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Abstract: Dusty Casson fluids and tetra-hybrid nanofluids
are complex phenomena that find their extensive uses in
engineering and industrial applications. For instance, dusty
fluids are used in gas-freezing systems and nuclear power
reactors. The main objective of this article is to focus on the
characterization of generalized two-phase free convection
magnetohydrodynamic flow of dusty tetra-hybrid Casson
nanofluid among parallel microplates: dusty Casson fluid
and tetra-hybrid nanofluid exhibit free movement and elec-
trical conductivity. The Caputo–Fabrizio fractional deriva-
tive recently discovered generalizes the partial differential
equations governing the flow. Highly accurate temperature
and velocity distributions can be obtained using finite sine
Fourier and Laplace transform together. This study exam-
ines the relationships between temperature, dust particle
velocity, and Casson fluid velocity, along with the effects
of magnetic parameter, Grashof number, dusty fluid para-
meter, Peclet number, Reynold number, and particle mass
parameter. The Mathcad-15 software provides Casson, dusty,
and temperature profiles graphically. The Nusselt number

and skin friction are also examined for the tetra-hybrid
nanofluid. The fractional Casson fluid model is more accu-
rate than the classical model in terms of velocity, tempera-
ture, heat transfer, and skin friction. Graphical results
conclude that the fractional Casson fluid model describes
a more realistic aspect of both (fluid and dust particle) velo-
cities and temperature profiles, heat transfer rate, and skin
friction than the classical Casson fluid model. Furthermore,
the heat transfer rate enhanced from 0 to 39.3111% of the
tetra-hybrid nanofluid.

Keywords: tetra-hybrid nanofluid, two-phase flow, finite
sine Fourier transform, dusty fluid, MHD, Laplace trans-
form, Caputo–Fabrizio derivative

Nomenclature

A variable temperature.
Td ambient temperature
A1 Rivlin–Ericksen tensor of the first kind
τ time
B0 applied magnetic field
u1 velocity of the base fluid
cp specific heat capacity of fluid
u0 constant velocity
Cf skin friction
u2 velocity of the particle
CF Caputo–Fabrizio
Re Reynolds number
d distance between parallel plates
ρ fluid density
Gr Grashof number
μ dynamic viscosity
g gravitational acceleration
υ kinematic viscosity
H t( ) heaviside step function



* Corresponding author: Dolat Khan, Faculty of Science, King
Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit
Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand,
e-mail: dolat.ddk@gmail.com
Mostafa A. Hussien: Mechanical Engineering Department, College of
Engineering, King Khalid University, Abha, 61421, Saudi Arabia
Awatif M. A. Elsiddieg: Department of Mathematics, College of Science
and Humanities in Hotat Bani Tamim, Prince Sattam Bin Abdulaziz
University, Al-Kharj, 11942, Saudi Arabia
Showkat Ahmad Lone: Department of Basic Sciences, College of Science
and Theoretical, Studies, Saudi Electronic University, Jeddah-M, Riyadh,
11673, Saudi Arabia
Ahmed M. Hassan: Faculty of Engineering, Future University in Egypt,
New Cairo, Egypt

Nanotechnology Reviews 2023; 12: 20230102

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/ntrev-2023-0102
mailto:dolat.ddk@gmail.com


σ electrical conductivity
I identity tensor
α fractional parameter

×J B Lorentz forces
β Casson fluid parameter
K dusty fluid parameter
β

T
coefficient of thermal expansion

k thermal conductivity of the fluid
→

ρb body forces
K0 Stock’s resistance coefficient
τij Cauchy stress tensor
M non-dimensional magnetic parameter
θ dimensionless temperature of the fluid
N α( ) normalization function
N0 number density of the dust particles
Nu Nusselt number
P pressure
Pe Peclet number
Pm particles’ mass parameter
p

y
yield stress

→
s surface forces
T temperature of the fluid
Tw temperature of the wall

1 Introduction

A Casson fluid has an infinite viscosity at zero shear rates
and no flow behavior below its yield stress [1]. Honey, hair,
synthetic fibers, and soup are all Casson fluids. Oka [2]
investigated the dynamics of Casson fluids in pipes.
Mukhopadhyay and Mandal [3] studied the effect of New-
tonian heating condition, mass, and heat transfer on the
magnetohydrodynamics (MHD) flow of Casson fluid
between two plates that were not stable. With its superior
heat transmission, Casson fluid flow plays a crucial role in
the confectionery industry [4]. Akbar and Khan [5] inves-
tigated the impact of amagnetic field on the peristaltic flow of
Casson fluid in an asymmetric channel. Akbar [6] explored
possible uses in refineries and crude oil processing using
mathematical and graphical approaches. The entropy crea-
tion using the finite difference approach during thermal
transport with nanoparticles of fractional Casson fluid in
the presence of a magnetic field, radiation, and viscous dis-
sipation was studied by Asjad et al. [8]. Noreen and Butt [7]
looked at Casson fluid in physiological transit in a plumb
conduit. Under the correct boundary and beginning circum-
stances, Nadeem et al. [9] also investigated the three-dimen-
sional flow of a Casson nanofluid that conducts electricity.
Recently, Khan et al. [10] investigated the effects of heat

generation, chemical reactions, natural convection, and free
convection on the flow of Casson fluids through a porous
medium in a vertical channel. Using an explicit finite differ-
ence method, Reza-E-Rabbi et al. [11] studied the impact of
Brownian motion and thermophoresis on the transport of a
chemically reactive MHD Casson fluid through a stretched
sheet. Due to the more realistic thinning component provided
by non-Newtonian fluids, Casson fluids represent blood’s
rheological behavior in the cardiovascular system [12]. The
radiative double diffusive Williamson hybrid nanofluid con-
vection and mass transfer over a Riga surface are studied by
Faisal et al. [13]. Asogwa et al. [14] examined the heat transfer
characteristics of water-based Al O2 3 nanoparticles, water-
based CuO nanoparticles, and water-based Al O2 3 nanoparti-
cles on an exponentially accelerated radiative Riga plate
surface. The governing partial differential equations (PDEs)
are solved using the Laplace transform (LT) method. Volume
fractions of nanoparticles may be anywhere from 1 to 4%,
buoyancy forces can be anywhere from 5 to 20%, and the
modified Hartmann number can be anywhere from 1 to 6.

Nanofluids are nanoparticle-suspended base fluids [15].
Nanofluids are promising for heat transfer applications in
electronic devices, fuel cell technology, drug processes, hybrid-
powered engines, engine combination/vehicle heat oversight,
home refrigeration, chilling, domestic machining, and boiler
flue heat reduction [16]. Hybrid pigments, attractive coatings,
scratch-resistant coatings, anti-corrosion hair products, glass-
inspired materials, sound and heat insulators, electrical insu-
lators, fireproofing, intelligent textiles, green auto and
dental products, hybrid anti-cancer nanoparticles, magnetic
resonance imaging contrast agents, controlled-release bio-
capsules, biocatalysts, or photocatalyst actuators, optical
chemical sensors, fuel cells, solar cells, biosensors, super-
capacitors, bendable hybrid batteries, microlenses, and
waveguides, color-changing coatings, and coatings are
some of the numerous applications for organic–inorganic
compounds of hybrid nanofluid [17]. Ramesh et al.’s [18]
study delves into the impact of electromagnetic thermal
expansion on the flow of a hybrid nanofluid comprising
titanium oxide, iron oxide, and ethylene glycol. Tri-hybrid
nanofluid is another name for the improved hybrid nano-
fluid. Tri-hybrid nanoparticles are composites of three nano-
fluids. Tri-hybrid nanoparticles are essential for increasing
thermal conductivity. Composite particles may help elec-
trical heaters, solar energy generation, nuclear safety, the
pharmaceutical business, and others. Many scientists have
studied tri-hybrid nanoparticles. The water-based ternary
hybrid nanofluid flow dynamics in a three-dimensional
computational domain – the impact of Dufour and Soret
features – is reported by Bilal et al. [19]. The tetra-hybrid
nanofluid [ − − −Al O CuO TiO Ag2 3 2( )/water] tetra thermal
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efficiency in a magnetic field and with coupled convection
across a vertically oriented cylinder is reported by Adnan
et al. [20]. The thermophoretic particle deposition and the
non-linear surface stretching-induced three-dimensional
flow of nanofluid are studied by Asogwa et al. [21]. Zayan
et al. [22] used a magnetic catheter to cross a narrowed
artery, a non-uniform heat source (sink), and thermal radia-
tion to form ternary hybrid nanostructures under the influ-
ence of thermal additives. The cross-tetra-hybrid nanofluid
model initially developed by Tiwari and Das was re-formed
by Sajid et al. [23].

Sunscreen, tennis balls, computers, microorganisms,
medicine delivery, and cancer therapies are just some of
the many applications of tetra-hybrid nanoparticles dis-
cussed in this section. The author also emphasizes the role
of nanofluids, particularly tetraploids, in improving thermal
conductivity and withstanding greater temperatures. This
article describes the application of the Galerkin finite ele-
ment method to the study of tetra-nanofluids, similarity
transformations, thermal radiations, and the dissipation
function in a converging/diverging channel. The author
also highlights the need for sensitive nitrite electrochemical
detection at the nanoscale, reporting on a polyaniline-linked
tetra-amino cobalt phthalocyanine surface-functionalized
ZnO hybrid nanomaterial. Using several spectroscopic
methods, the researchers produced and studied the Schiff
base molecule. They then used it to create a flame-resistant
composite by incorporating it into a polypropylene matrix,
as reported by Li et al. [24]. A novel nanofluid with Al O2 3,
CuO, TiO2, and Ag nanoparticles dispersed in water was
studied for thermal performance. Magnetic fields and per-
meability affect the thermal efficiency of nanofluid and the
vertically aligned cylinder’s combined convection, as inves-
tigated by Adnan et al. [20]. In fluid mechanics, multi-phase
flow occurs when two or more thermodynamic phases of
materials are in motion. Two-phase flows, which might be
liquid–liquid, solid–liquid, solid–gas, or gas–liquid, are the
most basic kinds of multi-phase flows [25]. Fluidization,
nuclear reactors, dust cooling systems, and MHD generators
are a few uses for multi-phase MHD flows. An example of a
multi-phase flow that occurs naturally in humans is blood
circulation. To better understand the heat transfer proper-
ties and multi-phase flow of a long gravity-assisted heat
pipe, Chen et al. [26] undertook an experimental investiga-
tion. Several methods exist for determining the void ratio.
Radiation attenuation [27,28], ultrasonic [29,30], impedance
technique using capacitance [31], wire mesh sensors [32],
and open and shut valves to measure volume [33] are the
most often used methods. For further information, see the
linked publications [34,35].

Fractional derivatives offer a more comprehensive
understanding of complex phenomena that classical deri-
vatives fail to capture. By incorporating fractional orders,
these derivatives enable us to analyze and describe intri-
cate processes such as fractals, anomalous diffusion, and
non-local effects, thus expanding our knowledge beyond
the limitations of classical calculus. To better understand
and describe the world around us, Riemann-Liouville [36]
was the first to use fractional derivatives. Despite useless
variables in LT, the Riemann-Liouville (R-L) fractional deri-
vative is helpful in a wide range of physical systems owing
to two distinguishing qualities. The literature sometimes
suggests the Caputo fractional derivative to fix the R-L
fractional derivative. The Caputo fractional derivative
applies to various physical issues in economics, chemistry,
and physics. Research in several fields, including signal pro-
cessing, diffusion, image processing, material mechanics,
damping, pharmacokinetics, and bioengineering, might
benefit from computational fluid dynamics (CFD) [37,38].
However, owing to a singularity in the CFD kernel, it is not
feasible to accurately forecast the effects of some materials
with significant heterogeneities. Several studies have covered
the singularity problem in CFD [39]; to address this, Caputo–-
Fabrizio has presented a new definition with a non-singular
kernel [40]. Furthermore, the analysis of the finite difference
method is used for numerical research of fractional Maxwell
nanofluids between two coaxial cylinders by Asjad et al. [41].
Asjad et al. [42] reported an innovative study on the applica-
tion of fractional partial differential equations in the context
of MHD Casson fluid flow, which incorporates novel ternary
nano-particles. LT solves the dimensionless governing
model, and comparisons are shown from the answers.
Instead of the symmetric qualities for various fractional
parameters, other aspects of the issue have been examined.
Ternary nanoparticles increase fluid characteristics better
than hybrid and mono-nanoparticles. The law-based frac-
tional model fits experimental data more accurately and
efficiently than an artificial substitute. The second rule of
MHD flow of a Casson nanofluid in a porous medium with
sliding and ramping wall heating has recently been the
subject of an innovative multi-fractional comparative
study by Khan et al. [43]. The model was generalized using
triple fractional definitions, and the solution was found
using a combination of Laplace and Zakian’s numerical
approach. This research aimed to examine and contrast
the findings obtained using the aforementioned three
fractional operators in terms of entropy production, velo-
city profile, temperature profile, and Bejan number. Var-
ious physical characteristics were explored to maximize
or minimize entropy formation.
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A thorough review of the relevant literature demon-
strates that despite the recent development of C-F time-
fractional derivatives, no one has yet attempted to use
them to obtain exact solutions for the flow of Casson fluid
and tetra-hybrid nanofluid with dust particles and heat
transfer between parallel plates. Despite all the research
on the issue, no clear solution has emerged. We performed
studies on the unsteady flow of Casson fluid, considering the
presence of homogeneously spread dust particles, the effects
of MHD, and the transfer of heat across parallel plates to fill
this knowledge gap. We used a two-phase flow approach,
modeling the fluid flow and particle motion momentum
equations separately and then using the CF fractional deri-
vative to generalize our results. Wemade use of Laplace and
finite sine fourier transforms (FSFTs) to gain precise solu-
tion about the temperature as well as the velocity profiles.
The Nusselt number was found by applying the energy
equation to the problem, and the skin friction value was
found using the momentum equation to the problem. In
addition, we investigated the impacts of different embedded
parameters on velocities, temperatures, skin friction, and
Nusselt numbers, and we presented our results visually
and in a tabular form.

2 Mathematical formulation

In the current flow regime, a viscoelastic Casson fluid with
dusty particles and tetra-hybrid nanofluid flows unsteadily
and incompressibly between two parallel vertical plates.
As shown in Figure 1, the distance that separates the plates
is denoted by the letter “d,” and the velocity of the fluid is

regarded to be in the x-direction. The flow field is subjected
to a uniform and transverse magnetic field B0 with the left
plate remaining immobile and the right plate flowing at a
constant speed. Both the velocity of the dust particles and
the velocity of the Casson fluid are expressed by u ζ τ,1( )

and u ζ τ,2( ), respectively. The temperature of the plate
on the right may be adjusted with variable temperature

+ −T T T Aτd w d( ) , but the temperature of the plate on the
left is denoted by Td [43,44].

The constitutive equations for the Casson fluid are as
follows [45]:

∇ =V 0,· (1)

= + +
V

τ b sρ
t

ρ
d

d
div ,ij( ) · (1.1)

where ρ, td/d , τij, bρ· , and s are the fluid density, material
time derivative, body forces, Cauchy stress tensor, and the
interactive surface forces that generate due to the interac-
tion between fluid particles and dust particles.

Using the Maxwell law, generalized Ohm’s law, and
Boussinesq’s approximation, the body and surface forces
in Eq. (4) become [45]
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Casson (1959) stated and derived the rheological equa-
tion for unsteady Casson fluid flow, which can be expressed
as [45]:
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where μ
ε
shows the dynamic viscosity of the plastic non-

Newtonian fluid =μ ρυ
ε

and p
y
shows the yield stress of

the fluid, respectively, =π e eij ij1 , where eij is used to repre-
sent the component of the deformation rate for non-
Newtonian fluid, and i j, th( ) deformation rate component
can be written as:

= − +e I Ap μ ,ij 1 (1.5)

where P, I , μ, and A1 are the indeterminate pressure,
identity tensor, dynamic viscosity, and Rivlin–Ericksen
tensor of the first kind.
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When Equations (1.2)–(1.6) are utilized, Equation (1)
becomes can be expressed in component form as [45]:Figure 1: Illustrative diagram of the presented problem.
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The momentum equation of dust particles is given as [45]:
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where m is the mass of dust particles and K0 is Stock’s resistance coefficient.
The energy equation of fluid is given as [45]:
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Some physical conditions are as follows [45]:
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Dimensionless variables are those that express quantities in a fashion that is independent of any specified units or
scale, which are as follows:
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The dimensionless form was obtained by applying equations (5) to (1)–(4), which are as follows:
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The physical conditions represented in a dimensionless behavior are as follows:
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( ) ( )(( ) ( ) ( ) ) ( ) ( )

( ) ( )

( ) ( )

(10)

The C-F time-fractional parameter α on equations (6)–(8) yields the following:

=
∂

∂
− − − +c D u ζ τ c λ

u ζ τ

ζ
K u ζ τ u ζ τ Mu ζ τ θ ζ τRe ,

,
, , , Gr , ,

τ

αCF

1 1 2 1

2
1

2 1 2 1( )
( )

( ( ) ( )) ( ) ( ) (11)

= −D u ζ τ P u ζ τ u ζ τ, , , ,
τ

αCF
2 m 1 2( ) ( ( ) ( )) (12)

=
∂

∂
D

c

c
θ ζ τ

θ ζ τ

ζ

Pe
,

,
.

τ

αCF 4

3

2

2
( )

( ) (13)

In this context, the C-F time-fractional operator with fractional parameter is denoted by D
τ

αCF , and its definition is
given as follows [43,44]:

∫= − − − −− − ′D ψ τ N α α α t τ α ψ τ τ1 exp 1 d .
τ

α

τ

CF 1

0

1( ) ( )( ) ( ( )( ) ) ( ) ( ) (14)

That is, = =N N0 1 1( ) ( ) , ∈α 0, 1( ).
It can be shown from [44] that the Laplace transformation for the C-F fractional derivative of order < ≤α0 1 and

∈m N is as follows:

=
−

⎛
⎝

⎛
⎝− −

⎞
⎠
⎞
⎠ =

− − ′ −
+ −

=
+ −

=

⎫

⎬

⎪
⎪

⎭

⎪
⎪

+
+

+ −
D

D

L ψ τ q
α

L ψ τ L
α

α
τ

s L ψ τ q ψ q ψ ψ

q α q

L u ζ τ q
qL u ζ τ

q α q
m

1

1
exp

1

0 0 0

1

In particular case:

, ,
,

1
, 0,

m α

τ m

m m m m

α

τ

CF
1

1 1

CF

1

1

( ( ))( ) ( ( ))
( ( ) ( ) ( ) ( ))

( )

( ( ( ) ))
( ( ))

( )

( )

(15)
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3 Exact solutions to the problem

Joint Laplace and FSFTs solve fractional PDEs exactly.

3.1 Calculation of temperature

If we solve Eq. (13) using the LT, we obtain the following:

+
=

∂
q n

q n
θ ζ q

d θ ζ q

ζ

Pe
¯ ,

¯ ,
.

0

1

2

2
( )

( )
(16)

In a similar vein, Eq. (18) may also be rewritten as:

⎪

⎪

= = = =

= = =

⎫
⎬
⎭

=

= =

u ζ u ζ T ζ u ζ q H q

u q T ζ q
q

T ζ q

, 0 0, , 0 0, , 0 0, ,

1, 0, ,
1

, , 0
.

ζ

ζ ζ

1 2 1 0

1 0 2 1

( ) ( ) ( ) ( )∣ ( )

( ) ( )∣ ( )∣
(17)

Taking both sides of Eq. (16) ∫d

0
w.r.t ζ and also multi-

plying nπsin( ), we obtain the following:

∫ ∫⎜ ⎟⎜ ⎟
⎛
⎝ +

⎞
⎠

= ⎛
⎝ ∂

⎞
⎠

q n

q n
θ ζ q nπ ζ

d θ ζ q

ζ
nπ ζ

Pe
¯ , sin d

¯ ,
sin d .

d d

0

0

1
0

2

2
( ) ( )

( )
( ) (18)

Now, in Eq. (18), applying the FSFT and using the initial
conditions (ICs) and boundary conditions (BCs), we obtain
the following:

= + + −θ η q
A

q
q n q A¯ , .FSFT

1

2 1 2
1( ) ( )( ) (19)

A better way to write Eq. (19) is as:

= − +

−
−

+

− −

− −

θ η q A A n A A q

A n A A

q

n A A

q

¯ ,

.

FSFT 1 2
2

1 2 2
1

1 1 2 2
2

1 1 2
1

2

( ) ( )( )

( ) (20)

The inverted LT of Eq. (20) may be expressed as
follows:

= − − + −
θ η τ A A τ A n A A τ, exp .FSFT 3 2 3 1 1 2

1( ) ( ) (21)

By inversing FSFT of Eq. (21), we find the following
optimal temperature profile:

∑= − + + −
=

∞

θ ζ τ ζ τ A A τ nπζ, 1 2 1 exp sin ,

n 1

3 2( ) ( ) ( ( ( )) ( ) (22)

=
−

=
−

=
+

=
+

= − −

n
α

n
α

α
A

nπ

n nπ

A
nπ n

n nπ
A A n A A

1

1
,

1
,

Pe
,

Pe
, .

0 1 1

0
2

2

2
1

0
2 3 1 1 2 2

2

( )

( )

( )
( )

(23)

By taking the LT from Eq. (12) and plugging it into Eq.
(17), we obtain the following:

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

+ = −

= ⎛
⎝ +

⎞
⎠

+

=
⎛
⎝
⎛
⎝ +

⎞
⎠

+
⎞
⎠

=
⎛
⎝
⎛
⎝ +

⎞
⎠

+
⎞
⎠

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

−qn q n u ζ q P u ζ q u ζ q

P u ζ q
q n

q n
u ζ q P u ζ q

P u ζ q
q n

q n
P u ζ q

P u ζ q
q n

P q n
u ζ q

, , ,

, , ,

, ,

, 1 ,

.

0 1
1

2 m 1 2

m 1

0

1

2 m 2

m 1

0

1

m 2

m 1

0

m 1

2

( ) ( ) ( ( ) ( ))

( )
( )

( ) ( )

( )
( )

( )

( )
( )

( )

(24)

Finally, the momentum equation for dust particles is
as follows:

⎜ ⎟= ⎛
⎝

+
+

⎞
⎠

u ζ τ
q n

n q n
u ζ τ, , ,2

1

2 3

1( )
( )

( ) (25)

where

=
+

=
+

n
P n

P
and n

P n

n P
, .2

m 0

m

3

m 1

0 m

(26)

3.2 Solution of the velocity profile

By applying the modification [44], we obtain the following:

= − +u ζ τ ζ H τ ζ τ, 1 , .1 R( ) ( ) ( ) ( ) (27)

The following results from applying Eqs. (11) to (27):

⎜ ⎟

− +

=

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

∂
∂

− +

+ ⎛
⎝ − +

− ⎞
⎠

⋅ − + +

− − +

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

c D ζ H τ ζ τ

λ c
ζ

ζ H τ ζ τ

K
u ζ τ

ζ H τ ζ τ

ζ H τ ζ τ θ y t

M ζ H τ ζ τ

Re 1 ,

1 ,

,

1 ,
1

1 , Gr ,

1 ,

.

τ

α

1
CF

1 2

2

2

2

R

R

R

R

R

( (( ) ( ) ( )))

(( ) ( ) ( ))

( )

(( ) ( ) ( ))

(( ) ( ) ( )) ( )

(( ) ( ) ( ))

(28)

By incorporating the modified ICs and BCs, we obtain
the following:

= = =ζ τ τ, 0 0, 0, 0, 1, 0.R R R( ) ( ) ( ) (29)

The following results are obtained after applying the
LT to Eqs. (28) and (29):

⎜ ⎟

+
+

+
−

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

+
⎧
⎨
⎩
⎛
⎝

+
+

⎞
⎠

−
⎫
⎬
⎭

+ −

− − − +

⎫

⎬

⎪
⎪

⎭

⎪
⎪

n c q

q n
ζ q

n c q

q n
ζ H q

λ c
ζ

ζ q K
q n

n q n

ζ q ζ H q

M ζ q M ζ H q θ ζ q

Re
,

Re
1

d

d
,

1 , 1

, 1 Gr ¯ ,

,

0 1

1

0 1

1

1 2

2

2

1

2 3

R

R

R

R

( ) ( ) ( )

( )
( )

( ( ) ( ) ( ))

( ) ( ) ( ) ( )

(30)
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⎨
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⎟
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⎝
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⎫
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⎭
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K
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n c q
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1 ,

1
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1

Gr ¯ , .

0 1

1
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2
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1
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( )
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(31)

Obtain the Fourier sine transform (FSFT) of Eq. (31)
and simplify it as follows

⎜ ⎟= ⎛
⎝

− −
+ +

⎞
⎠

−

+ ⋅
+
+

⋅
+

+ +

η q
q n q n

q A q A
η H q

n A

q

q n

q A

q n

q A q A

, 1

Gr
.

FSFT

2
4 5

2
4 5

2 1

2

1
2

2

3

2
4 5

R ( ) ( ) ( )

( ) ( )
(32)

It is possible to rewrite Eq. (31) such that it is more
understandable and correct as:

= ⎧
⎨
⎩

−
+

+
−

⎫
⎬
⎭

−

− ⎧
⎨
⎩

− −
+

−
+

−
−

⎫
⎬
⎭

η q
A

q A

A

q A
η H q

A

q

A

q

A

q A

A

q A

A

q A

, 1 1

.
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2

13

6

14

7

R ( ) ( ) ( )

(33)

By inverting LT of Eq. (33), we obtain the following:

=

⎧

⎨
⎪

⎩⎪

− − +

− − + + −

+ − +

⎫

⎬
⎪

⎭⎪

η τ

H τ A A τ H τ A A τ

H τ η A τ A A A τ

A A τ A L τ

,

exp * exp

* 1 exp

exp exp

.

FSFT

8 6 9 7

10 11 12 2

13 6 14 7

R ( )

{ ( ) ( ) ( ) ( )

( )}( ) ( )

( ) ( )

(34)

After further simplification, Eq. (34) becomes

= − − +

− − +

+ − + −

+

η τ A A τ A A τ

H τ η A τ A

A A τ A A τ

A L τ

, 1 exp exp

* 1

exp exp

exp .

FSFT 8 6 9 7

10 11

12 2 13 6

14 7

R ( ) {( ( ) ( )

( ))}( )

( ) ( )

( )

(35)

By inverting FSFT of Eq. (35), we obtain the following:

∑=

⎛

⎝

⎜
⎜
⎜
⎜

− − +

− − +

+ − + −

+

⎞

⎠

⎟
⎟
⎟
⎟

×

=

∞
ζ τ

A A τ A A τ

H τ η A τ A

A A τ A A τ

A L τ

nπζ

, 2

1 exp exp

* 1

exp exp

exp

sin .

n 1

8 6 9 7

10 11

12 2 13 6

14 7
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{( ( ) ( )

( ))}( )

( ) ( )

( )

( )

(36)

By substituting Eq. (36) into Eq. (27), we obtain the
following:

∑= − +

×

⎛

⎝

⎜
⎜
⎜
⎜

− − +

× − − +

+ − + −

+

⎞

⎠

⎟
⎟
⎟
⎟

=

∞
u ζ τ ζ H τ

A A τ A A τ

H τ η A τ A

A A τ A A τ

A L τ

nπζ

, 1 2

1 exp exp

* 1

exp exp

exp

sin .

n

1

1

8 6 9 7

10 11

12 2 13 6

14 7

( ) ( ) ( )

{( ( ) ( )

( ))} ( )

( ) ( )

( )

( )

(37)

Note: An important thing to keep in mind is that “*”
represents the convolution product.

The validity of our obtained general solutions is shown
by the fact that Eq. (37) fulfills the imposed boundary
constraints.

3.3 Nusselt number

In mathematical terms, the dimensionless form of the
Nusselt number can be expressed as

= −
∂

∂ =

k

k

θ ζ τ

ζ
Nu

,
.

ζ

mthnf

mhnf 0

( )
(38)

3.4 Skin friction

Mathematically, the equation for the left-hand skin friction
is as follows:

=
∂

∂ =
c

u ζ τ

ζ
Cf

,
.

ζ

2

1

0

( )
(39)

4 Graphical results and discussion

In this study, the authors investigate the unsteady flow of
viscoelastic Casson dusty fluid and tetra-hybrid nanofluid
in two parallel plates. The authors have also taken into
account the impacts of heat transmission and MHD. To
obtain precise answers, both LT and FSFT have been
used. The tables and figures illustrate the influence that
the various embedded parameters have on the velocities
of the fluids as well as on the temperature distribution.

For this purpose, we draw up Figure 2(i) and (ii) to
examine the effect of Casson fractional parameters and
dusty fluid velocities by using the classical derivative
that yields as a single velocity profile. However, the figures
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show that using the fractional parameter yields many pro-
files for different fractional parameters. Fluid and dust
particle velocities exhibit a crucial memory effect due to
modifying fractional values, while all other parameters
remain constant. Assuming that all other parameters stay
the same, Figure 3(i) and (ii) exhibits the effect of changing
a Casson fluid parameter on the velocity profiles of Casson
and dusty fluids, respectively. When the Casson fluid para-
meter values increase, the viscous forces become more
important than the thermal forces, which tend to reduce
the velocities of both fluids. Figure 4(i) and (ii) shows the
effect of the Grashof number on the velocity distributions
of Casson fluid and dust particles, respectively. Findings
show that the buoyancy forces increase with the Grashof
number, leading to higher velocities for the Casson and
dusty fluids. The correlation between dust particle density
and temperature is the subject of this study. Assuming a
spherical form, Stock’s drag force shows that as the dusty

parameter increases, the viscous forces of viscoelasticity
increase. Figure 5(i) and (ii) makes it abundantly evident
that when there is an increase in the total number of dust
particles, there is also an increase in the overall velocity of
the fluid as well as the dusty fluid. In Figure 6(i) and (ii), we
can observe how the magnetic parameter influences the
velocities of the Casson fluid and the dust particles, respec-
tively. When the magnetic parameter increases, the velo-
cities of both fluids and dusty fluids decrease. Because
increasing values of the magnetic parameter increase the
frictional forces on the flow of fluid, known as Lorentz
forces, the thickness of the momentum boundary barrier
is reduced, which results in slowing of both velocities. This
phenomenon may be explained by a physical phenomenon
known as the Lorentz force. The influence of the dusty
fluid parameter on the velocity profiles of dust particles
and Casson fluid, respectively, is shown in Figure 7(i) and
(ii), which provides a summary of the effect. Because of the

Figure 2: Effect of different values of α on u ζ τ u ζ τ, and ,1 2( ) ( ).

Figure 3: Effect of different values of λ on u ζ τ u ζ τ, and ,1 2( ) ( ).
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inverse connection that exists between the dusty fluid
parameter and the dust particle mass, an increase in the
dusty fluid parameter results in a decrease in the dust

particle mass, which in turn leads to an increase in both
the Casson velocity and the dusty fluid velocity. Figure 8(i)
and (ii) shows the influence that the Reynolds number has

Figure 4: Effect of different values of Gr on u ζ τ u ζ τ, and ,1 2( ) ( ).

Figure 5: Effect of different values of K on u ζ τ u ζ τ, and ,1 2( ) ( ).

Figure 6: Effect of different values of M on u ζ τ u ζ τ, and ,1 2( ) ( ).
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on the fluid velocity and dust particle velocity profiles, respec-
tively. The inertial forces acting on the fluid rise in proportion
to the Reynolds number; as a result, the velocity profiles in
both directions experience a reduction in speed. Figure 9(i)
and (ii) illustrates the influence of the volume fraction para-
meter on the velocity of the tetra-hybrid nanofluid and dust
particles, respectively. The tetra-hybrid nanofluid and dust
particle velocity profiles drop as the volume fraction of the
tetra-hybrid nanofluid rises, which indicates that the tetra-
hybrid nanoparticles are physically slowing the flow of the
fluid. The greater concentration of tetra-hybrid nanoparticles
results in the generation of resistive forces, which cause
the nanoparticles to travel at a more leisurely pace inside
the channel. When there is a higher concentration of fluid,
the viscosity of the tetra-hybrid nanofluid increases, which
results in a reduction in the velocity profiles of both the tetra-
hybrid nanofluid and the dust particles.

Figure 10(i) and (ii) provides a comparison of tetra-
nanofluid with tri-nanofluid, hybrid nanofluid, nanofluid,
and classical fluid in terms of the velocity profile. When
compared to tri-nanofluid, hybrid nanofluid, nanofluid,
and classical fluid, Figure 10 makes it abundantly evident
that tetra-nanofluid can adjust the velocity boundary layer
more swiftly.

Figure 11 shows the effects of volume fraction on the
temperature distribution. The temperature of the fluid
rises as volume friction or viscous heating increases. This
is because the heat produced by viscous heating is dis-
persed throughout the fluid, raising the overall tempera-
ture of fluid. As the volume friction increases, the internal
temperature distribution of fluid may become more uni-
form. In conclusion, increased volume friction or viscous
heating in a fluid can increase the temperature distribu-
tion of fluid.

Figure 7: Effect of different values of Pm on u ζ τ u ζ τ, and ,1 2( ) ( ).

Figure 8: Effect of different values of Re on u ζ τ u ζ τ, and ,1 2( ) ( ).
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Figure 9: Effect of different values of ϕ on u ζ τ u ζ τ, and ,1 2( ) ( ).

Figure 10: Comparison of tetra-nanofluid with tri-nanofluid, hybrid nanofluid, nanofluid, and classical fluid of both the velocities.

Figure 11: Effect of different values of ϕ on θ ζ τ,( ) .
Figure 12: Comparison of tetra-nanofluid with tri-nanofluid, hybrid
nanofluid, nanofluid, and classical fluid on θ ζ τ,( ) .
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Figure 12 shows the comparison of tetra-hybrid nano-
fluid with tri-nanofluid, hybrid nanofluid, nanofluid,
and classical fluid temperature profiles. It is clear from
Figure 12 that adding tetra-hybrid nanofluid to the base
fluid enhances the heat transfer as compared to tri-nano-
fluid, hybrid nanofluid, nanofluid, and classical fluid. Our
current solution is reduced to Ali et al.’s [45] solution in the
absence of tetra-hybrid nanofluids. Both solutions overlap,
demonstrating the correctness and validity of our present
solutions (Figure 13).

A dimensionless measure of convective heat transmis-
sion is the Nusselt number (Nu). It is a measurement of the
boundary-layer heat transfer efficiency (convective to
conductive). The fluid characteristics, the solid surface
properties, and the flow circumstances are all factors
that influence the Nusselt number.

Table 1 displays the fluctuation of the Nusselt number
(Nu) versus ϕ, α, and t. It has been noted that raising the
value of ϕ increases the value of Nu. When the value of ϕ

decreases, the values of α and t increase.
In order to optimize heat transmission in a variety of

engineering environments, it is crucial to understand how
these characteristics impact the Nusselt number.

Skin friction is a phenomenon in fluid dynamics that
explains the frictional force between a fluid and a solid
surface. The skin friction force relies on the fluid viscosity,
velocity, surface roughness, and object size and form. The
skin friction for laminar flow (low Reynolds number) is
directly proportional to the viscosity and velocity of fluid,

Figure 13: Comparison of this study with Ali et al. [45].

Table 1: Variation of Nu

t α ϕ Nu

1 0.1 0.01 0.953
1.5 0.1 0.01 0.890
1 0.2 0.01 0.973
1 0.3 0.01 0.921
1 0.1 0.02 0.991
1 0.1 0.03 1.005

Table 2: Variation of Cf

t α λ K Re Pe Gr Pm M ϕ Cf

0.5 0.5 1 0.5 10 40 5 0.5 0.5 0.01 0.060
1.0 0.5 1 0.5 10 40 5 0.5 0.5 0.01 0.112
1.5 0.5 1 0.5 10 40 5 0.5 0.5 0.01 0.254
0.5 0.7 1 0.5 10 40 5 0.5 0.5 0.01 0.654
0.5 0.8 1 0.5 10 40 5 0.5 0.5 0.01 0.543
0.5 0.5 2 0.5 10 40 5 0.5 0.5 0.01 0.126
0.5 0.5 3 0.5 10 40 5 0.5 0.5 0.01 0.415
0.5 0.5 1 1.0 10 40 5 0.5 0.5 0.01 0.456
0.5 0.5 1 1.5 10 40 5 0.5 0.5 0.01 1.002
0.5 0.5 1 0.5 20 40 5 0.5 0.5 0.01 0.710
0.5 0.5 1 0.5 30 40 5 0.5 0.5 0.01 0.973
0.5 0.5 1 0.5 10 50 5 0.5 0.5 0.01 0.774
0.5 0.5 1 0.5 10 60 5 0.5 0.5 0.01 0.925
0.5 0.5 1 0.5 10 40 10 0.5 0.5 0.01 0.119
0.5 0.5 1 0.5 10 40 15 0.5 0.5 0.01 1.204
0.5 0.5 1 0.5 10 40 5 0.6 0.5 0.01 0.922
0.5 0.5 1 0.5 10 40 5 0.7 0.5 0.01 1.176
0.5 0.5 1 0.5 10 40 5 0.5 1.0 0.01 0.209
0.5 0.5 1 0.5 10 40 5 0.5 2.0 0.01 1.259
0.5 0.5 1 0.5 10 40 5 0.5 0.5 0.02 0.109
0.5 0.5 1 0.5 10 40 5 0.5 0.5 0.03 1.025

Table 3: Comparison of tetra-nanofluid with tri-nanofluid, hybrid
nanofluid, nanofluid, and classical fluid

Fluid name Nu Percentage

Classical fluid 0.842
Nanofluid 0.942 11.8764
Hybrid nanofluid 1.019 21.0213
Tri-nanofluid 1.096 30.1662
Tetra-nanofluid 1.173 39.3111

Table 4: Thermophysical properties

Material Base fluids Nanoparticles

SA Cu Al O2 3 Ag TiO2

ρ kg/m3( ) 989 8,933 3,970 10,500 4,250

c J/kg Kp ( ) 4,175 385 765 235 686.2

K W/m K( ) 0.613 401 40 429 8.9528

×β 10 K‒5 ‒1( ) 0.99 1.67 0.85 1.89 0.9

Generalized two-phase free convection magnetohydrodynamic flow  13



but for turbulent flow (high Reynolds number), it depends
on the surface roughness and the size and form of object.

The various factors and their impacts on skin friction
are shown in Table 2. It should be brought to reader’s atten-
tion that the high values of t , α , andGr are decreasing. Skin
friction is vital for designing aircraft wings, ship hulls, and
pipelines that move through fluids. Reducing skin friction
improves fluid movement and energy efficiency. Smoothing
the surface, utilizing low-friction coatings or materials, and
regulating fluid flow to reduce turbulent boundary layers
reduce skin friction.

Table 3 shows the Nu comparison of tetra-nanofluid
with tri-nanofluid, hybrid nanofluid, nanofluid, and clas-
sical fluid. It is clear from Table 3 that the value of heat
transfer rate (Nu) enhanced from 0 to 39.3111%. Table 4
shows the thermophysical properties of the base fluid
and suspended nanoparticles.

5 Conclusions

The purpose of this study is to analyze the generalized
natural convection flow of Casson dusty fluid and tetra-
hybrid nanofluid between vertical plates that have varying
temperatures. The model is fractionalized using a method
known as CF time-fractional derivative, which does not
require a single kernel. Laplace and FSFT approaches are
then used to solve the set of controlling PDEs, using the
MATHCAD 15 program. The following is a condensed ver-
sion of the most important results from this investigation:
• The generalized Casson fluid model provides a more accu-
rate representation of fluid behavior by depicting the velo-
city profile in fluid, as demonstrated by graphical findings.

• The heat transfer rate enhanced from 0 to 39.3111% by
adding tetra-hybrid nanofluid.

• The fluid velocity and the particle velocity enhance with
the enhancement of α and Gr.

• By increasing the values of M , both the velocities show
the reducing behavior.

• The high value of ϕ results in an increasing temperature
profile.

• Casson dusty fluids and tetra-hybrid nanofluids are only
two examples of complicated phenomena used exten-
sively in engineering and industrial applications. One
such use is the use of dusty fluids in gas-freezing systems
and nuclear power reactors.

Finally, the authors would like to make some recom-
mendations for further study to the readers, which are
listed in the following:

• The following concept can be applied to more complex
geometries such as wedges and cones.

• One approach is used to investigate the same idea for
several types of fluids with more physical conditions.

• In addition, several novel fractional derivatives may be
used to more efficiently summarize existing fluid models
and concentration equations.
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