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Abstract: This article re-examines the nonlinear vibration
and nonlinear bending responses of porous sandwich
cylindrical panels reinforced by graphene platelets resting
on elastic foundations in thermal environments. The gra-
phene platelet-reinforced composite (GPLRC) core is assumed
to be of multilayers, and each layer may have different por-
osity coefficient values to achieve a piece-wise functionally
graded pattern. By introducing an inhomogeneous model
instead of the equivalent isotropic model (EIM), the Young’s
moduli along with the shear modulus of the porous GPLRC
core are predicted through a generic Halpin—-Tsai model in
which the porosity is included. The thermomechanical prop-
erties of metal face sheets and the porous GPLRC core are
assumed to be temperature-dependent. Governing equations
of motion for sandwich cylindrical panels with porous GPLRC
core are formulated based on Reddy’s third-order shear defor-
mation theory coupled with von Karman nonlinear strain—
displacement relationships. In the modeling, the panel-foun-
dation interaction and the thermal effects are also considered.
The analytical solutions for the nonlinear vibration and non-
linear bending problems are obtained by applying a two-step
perturbation approach. Numerical studies are performed to
compare the results obtained from the present model and
the EIM. The results confirm that the EIM is not suitable for
linear free vibration analysis of sandwich cylindrical panels
with the porous GPLRC core, but the EIM may be valid for the
cases of nonlinear vibration and nonlinear bending analyses
of the same panel resting on Pasternak elastic foundations.
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Graphical abstract
1 Introduction

Porous materials are realized as a new class of advanced
engineering materials characterized by low density, elec-
trical conductivity, great energy absorption capability,
and thermal resistance [1-4]. However, the presence of
porosities in the metal matrix will lead to a significant
reduction in terms of structural stiffness [5-8]. With the
development of nanotechnology and additive manufac-
turing technology [9,10], nanofillers such as carbon nano-
tubes (CNTs) [11] or graphene platelets (GPLs) [12] can be
added into porous metal foams to increase the stiffness of
porous metal materials while maintaining the lightweight
nature of foams. GPL can be regarded as an isotropic solid,
which consists of a large number of stacked monolayer
graphene. GPL-reinforced porous metal foams may be cre-
ated as particle-reinforced composites where GPLs are uni-
formly or randomly dispersed in the porous metal foams.
The mechanical performance of the porous metal materials
reinforced by GPLs may be enhanced substantially while
maintaining the lightweight advantage of the porous metal
materials.

Many studies have been carried out on the static and
dynamic analyses of porous GPL-reinforced composite
(GPLRC) flat panels without or with face sheets [13-24].
However, relatively few studies have been done on the
static and dynamic analyses of porous GPLRC cylindrical
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panels. In order to enhance the mechanical performance
of porous metal panels, it is an effective approach to
incorporate the functionally graded (FG) material con-
cept [25] into the design of the porous metal panel.
Zhou et al. [26] investigated vibration and flutter charac-
teristics of porous FG-GPLRC cylindrical panels subjected
to supersonic flow based on Reddy’s third-order shear
deformation theory (TSDT) and by applying the standard
Lagrange procedure. Similar to the flat panels, the porous
GPLRC cylindrical panels cannot be used as structural
components directly in engineering practice. It is a better
way to add two face sheets on the outer and inner sur-
faces of the porous GPLRC layer to create a sandwich
panel where the porous GPLRC layer is treated as a
hard core, and in that case the Reddy’s TSDT is still valid.
Twinkle and Pitchaimani [27,28] studied the effects of
grading, porosity, and non-uniform edge loads on the
natural frequency and buckling load of porous FG-GPLRC
cylindrical panels and sandwich cylindrical panels with
the porous FG-GPLRC core based on the higher-order
shear deformation theory (HSDT) and by applying the
Galerkin method. Sun et al. [29] calculated free vibration
frequencies of sandwich cylindrical panels with the porous
FG-GPLRC core based on the Love shell theory and by
applying the Ritz method. In the aforementioned works,
the equivalent isotropic model (EIM) was adopted to deter-
mine the equivalent Young’s modulus of the GPLRC layer
through a modified Halpin—-Tsai model and the shear mod-
ulus is assumed to be related to the Young’s modulus by a
well-known formula of isotropic material.

It has been reported that, even for the GPLRC flat
panel without porosity, the shear modulus will be under-
estimated by using the EIM [30]. Shen and his co-authors
[31,32] proposed an inhomogeneous model instead of the
EIM and re-examined the linear and nonlinear vibration
and the nonlinear bending along with the buckling and
postbuckling responses of porous sandwich plates rein-
forced by GPLs. They found that the shear modulus is
overestimated when the porosity coefficient is less than
0.2, while underestimated when the porosity coefficient is
greater than 0.25 by using the EIM. Their results reveal
that, owing to the shear modulus effect, for most cases,
the difference in the natural frequencies between the two
models is over 30%. The nonlinear free vibration frequency—
amplitude curves, the nonlinear bending load—deflection
curves, and the thermal postbuckling load—deflection curves
are always underestimated, while the compressive postbuck-
ling equilibrium paths of the porous sandwich plates are
always overestimated by using the EIM. Only in the case
of porous sandwich plates resting on Pasternak elastic foun-
dations with sufficiently large foundation stiffnesses, the
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difference between the two models may be negligible, and
the EIM may be valid in the analysis.

The purpose of this article is to evaluate the appro-
priateness of applying the EIM in vibration and bending
analyses of porous GPLRC cylindrical panels. We re-examine
the nonlinear vibration and the nonlinear bending of sand-
wich cylindrical panels with metal face sheets and porous
GPLRC core resting on elastic foundations in thermal envir-
onments. We choose two kinds of porous GPLRC core in the
present study, i.e., uniformly distributed (UD) and piece-
wise FG patterns. The material properties of both metal
face sheets and porous GPLRC core are assumed to be tem-
perature-dependent. The novelty of this study is that an
inhomogeneous model is introduced instead of the EIM
for the porous GPLRC core, where the Young’s moduli
along with the shear modulus are predicted through a
generic Halpin-Tsai model in which the porosity is included.
Governing equations of motion for porous sandwich cylind-
rical panels are formulated based on Reddy’s TSDT coupled
with the von Karman nonlinear strain—displacement relation-
ships. In the modeling, the panel-foundation interaction and
thermal effect are also considered. By applying a two-step per-
turbation approach to solve these equations, the analytical
solutions for the two cases of nonlinear vibration and nonlinear
bending problems of porous sandwich cylindrical panels are
obtained. Numerical comparisons are performed to show the
differences between the current model and the EIM.

2 Modeling of porous sandwich
cylindrical panels

Consider a porous sandwich cylindrical panel with outer
and inner face sheets made of titanium alloy and a core
made of aluminum foams reinforced by GPLs. The GPLRC
core consists of six layers. Each layer of the porous GPLRC
core may have different porosity values and, therefore, the
piece-wise FG distribution patterns of porosities across the
panel thickness can be achieved. Consider a coordinate
system (X, Y, Z) with its origin located at one corner of
the panel on the mid-plane, where X and Y are placed in
the axial and circumferential directions, and Z is pointed
inward and placed in the panel thickness direction (Figure 1).
The panel is of length a in the X direction, length b in the Y
direction, the radius of curvature R, and total thickness h.
The thickness of the GPLRC core is h., while the thickness of
each metal face sheet is h;. The panel is resting on an elastic
foundation that is idealized as a Pasternak-type model with
two stiffnesses, where K; is the vertical spring stiffness and K,
is the shearing layer stiffness.
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Figure 1: Geometry and the coordinate system of a porous cylindrical
panel resting on a Pasternak elastic foundation.

The key issue for analyzing the mechanical response
of the GPLRC structures successfully is to determine the
material properties of the GPLRC layer accurately and
effectively. Since the porous metal foam is slightly aniso-
tropic [33,34], in particular, the shear modulus does not
obey the well-known formula of an isotropic material, we
introduce an inhomogeneous model instead of the EIM
for the porous GPLRC core, where the Young’s moduli Ey;
and E,, along with the shear modulus G;, of the porous
GPLRC layer are determined by a generic Halpin-Tsai
model [35]:

1 + 2(agpr/hepL)yS " Vopr

Ey = E™, (1a)

- Vi VopL
1+ (2bgeL/hepL)Ysy VorL

» = GPL E™, (1b)
- Yy VorL

G o G" (1c)

2= T cpros ’ C
- v VopL

where agp; is the length, bgp; is the width, and hgp; is the
thickness of the GPL; in addition, yS*", ySf*, and yor* ar
defined by

Ef™/E™ -1

GPL _
)7 , (2a)
" ESPY/E™ + 2agpr/hpr
GPL _ Ext/E™ -1 (2b)
2 ESPY/E™ + 2bgpr/hopr
GGPL/Gm -1
GPL _
ylZ - GGPL/Gm ’ (ZC)

in which ES** and G®** are the Young’s and shear moduli
of the GPL, and E™ and G™ are the Young’s and shear
moduli of the porous metal matrix.
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The mass density and Poisson’s ratio of each porous
GPLRC layer may be predicted by the rule of the mixture

model:
V12 yOPL ym VGPL
[ p |~ [ GPL ] [ 3)

where p and v are the mass density and Poisson’s ratio,
and Vgpr and V,, represent the volume fractions of the
GPL and metal matrix, respectively.

For a GPLRC layer without porosity, the volume frac-
tion relationship Vgpy, + Vi, = 1is valid, whereas the rela-
tionship Vgpr + Vi = 1 is invalid for porous metal foams,
as reported in Shen and Li [36]. For this reason, we
remove the relationship Vgp;, + Vi, = 1 for the porous
GPLRC layer, and assume that

Vi + Vop =1 - &, 4)

where a* represents the porosity coefficient and is given
by

m
ar=1- Z—M, (5)
with pM and p™ being the mass densities of the metal
matrix without or with porosity.

For a porous GPLRC layer, the weight fractions still
follow the relationship wgpr, + Wy, = 1. Hence, the relation-
ships between the weight fractions (wgpr, W) and the
volume fractions (Vgpr, Vy,) for a porous GPLRC layer
can be written as

WGpL = VoL 6
m . I a
VepL + %(1 - a" — VgpL) (62)
VA
Wn = GPL = : (6b)

Vi + pp—m(l —a - V)

In the previous studies [13-24,26-29], the Young’s
modulus E™ of the porous matrix is assumed to obey
the Gibson—Ashby model [37], and Poisson’s ratio v™ is
assumed to obey the Roberts—Garboczi model [38]:

- (@),
v = 0.221(a*) + VM[1 - 1.21(a*) + 0.342(a*)?].

(7a)
(7b)

E™ = EM[1

The main difference between the present model com-
pared with the EIM is that the Young’s modulus E™, the
shear modulus G™, and Poisson’s ratio v™ of the porous
matrix in equations (1a) and (1b)-(3) are all functions
of the porosity coefficient. Mondal et al. [39] reported
that the experimental data of the Young’s modulus, the
shear modulus, and Poisson’s ratio for closed-cell porous
aluminum foams decreased as the porosity coefficient
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increased, from which the polynomial fit curves for E™,
G™, and v™ are obtained as follows:

E™ = EM[1.0 — 3.27933(a") + 4.68868(a*)?

(8a)
- 3.78983(a*)? + 1.43045(a*)"],

G™ = GM[1.0 - 1.34119(a*) - 1.99118(a*)? (8b)
+ 6.5494(a*)? — 4.55079(a*)*],

v™ = yM[1.0 - 0.33684(a*) + 0.12968(a*)?],  (8c)

in which EM is the Young’s modulus, GM is the shear
modulus, and vM is the Poisson’s ratio of the matrix
without porosity.

The panel is subjected to a transverse dynamic load g
(X, Y, t) on the outer surface and is located in an elevated
temperature environment. The governing equations of
motion for porous sandwich cylindrical panels are estab-
lished based on Reddy’s TSDT [40] coupled with the von
Karman nonlinear strain—displacement relationships. These
equations can be expressed as

L~11(W) - ilz(lf_’x) - i13(q7y) + i14(F) - ilS(NT)

~ — 2 a —_ —_ —_ _
— L™y - %% + RW - BV2W

0¥,
+ Isl—y] +q,

(9a)

= LW, F) + L(W) - (is 0%

oX aY

In(F) + Ln(B) + Ln(B) — Lou(W) - Ls(NT)
102w

+ —
R 0X2

(9b)

- —%L"(vv, W),

iBl(W) + i32('li’x) - i33(lpy) + i34(F) - iss(NT)

LW

- aT . (9¢)
- L3(S) = Isg - LY,

i41(W) - L~42(‘Px) + L~43(‘1f§/) + i44(F) - I:as(NT)

. SOW e
— LS = Is’a—y - L%,

(9d)
where W is the panel displacement in the Z direction; F is
the stress function defined by N, = 0%F/dY?, N, = 3%F/dX?,
and N,, = —-92F/0X0Y; and ¥ and ¥, are the rotations of
the normal to the middle surface with respect to the Y- and
X-axis. L( ) represents the nonlinear operator related to the
geometric nonlinearity in the von Karman sense and can
be defined as

%) () _, %) ()

() %)
10
AX? 9Y? XY aXoY 10

()=
Q) Y2 ax?

and other linear operators iij( ) in equations (9a)—(9d) are
defined in Shen and Xiang [41].
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In equation (9a)-(9d), the superposed dots indicate
differentiation with respect to time, and the inertias f;, f5,
etc., are given in detail in equation (23). The panel-
foundation interaction, defined by KW — K;V2ZW and the
temperature variation are included, where the thermal

forces N7, the thermal moments M, and the higher-order
moments P caused by elevated temperature are defined by

<T =T 5T
x Mx Ix h | Ay
N, My Py | = ZI A | (,z, AT dz, (11a)
T o7 - k=1
JZ;,M)Z;, x];/ hy 4 AX,V k
and §” is defined by
T . "
X 1 P!
7 o ot
y = Yy - W y |» (11b)
T iy e
Xy Xy Xy

where AT = T — T, is the temperature change from the
reference temperature Ty at which they are free of thermal
strains, and

Ay Qu Qu Qs l[1 o a
Ay | =-10Qn Q» 0Qx [0 1][0;], (12)
Ay Qs O Qs |LO O

in which ay; and ay, are the thermal expansion coefficients
for the kth ply, and can be expressed as [42]

VGPLEGPL(XGPL + VmEm(XM

o =
VGPLE GPL + VmE m

, (13a)

Ay = (1 + VGPL)VGPL(XGPL + (1 + vm)VmaM — Vo (13b)

in which a®L and aM are the thermal expansion coeffi-

cients of the GPL and metal matrix without porosity. In

equation (12), Q; are the transformed elastic constants, as

defined in Reddy and Liu [40]. For a porous GPLRC layer,

Q_ij = Qi]‘ in which
Ell

Qu = , Q»
1 - vy

Qu4 = G,
Qs5 = Gi3, Qss = Giz, Qs = Q26 = 0,

__E»
1-vpvy

vuEn

bl
1—vpvy

>

(14)

where E;q, E>», Gz, V12, and vy are the Young’s and shear
moduli and Poisson’s ratios for the kth layer.

We assume that the four edges of a porous sandwich
cylindrical panel are simply supported without or with
in-plane displacements, referred to as ‘immovable’ or
‘movable’ edges, respectively. The associated boundary
conditions are given by
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W=¥=M=PB=0@tX=0, a), (15a) A =A',B"=-A'B,D*=D - BA''B, (20)
- - _ _ E'=-A'E.F"=F-EA'BH"=H - EA''E
W=¥%=M=B=0@tY=0, b), (15b) ’ ’ ’
_ ) ) where the panel stiffnesses Ay, Bj;,... are given by
in which M, and M, are the bending moments and P, and Ao Be. Do Ev. Fo. H
P, are the higher-order moments, as defined in Reddy and (43> By, Dy, Ey, Fy, Hy)
Liu [40]. It is noted that, when the temperature increases, S s ok e
M, and M, contain M and MyT , respectively, and in that = Z j Q(1,Z, 22, 22, Z%, Z%)dZ, (21a)
case M, = 0 and M, = 0 become the non-homogeneous ey
boundary conditions. i,j=1,2,6),
Meanwhile, the in-plane boundary conditions on the ;
= (0 @ edges are @0 F)= ¥ [ @pa. 220z,
U =0 (immovable), (16a) = (21b)
(i,j=4,5),
INde =0 (movable), (16b)  and the inertias ; (i = 1, 2, 3, 4, 5, 7) are defined by
and the in-plane boundary conditions on the Y = (0, b) (. b, B, In, Is, I;) = J (1, 2,22, 2,24, Z2%)dZ,  (22)
edges are T
V =0 (immovable), (17a) where p, is the mass density of the kth layer, and
L=h L=5L-al, =cl,
INY dX =0 (mOVable), (17b) 1_4 = I_[i = 13 - 2C115 + C1217, I_5 = I_SI = C115 - C12[7,

in which U and V are the panel displacements in the X
and Y directions.

The immovability conditions of equations (16a) and
(17a) may be fulfilled in the average sense as

b a ab

I I 9 ixdy = o, I —deX 0, @8
or
A TET: OF o,
* * * 4 *
I .[ [A“ayz t Ao (B“ 3h2E11) X
00

1 aW 2 * T * 3T
5(—) — (ALNT + ALNT) |dxdy = o,

oX
[Azz

oX

i

O —

62F 4 . \0%
A12 (le 3h2E21)_

4 oY%, 2w 19b
(Bzz 3n? 22) y W(Eﬂ x aYZ) o)
v aW * N7 * N7
+ E - —( v ) — (ALN] + A22Nf)}deX = 0.

In the above equations, the reduced stiffness matrices,
such as[A7], [B;], [Dj], [Ej], [F;], and [H], are defined as
(43]

= 2 = 1 G
=L+ =L, L=L+—kE-al, - =L,
1 1 RZ 2 2 R3 114 RS

= G
I:; = C1[4 + El15,

i} (23)
LL ) 5L,

b=I,-2 L =L-2,L==22_¢c1,
3 =14 T 5 =15 T 7 I 117
~ ., LL ., LI . LI
I3I= ‘l*_ZTIz’ 15,—15 2—,3’I7I=BT/3_C1217,

1 I I
~ N P Al N - P N N
15213+15,I5=I3+IS,I7=I7—15,I7:I7—15,

where ¢, = 4/GH).

3 Solution procedure

A two-step perturbation method was developed in Shen
[43]. This approach is successfully employed to solve var-
ious nonlinear boundary-value problems of curved panels
[44-52]. To apply this two-step perturbation approach to
solve nonlinear vibration and nonlinear bending problems
of porous sandwich cylindrical panels, the motion equations
(9a2)—(9d) are first re-written in the non-dimensional forms as

Ly(W) = Lio(¥) = L3(B) + V14 Lia(F) — Lig(MT)
2

- ymgF + KW - KGV2W

0%

2 3%,
= YuBPLW, F) + Ly (W) + | ygr—= o ygzﬂg +A

(24a)
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Ly(F) + Y24L22(11Ux) + Y24L23(l}{v) - yZ4L24(W)
W 1 (24Db)
+ ’TWM? = _EYMBZL(W’ w),

Lsi(W) + L3(F) - L33(l1vy) + )’14L34(F) - L36(ST)

oW . (24c)
= Ys3¥ + YorPo
Lyuy(W) - L42(5”) + L43(‘1’) + )’14L44(F) — L4g(ST)
(24d)
= Yszﬁw + Y92 Vs

where

a2
Ly( ) = Wyo + ()’171a 5+ W 3 2)’ (25)
and the other non-dimensional L;( ) and L( ) are given in
Shen and Xiang [41]. In these equations, the non-dimen-
sional parameters are given by

X Y a TR | wru aw aw
X = ﬂz, y= ﬂg, B= E’ = —2[D11D22A11A22]1/4’
) W _F
[D}iD,AL AR 114 [D;\D5, 1172’
a (lfl s ‘{_/)
(% B) = X—M
7 [D}iDA A
* 1/2 *
[ ] y [ All ] ) _ﬁ
> 724 - * 9
D; Ay
AjA
, — AT,AT R 114322 ,
(yTl YTZ) ( X y) I:D1*1D2*2
a2 T T 4 4
Vras Vrss Vrys Vre) = WD;I(D Dy, TF 3TF )
2 26
Mo )= & (M 2P, 26)
m? Diy[DfiDpAR A ]
K, k K| — at bt
(K, k) = K E0h3
k b
16, K R
(5, k) = K 2D1*1 E0h3
wy, = QLE & t= ﬂ_t & Vizo = IlEOaZ
m\ E’ ay po 0T poDll

o> Yoo Yerr Yeor Yo3r Yeur Vizws Viz2)
_( 13’ _13’ _IS’ _15’ IS’ 15’ _17’ _17)

Po 11
A, = ga*
q — * * Nk Ak A K ’
Dy [D;\ DR AL Ay Y4

in which p, and E, are the reference values of pM and EM,
respectively, for the metal matrix at room temperature; k;
and k, are the non-dimensional forms of foundation stiff-
nesses used in the numerical examples; and A;, A;, D},
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D/, F{, and FJare defined by

Yy Sxo»
Al pI Fr
t oo o M=
4, D, kK
The simply supported boundary conditions of equa-

tions (15a) and (15b) can be re-written in non-dimen-
sional forms as

hy A
- X 3
y Jhk [ Ay](l, Z, Z2)ATdZ.(27)

W=Y¥=M=PF=0(atx=0,n), (28a)

W=¥=-M=B=0 (aty=0,7m), (28b)

and the in-plane boundary conditions on the x = (0, m)
edges become

_Iﬁz " dy = 0 (movable), (29a)
f PF o oY,
F F
J I [(yzzﬁz k@) Y24(y511 o Y2335 )
00
2w 2aZW 1 (oW (29b)
}’24()’611 2 +YouiB ) -3 4(a—x)
+ 11*1(y24yT1 - ySyTz)AT]dxdy = 0 (immovable),
and the in-plane boundary conditions on the y = (0, m)
edges become
82F
——dx = 0 (movable), (30a)
ox?
0
T [(oF O°F Y,
_[ I [( 32 Y5ﬂz ) Y24(yzzo i Yszzﬂ )
00
W 290 1
Y24(Y240 2 Y6zzﬁ ) + 7y W (30b)
2
1 of oW
+ 7y, — Ye¥ppAT]dydx = 0, (immovable).

3.1 Nonlinear vibration solutions for porous
sandwich cylindrical panels

To explore the nonlinear vibration problem, we need to
determine the relationship between the frequency and
vibration amplitude of the porous sandwich cylindrical
panel. By applying the two-step perturbation approach,
the asymptotic solutions of equations (24a)—(24d) satisfy-
ing boundary conditions (equations (28a) and (28b)—(30a)
and (30b)) are obtained as
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W(x,y, t) = eAP(t) sin mx sin ny
+ (AP (1)) asys sin mx sin 3ny (31

+ as3 sin 3mx sin ny] + 0(e*),

Y%, y, )
= (AP O)n + @A )] cosmxsinny
+ (AP(6))*[c313 cos mx sin 3ny

+ G331 €os 3mx sin ny] + O(g%),

H(x, y, t)
= (AP O)din + (Ai] (O] sinmx cosny
+ (eAP())%[ds13 sin mx cos 3ny

+ ds3 sin 3mx cos ny] + 0(g%),

F(x,y,t) = -B{y?/2 — b§Ix?/2 + [(eAP ()b
+ (sAl(ll)(t))b311] sin mx sin ny
+ (eAPOY[-BRy?/2 - b@x?/2

+ by cOS 2mx + byy, cos 2ny|

(34)

+ (AP ())3[bsy3 sin mx sin 3ny

+ b33y sin 3mx sin ny] + 0(%),

06y, ) = [ (£)gso
+ (£A11 (t))g;;] sin mx sin ny

+ (AP ()80 cOS 2mx (35)

+ 8y, COS 2ny]

+ (eAP(6)[g; sin mx sin ny] + ...

It is worth noting that in equations (31)—(35), € has no
specific physical meaning but is definitely a small pertur-
bation parameter in the first step.

For the free vibration problem of the panel, the
dynamic load vanishes and we have A; = 0. Employing
the Galerkin procedure to equation (35), one has

d(eARY)

E 531(&411)) + g32(£A11))2

(36)
+ g3eAP)} = 0

In the second step, we take (¢A{’) as the second
perturbation parameter, which relates to the non-dimen-
sional maximum amplitude Wy,,,. Hence, the solution of
equation (36) can be written as
1/2

10
S2p| (37)

9831833 — ;

wWNL = Wy, 1+
12g5,

where wy, = [gy,/8;,]"/? is the non-dimensional linear fre-
quency and A = Wyax = Whax/[D11D5A7145,]1/* is the non-
dimensional amplitude of the panel. In equation (36), g30
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to gz are all functions of the porosity coefficient for the
porous sandwich cylindrical panel, and details may be
found in Appendix A.

3.2 Nonlinear bending solutions for porous
sandwich cylindrical panels

For the nonlinear bending problem, we need to deter-
mine the relationship between the applied pressure and
central deflection of the porous sandwich cylindrical
panel. In the present case, the applied pressure is static
and uniform and is taken to be g(x, y, t) = qo. Hence, the
solutions are independent of time and the terms with
respect to the time in equations (24a)—(24d) are vanished.
Equation (35) can be re-written as

Ag= AL + AP APe) + AP APe)? + AP A e) 38)

+
in which (A(De) is treated as the second perturbation
parameter. From equation (31), one has

APe = Wiy + O3(Wpp)3--- (39)

Substituting equation (39) into equation (38), the
load—central deflection relationship can be obtained. In
equation (38), A\ (j = 0-3) are all functions of the porosity
coefficient for the porous sandwich cylindrical panel, and
details are given in Appendix B.

4 Numerical results and discussion

In this section, the evaluation is made through the free
vibration natural frequencies, the nonlinear-to-linear fre-
quency ratio curves, and the nonlinear bending load-
deflection curves. The free vibration natural frequencies
and the nonlinear-to-linear frequency ratio curves are
obtained from equation (37), while the nonlinear bending
load—deflection curves are obtained from equations (38)
and (39). The reliability and accuracy of the present solu-
tion method have been validated by many comparison
studies with other research teams using different methods
[41,53-55]. In the current research, numerical studies are
performed to compare the results obtained from the pre-
sent model and the EIM, where the equivalent Young’s
modulus is predicted by a modified Halpin—Tsai model
[22].

3

5
Eefs = gEu + gEzz, (40)
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in which E;; and E,, have the same forms of equation (1a)
and (1b), and the shear modulus is expressed by

Eeft

201 + vegr) 1)

Geff =
in which
(42)

where V;, =1 - Vpr, and E™ and v™ have the same forms
of equations (8a) and (8c). It is noted that in the present
model, we use a generic Halpin—Tsai model of equations
(1a)-(1c) instead of equation (40), and we remove equa-
tion (41) and the relationship Vgpr + Vi = 1.

The thermomechanical properties of the metal face
sheets and the porous GPLRC core have to be determined
first. We select titanium alloy (referred to as Ti—-6A1-4V)
for the metal face sheets, and the temperature-dependent
material properties of Ti-6Al1-4V are as follows [25]: Er; =
122.56 x (1.0 - 4.586 x 107*T) GPa, vy = 0.29, py; =
4,429 kg/m>, and ag; = 7.5788 x (1.0 + 6.638 x 107“T —
3.147 x 107°T?) x 107%/K, where T = T, + AT and T, is
set at room temperature.

For the porous GPLRC core, the dimension of the GPL
is set as agpr, = 2.5 pm, bgpy, = 1.5 um, and hgp, = 1.5 nm.
Through a literature survey study, we found that the
linear fitting formulae EG*L = (1.112 — 0.00034T) TPa,
aSPL = (23.5 + 0.004AT) x 10°°/K [56] and EGL = (1087.8
- 0.261T) GPa, aCP = (13.92 — 0.0299T) x 107¢/K [57] were
utilized for GPLs. These equations came from the first
author’s previous works [58,59] and were only suitable
for the monolayer graphene but were invalid for GPLs.
Owing to the lack of the experiment data and/or the
molecular dynamics (MD) simulation results, the material
properties of GPLs are set as follows [60-62]: ECPL =
1,010 GPa, pCPL = 1062.5 kg/m3, vOPL = 0.186, and aCPL =
2.35 x 10~°/K. The temperature-dependent material prop-
erties of the aluminum matrix are set as follows [63]:
EM = 69.0 x (1.0 — 0.00053AT) GPa, v = 0.29658,
pM = 2601 kg/m?, and a™ = 23.0 x (1 + 0.00072AT) x
107%/°C, where AT = T -T, and T, = 20°C.

In the present study, the GPL weight fraction wgpy, is
set to be 1-3%. From equations (6a) and (6b), the volume

Vetr = VoprvSFL + Vo™,
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fractions (Vgpr, Vi) of porous GPLRC layers with different
porosity coefficient values are obtained and listed in
Table 1. The results confirm that the volume fraction rela-
tionship must be Vgpr, + Vi, < 1 for the porous GPLRC
layers [31].

In the current study, the sandwich cylindrical panel
has a total thickness h = 0.05 m, while the thickness of
the face sheet is 1 mm. The porous GPLRC core consists of
six layers and the thickness of each layer is equal to
8 mm. To conduct a six-layer porous GPLRC core with a
piece-wise FG pattern, the porosity coefficient in each
layer is selected as a* = 0.2, 0.4, or 0.6. Two FG patterns,
referred to as FG-X and FG-O, are considered, i.e., the FG-
X pattern with [0.2/0.4/0.6]s and the FG-O pattern with
[0.6/0.4/0.2]s (Figure 2). For comparison purposes, a UD
pattern core with six layers having an identical porosity
coefficient of 0.4 is also considered.

4.1 Vibration characteristics of porous
sandwich cylindrical panels

We next focus on the linear and nonlinear vibrations of
sandwich cylindrical panels with a porous GPLRC core
resting on elastic foundations in thermal environments.
The in-plane boundary conditions are set as “immo-
vable.” The sandwich panels have a/b = 1, b/h = 20,
and a/R = 0.2, 0.5, and 0.8. Typical results are shown
in Tables 2-4 and Figures 3-6, in which the non-dimen-
sional frequency is defined by @ = Q(b?/h)./ Po/Eo, where
p, and E,, are the reference values of pM and E", respec-
tively, for the aluminum matrix at AT = 0.

Table 2 shows the effects of the weight fraction of GPL
and the FG patterns of core porosity on the natural fre-
quency of porous sandwich cylindrical panels with a/R =
0.5 at AT = 0. Three GPL weight fractions 1, 2, and 3% are
considered. It can be seen that the natural frequencies are
increased as the weight fraction wgpy increases. The dif-
ference between the two models is about 10% or more,
and the maximum difference between the two models is
21.08% for the panel with a porous UD core at wgp;, = 1%.

Table 1: Volume fractions of the porous GPLRC layer with different porosity coefficients

WepL (VGPL: Vm)

a =0.2 a =04 a =0.6 a*=0.8
0.01 (0.0155, 0.7845) (0.0088, 0.5912) (0.0039, 0.3961) (0.001, 0.199)
0.02 (0.0307, 0.7693) (0.0175, 0.5825) (0.0078, 0.3922) (0.002, 0.198)
0.03 (0.0457, 0.7543) (0.0261, 0.5739) (0.0118, 0.3882) (0.003, 0.197)
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Figure 2: A porous GPLRC core: (a) UD, (b) FG-0O, and (c) FG-X.

Table 3 shows the effects of the temperature variation
and the FG patterns of core porosity on the natural fre-
quency of porous sandwich cylindrical panels with a/R =
0.8. The GPL weight fraction wgpr = 3%, and the thermal
environmental conditions are set as AT = 0, 100, and
200 K. Note that the thermal expansion coefficient is
taken as a = ay; = &y, by using the EIM. Like the conven-
tional observation [53], the natural frequencies decrease
when the temperature increases. This is due to the fact

that the increase of temperature reduces the panel stiff-
ness which in turn decreases the linear frequencies of the
panel. The difference between the two models is about
8% or more, and the maximum difference between the
two models is 32.26% for the panel with a porous FG-O
core at AT = 200 K.

Table 4 shows the effects of the foundation stiffnesses
and the FG patterns of core porosity on the natural fre-
quency of porous sandwich cylindrical panels with a/R =

Table 2: Natural frequency Q = Q(b?/h) /po/Eo of porous sandwich cylindrical panels reinforced by GPLs (h = 50 mm, a/b =1, b/h = 20,

a/R=0.5,AT =0)

WepL ‘511 élz ﬁu ﬁzz 513 ﬁs:
0.01 ub Present model 8.2011 15.8791 17.6890 25.5357 30.7112 31.9889
EIM? 6.4727 12.7184 14.1066 20.2790 24.6440 25.6230
Difference® 21.08% 19.90% 20.25% 20.59% 19.76% 19.90%
FG-0 Present model 7.6483 13.8134 15.9581 22.6151 26.6173 28.1634
EIM 6.1225 11.2003 12.9311 18.0503 21.8444 23.0738
Difference 19.95% 18.92% 18.97% 20.18% 17.93% 18.07%
FG-X Present model 8.9972 18.1325 19.8045 28.7035 34.9736 36.1468
EIM 7.4225 15.0236 16.3520 23.6690 28.6817 29.6270
Difference 17.50% 17.15% 17.43% 17.54% 17.99% 18.04%
0.02 ub Present model 8.6836 17.0489 19.0376 27.0124 33.2275 34.6933
EIM 7.2340 14.0798 15.6978 22.4806 27.3054 28.4472
Difference 16.69% 17.42% 17.54% 16.78% 17.82% 18.00%
FG-0 Present model 8.0365 14.6577 17.0214 23.6886 28.4762 30.2547
EIM 6.7926 12.2208 14.2416 19.7256 23.8308 25.2705
Difference 15.48% 16.63% 16.33% 16.73% 16.31% 16.47%
FG-X Present model 9.5731 19.5847 21.3979 30.5573 37.9584 39.2849
EIM 8.2944 16.7188 18.2450 26.3835 31.9832 33.0676
Difference 13.36% 14.63% 14.73% 13.66% 15.74% 15.83%
0.03 ub Present model 9.1050 18.1279 20.2431 28.3839 35.5124 37.1270
EIM 7.9194 15.3131 17.1339 24.4711 29.7111 30.9968
Difference 13.02% 15.53% 15.36% 13.79% 16.34% 16.51%
FG-0 Present model 8.3729 15.4525 17.9767 24.7030 30.2102 32.1753
EIM 7.4007 13.1625 15.4393 21.2679 25.6619 27.2876
Difference 11.61% 14.82% 14.11% 13.91% 15.06% 15.19%
FG-X Present model 10.0828 20.9029 22.8166 32.2517 40.6130 42.0622
EIM 9.0760 18.2391 19.9410 28.8130 34.9349 36.1432
Difference 9.99% 12.74% 12.60% 10.66% 13.98% 14.07%

?EIM = equivalent isotropic model.
PDifference = 100%[(;(present model) — Q;(EIM)]/Q;(present model).
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Table 3: Natural frequency @ = ()(bz/h),/po/Eo of porous sandwich cylindrical panels reinforced by GPLs in thermal environments

(h=50mm, a/b =1, b/h = 20, a/R = 0.8, wgp, = 0.03)

AT(K) dll é12 ﬁn ﬁzz dB f}Bl
0 ub Present model 11.4800 18.3571 23.3051 29.2218 35.5434 39.4425
EIM? 10.0678 15.5124 19.7960 25.2393 29.7367 32.9255
Difference® 12.30% 15.50% 15.06% 13.63% 16.34% 16.52%
FG-0 Present model 10.9894 15.7311 21.4879 25.6980 30.2481 34.9283
EIM 9.8658 13.4173 18.6208 22.2358 25.6946 29.6745
Difference 10.22% 14.71% 13.34% 13.47% 15.05% 15.04%
FG-X Present model 12.3373 21.1087 25.6613 33.0151 40.6411 44,1897
EIM 11.1753 18.4235 22.4892 29.5329 34.9589 37.9736
Difference 9.42% 12.72% 12.36% 10.55% 13.98% 14.07%
100 ub Present model 10.0044 16.3137 21.2590 26.7716 33.2817 36.8454
EIM 8.6848 13.2599 17.9844 22.9536 27.2794 30.6460
Difference 13.19% 18.72% 15.40% 14.26% 18.03% 16.83%
FG-0 Present model 9.2473 12.9703 19.0883 22.6668 27.3175 31.8615
EIM 8.2881 10.4680 16.4978 19.3914 22.5982 26.9371
Difference 10.37% 19.29% 13.57% 14.45% 17.28% 15.46%
FG-X Present model 10.7738 18.9980 23.5754 30.5029 38.2357 41.5578
EIM 9.7800 16.2971 20.6841 27.3112 32.5731 35.7134
Difference 9.22% 14.22% 12.26% 10.46% 14.81% 14.06%
200 ubD Present model 8.2206 13.8587 18.9734 24.0079 30.7349 34.0399
EIM 7.0334 10.5339 15.9664 20.4111 24.5747 28.1799
Difference 14.44% 23.99% 15.85% 14.98% 20.04% 17.22%
FG-0 Present model 7.0132 9.2216 16.2986 19.0527 23.8479 28.4350
EIM 6.3247 6.2468 14.0533 16.0442 18.9971 23.8822
Difference 9.82% 32.26% 13.78% 15.79% 20.34% 16.01%
FG-X Present model 8.8810 16.5016 21.2537 27.6882 35.5424 38.7218
EIM 8.1464 13.8440 18.7023 24.8881 29.9938 33.2960
Difference 8.27% 16.11% 12.00% 10.11% 15.61% 14.01%

3EIM = equivalent isotropic model.

PDifference = 100% [Q;(present model) — G;(EIM)]/3;(present model).

0.2 at AT = 0. The GPL weight fraction wgp. = 1%. The
corresponding foundation stiffnesses are (k;, k>) = (100,
10) for the Pasternak foundation, (k;, k») = (100, 0) for the
Winkler foundation, and (ky, k) = (0, 0) for the sandwich
cylindrical panel without any elastic foundation. Like the
conventional observation [53], the natural frequencies are
increased as foundation stiffnesses increase. The difference
between the two models is about 16% or more, and the
maximum difference between the two models is 20.52% for
the foundationless panel with a porous UD core.

From Tables 2—-4, we observe that the panel with the
porous FG-X core has the highest natural frequencies,
while the panel with the porous FG-O core has the lowest
among the three. Comparing the results obtained from
the present model with those obtained from the EIM, it
is found that, for most cases, the difference is over 10%,
in particular for the case wgp. = 1%.

For nonlinear vibration analysis, the porous sand-
wich cylindrical panels have a/R = 0.5 and the GPL
weight fraction wgp = 3%, except in Figure 4. The effect

of the porosity distribution pattern on the nonlinear-
to-linear frequency ratio curves of porous sandwich cylind-
rical panels at AT = 0 is shown in Figure 3. Contrary to
Tables 2-4, where the panel with the porous FG-X core
has the highest natural frequencies, while the panel with
the porous FG-O core has the lowest, in Figure 3, the panel
with the porous FG-X core has the lowest frequency—ampli-
tude curves, while the panel with the porous FG-O core has
the highest among the three. It is observed that the max-
imum difference between the two models is 2.6% for the
panel with the porous FG-O core when the non-dimen-
sional panel deflection W/h reaches 1.0. Note that this
difference will increase as the panel deflection increases.

Figure 4 shows the effect of the GPL weight fraction
on the nonlinear-to-linear frequency ratio curves of sand-
wich cylindrical panels with the porous FG-X core at
AT = 0. Three GPL weight fractions wgp, = 1, 2, and 3%
are considered. We observe that the frequency—ampli-
tude curve becomes higher when the GPL weight fraction
is increased. It can also be seen that the frequency—
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Table 4: Natural frequency Q = Q(b%/h),/py/Eo of porous sandwich cylindrical panels reinforced by GPLs resting on elastic foundations

(h=50mm, a/b =1, b/h = 20, a/R = 0.2, wgp, = 0.01, AT = 0)

(ks k) f)n r}12 r—)21 f)zz éu ﬁs]
(0, 0) ub Present model 6.7422 15.7720 16.0868 25.1109 30.6978 30.9303
EIM? 5.3650 12.6362 12.8698 19.9569 24.6335 24.7928
Difference® 20.43% 19.88% 20.00% 20.52% 19.75% 19.84%
FG-0 Present model 5.9774 13.6839 14.0636 22.1112 26.6010 26.8847
EIM 4.7734 11.0954 11.3925 17.6428 21.8311 22.0325
Difference 20.14% 18.92% 18.99% 20.21% 17.93% 18.05%
FG-X Present model 7.6313 18.0346 18.3204 28.3112 34.9612 35.1679
EIM 6.3570 14.9457 15.1672 23.3604 28.6716 28.8250
Difference 16.70% 17.13% 17.21% 17.95% 17.99% 18.04%
(100, 0) ub Present model 16.9385 22.1031 22.3287 29.4760 34.3465 34.5545
EIM 13.5547 17.7108 17.8782 23.4826 27.5581 27.7006
Difference 17.85% 19.87% 19.93% 20.33% 19.76% 19.84%
FG-O Present model 16.2420 20.3500 20.6072 26.7330 30.5389 30.7864
EIM 13.3432 16.6588 16.8582 21.5611 25.0940 25.2694
Difference 17.85% 18.14% 18.19% 19.35% 17.83% 17.92%
FG-X Present model 16.9045 23.4719 23.6922 32.0252 38.0189 38.2091
EIM 13.9814 19.4282 19.5991 26.4384 31.2232 31.3641
Difference 17.29% 17.23% 17.28% 17.45% 17.87% 17.91%
(100, 10) ub Present model 27.6321 40.8883 41.0108 52.4422 59.3463 59.4671
EIM 22.1265 32.7663 32.8571 41.9605 47.6020 47.6846
Difference 19.92% 19.86% 19.88% 19.99% 19.79% 19.81%
FG-0 Present model 26.7209 39.1624 39.2967 49.9709 56.1555 56.2906
EIM 22.0114 32.2411 32.3446 40.9605 46.2691 46.3645
Difference 17.62% 17.67% 17.69% 18.03% 17.61% 17.63%
FG-X Present model 27.1087 40.7999 40.9271 52.8673 60.3975 60.5175
EIM 22.3958 33.7316 33.8303 43.6948 49.8321 49.9205
Difference 17.39% 17.32% 17.34% 17.35% 17.49% 17.51%

3EIM = equivalent isotropic model.

PDifference = 100% [(3;(present model) — (3;(EIM)]/3;(present model).
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Figure 3: Effect of the porosity distribution pattern on the frequen-
cy—amplitude curves of porous sandwich cylindrical panels rein-
forced by GPLs.

amplitude curves with wgp;, = 2 and 3% obtained from the
present model are higher than those obtained based
on the EIM, while for the case of wgp;, = 1%, the results

porous sandwich cylindrical panel
a/b=1, b/h=20, a/R=0.5, h=0.05 m
FG-X, AT=0K
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Figure 4: Effect of the GPL weight fraction on the frequency—ampli-
tude curves of porous sandwich cylindrical panels reinforced
by GPLs.

are inversed. In this example, the maximum difference
between the two models is only 1.9% for the porous panel
with wgpr, = 3% when W/h reaches 1.0.
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porous sandwich cylindrical panel
a/b=1, b/h=20, a/R=0.5, h=0.05 m
FG-X, w_,=0.03,47=0K

1.1 —o

o (k,, k)=(0,0)
4> (k. k)=(50, 0)

1
\32 —o——— (k. k))~(50, 5)
3

1.0
—o—pr—*k— EIM
—O——<——0— Present model

0.9 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
Wih

Figure 5: Effect of foundation stiffnesses on the frequency—ampli-
tude curves of porous sandwich cylindrical panels reinforced by
GPLs resting on elastic foundations.
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Figure 6: Effect of temperature variation on the frequency—ampli-
tude curves of porous sandwich cylindrical panels reinforced by
GPLs in thermal environments.

Figure 5 shows the effect of foundation stiffnesses on
the nonlinear-to-linear frequency ratio curves of sand-
wich cylindrical panels with the porous FG-X core resting
on elastic foundations at AT = 0. Two foundation models
are considered where (ki, k) = (50, 5) for the Pasternak
foundation and (k;, k) = (50, 0) for the Winkler founda-
tion. Contrary to the results in Table 4, where the natural
frequencies are increased with an increase in foundation
stiffnesses, in Figure 5, the frequency—amplitude curves
are reduced with an increase in foundation stiffnesses. In
this example, the maximum difference between the two
models is only 1.9% for the foundationless panel when
W/h reaches 1.0, and the difference may be neglected
when the panel rests on a Pasternak foundation with
(ki k) = (50, 5).
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Figure 7: Effect of porosity distribution pattern on the nonlinear
bending load-deflection curves of porous sandwich cylindrical
panels reinforced by GPLs.

Figure 6 shows the effect of temperature variation on
the nonlinear-to-linear frequency ratio curves of sandwich
cylindrical panels with the porous FG-X core in thermal
environments. The thermal environmental conditions are
taken as AT = 0, 50, and 100 K. Contrary to the results in
Table 3, where the natural frequencies are decreased with
an increase in the temperature, in Figure 6, the frequency—
amplitude curves are increased with an increase in the
temperature. In this example, we observe that the max-
imum difference between the two models is 3% for the
porous panel at AT = 100 K when W/h reaches 1.0.

4.2 Nonlinear bending responses of porous
sandwich cylindrical panels

Then, we turn our attention to the nonlinear bending of
sandwich cylindrical panels with the porous GPLRC core
resting on elastic foundations in thermal environments.
The sandwich panels have a/b = 1.5, b/h = 20, and a/R =
0.5. The GPL weight fraction wgp, = 3%, except in Figure 8.

Figure 7 shows the effect of the porosity distribution
pattern on the nonlinear bending load—deflection curves
of porous sandwich cylindrical panels at AT = 0. Like the
conventional observation [54], the panel with the porous
FG-X core has the lowest nonlinear bending load—deflection
curves, while the panel with the porous FG-O core has the
highest among the three when the non-dimensional panel
deflection W/h < 1.0. Unlike the conventional observation
[54], the bending load—deflection curve of the panel with
porous UD core becomes the highest among the three when
the panel deflection W/h > 1.0. In this example, we observe
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Figure 8: Effect of the GPL weight fraction on the nonlinear bending
load—-deflection curves of porous sandwich cylindrical panels rein-
forced by GPLs.

that the maximum difference between the two models is
5.1% for the panel with the porous UD core when W/h
reaches 2.0.

Figure 8 shows the effect of the GPL weight fraction
on the nonlinear bending load—deflection curves of sand-
wich cylindrical panels with the porous FG-X core at
AT = 0. Three GPL weight fractions 1, 2, and 3% are con-
sidered. It is observed that the nonlinear bending load-
deflection curves are reduced with an increase in the GPL
weight fraction. In this example, we observe that the
maximum difference between the two models is 6.1%
for the panel with wgpr, = 1% when W/h reaches 2.0.

Figure 9 shows the effect of foundation stiffnesses on
the nonlinear bending load-deflection curves of sandwich
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Figure 9: Effect of foundation stiffnesses on the nonlinear bending
load—deflection curves of porous sandwich cylindrical panels rein-
forced by GPLs resting on elastic foundations.
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Figure 10: Effect of temperature variation on the nonlinear bending
load—deflection curves of porous sandwich cylindrical panels rein-
forced by GPLs in thermal environments.

cylindrical panels with the porous FG-X core resting on
elastic foundations at AT = 0. The same two foundation
models are adopted as in Figure 5. It is observed that the
nonlinear bending load—deflection curves are reduced as
the foundation stiffnesses increase. In this example, we
observe that the maximum difference between the two
models is 4.7% for the foundationless panel when W/h
reaches 2.0. The difference between the two models may
be neglected when the foundation stiffness is sufficiently
large.

Figure 10 shows the effect of temperature varia-
tion on the nonlinear bending load—deflection curves of
sandwich cylindrical panels with the porous FG-X core
in thermal environments. The thermal environmental
conditions are set as AT = 0, 100, and 200 K. Like the
conventional observation [54], the nonlinear bending
load—deflection curve becomes higher when the tempera-
ture increases. Unlike the conventional observation [54],
the small initial deflection can be observed at AT = 100
and 200 K. In this example, we observe that the max-
imum difference between the two models is 4.7% for
the panel at AT = 0 when W/h reaches 2.0.

5 Conclusions

The quantitative evaluation for the nonlinear vibration
and nonlinear bending of sandwich cylindrical panels
with the porous metal core reinforced by GPLs has been
presented. The FG material concept is incorporated into
the design of the porous GPLRC layer. By introducing an
inhomogeneous model, the Young’s moduli along with
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the shear modulus for the porous GPLRC layer are pre-
dicted through a generic Halpin—Tsai model containing a
porosity coefficient. Comparison investigations between
the present model and the EIM have been presented for
the sandwich cylindrical panels with the porous UD, FG-
0, or FG-X GPLRC core. The numerical results reveal that,
in most cases, the natural frequencies, the frequency-
amplitude curves, and the bending load—deflection curves
of the porous sandwich cylindrical panels are underesti-
mated by using the EIM. In contrast, for some special cases,
the frequency—-amplitude curves of sandwich cylindrical
panels with the porous FG-X core under wgpr, = 1% at
AT = 0K, and/or the bending load—deflection curves of
the sandwich cylindrical panels with the porous FG-X
core under wgpr, = 3% at AT = 200K are overestimated by
using the EIM. In most cases, the difference between the two
models is over 10% for the natural frequencies and the
maximum difference between the two models may reach
32.26%. The difference between the two models is relatively
small for the frequency—amplitude curves and the bending
load—deflection curves of the sandwich cylindrical panels
with the porous GPLRC core. Only in the case when the
panel rests on a Pasternak elastic foundation with suffi-
ciently large foundation stiffnesses, the difference between
the two models may be negligible, and the EIM may be
valid.
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and for the case of “movable” edges,

in the above equations, Booo, booo, Baoo, and bago are the
same as defined in equations (A.5) and (A.6).
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