnO NPs.

The use of plant extracts was found to be more valu-
able than other biological organisms since it reduces the
duration of the reactions from days to hours and prevents
the risk and complicated process of preserving cell cultures
[86]. The green synthesis using plant extracts provides ZnO
NPs with an antibacterial effect that cannot be achieved
when using physical and chemical methods. This is because
the green synthesis coats the surface of the NPs with many
pharmacologically active biomolecules such as flavonoids,
organic acids, ketones, aldehydes, amides, quinones, or poly-
saccharides which enhance the ligand-based conjugation of
NPs to the bacterial membrane receptor [72,87,38].

In plant-mediated-green synthesis, the use of “ideal
solvents” and plant extracts (as natural resources) is essen-
tial to achieve biocompatible NPs, where the utilization of
plant extracts is a rather simple and easy process to pro-
duce NPs at a large scale relative to bacteria- and/or fungi-
mediated synthesis [21,89]. The “ideal solvents” such as
water, carbon dioxide (CO,), and ionic liquids such as hexa-
fluorophosphate (PF) or tetrafluoroborate (BF,) are employed
in the green synthesis of MONPs [21,90]. Water is always
considered an “ideal solvent” as it is the cheapest, non-toxic,
non-explosive, environmentally friendly, and most available
solvent [21,91]; whereas, CO, is a universal solvent that is avail-
able as liquid or supercritical solvent (fluid at temperature
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Table 1: Advantages and limitations of the chemical, physical, and green synthesis methods of ZnO NPs

Method Advantages

Limitations

- Controlled size
- High purity and quality
- NPs are considerably stable

Chemical synthesis [80-82]

- Use of toxic chemicals
- Use of organic solvents
- Hazard

- Low purity

- Capping agents and stabilizers are required to control the size and avoid
agglomeration

- Some of the capping and stabilizing agents might be toxic

- Irreversible pollution of the environment

Physical synthesis [82,83] - No use of toxic ingredients - High cost
- High-speed method - High energy
- High production rates - Low stability

- High purity and quality
- Uniform size and shape
- Safe and toxic free

- Simple and cost-effective
- No expensive equipment
- No toxic chemicals

- Eco-friendly

- Biocompatible

- Energy efficient

Green synthesis [81,84,85]

- Irreversible pollution of the environment

- Difficult to control the particle size and shape
- NPs are relatively less stable

and pressure above critical point) [90]. Ionic liquids, which are
composed of ions with melting points <100°C, are among the
best solvents used in green synthesis. This is because ionic
liquids act as reducing and protective agents, making the NP
synthesis process simpler [21,90].

Although the green synthesis of ZnO NPs, using plant
extracts, has attracted attention due to their broad range of
applications, there has been a concern regarding their
reproducibility and repeatability. This is attributed to the
variation in the chemical composition of the phytochem-
icals of plant extracts of the same species owing to their
collection from different parts of the world. This might
significantly affect the reproducibility and repeatability
of ZnO NPs [92]. Therefore, identifying the phytochemicals
present in the plant extracts is crucial to enhance the repro-
ducibility and repeatability of ZnO NPs. Sharma et al. [93]
used ZnO NPs synthesized greenly from the seed extract of
Carica papaya (C. papaya) to investigate the electrochemical
sensing of silymarin molecules which decrease serum trans-
aminases in viral hepatitis patients. The reproducibility of
nanocomposite ZnO NPs was tested using three electroche-
mical sensors independently in 0.2 mM silymarin solution.
The nanocomposite ZnO NPs showed promising reproduci-
bility of a relative standard deviation (RSD) of 1.92% (n = 6).
In addition, a repeatability of RSD of 2.31% (n = 6) was
reported when the nanocomposite ZnO NPs were investigated
for 0.1mg ! silymarin. Moreover, Muthuchamy et al. [94]
fabricated glucose biosensors immobilized into ZnO NP-

embedded nitrogen-doped carbon sheets for monitoring
glucose. The ZnO NPs were synthesized using the peach
fruit extract. The reproducibility and repeatability were
determined by measuring the amperometric response
against 3mM glucose in phosphate buffer saline (PBS,
PH 7). The ZnO NP biosensor showed good reproducibility
(RSD =2.99%, n = 5) and repeatability (RSD = 2.86%, n = 5).

Several factors may impact the green synthesis of ZnO
NPs including temperature, pH, mixing speed, reaction
time, plant extract/chemical precursor ratio, calcination
temperature, and precursor concentration. These para-
meters may ultimately affect the shape, size, and phase
of ZnO NPs [95]. It has been shown that the higher the
temperature of the reaction, the smaller the size of ZnO
NPs [96]. Naseer et al. [96] used a relatively high tempera-
ture of 70°C to greenly synthesize ZnO NPs from the leaf
extracts of Cassia fistula (C. fistula) and Melia azedarach
(M. azedarach). The average nano-size was between 68.1
and 3.62 nm, respectively. In a recent study, Jayachandran
et al. [97] prepared ZnO NPs using a leaf extract of Cayratia
pedata (C. pedata) at different reaction temperatures (55,
65, and 75°C). A reaction temperature of 65°C confirmed the
production of ZnO NPs of 52.2 nm. Hassan Basri et al. [98]
investigated the effect of the reaction temperature on the
size and shape of ZnO NPs greenly synthesized using the
peel extract of pineapple. When the reaction temperature
was maintained at 28°C, the size of ZnO NPs was between 8
and 45nm with a mixture of spherical and rod shapes.
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However, when the reaction was increased to 60°C, the size
of ZnO NPs was between 73 and 123 nm with a flower rod
shape.

Padalia et al. [99] demonstrated the effect of pH on the
size and morphology of ZnO NPs synthesized using the leaf
extract of Salvadora oleoides (S. oleoides). Based on the
transmission electron microscope (TEM) analysis, ZnO NPs
synthesized at pH 5 were spherical in shape with an average
size of 26.6 nm, whereas, at pH 8, irregular shape ZnO NPs
with an average size of 38.6 nm were formed. Additionally,
Zn0 NPs synthesized at pH 5 showed higher antibacterial
activity against Gram-positive and Gram-negative bacteria,
compared to pH 8, indicating the importance of pH on the
biological activity of ZnO NPs. In another study, the effect of
PH (8-14) on the green synthesis of ZnO NPs prepared from
the leaf extract of Raphanus sativus var. Longipinnatus
was investigated [100]. The authors showed that no UV-vis
absorption peaks were observed at pH 8-10 and pH 14. At
PH 12, an absorption peak was observed at 369 nm, indi-
cating the formation of ZnO NPs with an average size of
209 nm. Mohammadi and Ghasemi [101] used different pH
values (4-10), temperatures (25, 60, and 90°C), and precursor
concentrations of zinc nitrate (0.005, 0.02, 0.05, and 0.3 M) to
greenly synthesize ZnO NPs using the cherry leaf extract.
The results showed that the size of ZnO NPs increased from
87.5 to 116 nm as the temperature increased. Additionally,
the optimum synthesis conditions of pH 8, temperature 25°C,
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zinc nitrate concentration of 0.005 M, and incubation time of
12h confirmed the formation of ZnO NPs with an average
size of 20.2nm and spherical morphology.

All physical features of ZnO NPs like size, morphology,
and surface properties can be assessed using various char-
acterization tools such as UV-vis spectroscopy, X-ray powder
diffraction (XRPD), Fourier transform infrared (FTIR), energy-
dispersive X-ray analysis, TEM, scanning electron microscopy
(SEM), and dynamic light scattering [102]. Figure 2 shows
the various characterization analyses of green-synthesized
Zn0O NPs.

5 Mechanism of green synthesis of
ZnO NPs

The proposed mechanism of the green synthesis of ZnO
NPs is related to the presence of phytochemicals, particu-
larly polyphenols such as flavonoids, tannins, anthocyani-
dins, and phenolic acids, which act as reducing/capping
agents [92,104]. The phenolic rings rich in hydroxyl groups
act as chelating agents, forming complexes with Zn**. A
hydrolysis reaction transforms the intermediate chelated
compound into zinc hydroxide Zn(OH),, which is then
transformed into ZnO during calcination. Finally, ZnO
undergoes a growth phase by electrostatic interaction,
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Figure 2: Characterization analyses of green-synthesized ZnO NPs including particle size distribution, differential scanning calorimetry, field emission
scanning electron microscopy, X-ray diffraction (XRD), UV-vis spectroscopy (UV-vis), and FTIR [103].
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forming ZnO NPs [104,105]. Another proposed mechanism
has been reported in the literature which involves the for-
mation of ZnO NPs upon the reduction of Zn** ions, by
various phytochemicals in the aqueous extract, to nano-
scale zinc particles (Zn°) which react with dissolved oxygen
to form ZnO, followed by capping with active phytochem-
icals to prevent agglomeration and increase the stability of
ZnO NPs [105].

The redox potential of the phytochemicals is very
important. It determines the extent of reduction that can
occur. In the case of ZnO NP synthesis, the redox potential
is usually not high enough to completely reduce Zn** ions
to zerovalent Zn, resulting in the formation of ZnO NPs.
The redox potential of the phytochemicals can be influ-
enced by various factors such as the presence of functional
groups, the presence of electron-donating or electron-with-
drawing substituents, and the overall chemical reaction
conditions (reaction time, temperature, pH, types of phyto-
chemicals, and plant extract and metal salt concentrations)
[106,107]. The other attribute is related to the stability and
complexation of Zn** complexes [107]. Phytochemicals often
form stable complexes with metal ions. In the case of ZnO
NP synthesis, these complexes help in the stabilization of
Zn0 NPs by preventing their aggregation and facilitating
controlled growth. The presence of functional groups in
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phytochemicals, such as hydroxyl (-OH), carboxyl (-COOH),
or amino (-NHp) groups, allows for the binding and com-
plexation with Zn?* ions, leading to the formation of ZnO
NPs. Furthermore, the pH of the reaction medium plays a
significant role in the formation of ZnO NPs. Most green
synthesis methods involve alkaline conditions (pH > 7), which
promote the formation of ZnO. Under these alkaline condi-
tions, Zn(OH), is formed, which subsequently reacts to pro-
duce ZnO NPs [108].

Alamdari et al. [109] describe the mechanism of the
green synthesis of ZnO NPs using the Sambucus ebulus (S.
ebulus) leaf extract (Figure 2). The authors proposed a reac-
tion between flavonoid/phenolic molecules with Zn** ions
via the donor—acceptor mechanism, resulting in Zn** com-
plexes and the formation of ZnO NPs (Figure 3).

6 Cytotoxic mechanisms of
ZnO NPs

ZnO NPs are one of the most commonly used MONPs in
biomedical applications as antibacterial and anticancer
agents and in the cellular imaging fields [110-112]. The
cytotoxic effect of ZnO NPs is mainly concerned with

0 OH OH, . .
OH
Flavonoid & + -
) +
60 g Sambucus ebulus Phenolic compounds 0
leaf in extract ‘
Oy & ) / \ A
lu'.l 0 P ‘G (CHyC00)" 20*22 H)0 sy w— 200 Np + €O, (g} H,0(g)
0 0 \f ) T i 0
oy n-complex molcules
50 ml ethanol B
Ethanol ¥
+ ZnO NPs
n Zn(AC)z.ZHZO
a ' ~
+ ’ - -l
Extract .
Calcination i
@ 450°C
——)

Centrifugation

Antibacterial activi

Figure 3: A schematic diagram representing the experimental work and the possible mechanism of the green synthesis of ZnO NPs using the leaf

extract of S. ebulus [109].
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changing the cytoskeleton and nucleoskeleton of proteins
and/or generating reactive oxygen species (ROS) in cells
exposed to ZnO NPs [113]. Ultimately, three mechanisms
are involved simultaneously in the cytotoxicity of ZnO
NPs including the release of VA production of ROS, and
direct interaction between ZnO NPs and cells [28].

6.1 Release of Zn?*" ions from ZnO NPs

One of the main mechanisms of ZnO NP cytotoxicity is that
these NPs dissolve into free Zn** in the lysosomal acidic
media, causing lysosomal destabilization, mitochondrial
dysfunction, and disruption of cellular zinc homeostasis,
leading to cell death [114]. The release of Zn?* into the cells
enables the dynamic transport of membrane, and mitochon-
drial and DNA damage [115]. The dissolved Zn** induced
lactate dehydrogenase (LDH) leakage into the cell culture
medium, which indicates cell membrane damage. Addition-
ally, it was found that there is a significant relationship
among the Zn?* content, cell viability, and the LDH level
[115]. Murali et al. [15] discussed the potential cytotoxicity
of ZnO NPs that stems from the release of Zn®* and hence
their role in different biomedical applications including
antibacterial, antidiabetic, antifungal, anticancer, anti-
inflammatory, and antioxidant. It has been reported that
Zn** is released due to the dissolution of ZnO NPs which
may occur either extracellularly or intracellularly [116]. In
the extracellular dissolution of ZnO NPs and due to their
small size, Zn*" can enter the cytoplasm via the cell mem-
brane, inducing the production of ROS that leads to
oxidative stress in many cells. However, the intracellular
dissolution of ZnO NPs involves the release of Zn** due to
the acidic environment of lysosomes after they were inter-
nalized by endocytosis, inducing oxidative stress and apop-
tosis [117]. Additionally, Zn** is one of the main contributors
to the antibacterial activity of ZnO NPs, where Zn** interacts
with proteins in bacteria and oxidize their amino acids,
leading to protein denaturation and loss of enzyme activity.
This results in the blockage of the metabolic and growth
functions [118]. To summarize, the released Zn** in high
levels contributed to the cytotoxicity of ZnO NPs.

6.2 Production of ROS

The second mechanism of ZnO NP cytotoxicity involves the
production of ROS. When ZnO NPs enter the cells, the defense
mechanism begins inside the cells, generating ROS. If the
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generation of ROS exceeds the limit of the antioxidant capa-
city of cells, ROS produces pro-inflammatory cytokines, which
initiate inflammation. Inflammation induces mitochondrial
disturbance that leads to an impairment in the cellular mem-
brane, cellular components, and DNA, in addition to an
increase in LDH from necrosis or apoptosis, leading to cell
death [119,120]. Additionally, the generation of the intracel-
lular ROS and the entrance of the anticancer agent into
cancer cells are the main causes of destroying the electron
transport chain [121]. A high amount of ROS leads to mito-
chondrial damage and loss in protein activity, leading to cell
apoptosis [122-124].

In 2018, Attia et al [125] studied the neurotoxicity of
Zn0O NPs when given orally to rats in different doses. They
reported that ZnO NPs may reach the brain when adminis-
tered orally. In addition, the exposure of cells to ZnO NPs
decreases the concentration of antioxidants such as glu-
tathione (GSH), catalase, and superoxide dismutase, where
these antioxidants generally prevent or repair the damage
caused by ROS and regulate the redox-sensitive signaling
pathways. Thus, exposure to ZnO NPs resulted in DNA
damage confirmed by increasing the percentage of DNA
tail, length, and intensity. This indicates that ZnO NPs dete-
riorate and damage the antioxidant system via developing
ROS in the brain, elevating the inflammatory response,
cytokines, DNA fragmentation, and apoptosis [125]. There-
fore, the green-synthesized ZnO NPs displayed oxidative
stress-mediated cytotoxic effects.

6.3 Direct interaction between ZnO NPs and
cells

It has been shown that there is a direct interaction between
Zn0O NPs and cells, resulting in a change in the cell mor-
phology, disruption of the membrane, damage of mito-
chondria, and spillage of intracellular structure [126,127].
In addition, exposure to ZnO NPs changed the cellular dis-
tribution of lipid biosynthetic enzymes and the structure of
the endoplasmic reticulum (ER), mitochondria, and ER-mi-
tochondria encounter structure complex, leading to cell
death [126]. Altogether, the interaction of ZnO NPs with
cells caused cell death by affecting the integrity of the
cell wall, homeostasis of ER, and the generation of ROS
and saturated free fatty acids [126]. Yu et al. [127] showed
that exposure to ZnO NPs leads to cell death via the accu-
mulation of autophagic vacuoles and the damage of the
mitochondria in normal skin cells via inducing the genera-
tion of ROS. Figure 4 illustrates the three mechanisms
involved in the cytotoxicity of ZnO NPs.
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7 Biomedical applications of
ZnO NPs

The use of eco-friendly, safe, inexpensive, and dexterous
ways for the green synthesis of ZnO NPs has offered a
revolution in various biomedical fields [111,128,129]. ZnO
NPs have been employed in many life applications including
drug delivery, cosmetics, medical installations (as antibac-
terial paints in hospitals), dentistry (for blocking microbial
leakage), and orthopedics (as a reinforcing material) [35].
Recently, ZnO NPs showed promising biomedical applica-
tions such as antibacterial, anticancer, antidiabetic, antiox-
idant, antifungal, antiviral, and anti-inflammatory, and
in wound healing [13-16]. Biomedically, several studies
have proven the nontoxic effect of the surface-modified
Zn0O NPs, using hyaluronan, PEG, and Triton X-100, on
normal human cells, without affecting the anticancer
effects of ZnO NPs [111].

7.1 Antibacterial activity of ZnO NPs

The green-synthesized ZnO NPs exhibited a substantial
antibacterial activity for wide-spectrum bacteria, whereby
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interacting with the bacterial cell surface and its core, ZnO
NPs can enter inside the cells and display their bactericidal
effect [130-132]. Therefore, the antibacterial activity of ZnO
NPs revealed a promising potential to be linked with anti-
biotic functions, overcoming antimicrobial resistance [36].
In addition, the toxic interaction between ZnO and bacteria
has proved as an antibacterial agent in the food industry
[102]. This is attributed to their high specific surface area
and high activity to block a wide range of pathogenic bac-
teria [14,133]. Recently, the antibacterial activity of ZnO NPs
was proved by their ability to generate ROS such as
hydroxyl radicals (-OH), hydrogen peroxide (H,0,), super-
oxide anions (0,-), and singlet oxygen (*0,). The four ROS
displayed different levels of antibacterial activity. It has
been shown that 0, and H,0, exhibited lower antibac-
terial activity than ‘OH and '0,. This is because 0, and
H,0, are less reactive and can be detoxified by endogenous
antioxidants that are induced by oxidative stress. How-
ever, no enzyme can detoxify ‘OH or '0,, making them
more toxic [134]. Additionally, it has been reported that
the negative charge of hydroxyl radicals (OH) and super-
oxide (0,") prevents their penetration into the bacterial cell
wall. However, the direct contact between these ROS and
bacterial membranes can cause bacterial death. Whereas,
hydrogen peroxide (H,0,) can penetrate through the
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bacterial cell wall, getting internalized in the bacterial cell,
causing cell death [104,135,136]. Additionally, the antibac-
terial activity involves the accumulation of ZnO NPs in the
outer membrane or in the cytoplasm of the bacterial cells
which triggers the release of Zn”", causing disintegration of
the cell membrane, damaging the membrane proteins, and
instability of bacterial genomics, resulting in bacterial cell
death [137,138]. Because ZnO has an amphoteric nature, it
can react with acids and bases, releasing Zn?*" which binds to
the bacterial biomolecules [139]. Figure 5 shows a schematic
diagram of the antibacterial mechanisms of ZnO NPs.

Although ZnO NPs showed antibacterial activity against
both Gram-positive and Gram-negative bacteria [135], the
antibacterial activity of ZnO NPs depends on the sensitivity
of the microorganism and the difference in the cell wall
structure of Gram-positive and Gram-negative bacteria
[140]. The membrane of Gram-positive bacteria is composed
of a thick peptidoglycan layer (20-80 nm) that is covalently
attached to teichoic, lipoteichoic acids, and surface proteins
[135]. This thick layer acts as a physical barrier that protects
the cells from the exterior environment, whereas the mem-
brane of the Gram-negative bacteria is composed of a thin
peptidoglycan layer (~8 nm) and a thick lipopolysaccharide
external layer (1-3 um) [135,136].

Reddy et al. [141] reported that the minimum inhibitory
concentration (MIC) of ZnO NPs (13nm) in the Gram-posi-
tive (Staphylococcus aureus, S. aureus) and Gram-negative
(Escherichia coli, E. coli) was 1 and 3.4mg ml™, respec-
tively. This indicates that the inhibition of Gram-positive
bacteria required a lower concentration of ZnO NPs than
the Gram-negative bacteria. This was attributed to the fact
that the peptidoglycan layer of S. aureus can promote the
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attack of ZnO NPs inside the cell, whereas the cell wall
components of E. coli, particularly lipopolysaccharides,
can impede this attack [135]. Similar results were reported
by Tayel et al. [142], who studied the antibacterial activity
of ZnO powder and ZnO NPs against nine bacterial strains.
The study showed that ZnO NPs were more efficient as
antibacterial agents than the powder and that Gram-posi-
tive bacteria were more sensitive to ZnO NPs than Gram-
negative bacteria. Contrarily, Shinde et al. [140] showed
that the antibacterial activity of ZnO microspheres against
S. aureus was lower than E. coli. Researchers suggested that
the difference in the cell wall structure of Gram-positive
and Gram-negative bacteria is responsible for this out-
come, where the thick peptidoglycan layer of S. aureus
acts as a physical barrier, preventing the penetration of
ZnO NPs through the cell wall. However, the thinner pep-
tidoglycan layer of E. coli allows the penetration of ZnO
NPs, rupturing the cell wall [140].

Moreover, d’Agua et al. [143] evaluated the antibac-
terial activity of ZnO NPs containing cotton fibers against
Gram-positive bacteria (S. aureus, S. epidermidis, and Pro-
pionibacterium acnes [P. acnes]) and Gram-negative bac-
teria (E. coli and Pseudomonas aeruginosa [P. aeruginosal).
The agar diffusion and absorption methods were used in
the study. The results showed that ZnO NPs containing
cotton fibers exhibited higher antibacterial activity against
Gram-positive bacteria than Gram-negative bacteria. The
lower sensitivity of ZnO NPs toward Gram-negative bac-
teria can be attributed to the complex structure of the
bacterial cell wall, where the thick outer lipopolysac-
charide membrane surrounds the thin peptidoglycan layer
and acts as a barrier, protecting against ZnO NPs. The
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Figure 5: Schematic diagram representing the antibacterial mechanisms of ZnO NPs.
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authors reported that the antimicrobial studies of ZnO NPs
against Gram-positive and Gram-negative bacteria showed
contradictory results, where some studies have shown a
stronger antibacterial effect of ZnO NPs on Gram-positive
bacteria, whereas other studies have shown that Gram-
negative bacteria are more sensitive to ZnO NPs [143].

Jiang et al. [144] studied the interaction between ZnO
NPs and the Gram-negative bacteria E. coli to examine the
antibacterial mechanism of ZnO NPs. It was found that
using ZnO NPs (30 nm) and the direct contact between
ZnO0 NPs and the phospholipids bilayer of E. coli membrane
led to a disruption in the E. coli membrane, measured by
quantifying the leakage of the intracellular K* from the
bacterial membrane, causing cell death. Although man-
nitol, vitamin E, and GSH were used as radical scavengers
to quench the release of ROS generated from ZnO NPs and
thereby suppress their antibacterial activity, the antibac-
terial activity of ZnO NPs against E. coli indicates the gen-
eration of ROS, particularly the (OH) radicals.

Agarwal et al [102] reviewed the mechanism of the
antibacterial activity of the green-synthesized ZnO NPs.
The results showed that ZnO NPs, due to their large surface
area to volume ratio, can bind to the bacterial cell surface
via a large number of ligand binding sites like proteins,
lipids, phospholipids, and lipoteichoic acid. Additionally,
the authors reported that Gram-negative bacteria have
less resistance to ZnO NPs due to their thin layer of pepti-
doglycan, making ZnO NPs more toxic to this type of bac-
terium. The antibacterial mechanisms of ZnO NPs involve
the disruption of cell membranes, release of Zn** resulting
in ROS generation, DNA disruption, protein oxidation, lipid
peroxidation, and metabolic enzyme inhibition which blocks
food or respiratory pathways, causing cell death.

The cytotoxicity of ZnO NPs depends on different para-
meters of NPs such as size, shape, surface charge, and
concentration. In addition, the pH and temperature of
the culture medium impact the antibacterial activity of
Zn0 NPs, where the acidic pH from 4 to 5 and high tem-
peratures increased the antibacterial activity of ZnO NPs.
This is because acidic media enhanced the dissolution rate
of ZnO NPs, hence increasing the concentration of 7Zn* in
the media and improving the activity against the microor-
ganisms [102,145]; however, high temperatures enhanced
the production of ROS [146,147].

Several studies have confirmed the relationship between
the size and morphology of ZnO NPs and their antibacterial
activities [104,118,148]. Recently, Sharma et al [148] studied
the antibacterial activity of different sizes and shapes of ZnO
NPs, prepared from the plant extract of Aloe vera. The size of
Zn0O NPs ranged between 40 and 180 nm with hexagonal,
spherical, cylindrical, and cuboidal shapes. The cuboidal
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ZnO NPs exhibited higher antibacterial activity against S.
aureus, B. subtilis, and E. coli, compared to the spherical
and hexagonal ZnO NPs. Another study by Alvarez-Chimal
et al [118] investigated the effect of the size of the green-
synthesized ZnO NPs (7-130 nm), prepared from the Dys-
phania ambrosioides (D. ambrosioides) extract, on the anti-
bacterial activity against various pathogenic bacteria. It was
found that the smaller the size of ZnO NPs (4-10 nm), the
higher the antibacterial potential, particularly against S.
aureus and E. coli. A very recent study by Fouda et al
[104] demonstrated the high antimicrobial potential of sphe-
rical ZnO NPs (10-45 nm), prepared from the peel aqueous
extract of Punica granatum (P. granatum), against Gram-
positive and Gram-negative bacteria, and unicellular fungi
with an MIC of 12.5-6.25 ug ml~%. The authors attributed the
high antimicrobial potential to the high generation of ROS
when pathogenic microbes are treated with smaller sizes of
Zn0O NPs.

Additionally, it has been shown that the interaction
between NPs and bacterial membranes is influenced by
the shape of NPs, where the triangular-shaped NPs showed
better interaction with cell membranes than the rod or
spherical ones, enhancing the antibacterial effect [102].
Moreover, the shape of ZnO NPs affects the release of
Zn*" where the shape influences the surface area of NPs
and hence their solubility [102]. For instance, it has been
shown that the spherical-shaped ZnO NPs showed better
solubility and higher Zn®** release than the rod-shaped
ones [149].

The surface charge of ZnO NPs is one of the important
parameters that determine their antibacterial activity,
where a correlation was established between the zeta poten-
tial of NPs, the surface charge of bacterial cells, and the
antibacterial activity [150,151]. For instance, Mendes et al
[152] stated that the positively charged ZnO NPs showed
better binding toward the negatively charged surface cell
membrane via electrostatic interactions, improving the
toxicity of NPs against Gram-positive and Gram-negative
bacteria. Teichoic acid in the peptidoglycan layer and lipo-
teichoic acid in the membrane, responsible for the negative
charge of the bacterial cell membrane, act as chelating
agents for Zn** which is carried by passive diffusion across
membrane proteins [152].

Thi et al. [153] reported the synthesis of spherical ZnO
NPs (20 nm) from the orange fruit peel extract and zinc
acetate dihydrate which were used as a reducing agent
and a chemical precursor, respectively. The antibacterial
activity of ZnO NPs was studied against E. coli and S.
aureus. The results showed a strong bactericidal effect of
>99.9% against E. coli and 89.4-98.1% against S. aureus at
an NP concentration of 0.025 mg ml™ and 8 h of incubation.
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Additionally, the mechanism of the bactericidal activity of
Zn0O NPs was based on the generation of ROS and their
interaction with cell membranes, resulting in DNA and
cell wall damage. In the same year, Umavathi et al. [154]
synthesized green spherical ZnO NPs from the Parthenium
hysterophorus (P. hysterophorus) leaf extract by a single-
step process. ZnO NPs were characterized by UV-Vis spec-
troscopy and FTIR to confirm the presence of flavonoids,
phenolics, tannins, phytic acid, and ZnO, whereas the TEM
and SEM micrographs revealed the spherical shape and the
nanosized range of 10 nm of ZnO NPs. The XRPD results
confirmed the formation of the hexagonal wurtzite struc-
ture. ZnO NPs exhibited strong antibacterial activity against
Gram-positive and Gram-negative organisms and fungal
strains with a concentration-dependent effect. For instance,
it was found that 10 mg of ZnO NPs was sufficient to exhibit
a maximum inhibitory concentration against E. coli. More-
over, Safavinia et al. [155] used Daphne oleoides (D. oleoides)
leaf extract, which contains five polyphenolic compounds, to
prepare ZnO NPs and embed them into silica gel (SG) matrix,
forming ZnO/SG nanocomposites. The antibacterial activity
of ZnO/SG nanocomposites was evaluated against patho-
genic bacteria and compared with the unembedded ZnO
NPs. Data showed that ZnO NPs were stabilized by the SG
matrix which prevents their agglomeration. Additionally,
the surface area of ZnO/SG nanocomposites was higher
than the unembedded ZnO NPs, demonstrating greater anti-
bacterial activity against pathogens than the unembedded
Zn0O NPs.

The antibacterial activity of green-synthesized ZnO NPs
was compared to their chemical counterparts. Gunalan et al.
[133] found that the antimicrobial activity of green-synthe-
sized ZnO NPs (40 nm), prepared from aloe leaf extract, was
higher than that of the chemical ZnO NPs (25 nm). The anti-
microbial activity was tested against different types of bac-
teria and fungi at various concentrations. In another study
[156], the antibacterial activity of ZnO NPs, prepared from
the leaf extract of Seshania grandiflora (S. grandiflora), was
compared to that of the chemical ZnO NPs, prepared by the
co-precipitation method. The study showed that the green-
synthesized ZnO NPs exhibited higher antibacterial activity
against Gram-positive (S. aureus) and Gram-negative (P. aer-
uginosa) bhacteria, in agreement with Gunalan et al. [133].
Similarly, a recent study by Bekele et al [157] compared the
antibacterial activity of the green (11-21 nm) and chemically
synthesized (30-40nm) ZnO NPs against Bacillus subtilis
(B. subtilis), S. aureus, and Salmonella typhimurium (S. typhi-
murium). The green and chemical ZnO NPs showed a strong
antibacterial activity with zones of inhibition of 15-24 and
7-15 mm, respectively, suggesting that the green-synthesized
Zn0 NPs showed promising antibacterial activity.
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7.2 Anticancer activity of ZnO NPs

Scientists are putting a lot of effort to develop effective
treatments to kill cancer cells with minimum side effects.
Nowadays, numerous studies have been performed to
advance the use of green-synthesized ZnO NPs to treat
different types of cancers [158-160]. The role of ZnO NPs
involves the anticancer activity on different types of can-
cers and targeted drug delivery by using ZnO NPs as nano-
carriers for chemotherapeutic drugs.

7.2.1 Role of ZnO NPs in anticancer activity

ZnO NPs cause oxidative stress in cancer cells, leading to
their damage, due to the rapid dissolution of ZnO NPs into
7n?* at acidic pH [70]. The low endosomal pH of 6.3, 5.5, and
4.7 in the early endosome, late endosome, and endosome,
respectively, induce the release of soluble Zn®" causing
lysosomal destabilization and cell death [28]. The higher
selectivity of ZnO NPs toward cancer cells, compared to
normal cells, is attributed to the electrostatic interaction
between the positively charged ZnO NPs, under physiolo-
gical conditions, and the anionic phospholipids on the
outer membrane of cancer cells which are present at
high concentration. This interaction increases the cellular
uptake of ZnO NPs by cancer cells and hence their cyto-
toxicity [161]. Hanley et al. [162] showed that ZnO NPs have
28-35 times more selective cytotoxicity against cancer cells
compared to normal cells. Additionally, they reported that
altering the surface properties of ZnO NPs may further
enhance their cytotoxicity against cancer cells [162]. More-
over, cancer cells possess higher levels of ROS, owing to
their rapid metabolism, when compared to normal cells.
Hence, when cancer cells are treated with ZnO NPs, more
ROS are produced, resulting in severe oxidative stress that
promotes cell death [28,161]. Finally, the enhanced permea-
tion and retention effect in cancer cells to ZnO NPs, due to
their small size and surface properties, enhances the cyto-
toxicity of ZnO NPs against cancer cells compared to
normal cells [28].

Sharmila et al. [163] used the Tecoma castanifolia (T.
castanifolia) leaf extract for the green synthesis of sphe-
rical ZnO NPs (70-75nm) to evaluate their anticancer
activity against lung cancer. The results demonstrated
that ZnO NPs exhibited antibacterial, antioxidant, and anti-
cancer activities. Additionally, it was found that an increase
in the ZnO NP concentration proportionally increases the
radical scavenging activity. ZnO NPs exhibited an anticancer
activity with half-maximal inhibitory concentration (ICsp)
around 65 pg ml™, confirmed by the cytotoxic effect on the
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proliferation of human lung carcinoma (A549) cells, tested
by 3-(4,5-dimethylthiazol-2-Y1)-2,5-diphenyltetrazolium bro-
mide (MTT) assay. Thus, ZnO NPs can be used as nano-delivery
systems in various biomedical applications. Ruangtong
et al. [164] used banana peel crude extract as a reducing
and capping agent and zinc acetate as a chemical precursor
to synthesize ZnO NPs with rod-like or sheet-like structure,
where the shape of NPs was varied based on the crude
extract concentration used in the reaction. The ZnO NPs
and nanosheets were investigated for their antibacterial
and anticancer activities against skin, colorectal, and liver
cancers. The ZnO nanosheets inhibited the growth of Gram-
negative (E. coli) and Gram-positive B. subtilis and Staphy-
lococcus epidermidis (S. epidermidis) bacteria. In addition,
Zn0 nanosheets demonstrated potent anticancer activity
against colorectal (SW620), skin (A431), and liver cancer cells
(HepG2) without affecting the normal cells. Similarly, Jeva-
patarakul et al [165] synthesized green ZnO NPs (200 nm)
and nanosheets (500 nm) from the crude extract of Cratox-
ylum formosum (C. formosum) leaves to assess their antic-
ancer activity against non-melanoma skin cancer cells. The
shape of ZnO NPs varied based on the concentration of the
crude extract and the synthesis process. The cytotoxic activity
of ZnO NPs nanosheets was evaluated by testing the cell
viability on epidermoid carcinoma cell line (A431), normal
kidney fibroblasts (Vero), and liver cancer cells (HepG2).
ZnO NPs at 120 uyg ml™* concentration significantly inhibited
the cell viability of A431 cells without affecting Vero cells.
Contrarily, a higher concentration of ZnO NPs (300 pg ml™)
showed a weak cytotoxic activity when applied to the HepG2
liver cell line. The ZnO NPs nanosheets showed greater cyto-
toxicity against A431 cells when compared to the spherical
Zn0 NPs (~200 nm). Additionally, the spherical ZnO NP
nanosheets inhibited the growth of E. coli, B. subtilis, and
S. epidermidis. Moreover, ZnO NP nanosheets altered several
transcript pathways responding to the generation of ROS
and hydrogen peroxides that are involved in the cytotoxic
effect on A431, causing cell death due to oxidative stress and
inflammatory response [165].

Naser et al. [72] synthesized ZnO NPs using the root
hair extract of Phoenix dactylifera (P. dactylifera) and 0.6 M
zinc acetate dihydrate to assess their anticancer activity
against lung and breast cancers. The spherical ZnO NPs
(31-48 nm) were 45% more cytotoxic than doxorubicin
(DOX) hydrochloride alone. The ZnO NPs proved their cyto-
toxic efficacy by reducing the cell viability of the triple
negative breast cancer cell line (TNBC) to 9.0% and showed
82.3% cytotoxic efficacy against lung cancer cell line (A549),
confirming that ZnO NPs exhibited a potent anticancer
activity. Moreover, ZnO NPs showed higher antibacterial
activity against various microorganisms than those of
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penicillin, gentamycin, and tetracycline. A follow-up study
conducted by the same research group evaluated the
loading of these ZnO NPs into transdermal patches for
breast cancer therapy [71]. Patches were prepared from
the film-forming polymer Carbopol, backing layer ethy-
lene-vinyl acetate, and ZnO NPs (88 nm) with a zeta poten-
tial of -16.63 mV. Patches were clear, transparent, and
flexible with uniform thickness and weight of 0.25 mm and
0.42 g, respectively, and a surface pH of 6.25. The content
of ZnO NPs in the patches was 91.7-94.4%. In addition, ZnO
NPs from patches exhibited a sustained release profile over
25h. Moreover, the cytotoxic effect of ZnO NPs against the
TNBC cell line was dose-dependent ranging from 0.16 to
25pugml™" with ICsy of 0.42pgml™, significantly lower
than the ICso of DOX (4.58 ugml™) (p < 0.05). Whereas the
ICso on human dermal fibroblast (HDF) was 1.61 pgml’,
demonstrating a stronger effect of ZnO NPs in inhibiting
the growth of cancerous cells, compared to that of DOX.
Thus, ZnO NP-loaded patches may offer a potential trans-
dermal delivery platform for breast cancer treatment by over-
coming the limitations of invasive chemotherapy delivery.

In 2020, Duan et al. [166] synthesized ZnO NPs from
Cardiospermum halicacabum (C. halicacabum) using an
eco-friendly green method. The spherical shape of ZnO
NPs (10-20 nm) was determined by TEM and evaluated
against skin melanoma. The antitumor activity and apop-
tosis for the prepared ZnO NPs were explored using a
human melanoma cell line (A375). The ZnO NPs exhibited
cytotoxic activity against cancer cells. In addition, the expo-
sure to ZnO NPs resulted in an elevation in the ROS level
and apoptotic markers (caspases 3, 8, and 9) and stimula-
tion of apoptotic cell necrosis in the tumor cells. Further-
more, Selim et al. [167] synthesized ZnO NPs from the aerial
part of Deverra tortuosa (D. tortuosa) to examine their
anticancer activity against colorectal and lung cancers
that are associated with the greatest mortality. The plant
was collected from a natural ecosystem in Egypt. The
resulting ZnO NPs (15.2nm) showed selective cytotoxic
activity against two cancer cell lines, the human lung
cancer cell line (A594) and the human colon cancer cell
line (Caco-2), providing a safer alternative platform to con-
ventional cancer therapy.

The research on the green synthesis of ZnO NPs has
been continued. Recently, Vakayil et al. [168] synthesized
ZnO NPs from rhizomes of the Acorus calamus (A. calamus)
to examine their cytotoxic effect against skin cancer. The
ZnO NPs were then coated with cotton fabrics to reduce
skin infections. The cotton-coated ZnO NPs showed a cyto-
toxic and antiproliferative activity against the SK-MEL-3
skin cancer cell line which was proved by the morpholo-
gical changes in cells such as shrinkage, rounding,
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irregular shape, and detachment in cancer cells. In addi-
tion, the MTT assay test showed a suppression in cell via-
bility against the SK-MEL-3 cell line with an ICs, value of
17.50 uygml™ of the coated ZnO NPs. Finally, the cotton-
coated ZnO NPs efficiently inhibited the growth of bacteria,
demonstrating a potential antibacterial activity. Thus, the
cotton-coated ZnO NPs could be utilized in the medical field
in the future.

A recent study by Chandrasekaran et al. [169] com-
pared the anticancer activity of ZnO NPs, prepared by
green and chemical methods, against the MCF-7 breast
cancer cell line. The green-synthesized ZnO NPs were pre-
pared using the Vinca rosea (V. rosea) leaf extract, whereas
chemical ZnO NPs were prepared by the precipitation
method. The results showed that the anticancer activity
of the green-synthesized ZnO NPs (16-41nm) with sphe-
rical shape was higher compared to chemically synthesized
counterparts [169].

7.2.2 Role of ZnO NPs in targeted drug delivery

The combination between ZnO NPs and the chemothera-
peutic agents demonstrated a potential effect in treating
cancer. George et al. [170] studied the therapeutic effect of
quercetin (QE), extracted from onion peel waste and for-
mulated as chitosan hydrogel. Using melon seeds, the QE
hydrogel matrix was loaded with green-synthesized ZnO
NPs forming QE-loaded nanohybrid hydrogels. The release
of QE from the hydrogels was the highest in an acidic
environment (pH 5), thus suitable for anticancer applica-
tions. The growth of S. aureus and Trichophyton rubrum
(T. rubrum) strains was inhibited by the commercial QE
and QE-loaded nanohybrid hydrogels. The cytotoxicity and
anticancer activity of QE-loaded nanohybrid hydrogels were
studied against skin cancer using normal murine fibroblast
cells (1929) and human dermal carcinoma cell lines (A431),
respectively. It was found that the QE-loaded nanohybrid
hydrogels were biocompatible toward healthy cells and
exhibited enhanced anticancer activity toward A431, com-
pared to commercial QE. The kinetic drug release mechanism
followed Fickian diffusion. This suggests that the combination
of ZnO NPs and QE in the QE-loaded nanohybrid hydrogels
showed synergistic antibacterial and anticancer activities via
enhancing the cellular uptake of QE, highlighting their poten-
tial applications in the biomedical fields. Recently, Chella-
durai et al [171] synthesized amine-functionalized ZnO NPs
that were covalently linked to mupirocin using an organosi-
lane linker. Mupirocin is a crotonic acid derivative extracted
from Pseudomonas fluorescens (P. fluorescens) used to treat
superficial skin infections like impetigo and microbial
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infections caused by Gram-positive and Gram-negative bac-
teria. The ZnO NPs were green synthesized from the Alpinia
calcarata (A. calcarata) rhizome extract. The effect of mupir-
ocin-loaded ZnO NPs on skin cancer and skin infection was
investigated. The green spherical ZnO NPs (19 nm) exhibited a
crystallite grain size of 24.75 nm. The conjugated NPs showed a
strong antiproliferative effect of 63% on human epidermoid
carcinoma cells (A431), providing a new nanotechnology plat-
form for skin cancer therapy. Moreover, mupirocin-loaded
Zn0 NPs demonstrated potency as antioxidant agents and sig-
nificantly inhibited the growth of Vibrio cholerae (V. cholerae),
Enterococcus faecalis (E. faecalis), and Listeria monocytogenes
(L. monocytogenes).

Additionally, it has been shown that the biocompat-
ibility and biomedical activity of coated and embedded ZnO
NPs were further improved compared to their uncoated and
unembedded counterparts [155,172]. For instance, Batool et al.
[172] greenly synthesized ZnO NPs (20-40 nm) using the Aloe
barbadensis (A. barbadensis) leaf extract. The ZnO NPs were
loaded with the chemotherapeutic agents, doxorubicin (DOX)
and gemcitabine (GEM), and were studied for their antitumor
cytotoxic activity against breast cancer (the leading cause of
cancer death among females), surface-PEGylation, and drug
loading capacity. PEGylated ZnO NPs (PEG-ZnO NPs) and their
non-PEGylated counterparts (ZnO NPs) showed higher DOX
loading capacity and encapsulation efficiency compared to
GEM. In addition, DOX/PEG-ZnO NPs and DOX/ZnO NPs exhib-
ited significant anticancer activity against TNBC, with
DOX/PEG-ZnO NPs showing greater anticancer activity.
The loading of DOX into green-synthesized ZnO NPs has
been investigated by Vimala et al. [173], who used the
palm fruit extract Borassus flabellifer (B. flabellifer) to
treat breast and colon carcinoma. The results proved
that DOX/ZnO NPs exhibited high efficacy against breast
and colon cancer, and thus are considered a promising drug
delivery system. Therefore, plant-mediated green-synthe-
sized ZnO NPs could have huge applications in cancer treat-
ment and thus become a major area of research.

Finally, the anticancer potential of different parts of a
plant might vary based on the specific plant species and the
phytochemicals present in those parts. Because it is diffi-
cult to make a general statement about which part of
plants consistently shows the best anticancer potential,
different parts of plants have been studied extensively
for their anticancer activity. Leaves, roots, stems, flowers,
and even certain fruits of various plants have demon-
strated anticancer activity [174]. It is important to note
that the presence and concentration of phytochemicals
might vary among different plant parts. Additionally, the
extraction methods used to obtain these compounds can
affect their potency. In some cases, leaves have been found
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to possess high levels of phytochemicals such as polyphe-
nols, flavonoids, and alkaloids, which exhibit anticancer
activity [175]. Leaves are often rich in phytochemicals
due to their primary role in photosynthesis [176]. However,
this does not necessarily mean that leaves always show the
best anticancer potential compared to other plant parts.
Contrarily, the roots of certain plants have also been exten-
sively studied for their anticancer activity [177,178]. Roots
may contain a range of phytochemicals such as alkaloids,
terpenoids, and polysaccharides, which contribute to their
therapeutic potential [179]. Ultimately, the choice of the
plant part to be investigated for its anticancer potential
depends on the specific plant species, desired phytochem-
icals, and traditional or scientific knowledge about the
plant’s medicinal properties. Further research is still neces-
sary to compare the effectiveness of different plant parts
and their phytochemicals in combating cancer cells.

In the context of anticancer applications, the associa-
tion of phytochemicals with ZnO NPs can enhance their
cytotoxic activity against cancer cells [20,180]. Phytochem-
icals, such as polyphenols and flavonoids, have shown
anticancer activity on their own [181]. When attached to
the surface of ZnO NPs, these compounds can potentially
exert synergistic effects, leading to increased cytotoxicity
against cancer cells [182]. For example, a study by Gobinath
et al. [183] demonstrated that the metabolites present in the
leaf extract of Calotropis gigantea (C. gigantea) enhanced
the cytotoxicity of ZnO NPs against human breast, cervical,
and hepatic cancer cells.

7.3 Antidiabetic activity of ZnO NPs

Zinc is a vital key factor in the glucose metabolic process
which improves hepatic glycogenesis [184]. In addition, Zn
reduces gluconeogenesis and glycogenolysis processes by
inhibiting glucagon excretion [185]. Rajakumar et al. [186]
used the leaf extract of Andrographis paniculata (A. pani-
culata) as a reducing and capping agent to synthesize ZnO
NPs and study their antioxidant, antidiabetic, and anti-
inflammatory activities. The antidiabetic activity was inves-
tigated by evaluating the a-amylase inhibitor activity. The
proteins, polyphenols, alkaloids carboxylic acids, and flavo-
noids in the leaf extract, which contained free amino acids
and carboxylic groups in their structures, influenced the
formation of ZnO NPs by interacting with Zn**. The FTIR
results demonstrated the role of the phenolics, terpenoids,
and proteins of the A. paniculata leaf extract in the synthesis
and stabilization of ZnO NPs. The XRPD pattern revealed
that ZnO NPs were in the form of nanocrystals. The ZnO
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NPs were spherical (96-115nm) and hexagonal (57 + 0.3 nm)
in shape, as corroborated by SEM and TEM studies, respec-
tively. The results of the antioxidant, antidiabetic, and anti-
inflammatory studies showed that ZnO NPs can decrease the
sugar level and inflammations, possessing strong hiological
activities which could be utilized in pharmaceutical and bio-
medical applications.

Argade et al. [187] used the Albizzia lebbeck (A. lebbeck)
aqueous bark extract for the synthesis of ZnO NPs. The ZnO
NPs were evaluated for antidiabetic activity in vitro using
the a-amylase inhibitor activity and glucose uptake by
yeast cells. The a-amylase inhibitory activities by the A.
lebbeck bark extract, ZnO NPs, and the antidiabetic drug
Acarbose (used as a control) were found to be 73.3, 54.7,
and 46.7%, respectively. The ICs, of the a-amylase activity
of the A. lebbeck bark extract, ZnO NPs, and Acarbose were
4.9, 9.6, and 3.9 pg ml™ respectively. The data demonstrated
that Acarbose exhibited effective antidiabetic activity com-
pared with the plant bark extract and ZnO NPs. In addition,
the glucose uptake by yeast cells showed a dose-dependent
manner which was directly proportional to the sample con-
centration. The ZnO NPs at 1 ug ml™* concentration enhanced
the glucose uptake by 89.2%, thus higher than that of the plant
bark extract and the antidiabetic drug metformin (used as a
control) of 62.5 and 94.2%, respectively, at the same concen-
tration. Additionally, ZnO NPs were evaluated in vitro for
their antioxidant activity using the reducing power ability
and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging
assay tests. The ZnO NPs showed powerful DPPH scavenging
activity of 66.7% and ICs, of 7.0 ug ml™". Moreover, the results
revealed that ascorbic acid (used as a control) exhibited
higher reducing power ability compared to the bark extract
and ZnO NPs. Taking together, the results of these studies
demonstrated that the green-synthesized ZnO NPs acted as
a potent antidiabetic agent as evidenced by the decreasing
glucose level.

7.4 Antioxidant activity of ZnO NPs

One of the promising biomedical applications for ZnO NPs
is their antioxidant activity [15]. The antioxidant activity of
Zn0 NPs can be determined by the DPPH assay method.
This method is associated with a change in the color of the
DPPH methanolic solution from deep violet to a stable pale
yellow, upon the addition of ZnO NPs. This indicates the
scavenging activity of ZnO NPs by donating an electron
from the oxygen atom to the odd electron of the nitrogen
atom, resulting in the formation of a stable DPPH molecule
[15,188].



DE GRUYTER

Suresh et al [189] synthesized ZnO NPs using Arto-
carpus gomezianus (A. gomezianus). ZnO NPs showed sub-
stantial antioxidant activity against DPPH free radicals
with ICsy of 10.8 mg ml™. The same research group synthe-
sized green ZnO NPs using the aqueous plant extract of
C. fistula, employing the solution combustion method [190].
The results showed that ZnO NPs exhibited a potential
antioxidant activity with ICs, of 2.8 mg ml™ via scavenging
DPPH free radicals [190]. Nagajyothi et al [191] evaluated
the antioxidant activity of ZnO NPs, prepared from the root
extract of Polygala tenuifolia (P. tenuifolia), using DPPH
free radical assay. The results showed that ZnO NPs estab-
lished moderate antioxidant activity by scavenging 45.5%
DPPH at 1mgml™. Siripireddy et al. [192] used the Euca-
lyptus globulus (E. globulus) leaf extract to synthesize sphe-
rical ZnO NPs (12 nm) under ambient conditions. ZnO NPs
possessed antioxidant activity of 82% scavenging potential
against DPPH, compared to ascorbic acid (used as a refer-
ence) with ICso of 46.6 ug ml™%. In another study [85], ZnO
NPs were green-synthesized using the aqueous stem extract
of Ruta graveolens (L.) (R. graveolens L). The results showed
that ZnO NPs (28 nm) possessed DPPH free radical scaven-
ging activity with ICs, of 9.3 mg ml™. Additionally, the anti-
oxidant activity of ZnO NPs, prepared from the leaf extract
of Ceropegia candelabrum (C. candelabrum), showed DPPH
free radical scavenging activity ranging from 0 to 55% with
ICso of 951 pg ml™, compared to 75% inhibition by ascorbic
acid (used a positive control) at 50 pg ml™ [193]. Moreover, it
was found that the antioxidant activity increased with an
increase in the ZnO NP concentration. Khan et al. [194]
investigated the antioxidant activity of ZnO NPs, prepared
from the Trianthema portulacastrum (T. portulacastrum),
using the DPPH assay method. The authors reported that
the antioxidant activity of ZnO NPs is attributed to the small
size, large surface area, surface charge density, and capping
materials present on the surface of ZnO NPs. Additionally,
it was found that the free radical inhibition of ZnO NPs
was concentration-dependent [194]. Alamdari et al. [109]
revealed that ZnO NPs (17 nm), green-synthesized from
the leaf extract of S. ebulus, exhibited H,0, free radical
scavenging activity with ICsy of 43 ug ml™. The researchers
reported that the presence of Zn®* could enhance the anti-
oxidant activity of ZnO NPs. Recently, Faisal et al [195]
green-synthesized ZnO NPs (66 nm) from the aqueous fruit
extract of Myristica fragrans (M. fragrans). The antioxidant
activity of ZnO NPs was proved using four assay methods
(total antioxidant capacity, total reduction power, 2,2-azino-
bis(3-ethylbenzothiazoline 6-sulfonic acid), and DPPH free
radical scavenging assay. In another recent study, Abdel-
baky et al [26] demonstrated the antioxidant activity of
Zn0 NPs, prepared from Pelargonium odoratissimum (L.)
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(P. odoratissimum L.) with ICsy of 28.1pgml™. Therefore,
the results of these studies revealed that the green-synthe-
sized ZnO NPs possessed antioxidant activity by scavenging
DPPH free radicals.

7.5 Antifungal activity of ZnO NPs

In addition to the aforementioned biomedical applications,
the green-synthesized ZnO NPs demonstrated a potential
antifungal activity toward several types of fungi [15,74,135].
The antifungal mechanism was described by the ability of
Zn0O NPs to enter the fungal membrane by diffusion and
endocytosis. In the cytoplasm, ZnO NPs interfere with the
mitochondrial function, initiating the production of ROS
and the release of Zn**. The overproduction of ROS and
Zn*" resulted in irreversible DNA damage and cell death
[15,135]. Padalia and Chanda [196] reported the green synth-
esis of ZnO NPs (17.3nm) using the leaf extract of Ziziphus
nummularia (Z. nummularia). ZnO NPs showed higher anti-
fungal activity against Candida albicans (C. albicans) than
the azole antifungal agents. Miri et al. [197] used Prosopis
farcta (P. farcta) to synthesize ZnO NPs (40-80nm) and
investigated their antifungal activity against C. albicans
with MIC of 128 pg ml™ and minimal fungicidal concentra-
tion (MFC) of 256 g ml™, Recently, Yassin et al. [198] studied
the antifungal activity of ZnO NPs (22.8 nm) synthesized
greenly from the peel extract of pomegranate. The anti-
fungal activity of ZnO NPs was tested against three types
of candida strains, C. albicans, C. tropicalis, and C. glabrata.
A 100 ug of ZnO NPs per disk demonstrated antifungal
activity against C. albicans, C. tropicalis, and C. glabrata,
with zones of inhibition of 24.18, 20.17, and 26.35 mm, respec-
tively. The MIC and MFC of ZnO NPs against C. tropicalis
were 10 and 20 pgml™, respectively. Further, ZnO NPs
demonstrated a synergistic efficiency against C. albicans
with the antifungal drugs fluconazole, nystatin, and clotri-
mazole; whereas terbinafine, nystatin, and itraconazole
showed a potential synergism against C. glabrata with
Zn0 NPs.

Additionally, the green-synthesized ZnO NPs exhibit anti-
fungal activity against plant pathogenic fungi [199,200]. Jam-
dagni et al [201] synthesized ZnO NPs using the Nyctanthes
arbortristis (N. arbortristis) flower extract. The ZnO NPs
(12-32nm) were tested against five phytopathogens Alter-
naria alternata (A. alternata), Fusarium oxysporum (F. oxy-
sporum), Aspergillus niger (A. niger), Penicillium expansum (P.
expansum), and Botrytis cinerea (B. cinerea), which showed
MICs of 64, 64, 16, 128, 128 ug ml™?, respectively. Zhu et al. [202]
synthesized ZnO NPs from Cinnamomum camphora (L.
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(C. camphora L.) at pH values 7, 8, and 9 with corresponding
sizes of 13.9, 15.2, and 21.1nm, respectively. The antifungal
activity was evaluated against A. alternata. The MIC of ZnO
NPs was 20 mg 1" at pH 7, which showed the best antifungal
effect. It was found that ZnO NPs induced excessive accumu-
lation of malondialdehyde in A. alternata, causing damage to
the cell membrane and thereby leakage of protein and
nucleic acid. Despite that ZnO NPs exhibited antimicrobial
activity, it was noticed that their sensitivity against fungi
was lower compared to bacteria. This is attributed to the
ability of fungi to form resistant spores when they grow
under aggressive conditions [203].

7.6 Antiviral activity of ZnO NPs

The green synthesis of ZnO NPs demonstrated antiviral
activity against many viruses. Melk et al. [204] synthesized
Zn0O NPs (32.58 + 7.98 nm) from the alcoholic extract of
Plumbago indica (P. indica), a valuable source of alkaloids,
phenolics, and saponins. The results showed that ZnO NPs
and the plant extract exhibited inhibitory effects against
herpes simplex virus type 1 (HSV-1), which could be con-
sidered a promising adjuvant to improve the efficacy of
HSV-1drugs. In another study, Melk et al. [205] synthesized
Zn0 NPs (38.29 + 6.88 nm) from the alcoholic extract of the
flowering aerial parts of Plumbago auriculata Lam (P. aur-
iculata Lam). The ZnO NPs and the plant extract possessed
a significant antiviral activity against avian metapneumo-
virus subtype B, which would be beneficial for controlling
the spreading of the virus in infected birds. Moreover, the
green synthesis nanocomposites of ZnO NPs/activated carbon
(ZnO NPs/AC) (30-70 nm) were prepared using the water hya-
cinth (Pontederia crassipes) [206]. In addition to the antiviral
activity against the HSV1 virus, the ZnO NPs/AC nanocompo-
sites showed antibacterial and antifungal activities. Studies
revealed that the mechanism of the antiviral activity of ZnO
NPs is attributed to the damage of the lipid membrane and
RNA, thus inactivating the virus [207]. Hamdi et al. [208] con-
ducted a computational analysis to investigate the interaction
between ZnO NPs and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) targets. It was found that the hex-
agonal and spherical ZnO NPs with a crystallite size of ~11 nm
and positive zeta potential exhibited the highest antiviral
activity. Recently, Alrabayah et al. [209] used the alcoholic
leaf extract of Cestrum diurnum L. (C. diurnum L.) and zinc
acetate to prepare green-synthesized ZnO NPs (3.4-4.9 nm) to
evaluate their antiviral activity against human corona-229E
(HCOV-229E). The C. diurnum L. leaf extract contained cate-
chin, ferulic acid, chlorogenic acid, and syringic acid. Both
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ZnO NPs and the C. diurnum L. extract showed antiviral
activity against HCOV-229E with ICs, of 7.01 and 61.15 ug ml ™
however, their combination showed higher activity than indi-
vidually with ICs of 241 ug ml™.

7.7 Antiparasitic activity of ZnO NPs

The antiparasitic activity of the green-synthesized ZnO NPs
has been reported in the literature [17]. The antiparasitic
mechanism of ZnO NPs involves the disruption of the para-
site membrane, damaging the parasite DNA, inhibition of
protein synthesis, and formation of free radicals [17]. Dor-
ostkar et al. [210] tested the anthelmintic activity of ZnO
NPs and FeO NPs against Toxocara vitulorum (T. vitulorum)
using different concentrations of NPs (0.004, 0.008, and
0.012% w/v). The results showed that both NPs increased
the mortality rate of worms and increased the levels of
malondialdehyde (MDA) and nitric oxide (NO). The levels
of MDA and NO increased with an increase in the exposure
time and concentration of NPs. The anthelmintic activity of
both NPs was attributed to the induction of oxidative/nitro-
sative stress, resulting in the generation of ROS. Saleh et al.
[211] studied the antiprotozoal effects of the metallic NPs
(gold, silver, and ZnO) against Ichthyophthirius multifiliis
(I. multifiliis), a ciliated protozoan ectoparasite of fish. The
results showed that silver and ZnO NPs at 10 and 5ngm™"
killed 100 and 97% of theronts, respectively, and inhibited
the production of tomonts after 2h of exposure. However,
the antiparasitic effect of gold NPs was lower compared to
that of silver and ZnO NPs, killing 80 and 78% of tomonts
and theronts, respectively, at 20ngml ™" after 2h of expo-
sure. Recently, spherical and elliptical ZnO NPs (34.2 nm),
greenly synthesized using the aqueous extract of Himalayan
Columbine (Aquilegia pubiflora), were evaluated for their
anti-leishmanial activity. The results showed a dose-depen-
dent cytotoxic effect of ZnO NPs against Leishmania tropica
(KWH23) with IC, of 48 and 51 ug ml~* for promastigote and
amastigote, respectively [212]. Likewise, Najoom et al. [213]
green-synthesized ZnO NPs (70-90 nm) using the leaf extract
of Rhazya stricta (R. stricta) as capping and reducing agents.
Zn0 NPs showed antiplasmodial activity against plasmo-
dium parasites with ICs of 3.41 ug ml~". Similarly, spherical-
or elliptical-shaped ZnO NPs (66 nm) were prepared from
the aqueous fruit extracts of Myristica fragrans (M. fra-
grans) and evaluated for their antiparasitic activity [195].
The results showed potential leishmanicidal activity against
two forms of parasites (promastigote and amastigote) with a
mortality rate of 71.5 and 61.4%, respectively. Hence, these
studies demonstrated that the green-synthesized ZnO NPs
could be effective against parasites.
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7.8 Anti-inflammatory activity of ZnO NPs

The green-synthesized ZnO NPs showed excellent activity toward
inflammation [15]. The anti-inflammatory mechanism involves
the dissolution of ZnO NPs, releasing 7n? ions. The release of
Zn** can be involved in several pathways, such as suppressing
the release of the pro-inflammatory cytokines (interleukin-1 (IL)-1),
IL-1B, 1113, and tumor necrosis factor-o (TNF-o)) in mast cells.
Additionally, Zn”** release can suppress the expression of the
lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) gene
in macrophages, inducible nitric oxide synthase (iNOS), myelo-
peroxidase, and NFB. Moreover, Zn”* release may block the
caspase-1 enzyme in activated mast cells [15].

Nagajyothi et al. [191] green-synthesized ZnO NPs using
the root extract of P. tenuifolia. The anti-inflammatory activity
of ZnO NPs was evaluated in LPS-stimulated RAW 264.7
murine macrophages. The results showed a dose-dependent
suppression effect of ZnO NPs on mRNA and protein expres-
sion of iNOS and pro-inflammatory cytokines. Rajakumar
et al. [186] green-synthesized ZnO NPs (57-115nm) from the
leaf extract of Andrographis paniculata (A. paniculata). By
using heat to induce albumin denaturation, the results showed
an inhibition in the protein denaturation after exposure to
Zn0 NPs. Recently, the green-synthesized ZnO NPs, prepared
from the leaf extract of Kalanchoe pinnata (K. pinnata),
showed anti-inflammatory activity by inhibiting the produc-
tion and release of the pro-inflammatory cytokines IL-1B, IL-6,
TNF-a, and COX-2 [214]. Additionally, Mohammad et al. [215]
evaluated the anti-inflammatory activity of spherical ZnO NPs,
prepared from the Hyssops officinalis L. (H. officinalis L.)
extract, using the mouse paw edema test. The results showed
a decrease in edema when treated with a dose of 5 mg/kg ZnO
NPs. Similarly, Liu et al. [216] proved the anti-inflammatory
activity of ZnO NPs, greenly synthesized from the leaf extract
of Vernonia amygdalina (V. amygdalina), against inflamma-
tion-induced mice model by reducing the inflammatory
response and pro-inflammatory cytokines level in mice.
Recently, Abdelbaky et al. [26] proved the anti-inflammatory
activity of ZnO NPs (34.1 nm), synthesized by employing the
aqueous leaf extract of P. odoratissimum L. as a reducing
agent. The anti-inflammatory effect of ZnO NPs was evalu-
ated via an in vitro model of human red blood cells (RBCs)
which involves hypotonicity-induced hemolysis. ZnO NPs
were able to maximally stabilize the membrane by 95.6%
at a dose of 1,000 pg ml™, compared with the standard indo-
methacin. Finally, a very recent study by Lopez-Miranda
et al [217] evaluated the anti-inflammatory activity of ZnO
NPs, prepared from the sargassum extract. The results
revealed that ZnO NPs could inhibit protein denaturation
and exhibited higher anti-inflammatory activity than the
reference drug diclofenac. Thus, these studies suggested
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that the green-synthesized ZnO NPs showed promising
anti-inflammatory activity.

7.9 Wound healing of ZnO NPs

Zn0O NPs showed wound-healing activity [46,218]. Mahdavi
et al. [219] investigated the cutaneous wound-healing activity
of ZnO NPs (32nm) prepared using the Ziziphora clinopo-
dioides (Z. clinopodioides) leaf extract. The wound healing of
Zn0 NPs was confirmed by increasing the level of fibrocytes/
fibroblasts, hydroxyl proline, hexosamine, hexuronic acid,
and fibrocytes, and decreasing the wound area, total cells,
and lymphocytes compared to control groups in rats. Addi-
tionally, green and chemical ZnO NPs, loaded into gels, were
investigated for wound healing [220]. ZnO NPs were prepared
by green synthesis using the Lawsonia inermis (L. inermis) leaf
extract. The green and chemical ZnO NP-loaded gels showed
promising wound-healing properties with reduced healing
time in treated groups when compared with the control group
and the green ZnO NPs gels were more effective than the
chemical ones. Moreover, Shao et al [221] reported that the
green-synthesized ZnO NPs using the Barleria gibsoni (B. gib-
soni) leaf extract and loaded into Carbopol gels showed
wound-healing properties due to burns in rats.

Furthermore, the literature reported the effective wound-
healing activity of ZnO NPs prepared using aqueous leaf
extracts of Coleus amboinicus (C. amboinicus) [222], A. barba-
densis [223], and Azadirachta indica (A. indica) neem leaves
[224] as reducing, capping, and stabilizing agents. In addition,
the literature reported an improved treatment of infected
wounds caused by resistant bacteria by the embedding of
green ZnO NPs prepared using the Alternanthera sessilis
(A. sessilis) leaf extract into cotton fabrics [225], incorporation
of ZnO NPs prepared using Ilex paraguariensis (I. paraguar-
iensis) leaves into polymeric electrospun fibers of polyacrylic
acid and polyallylamine hydrochloride [226], and gel formula-
tions loaded with green synthesis silver NPs and ZnO NPs,
prepared from the Annona squamosa (A. squamosa) leaf
extract [227]. Altogether, these studies highlighted more pro-
mising biomedical applications of the green-synthesized ZnO
NPs. Plants, part of the plants, chemical precursors, and size
and biological activity of the green-synthesized ZnO NPs
reported in Sections 7.1-7.9 are summarized in Table 2.

8 Toxicity of ZnO NPs

Although bulk ZnO has been GRAS [35], there is still doubt
regarding the safety of ZnO NPs on human health that
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warrants further investigation [249]. Because ZnO NPs
are commonly used in broad biomedical applications, the
advantages of these types of NPs must be wisely weighed
against possible toxic effects [250]. It has been shown that
the concentration and exposure time of NPs and cell type
play a vital role in posing toxic effects [251]. Additionally,
the toxicity of NPs is determined by their physicochemical
properties such as size, shape, composition, and surface
properties [252].

Moatamed et al. [253] compared the impact of ZnO NPs
(39 nm) and bulk ZnO (5 ym) on the liver function of Wistar
rats. Three groups of rats received three dose levels of ZnO
NPs according to body weight (bw) (25, 50, and 100 mg/kg bw).
It was found that the group that received 100 mg/kg bw
Zn0 NPs showed the most significant changes in liver
enzymes, histopathological structure, and oxidative stress
markers, indicating a dose-dependent hepatic toxicity of
ZnO NPs. However, the group that received 100 mg/kg bw
of bulk ZnO showed no significant effects on liver function.
This can be explained by the increase in the Zn** concen-
tration in the hepatic tissues of rats treated with ZnO NPs,
while no significant change in Zn** concentration was
found in rats that received the same dose of bulk ZnO. A
study by Salami et al. [254] determined the hemolytic toxic
effects of ZnO NPs and their bulk counterparts on isolated
RBCs. A concentration range of 0.01-1 mM of ZnO (bulk and
NPs) was used in this study. The results demonstrated that
ZnO NPs caused toxic hemolytic effects due to the genera-
tion of ROS, lipid peroxidation, and GSH depletion, whereas
bulk ZnO did not show any toxic hemolytic effects. Addition-
ally, Roy et al [255] assessed the impact of ZnO NPs versus
bulk ZnO on the activity of murine macrophages. The study
revealed that ZnO NPs were more potent in activating the
proinflammatory cytokine production by macrophages,
whereas the small size of ZnO NPs may help in the eva-
sion of the macrophage response.

The toxicity studies of green-synthesized ZnO NPs are
limited. Saranya et al. [256] assessed the in vitro cytotoxi-
city of three green-synthesized NPs including ZnO NPs, FeO
NPs, and copper NPs (Cu NPs), prepared using the aqueous
leaf extract of Musa ornate (M. Ornate) and Zea mays
(Z. mays). The cytotoxicity of NPs was assessed in three cell
lines, the African green monkey kidney cell line (Vero), pig
kidney cell line (PK15), and Madin Darby bovine kidney
(MDBK) at 24 and 48 h. The results showed that the cytotoxic
effect of green NPs varied based on the concentration and
exposure time of NPs and cell type. Additionally, the green
Zn0 NPs exhibited higher cell viability at lower concentra-
tions (10 pg/100 uL) when compared to green FeO NPs and Cu
NPs in all cell types [256]. Additionally, the toxicity of the ZnO
NPs, prepared from the aqueous extract of Amaranthus

Green synthesis of zinc oxide nanoparticles using plant extracts

-_ 21

caudatus (A. caudatus), was evaluated using zebrafish embryos
[257]. The toxicity of ZnO NPs showed a concentration-depen-
dent pattern, where the ZnO NP concentration of <10 mg ml™*
showed no toxic effect, whereas at 50-100 mg ml ™" high levels
of mortalities were observed [257].

The toxicity of chemically synthesized ZnO NPs was
evaluated. Earlier, Najim et al. [258] investigated the cyto-
toxicity of ZnO NPs of different sizes in both normal and
cancer cell lines. The results showed that ZnO NPs of 85.7
and 190 nm displayed cytotoxic effects on all cell lines
derived from the lung tissue (Hs888Lu), neuron-phenotypic
cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histio-
cytic lymphoma (U937), with no effect on lung cancer
(A549). Additionally, it was found that the toxicity of ZnO
NPs depends on the particle size, concentration, and expo-
sure time. Khan et al. [259] assessed the toxic effect of ZnO
NPs at different concentrations (50, 100, 250, and 500 ppm)
on human erythrocytes. ZnO NPs showed a concentration-
dependent hemolytic activity in red blood cells. Addition-
ally, the genotoxic potential of ZnO NPs, investigated by the
in vitro alkaline comet assay, showed concentration-depen-
dent DNA damage at 250 and 500 ppm concentrations. The
toxic effects of ZnO NPs were attributed to the generation
of ROS that resulted from oxidative stress. Moreover, the
in vitro cytotoxicity of ZnO NPs (25nm) on an in vitro
model cell line, obtained from the gill tissue of Wallago
attu (WAG), was evaluated by MTT, neutral red uptake,
and LDH assay tests [260]. Researchers found that ZnO
NPs induced acute toxicity to WAG cells with IC5y of 5.7 +
01,31+ 0.1, and 5.6 + 0.12mg 17, respectively. Uzar et al.
[261] studied the nephrotoxic potential of ZnO NPs (10-50 nm)
against rat kidney epithelial cells (NRK-52E) at 25-100 pg ml ™
exposure concentration. The ICs, on NRK-52E was 73 ug ml ™.
Comet assay, used to assess the genotoxic effect of ZnO NPs at
12.5-50 ug mI ™", showed significant DNA damage in NRK-52E
cells. Additionally, Saranya et al. [256] assessed the in vitro
cytotoxicity of three green-synthesized NPs including ZnO
NPs, FeO NPs, and Cu NPs, prepared using the aqueous leaf
extract of Musa ornate (M. Ornate) and Zea mays (Z. mays).
The cytotoxicity of NPs was assessed in three cell lines, the
African green monkey kidney cell line (Vero), pig kidney cell
line (PK15), and MDBK at 24 and 48 h. The results showed that
the cytotoxic effect of green NPs varied based on the concen-
tration and exposure time of NPs and cell type. Additionally,
the green ZnO NPs exhibited higher cell viability at lower
concentrations (10 pg/100 uL) when compared to green FeO
NPs and Cu NPs in all cell types. Furthermore, Yousef et al
[262] confirmed the hepatic and renal toxicity of ZnO NPs in
male Wistar rats, when ZnO NPs were daily administered
orally for 75 days. Despite these studies, there is no standard
methodology for assessing the toxicity of ZnO NPs [263].
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Therefore, more toxicological studies are still needed to pro-
vide information on the safety, risk assessments, and risk
management of ZnO NPs.

9 Challenges associated with the
translation process of ZnO NPs
from bench to market

The translation process of ZnO NPs from bench to market
is facing several potential bottlenecks and challenges. The
green synthesis of ZnO NPs may suffer from batch-to-batch
reproducibility and large-scale production including plant
selection, synthesis conditions, NPs’ size, and applications
[24,264]. For instance, plants used for the green synthesis of
NPs are commonly selected based on their local availability
and abundancy [264]. This, in turn, makes it difficult to
green-synthesize NPs globally, using specific plant extracts.
Additionally, the time of plant collection hinders their use,
where plants are either collected during flowering or
fruiting seasons [265]. Moreover, the green synthesis of
NPs requires extremely high or low temperatures, long
reaction and extraction times, inert conditions (i.e., pre-
pared under an inert atmosphere of argon or nitrogen),
and the use of chemical precursors (such as zinc nitrate
and zinc acetate) [264]. In addition, the specific reaction
mechanism of the green synthesis of NPs is still difficult
to elucidate, and the mass balance and stoichiometric ratio
that scale up the process is a major challenge. Further-
more, the size of NPs, synthesized from different plant
extracts, is heterogeneous with irregular shapes [264].

The safety profile of ZnO NPs needs to be thoroughly
investigated and assessed before their use. It was found
that ZnO NPs may cause hepatic, nephron, neuronal, pul-
monary, and reproductive toxicity [70]. ZnO NPs can enter
the biological systems through three primary routes: dermal,
inhalation, and ingestion, followed by circulating in the
bloodstream [266]. The way zinc interacts with proteins,
nucleic acids, and cells plays a crucial role in determining
the application of ZnO NPs. Additionally, factors such as
size, physicochemical properties, dose, and duration of expo-
sure are important considerations in assessing the toxicity of
ZnO NPs [251,252].

The regulatory approval process for novel NPs can be
complex and time-consuming. This is because meeting the
regulatory requirements for safety, efficacy, and quality
can be a challenging and costly process, often leading to
a delay in market entry. Moreover, moving from labora-
tory-scale production to large-scale manufacturing can be
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a significant hurdle, where ensuring efficient and cost-
effective production methods while maintaining product
integrity can be a challenge. For example, NPs can be sus-
ceptible to changes in the physicochemical properties over
time, such as aggregation, agglomeration, or degradation.
Hence, ensuring long-term stability and adequate shelf-life
for NP-based products is crucial for commercial viability
[267]. Therefore, addressing these challenges requires a multi-
disciplinary approach involving scientists, regulators, and
manufacturers. Additionally, thorough research, robust safety
assessments, adherence to regulatory guidelines, and efficient
manufacturing processes are essential for the successful trans-
lation and commercialization of ZnO NPs.

10 Conclusion and future
perspectives

Scientists are actively dedicating their efforts to enhance
the green synthesis of ZnO NPs for various biomedical
applications. The green-synthesized ZnO NPs have gained
significant importance due to their eco-friendly, biocompat-
ibility, and cost-effectiveness than those prepared by che-
mical and physical methods. The variety of plant extracts
with their phytochemicals such as flavonoids, terpenoids,
polyphenols, tannins, and alkaloids can be considered a
potential source for the green synthesis of ZnO NPs that
contribute to the stability and discovery of new physico-
chemical properties for ZnO NPs. Research studies have
shown that the green-synthesized ZnO NPs exhibited
superior bioactivities due to the presence of various phy-
tochemicals on their surfaces. The antibacterial activity of
Zn0 NPs holds promise as a potential solution for the
treatment of infections caused by multidrug-resistant
bacteria and as an alternative to antibiotics. Moreover,
as an anticancer agent, ZnO NPs localize in cancer cells
through enhanced permeability and retention effects and
electrostatic interactions, leading to cell death through
the release of Zn** ions and/or generation of ROS. This
suggests that ZnO NPs are a promising anticancer agent
in targeting drug delivery. The green-synthesized ZnO
NPs may offer a remedy for diabetes as an antidiabetic
agent and an increase in the radical scavenging activity as
an antioxidant agent. Therefore, ZnO NPs hold vast potential
for pharmaceutical and biomedical applications, making them
a major area of research. Furthermore, ZnO NPs exhibited
antifungal, antiviral, antiparasitic, and anti-inflammatory
activities, expanding their use in health care products
such as sunscreen lotions for skin acne, blemishes, and
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UV/visible light protection. However, it is crucial to address
the limitations of ZnO NP toxicity toward biological systems
and the need for evidence-based research exploring the
bioactivities of ZnO NPs, which require further investiga-
tion. Currently, to our knowledge, the green-synthesized
Zn0O NPs have not been introduced into the market, and
no clinical trials have been reported. Hence, additional
in vivo studies on the biomedical applications of green-
synthesized ZnO NPs are necessary for future clinical use.
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