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Abstract: Serotonin, a neurotransmitter that affects brain
function, is associated with cancer progression, thus
making it a potential biomarker. Despite the increasing
efforts and ideas for gold nanoparticle (AuNP)-based col-
orimetric detection over the years, preparing AuNPs and
sensing targets are separate processes, and this incurs
more time to operate and produces excess waste. Herein,
we report a simple, sensitive, and rapid colorimetric detec-
tion method for serotonin based on the in situ formation of
AuNP. When only the aptamer is present, it can prevent
chloride-induced aggregation of AuNPs because it easily
binds to the freshly synthesized AuNPs through its exposed
bases to increase the positive charge of the AuNP surfaces.
When a complex of serotonin and its aptamer is formed, this
complex disturbs the adsorption between aptamers and
AuNPs, resulting in reduced stability of AuNPs and easy
aggregation of nanoparticles. Therefore, serotonin was mea-
sured by color change, consistent with the change in peak
intensity in the UV-vis absorption spectrum. The sensor
demonstrated good sensitivity with a detection limit of
1ng/mL (5.7 nM) for serotonin, which is comparable to or
better than that of other aptamer-based colorimetric detec-
tion methods, further exhibiting the requisite selectivity
against possible interferents. These results serve as a basis
for developing other biosensors using aptamer-mediated in
situ growth of AuNPs.

Keywords: in situ formation, gold nanoparticle, colori-
metric assay, aptamer, serotonin detection

* Corresponding author: Chia-Chen Chang, Department of Medical
Biotechnology and Laboratory Science, Chang Gung University,
Taoyuan 333, Taiwan; Department of Nephrology, Chang Gung
Memorial Hospital, Kidney Research Center, Taoyuan 333, Taiwan,
e-mail: chang@cgu.edu.tw

Im-Fong Ip, Yi-Shan Wang: Department of Medical Biotechnology
and Laboratory Science, Chang Gung University, Taoyuan 333,
Taiwan

1 Introduction

Serotonin is a neurotransmitter found in many different
organs throughout the human body, including the brain,
lungs, kidneys, and gastrointestinal tract [1]. It has been
recently discovered that serotonin is a positive regulator
of tumors, implying that there is a causal relationship
between serotonin concentration in blood and disease
[2]. Therefore, determining these serotonin molecules in
biological samples is crucial for disease surveillance and
development of new treatment medicines.

Various methods have been developed to detect ser-
otonin. Electrochemical methods for detecting redox reac-
tions have been widely used to construct biosensors for
serotonin because these neurotransmitters are generated
via oxidative metabolism [3-5]. However, to achieve high
selectivity for serotonin, these approaches can be challen-
ging because the oxidation potentials of related nonspe-
cific biomolecules are often quite similar, making it hard
to identify them from electrical signals [6]. Other reported
methods for detecting serotonin include fluorescence
[7], high-performance liquid chromatography [8], and
capillary electrophoresis [9]. These methods are time-
consuming and labor-intensive and require expensive
equipment and tedious sample preparation, limiting
their application to real samples [10-15]. Furthermore,
antibodies are used as probes in the majority of methods
to capture target molecules. However, the antibodies are
limited by their ease of deactivation and instability,
resulting in the divergence of the measured target values
between different assays [16—18]. The aptamer has a high
affinity for its target and a number of noteworthy features
such as design flexibility, ease of synthesis, and specificity
[19,20]. Therefore, alternative assays that use aptamers
have been developed.

Gold nanoparticle (AuNP)-based assays are an inter-
esting and attractive strategy for developing biosensing
probes because of their unique properties [21-25]. Godoy-
Reyes et al. developed a colorimetric sensor for serotonin
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based on chemical molecular recognition [26]. Chavez
et al. proposed aptamer-modified AuNPs for the colori-
metric detection of serotonin [27]. Although these AuNP-
based approaches are selective, these two assays require
the pre-synthesis of AuNPs and modification of molecular
probes on AuNPs, requiring additional time, effort, and
resources. Therefore, a simple, quick, and sensitive method
for determining serotonin levels is urgently needed.
Herein, we developed a convenient platform for the
rapid detection of serotonin during in situ AuNP formation
based on different levels of aptamers and aptamer—target
complexes resistant to chloride-induced AuNP aggregation.
AuNPs formed with aptamers have seldom been reported,
even though the AuNPs formed in situ have been used in
different chemical sensor applications [28,29]. Different prop-
erties of AuNP aggregates can be used to determine the
amount of serotonin in a solution. As shown in Scheme 1,
without the aptamer and its target, AuNPs can be formed by
reducing the gold ions with ascorbic acid and stabilized by
adsorbed unreacted positive Au ions whose repulsion pre-
vents the van der Waals attraction between AuNPs from
aggregation. After introducing the NaCl solution, additional
chloride ions are coordinated to the gold ions on the surface
of the AuNPs, which has a negative effect on the electrostatic
stabilization of the formed AuNPs [30-32], causing the
AuNPs to self-aggregate and causing the color to change
from red to blue. In the presence of the aptamer alone, the
phosphate backbones of the single-stranded DNA (ssDNA)
aptamer can interact with unreacted gold ions owing to
electrostatic adsorption, while the exposed bases in the
ssDNA aptamer can be spontaneously adsorbed to the
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in situ synthesized AuNPs, thus stabilizing the AuNPs
and demonstrating a red color. Nevertheless, the binding
between the aptamer and AuNPs is disturbed in the pre-
sence of serotonin and its aptamer because serotonin
recognizes and binds its aptamer. As a result, the same
mechanism is not operative with the ssDNA aptamer/ser-
otonin complex because the folded aptamer structure does
not permit the uncoiling required to expose the bases.
AuNPs easily become unstable when chloride ions are
added to the solution, leading to their aggregation. Gen-
erally, it is convenient to detect serotonin molecules using
the naked eye; thus, the proposed aptamer detection
strategy that integrates the in situ rapid formation of
AuNPs will be of great interest.

2 Experimental section

2.1 Chemicals

Chloroauric acid (HAuCl,), ascorbic acid, serotonin, epi-
nephrine, dopamine, acetylcholine, 10x phosphate-buffered
saline, and 50x Tris-acetate EDTA (TAE) were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Human plasma (Type
AB), used for practical application tests, was purchased
from Sigma-Aldrich. Quant-iT OliGreen ssDNA reagent
was obtained from Thermo Fisher (Eugene, OR, USA).
The serotonin ELISA kit was from Lifespan Biosciences
(Seattle, WA, USA). All solutions were prepared using
Milli-Q deionized water with a resistivity of 18.2M/m
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Scheme 1: Schematic representation of the aptamer-based colorimetric assay for the colorimetric detection of serotonin molecules via in
situ synthesis of AuNPs.
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(Millipore, Billerica, MA). All the research images were
captured using iPhone 11 (Apple, Cupertino, CA, USA).
Oligonucleotides normalized to 100 uM in TAE buffer were
purchased from Purigo Biotech (Taipei, Taiwan). The aptamer
sequence used was as follows: CGACTGGTAGGCAGATAGGG
GAAGCTGATTCGATGCGTGGGTCG [33].

2.2 Colorimetric detection of serotonin

One microliter of 100 pM anti-serotonin aptamer and 1 pL
of different serotonin concentrations were added to 1x
TAE buffer (solution A). Subsequently, 50 pL of solution
A was incubated at 30°C for 30 min. Next, 1 pL of solution
A was mixed with 33 pL of 1 mM HAucCl,, and the volume
of this solution was adjusted to 95 pL by adding deionized
water (solution B). Then, 5pL of 100 mM ascorbic acid
was quickly added to solution B and mixed evenly at
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room temperature for 20 s, producing a red color imme-
diately owing to the formation of AuNPs. After 5 min, 1 pL
4 M NaCl was added to the AuNP solution for 10 min reac-
tion. Finally, absorbance was measured using a SpectraMax
iD3 microplate reader (Molecular Devices, San Jose, CA,
USA). The spectra were measured with a resolution of
5nm over a wavelength range of 400-800 nm. All measure-
ments were performed in sterile 96-well plates for a total
volume of 100 pL.

3 Results and discussion

3.1 Characterization of synthesized AuNPs

As shown in Figure 1a, aqueous HAuCl,, solution was reduced
by ascorbic acid under different conditions. Upon reduction,
all solutions appeared ruby red (inset of Figure 1a). The UV-
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Figure 1: UV-Vis absorption spectra of the colorimetric assay in the different conditions (a) with and (b) without adding NaCl. Inset shows
the images of the color change of the AuNP solution. The ratio of the absorbance at 750 and 520 nm of the AuNP solution (c) with and (d)
without adding NaCl in the presence of (a) aptamer and serotonin, (b) aptamer, (c) serotonin, and (d) blank. The final concentrations of
aptamer, serotonin, and NaCl were 20 nM, 10 ng/mL, and 32 mM, respectively, and their pH was 4. The error bars represent the standard
deviation of the mean of three measurements (for the representation of the curves in this figure in color, the reader is referred to view the

web version of this article).
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visible spectra of these solutions showed the same character-
istic peak at 520 nm. Transmission electron microscopy
(TEM) images of the synthesized AuNPs are shown in
Figure S1. The spherical nanoparticles could be clearly
observed, and the average diameters determined from the
TEM images were approximately 17-20 nm, which was con-
sistent with the surface plasmon resonance (SPR) band at
approximately 520 nm [34]. The time course of the absorp-
tion signal responses was recorded to investigate the sta-
bility of these AuNPs. The synthesized AuNPs stabilized by
DNA aptamers are shown in Figure S2, which remained
stable for over 15 h. Contrastingly, the stability of AuNPs
without aptamers could only be maintained for 7.5 h. The
presence of oligonucleotides provided a certain degree of
stability to the formed AuNPs. When salt ions were added,
different spectra and color changes were observed in dif-
ferent solutions. When only reduced AuNPs were present
in the solution (Figure 1b(d)), the absorbance signal at
520 nm sharply decreased, and that at a long wavelength
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of approximately 700 nm increased, accompanied by a
color change from red to blue. Similar responses were
observed in the presence of serotonin and reduced AuNPs
(Figure 1b(c)). After the addition of aptamer (Figure 1b(b)),
although the absorbance intensity at 520 nm decreased
from 0.5 to 0.3, the color was still reddish, indicating that
the aptamer protects the reduced AuNPs from the salt-
induced aggregation reaction. In contrast, the absorbance
of the reaction solution containing the aptamer and serotonin
molecules (Figure 1b(a)) was ~2-fold higher at 520 nm than
that without serotonin. To estimate the degree of AuNP
aggregation, the absorption ratio of 750 and 520 nm (A750/
A520) as an aggregation parameter was determined; a higher
ratio value indicates a stronger degree of aggregation. As
shown in Figure 1c, all values of the absorption ratio were
less than 0.2, indicating the dispersion of the reduced AuNPs
without NaCl. When salt ions were added (Figure 1d), the
absorption ratio of the aptamer alone was substantially lower
than that of the blank group, while that of serotonin alone
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Figure 2: (a) FTIR and (b) zeta potential responses of synthesized AuNPs only, AuNPs with DNA aptamer, and AuNPs with DNA aptamer and
serotonin. The final concentrations of aptamer, serotonin, and NaCl were 20 nM, 10 ng/mL, and 32 mM, respectively. (c) Fluorescence

spectra of the Oligreen with aptamer only, aptamer/serotonin complex, aptamer and gold ion, and aptamer/serotonin complex and gold
ion. (d) Magnified view of the fluorescence spectra of the Oligreen with aptamer and gold ion, and aptamer/serotonin complex and gold ion.
The error bars represent the standard deviation of the mean of three measurements (For the representation of the curves in this figure in

color, the reader is referred to view the web version of this article.).



DE GRUYTER

was nearly identical to that of the control group, implying
that while serotonin has no effect on reduced AuNPs, the
aptamer has a role in preventing the aggregation of AuNPs.
The absorption ratio was larger when both aptamer and ser-
otonin were present than when the aptamer existed alone,
indicating that the binding of serotonin to its aptamer would
limit the attachment of the aptamer to AuNPs.

To better understand the mechanism of AuNP forma-
tion, FTIR spectroscopy was used to probe the interactions
among the DNA aptamer, serotonin, and the reduced
AuNPs (Figure 2a). The dips at 802, 1,025, 1,101, and
1,262cm™! were attributed to the vibrations of the sugar
phosphate [35], deoxyribose [36], phosphate [37], and
phosphodiester bonds [38] of nucleic acids, respectively.
Thus, several changes at these wavenumbers could be
observed in the presence of the aptamer and reduced
AuNPs, indicating interactions between the aptamer and
AuNPs. When the aptamer was first mixed with serotonin,
the four dips were significantly weakened. In this case, a
portion of the aptamers did not interact with the AuNPs
because of complex formation between the aptamer and
serotonin. The zeta potential was used to determine the
surface charge of the synthesized AuNPs in solution. As
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AuNPs indicated the presence of positively charged sur-
face ligands, probably leaving unreacted Au ions. The Oli-
green ssDNA fluorescence assay was used to prove the
interaction between DNA aptamers and gold ions [39,40].
Figure 2c illustrates that when Oligreen interacted with each
ssDNA aptamer in the presence and absence of targets,
brighter fluorescence resulted from the Oligreen interaction
with the aptamer alone than with the aptamer/serotonin
complex, which is consistent with the previous Oligreen
study [40]. When gold ions were added, a remarkable
decrease in fluorescence intensity was observed in the
presence of the aptamer and aptamer/serotonin complex
(Figure 2d), implying that fluorescent oligo green molecules
were detached from DNA owing to the interaction between
the aptamer and gold ions. Additionally, in the presence of
gold ions, the decrease in fluorescence with only aptamer
was higher than that with the aptamer/serotonin complex.
This indicates that gold ions interact more favorably with
the ssDNA aptamer than the complex of the aptamer and
serotonin; thus, the aptamer alone is easier to adsorb
quickly on the reduced AuNPs. Therefore, these results
demonstrate that the solution with aptamers stabilized the
ascorbic acid-synthesized AuNPs against aggregation at salt
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interactions of the unreacted gold ions, whereas the solu-
tion with aptamer/serotonin complexes did not provide sta-
bility to the synthesized AuNPs, and the solution turned
blue. Thus, based on the color changes caused by the rapid
in situ synthesis of AuNPs, the target molecule levels could
be directly observed, facilitating the detection of serotonin
in a simple and convenient manner.

3.2 Optimization of the experimental
conditions

Several experimental parameters of this colorimetric method
were optimized to maximize assay performance, including
the concentrations of the aptamer, gold ions, ascorbic acid,
and NaCl, the incubation time, and the experimental tem-
perature. As shown in Figure 3a, with increasing aptamer
concentration, the absorption ratio decreased with and
without serotonin. Furthermore, more aptamers could pre-
vent AuNP from salt-induced aggregation, but they also
caused fewer changes in the signal response when sero-
tonin was present. To achieve a better detection response,
20 nM aptamer was chosen as the optimal condition. The
concentration of HAuCl, ions had a significant impact on
the growth of AuNPs. Interestingly, when the concentra-
tion of HAuCl, ions was 333 pM, the absorption ratio was
significantly different in the presence and absence of ser-
otonin (Figure 3b). A low concentration of HAuCl, ions

DE GRUYTER

may produce fewer AuNPs; thus, the aptamer can effec-
tively protect AuNPs from salt-induced aggregation and
vice versa. Therefore, 333 uM HAuCl, ions was deemed
optimal and used for the following measurements. More-
over, the assay performance of the colorimetric behavior
was influenced by the reaction temperature in the interac-
tion of aptamers and targets. The absorption ratio increased
progressively from 25 to 30°C, and there were no significant
differences (p > 0.05) when the temperature was increased
to 44°C (Figure 3c). Therefore, we optimized the tempera-
ture to 30°C. Subsequently, a series of different concentra-
tions of ascorbic acid and sodium chloride were optimized.
Figure 3d and e exhibited that ascorbic acid of 2.5 mM and
sodium chloride of 28 mM were selected to obtain the
optimal response. Finally, the response time after the addi-
tion of NaCl was explored, and 5min was used in subse-
quent experiments (Figure 2f). The experimental ranges and
optimum conditions for the test parameters are summarized
in Table S1.

3.3 Detection of serotonin

After optimizing the experimental conditions, we exam-
ined the response to serotonin. Before adding salt, the
absorption spectra of the AuNP solutions remained nearly
unchanged with different concentrations of serotonin mole-
cules; thus, the color also appeared red (Figure S3),
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Figure 4: Sensing performance of the colorimetric AuNPs for serotonin. (a) Absorption spectra of the AuNP solution at various serotonin
concentrations. The inset shows the image of the AuNP solution containing different concentrations of serotonin. (b) Calibration plot of
serotonin using the ratio of the absorbance at 750 and 520 nm of the AuNP solution at various serotonin concentrations. “3c¢” is drawn at the
zero-dose value plus thrice the standard deviation of the zero-dose measurements. The linear relationship was observed at the serotonin
concentration from 1to 20 ng/mL (R?> = 0.997 in the inset). The final concentrations of aptamer, Au*, ascorbic acid, and NaCl were 20 nM,
333 pM, 2.5 mM, and 28 mM, respectively, and their pH was 4. (c) Absorbance ratio in the presence of related interfering molecules at 20
ng/mL. The concentration of serotonin used in the specificity was 10 ng/mL. Mix represents the reaction solution containing all the
interference molecules except for serotonin at 20 ng/mL. The error bars represent the standard deviation of the mean of three measure-
ments (for the representation of the curves in this figure in color, the reader is referred to view the web version of this article).
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Table 2: Recovery test for serotonin detection in real samples

DE GRUYTER

Samples Added (ng/mL) Found by our assay (ng/mL) n =3  Measured by ELISA (ng/mL) n =3 Recovery (%) RSD (%)
Diluted serum 1 11+0.1 1+0.2 110 8.8
2 1.8 + 0.2 23+0.4 90 12.7
10 10.2 £ 1.5 10.5 + 0.9 102 14.0
20 18.3 £ 1.9 22.4 £2.3 91.5 10.2

indicating that serotonin did not have a significant effect on
the formation of AuNPs. In the presence of salt, the quali-
tative results can be observed with the naked eye, and the
colloid solution color changed from red to dark red or even
dark purple-blue (inset of Figure 4a). Quantitative results
were obtained from changes in the optical spectra (Figure 4a).
When the experimental data were fitted to the calibration
curve with four-parameter logistic regression, the correla-
tion coefficient (R%) was 0.991, indicating satisfactory agree-
ment (Figure 4b). With an increase in the serotonin concen-
tration, the absorption intensity at 520 nm continued to
decrease, while that at 750 nm continued to increase. The
scatter plot shown in the inset of Figure 4b showed the
relationship between the A750/A520 values and serotonin
concentrations. A good linear relationship with R* of 0.997
was obtained between the A750/A520 ratio and the loga-
rithm of serotonin concentration in the range of 1-20 ng/mL.
The limit of detection (LOD) of this assay was 1ng/mL (cor-
responding to 5.7 nM using a molecular weight of 176 g/mol
of serotonin), based on three times the standard deviation
of the control. As shown in Table 1, the LOD of our assay
was comparable or superior to those of colorimetric detec-
tion using pre-synthesized AuNPs [26,27,41], electrochemical
assays based on different nanomaterial-modified electrodes
[42-45], and Mn?**-doped ZnS quantum dot (QD)-modified
fluorescence sensors based on molecularly imprinted
polymers [46]. Although this assay demonstrated a lower
LOD than the zinc oxide (ZnO) nanorod-based field-effect
transistor (FET) for the detection of serotonin [47], our
method has the advantage of easy preparation. Therefore,
the preparation using our colorimetric assay could be per-
formed faster than that with ZnO-based FET, incurring
a long time (over 24 h) and high temperature (350°C) of
FET chip fabrication. Furthermore, compared with pre-
viously described analytical assays as well as other gold
nanomaterial-based colorimetric methods, our approach is
distinguished by its speed and simplicity. Notably, our assay
required less than 1 min to prepare, which was considerably
less than almost all previous approaches.

Furthermore, we investigated the selectivity of our
assay by adding various interfering species at a concen-
tration of 20 ng/mL (Figure 4c). The addition of these

species with similar chemical structures did not cause
an obvious variation in the absorption ratio values. To
further verify the selectivity for the practical detection
of serotonin, coexisting interfering species and their mix-
tures with twice the amount of serotonin were examined.
A relatively higher absorption ratio was obtained in the
solution mixture spiked with 10 ng/mL serotonin than in
the solution without serotonin. This result revealed that
the current approach is capable of selecting serotonin
with the appropriate selectivity.

As one step further toward actual human body fluid mea-
surement, we challenged our assay with serotonin spiking
and concentration recovery experiments in blood samples.
We started with 50- to 500-fold diluted serum samples that
were not spiked with serotonin. As shown in Figure S4, the
response for nonspecific binding decreased from 200-fold
dilution onward, with identical values for 500-fold dilution.
Solutions from serum samples (200-fold dilution) were spiked
with an increasing number of serotonin standards. The con-
centrations were also determined by a validated spectropho-
tometric method using the ELISA kit. Table 2 shows that
the average serotonin recoveries varied from 90 to 110%,
with relative standard deviations (RSDs) ranging from 8.8 to
14.0%. In addition, there was a good agreement between the
colorimetric assay we used and that determined by the vali-
dated method in the serum samples. These results indicate
that the developed method has the potential to identify and
detect the target serotonin in real samples. In this study, the
LOD was determined to be 1 ng/mL in the pure buffer system,
but the samples were diluted 200 times before measurement
in practical applications. Thus, it can be estimated that the
LOD for the undiluted serum sample was 200 ng/mL or
higher. For practical applications, greater efforts are required
to increase the LOD of this detection approach by utilizing
more sensitive detectors (such as SPR sensors) [48,49] or
adding antifouling materials [50,51].

4 Conclusions

In this study, a simple colorimetric biosensor for detecting
serotonin was developed in the rapid synthesis of AuNPs.
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At room temperature, the formation of AuNPs was accom-
plished using ascorbic acid as the reducer of Au®* without
adding any other capping agents. The assay was based on
the different adsorption properties of the aptamer and
aptamer/serotonin complex toward the synthesized AuNPs
owing to their electrostatic properties. Our proposed method
has advantages in addition to its simplicity, cost-effective-
ness, and rapid analysis. Moreover, our LOD, as low as 1 ng/mL
(5.7 nM), is comparable to or better than that in reported assays
for serotonin. More importantly, our sensing strategy does not
require a pre-synthesis step of AuNPs, making the process less
laborious. In view of these features, we expect that this detec-
tion strategy may offer the potential to detect a wide spectrum
of analytes when used properly.
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