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Abstract: Antifouling technologies have attracted consid-
erable attention in recent years, as numerous fouling
phenomena pertaining to inorganic, organic, bio-, and
composite foulants substantially affect daily life. Poly
(dimethyl siloxane) (PDMS) has several practical applica-
tions; however, it possesses limited resistance to inor-
ganic, organic, or biofoulants such as proteins or bacteria.
Among the antifouling strategies reported thus far, anti-
fouling induced by surface wettability (AFISW) is an
exceptional strategy with considerable potential. It pre-
sents numerous advantages such as a physical working

mechanism, eco-friendliness, and facile material fabrica-
tion process. To achieve AFISW, PDMS can be modified
with several nanomaterials to tune its surface wettability to
meet antifouling requirements. This article presents a sys-
tematic review of the existing research on AFISW in PDMS
to achieve improved antifouling performance. Specifically,
we first provide a background on fouling, focusing on the
different types of fouling and antifouling mechanisms. Then,
we provide a comprehensive review of AFISW based on four
types of surface wettability, namely, superhydrophilicity,
hydrophilicity, hydrophobicity, and superhydrophobicity.
Finally, we discuss suitable AFISW strategies for different
types of fouling mechanisms based on PDMS and its nano-
composites. This review will help researchers design
and fabricate various polymeric materials and their
nanocomposites with tailored surface wettability for
AFISW applications.
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1 Introduction

Antifouling strategies have recently attracted consider-
able research attention because of the numerous fouling
phenomena involving inorganic, organic, bio-, and com-
posite foulants, which substantially affect daily life [1].
The earliest known documentation of fouling is a papyrus
dating back to 412 BCE [2]. Foulants such as dust, ice,
crude oil, barnacles, bacteria, and blood have tangible
impacts, such as the degradation of material surfaces,
increased ship drag resistance, and higher probability of
infection in hospitals [1–10]. For example, marine fouling,
a typical type of biofouling, usually causes severe eco-
nomic losses of approximately US$ 150 billion in the trans-
portation industry and necessitates the use of 80,000 tons
of antifouling paint per year. In addition, it results in
adverse ecological impacts (e.g., the production of harmful
compounds due to high fuel consumption and toxic anti-
fouling coatings for marine ecosystems) [11]. Silicone-
based polymers such as poly(dimethyl siloxane) (PDMS)
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and its nanocomposites are extensively applied in elasto-
mers, stretchable electronics, cosmetics, antifoaming agents,
flexible sensors, and biomedical devices [12–16]. PDMS has
various advantages owing to its optical transparency, che-
mical stability, biocompatibility, and acceptable cost [15].
The flat PDMS surface is hydrophobic, with a water contact
angle (WCA) of approximately 100–110° [17–20]. Although it
shows some resistance to inorganic foulants, its resistance
to organic or biofoulants, such as protein or bacterial
attachment, is low [17]. PDMS and its nanocomposites
have various applications in everyday life, and their surface
wettability can be easily tuned to meet antifouling needs.
Therefore, it is necessary to conduct a systematic review on
PDMS and its nanocomposites to provide a reference for
future improvements in their antifouling performance.

Among the several antifouling strategies reported thus
far, antifouling induced by surface wettability (AFISW)
has numerous advantages, such as a physical working

mechanism, eco-friendliness, and a facile fabrication
process. Figure 1 summarizes the four common types
of foulants (the innermost ring, in yellow), three devel-
oped antifouling mechanisms (the middle ring, in green),
and the corresponding AFISW strategies (the outmost
ring) based on various types of surface wettability. As
the interactions between the foulant and surface [21] and
surface wettability [22] are both determined by the che-
mical composition and/or physical structures on the sur-
face, it is easy to achieve good antifouling performance by
controlling the surface wettability.

1.1 Fouling types

Fouling is commonly classified into four types, namely,
inorganic, organic, bio-, and composite fouling, according

Figure 1: AFISW of PDMS and its nanocomposites. Reprinted with permission from He et al. [1]. Copyright 2021, Elsevier B.V.
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to the foulant [1]. These types and some specific examples
of foulants are provided in Figure 2. Inorganic fouling
involves one or more types of inorganic materials, and
organic fouling refers to the adsorption of one or more
types of organic compounds onto a surface. Moreover,
biofouling refers to the accumulation of unwanted organ-
isms, biomolecules, or cells on a surface, and composite
fouling can be regarded as the combination of two or three
of the other previouslymentioned types of fouling. In prac-
tical applications, fouling rarely involves only one type of
foulant; in fact, most of the fouling is caused by different
types of inorganic and organic foulants. However, anti-
fouling strategies are easy to design and are usually sui-
table for any type of inorganic or organic foulant because
of their similarities. Conversely, antifouling is more com-
plicated in the cases of bio- and composite fouling because
of the diversity of biofoulants and the mixture of two or
three types of foulants (inorganic, organic, or bio-), respec-
tively. Therefore, the current research is focused on the

design and fabrication of antifouling materials for bio-
and composite fouling [23–25].

1.2 Antifouling strategies

Most antifouling strategies can be divided into three types:
fouling-resistant, fouling-release, and fouling-degrading
strategies (Figure 3) [21,26]. The earliest strategy to combat
biofouling was using a coating of biocides or enzymes to
degrade the attached foulant [27]. However, chemical
coatings containing toxic organotin, copper, etc. are cur-
rently restricted or prohibited [28]. Next, researchers pro-
posed a fouling-release strategy based on self-polishing
coatings. Because these coatings undergo hydrolysis in
their side chains or degradation in the main chain, fou-
lants accumulated on them can be easily removed [29,30].
Nevertheless, hydrolysis or degradation reactions still

Figure 2: Four types of fouling mechanisms based on the nature of foulant. Reprinted with permission from He et al. [1]. Copyright 2021,
Elsevier B.V.
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have negative environmental effects. Other green fouling-
release coatings used low-surface-energy materials, such as
silicone- and fluoro-based ones, to reduce the adhesion of
foulants [27,31–33], enabling foulant removal by scouring;
this is one type of AFISW that usually entails hydrophobi-
city. Among the fouling-release, fouling-degrading, and
fouling-resistant strategies, the fouling-resistant strategy is
the optimal one, as it hinders the retention of foulants on

the surface in the first place. Furthermore, the fouling-resis-
tant strategy is another type of AFISW that usually entails
superhydrophobicity. Famous natural examples of the
fouling-resistant strategy include the lotus leaf, rice leaf,
and shark skin effects [34–53]. Inspired by the lotus leaf
effect [1], we have comprehensively reviewed the strate-
gies against the four types of fouling in terms of different
superphobicities (Figure 4), namely superhydrophobicity

Figure 3: Three common antifouling strategies: fouling-resistant (left), fouling-release (middle), and fouling-degrading (right). Reprinted
with permission from Maan et al. [21].

Figure 4: Antifouling strategies based on various superphobic surfaces. Reprinted with permission from He et al. [1]. Copyright 2021, Elsevier B.V.
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in the air [19,54], superoleophobicity in the air [55,56],
superhemophobicity in the air [57,58], and underwater super-
oleophobicity [59,60]. However, besides superhydrophobi-
city, it is necessary to further investigate the efficiency of
various “surface wettabilities” (i.e., superhydrophilicity,
hydrophilicity, and hydrophobicity) on the antifouling
ability, referred to here as AFISW.

2 Methods

As the interaction between the foulant and surface is
determined by the chemical composition and physical
structures of the surface [21], careful control of these

two surface characteristics can result in good antifouling
performance. Meanwhile, many biological structures such
as the lotus leaf, rice leaf, and shark skin have the excel-
lent antifouling ability, as well as a special natural surface
wettability that is tunable by controlling the chemical
composition and/or physical structures of the surface
[22]. Therefore, considerable research has been conducted
on AFISW [1,23–25,61,62]. In the last 13 years (Jan 1,
2010–Dec 31, 2022), AFISW has attracted growing atten-
tion, as illustrated by the number of publications found in the
Web of Science related to “antifouling” and “surface wett-
ability” (Figure 5a). Because the focus of this review is PDMS,
a detailed statistical analysis of the publications with the
word “PDMS” in the topic was performed. As shown in
Figure 5b and c, topics pertaining to “antifouling,” “surface

Figure 5: Number of publications in the Web of Science (Jan 1, 2010–Dec 31, 2022) containing the words “antifouling” and “surface
wettability” (a), number of publications containing the words “antifouling,” “surface wettability,” and “PDMS” (b and c).
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wettability,” and “PDMS”have attracted increasing attention.
Most importantly, there is only one review article, published
by our group (red circles in Figure 5c), on this topic as of Dec
31, 2022. In the previous review article [61], we focused only
on the effect of “superhydrophobic” PDMS-based materials
on antifouling applications, whereas in this study, we con-
ducted a comprehensive review of the effect of various sur-
face wettabilities on the antifouling ability.

Surface wettability, usually characterized by a WCA, is
affected by the surface free energy of a solid surface, which
is based on Young’s equation [63]. Because the WCA ranges
between 0 and 180°, the surface free energy of any solid
surface is less than 72mJ/m2. In addition to the effect of
surface free energy, surface roughness greatly affects sur-
face wettability according to the Wenzel and Cassie–Baxter
models [64,65]. Usually, the surface roughness can enhance
the surface wettability, that is, the hydrophobicity and
hydrophilicity will increase with increasing surface rough-
ness. Therefore, surface wettability is determined by both
surface free energy and surface roughness. This review
focused on surface wettability based on WCA measure-
ments instead of the surface free energy and/or surface
roughness because WCA is visualizable and thus easily
measured. The surface wettability can be classified into
superhydrophilic (θWCA < 10°), hydrophilic (10 ≤ θWCA <
90°), hydrophobic (90° ≤ θWCA < 150°), and superhydro-
phobic (150° ≤ θWCA ≤ 180°) (Figure 6) [1,23]. In the fol-
lowing section, we provide a comprehensive overview of
the antifouling of PDMS and its nanocomposites according
to the four types of surface wettability.

3 Results

3.1 Superhydrophilicity

Because PDMS is naturally hydrophobic, many hydrophilic
polymers can be used tomodify PDMS and its nanocomposites:

poly(ethylene glycol) (PEG), PEGylated polymers, poly(2-
hydroxyethyl methacrylate), polysaccharides, and zwitter-
ionic polymers (e.g., poly(sulfobetaine methacrylate), poly
(carboxybetaine methacrylate), and poly(carboxybetaine
acrylamide)) [66–85]. Huang and coworkers developed a
stable superhydrophilic zwitterionic interface on PDMS by
the covalent silanization of sulfobetaine silane (SBSi) [86].
A thin water layer was formed between foulants and this
superhydrophilic PDMS because of the hydrophilic zwit-
terionic polymer, resulting in an excellent antifouling
ability (Figure 7a). θWCA on the superhydrophilic PDMS
was approximately 6.8° and remained below 20° after
more than 5,000 h of storage (Figure 7b). This surface
showed effective resistance to biofouling by both Pseu-
domonas aeruginosa and Staphylococcus epidermidis
bacteria, even after the surface was stored at room tem-
perature for 30 days (Figure 7c).

3.2 Hydrophilicity

Hydrophilic materials can also be used to modify the sur-
face wettability of PDMS [87–90]. In our previous study, a
facile dip-coating strategy was used to fabricate a hydro-
philic-coated anti-biofouling bioprosthetic heart valve
(BHV) using PDMS and poly(acrylic acid) [25]. Anti-bio-
fouling properties, including anti-coagulation, anti-cell
adhesion, anti-calcification, and ability to resist BSA
adsorption, were characterized both in vivo and in vitro.
The results showed that BHV with hydrophilic modifica-
tion had better anti-biofouling abilities than either the
control sample or the sample with hydrophobic modifica-
tion. Ishihara and coworkers modified a PDMS surface with
an amphiphilic copolymer composed of 2-methacryloy-
loxyethyl phosphorylcholine (MPC) and dimethylsiloxane
(DMS) units [88]. Block- and random-type copolymers
(Figure 8a) with three different compositions were coated
on the PDMS surface in a protic solution. The modified

Figure 6: Classification of different types of surface wettability, containing superhydrophilic (a), hydrophilic (b), hydrophobic (c), and
superhydrophobic (d) based on WCA (θWCA) of water droplets in the air. Reprinted with permission from He et al. [1]. Copyright 2021,
Elsevier B.V.
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Figure 7: (a) Synthesis of SBSi and antifouling mechanism of the superhydrophilic PDMS surface. (b) θWCA on different PDMS surfaces over
time. ((c) Fluorescence micrographs showing the absorption of (a) P. aeruginosa and (b) S. epidermidis onto partially modified PDMS. (c)
Quantification of bacterial adsorption on different PDMS surfaces after 0 or 30 days). Reprinted with permission from Yeh et al. [86].
Copyright 2014, American Chemical Society.

Figure 8: ((a) (a) Block- and (b) random-type copolymers composed of MPC and DMS units). ((b) Fluorescence microscopy images of FITC-
labeled bovine serum albumin adsorption on (a) bare and (b) hydrophilic PDMS microchannels). ((c) Optical microscopy images of adhered
cells on (a) bare and (b) hydrophilic PDMS surfaces. Reprinted with permission from Seo et al. [88]). Copyright 2011, Royal Society of
Chemistry.
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Figure 9: (a) Static WCA on stainless steel (SS), PDMS, and polyurethane (PU) with various surface structures: plain surface, LIPSS, MS, and
lubricant-impregnated surface. (b) Variation of WCA on PDMS and PU with various structures after different immersion times. (c) Schematic
representation of bacteria attachment on various surfaces (top) and fluorescence micrographs of bacterial attachment on PDMS and PU
surfaces (bottom). (d) Numbers of attached bacteria on PDMS and PU with various structures. Reprinted with permission from Siddiquie
et al. [17]. Copyright 2020, American Chemical Society.

8  Zhoukun He et al.



surfaces showed obviously reduced protein adsorption
(Figure 8b) and cell adhesion (Figure 8c) compared to the
unmodified PDMS.

3.3 Hydrophobicity

Hydrophilic antifouling materials easily swell in water
[91,92], while the hydrophobic ones can avoid this issue.
Although silicone materials are hydrophobic in most
cases, they do not display satisfactory antifouling ability.
Joshi and coworkers investigated the effects of surface
wettability on the antifouling ability of PDMS and other
substrates [17]. Plain PDMS is hydrophobic with θWCA ≈
106° (Figure 9a and b) but it entails the substantial attach-
ment of Escherichia coli (Figure 9c and d). Roughing the
surface using a laser-induced periodic surface structure
(LIPSS) or multiscale structure (MS) can improve the
hydrophobicity and decrease bacterial attachment.

3.4 Superhydrophobicity

Section 3.3 demonstrated that improving surface hydro-
phobicity is an efficient strategy to enhance antifouling
performance. Then, one would expect a superhydrophobic
surface to have similar antifouling effects [93–95]. PDMS-
based superhydrophobic materials have been extensively
studied in this regard. Our previous review proposed a
versatile “3M” (i.e., materials, methods, and morpholo-
gies) methodology to design superhydrophobic materials
containing pure PDMS, PDMS with nanoparticles, and
PDMS with other substances (Figure 10) [61].

Among various superhydrophobic antifouling mate-
rials based on PDMS, PDMS combined with nanoparticles
has attracted considerable attention. Nanoparticles can
be classified into the following four types: zero-dimensional
nanoparticles such as spherical SiO2, TiO2, and Ag@SiO2

core–shell nanocomposites [18,19,96–98]; one-dimensional
nanoparticles such as linear ZnO nanorods and CNTs
[99–101]; two-dimensional nanoparticles such as laminar

Figure 10: A versatile “3M” methodology (materials, methods, and morphologies) to obtain PDMS-based superhydrophobic materials.
Reprinted with permission from He et al. [61].
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graphene andmontmorillonite [102–104]; and three-dimen-
sional nanoparticles such as single tetrapod-shaped ZnO or
composite nanoparticles comprising one or more types of
nanoparticles of other dimensions [105–107].

The superhydrophobicity of PDMS nanocomposites
can be explained according to the Wenzel model (equation
(1)) and/or the Cassie–Baxter model (equation (2)) [64,65]:

=θ r θcos cos ,e (1)

= + −θ f θ fcos cos 1,s e s (2)

where θ is the measured WCA for PDMS nanocomposites;
r is the surface roughness of PDMS nanocomposites; θe is
the equilibriumWCA on the smooth PDMS surface; and fs
is the solid fraction of the solid–air compound surface
[18]. Due to the inherent hydrophobicity of PDMS, super-
hydrophobicity can be achieved simply by roughening
the surface of pure PDMS or its nanocomposites to increase
the r value and/or decrease the fs value, using various tech-
niques: spin coating [108], electrospinning [109], drop-
casting or spray-coating [110–113], replication [17,114–119],
laser engraving [120–125], introducing a sacrificial template
[126], wrinkling [127], 3D printing [20,128], and other
methods [129–147]. Although the exact method or resul-
tant morphology may differ, they have the same goal of
introducing micro- and nanoscale or hierarchical rough-
ness (higher r and/or lower fs values) into the hydrophobic
PDMS-based material to achieve superhydrophobicity.

In our previous article, a facile and universal strategy
was proposed to fabricate superhydrophobic PDMS and
SiO2 nanoparticle surfaces via spin coating [18,19]. Multi-scale
physical structures with microscale nanoparticle aggregates
and nanoscale single nanoparticles were obtained through
the spontaneous aggregation of nanoparticles [148–150].
Owing to the low surface energy of PDMS and hydrophobic
SiO2 nanoparticles, the final coating exhibited superhydro-
phobicity (WCA higher than 150°) and good antifouling
ability against inorganic and organic powder foulants
because of its self-cleaning ability [151].

As another typical example,Wu and coworkers reported
a robust, transparent, and superhydrophobic PDMS film
with SU-8 resin (Figure 11a) [138]. After chemical vapor
deposition of 1H,1H,2H,2H-perfluorooctyl-trichlorosilane, the
film showed excellent repellency to water droplets and other
types of organic fouling droplets (Figure 11b). Moreover, the
superhydrophobicity was mechanically stable, as demon-
strated by surface wettability measurement and SEM ima-
ging after several bending/recovery cycles (Figure 11c).

4 Discussion

As previously discussed, although there are four different types
of surface wettability, the antifouling efficiency of AFISW
strategies changes according to different types of fouling.

Figure 11: (a) Fabrication of superhydrophobic PDMS. (b) Behavior of water and other types of organic foulant droplets on superhydrophobic
PDMS. (c) Mechanical stability of surface wettability during several bending/recovery cycles. Reprinted with permission from Wu et al.
[138]. Copyright 2018, American Chemical Society.
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As shown in Table 1, in the case of inorganic fouling,
the AFISW strategy mainly involves improving the surface
hydrophobicity to impart superhydrophobicity to PDMS and
its nanocomposites, because inorganic foulants are usually
hydrophilic and can be easily cleaned owing to the well-
known self-cleaning effect of a superhydrophobic surface.
Thus, the superhydrophilic and hydrophilic AFISW strate-
gies are excluded [108,120,152].

Similarly, the superhydrophobic AFISW strategy can
be used for organic fouling, especially for organic fou-
lants with a powder morphology [151]. If the organic fou-
lants are oils or solvents, it is highly challenging to
achieve good antifouling ability because of the organic
characteristics of PDMS. However, in this situation, the
superhydrophobic AFISW strategy can be made more
effective by introducing fluoro-based materials [55,152].
It is worth mentioning that the superhydrophilic surface
usually has underwater superoleophobic characteristics
and can be used for organic fouling [1]. However, using
PDMS-based materials is not the optimal superhydro-
philic AFISW strategy for organic fouling due to the
organic characteristics of PDMS; therefore, hydrophilic
materials are usually adopted [153–155]. Moreover, the
hydrophilic and hydrophobic AFISW strategies are rarely
used in the case of organic fouling because of their low
antifouling efficiency.

Superhydrophilic [86,156,157] and superhydrophobic
[17,98,107] AFISW strategies are extensively used for bio-
fouling because of the good chemical stability and biocom-
patibility of PDMS. Hydrophilic [25,88,89] and hydrophobic
[17,42,158] AFISW strategies are also usually reported to
achieve anti-biofouling. Overall, superhydrophilic and
superhydrophobic AFISW strategies are more efficient
than hydrophilic and hydrophobic AFISW strategies.
Moreover, superhydrophilic and hydrophilic AFISW stra-
tegies may be more suitable than superhydrophobic and
hydrophobic AFISW strategies, especially for potential
biomedical applications.

Although composite fouling is more complex than
inorganic, organic, and biofouling, it can be treated as
the combination of any of these two/three types of fouling.
Consequently, AFISW strategies for composite fouling can
be based on the individual strategies corresponding to the
specific combination that constitutes composite fouling.

Moreover, it is worth mentioning that there is another
special hydrophobic AFISW strategy to improve the anti-
fouling ability, i.e., to make the surface slippery [159]. For
example, Lei et al. constructed a slippery surface by
infusing liquid hydrophobic PDMS into a porous poly
(high internal phase emulsion) substrate [160]. The porous
substrate infused with PDMS lubricant became slightlyTa
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hydrophobic with θWCA = 100.8° and displayed an extre-
mely low water sliding angle (WSA) of 3.0° (Figure 12a).
This slippery surface exhibited excellent antifouling prop-
erties against various liquid foulants such as water, milk,
coffee, ink, and dust (Figure 12b), revealing its excellent
potential in various antifouling applications.

5 Conclusions

This study represents the first systematic review of AFISW
strategies (superhydrophilicity, hydrophilicity, hydropho-
bicity, and superhydrophobicity) based on PDMS and its
nanocomposites. The surface wettability of PDMS and its

Figure 12: (a) WCA and WSA values on the slippery surface. (b) Antifouling behavior against different foulants. Reprinted with permission
from Zhang et al. [160]. Copyright 2019, American Chemical Society.
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nanocomposites can be easily tuned to satisfy antifouling
needs, especially for organic and biofouling, which is dif-
ficult to achieve with pure PDMS. Antifouling strategies for
inorganic and organic foulants are easy to design and
usually mutually compatible because of their similarities.
Conversely, it is difficult to formulate antifouling strategies
for bio- and composite fouling. Therefore, more attention
should be paid to the design and fabrication through super-
hydrophilic and superhydrophobic AFISW strategies, of anti-
foulingmaterials for these two types of fouling. Moreover, the
slippery AFISW strategy, which showed extensive potential
in various antifouling applications, should be further
investigated. Finally, we believe that this review may
help researchers to design and fabricate various polymeric
materials and their nanocomposites with tuned surface
wettability for AFISW applications.
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