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Abstract: Pure and Ag@AgCl modified TiO2 were synthe-
sized by one-step hydrothermal method, which exhibit
anatase/rutile/brookite (A/R/B) triphasic structure. The
photocatalysts were characterized by X-ray diffraction,
scanning electron microscope, transmission electron
microscope, X-ray photoelectron spectroscopy, photolu-
minescence, electrochemical impedance spectroscopy,
photocurrent response, and diffuse reflectance spectro-
scopy, and the photocatalytic activity was evaluated by
taking 100mL (10mg/L) methylene blue (MB) aqueous
solution as the target pollutant. The results show that
Ag@AgCl modification is beneficial for the separation of
photogenerated charges and the absorption in visible
region. The degradation degree of MB increases from
75.7% for pure TiO2 to 97.3% for Ag@AgCl modified TiO2.
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1 Introduction

As one of the new green environmental protection tech-
nologies, photocatalytic technology can be applied for the
degradation of organic pollutants [1–5]. Among many
photocatalytic materials, TiO2 shows the advantages of

low cost, mild reaction conditions, high chemical stability,
and no secondary pollution [6–10]. However, due to the
shortcomings of TiO2, such as low sunlight utilization and
fast recombination of photogenerated charges, its photo-
catalytic degradation effect is greatly limited [11–13]. When
noble-metals and semiconductors are combined, Schottky
junctions will be formed on the interfaces, which promote
the separation of photogenerated electrons and holes. On
the other hand, the surface plasmon resonance (SPR) of
noble-metal can enhance visible light absorption, advan-
cing the photocatalytic performance [14–17]. Moreover,
Ag@AgCl modification can further improve the photoca-
talytic activity on the basis of Ag modification. Wang et al.
[18] prepared Ag@AgCl/TiO2 photocatalyst and found that
the recombination of photoinduced electrons and holes is
retarded and the absorption in visible region is enhanced
through Ag@AgCl modification. Therefore, Ag@AgCl/TiO2

shows higher photocatalytic activity than pure TiO2 and
Ag/TiO2.

It is generally believed that TiO2 with mixed crystal
exhibits better photocatalytic performance than single
structure owing to the mixed crystal effect. Anatase/rutile
TiO2 is the focus of mixed TiO2 and has been widely
studied. Basis of two-phase mixed crystal, anatase/
rutile/brookite triphasic TiO2 exhibits higher photocata-
lytic activity than two-phase and monophase TiO2 [19–21].
It is reported by Mutuma et al. [22] that the photoca-
talytic activity of anatase/rutile/brookite three-phase
mixed crystal TiO2 is higher than that of anatase/rutile
two-phase mixed crystal TiO2.

In our previous work, it has been proved that the
anatase/rutile/brookite triphase TiO2 shows better activity
than two-phase and monophase TiO2 [20]. In the present
work, the advantages of TiO2 with triphase and Ag@AgCl
modification were combined to prepare Ag@AgCl modi-
fied anatase/rutile/brookite TiO2 composite by one-step
hydrothermal method. The effect of Ag@AgCl modification
on the structure and photocatalytic performance of
anatase/rutile/brookite triphasic TiO2 were investigated.
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2 Experimental

2.1 Synthesis of photocatalyst materials

Polyethylene glycol (analytical reagent, AR), butyl tita-
nate (AR), anhydrous ethanol (AR), hydrochloric acid
(AR), silver nitrate (AR), and methylene blue (MB) (AR)
were purchased from Chengdu Kelong Chemical Reagent
Factory (PR China).

10 mL of butyl titanate was added to 30mL anhy-
drous ethanol to obtain solution A. 30mL of deionized
water, 1 mL of hydrochloric acid, and 1mL of polyethy-
lene glycol were mixed evenly to obtain solution B, which
was added to solution A dropwise to obtain a mixture.
Then, the mixture was transferred to a hydrothermal
reaction kettle for hydrothermal treatment at 190°C for
15 h. The obtained powder was washed several times to
neutral, and dried at 80°C in an oven. Finally, after
grinding, the pure TiO2 was prepared, which is marked
as ARB.

Ag@AgCl modified TiO2 marked as Ag@AgCl–ARB
can be obtained by adding certain amount of AgNO3 in
solution B, and keeping the other steps same as the pre-
paration procedure of ARB. The molar ratio of Ag/Ti
is 2%.

2.2 Characterization

The crystal structure and phase information were studied
by X-ray diffraction (XRD) using a DX-2700 X-ray diffract-
ometer with Cu Kα radiation as the X-ray source, the scan
range 2θwas 20–70° and scan speedwas 0.06°/s (Dandong
Haoyuan Instrument Co. Ltd, Dandong, China). The mor-
phology was observed by a JEM-F200 transmission electron
microscope (TEM and HRTEM) and a Hitachi SU8220 scan-
ning electron microscope (SEM) (FEI Company, Hillsboro,
OR, USA). The composition and valence of elements were
analyzed by an XSAM800 multifunctional surface analysis
system (X-ray photoelectron spectroscopy, XPS) (Thermo
Scientific K-Alpha, Kratos Ltd, Manchester, UK). The
photoluminescence (PL) spectra were measured using
an F-4600 fluorescence spectrum analyzer with an Xe
lamp at an excitation wavelength of 320 nm (Shimadzu
Group Company, Kyoto, Japan). The photocurrent response
(PC) and electrochemical impedance spectroscopy (EIS)
were measured by a DH-7000 electrochemical workstation
(Beijing Jinyang Wanda Technology Co., Ltd, Beijing,
China). The optical absorption was analyzed by a UV-3600

ultraviolet-visible spectrophotometer (Shimadzu Group
Company, Kyoto, Japan).

2.3 Photocatalytic activity test

The photocatalytic activity of samples was evaluated by
measuring the decomposition of MB. 100mL of 10mg/L
MB aqueous solution and 0.05 g sample powder were
mixed together and stirred in dark for 30min to achieve
adsorption–desorption equilibrium. Then, the irradiation
was carried out using a 250W Xe lamp as the light source.
After centrifugal separation, the solution was taken every
15 min and the absorbance at 664 nm was measured. The
degradation degree was calculated by formula (A0 – At)/
A0 × 100%.

On the basis of the MB degradation system, 2 mL
(0.1 mol/L) of p-benzoquinone (BQ, · −O2 trapping agent),
isopropanol (IPA, ·OH trapping agent), and ammonium
oxalate (AO, h+ trapping agent)were added to investigate
the active species.

3 Results and discussion

3.1 Phase composition

Figure 1 presents the XRD patterns of samples. The dif-
fraction peaks of ARB at 25.4, 38.0, and 48.0° are indexed

Figure 1: XRD patterns of the samples.
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to the (101), (004), and (200) planes of anatase. The dif-
fraction peaks at 27.4, 36.2, 41.3, 54.4, and 56.6° are
indexed to the (110), (101), (111), (211), and (220) planes
of rutile. In addition, the diffraction peak corresponding
to the (121) planes of brookite appears at 31.1°, implying
that the prepared ARB is composed of three phases,
namely, anatase, rutile, and brookite [23]. As for
Ag@AgCl–ARB, besides the anatase, rutile, and brookite
phase, new diffraction peaks at 38.1 and 44.4° are indexed
to the (111) and (200) planes of metallic Ag [24], and peaks
at 32.3 and 46.3° correspond to the (200) and (220) planes
of AgCl, respectively [19].

3.2 Morphology

Figure 2 depicts the SEM images of ARB and Ag@Ag-
Cl–ARB. Both the samples are irregular in shape and ran-
ging in size from ten to tens of nanometers. ARB and
Ag@AgCl–ARB present almost the same morphology,
implying that Ag@AgCl modification has no distinct
influence on the morphology. Figure 2(c) and (h) are the
element mappings of Ag@AgCl–ARB. The Ag@AgCl–ARB
is mainly composed of Ti, O, Ag, and Cl, distributed uni-
formly in the sample, which demonstrates that Ag and Cl
elements are present in Ag@AgCl–ARB.

Figure 3 shows TEM and HRTEM images of the sam-
ples. From Figure 3(a), it can be observed that the single
particle is roughly granular, and the size is between
10–20 nm. The crystal plane spacings marked in Figure 3(c)
0.35, 0.32, and 0.29 nm can be attributed to the (101) plane
of anatase, the (110) plane of rutile, and the (121) plane
of brookite [20,25,26], respectively, indicating that ARB
consists of anatase, rutile, and brookite phase, which is
in accordance with the XRD results. Figure 3(d) shows
the HRTEM images of Ag@AgCl–ARB, the crystal lattice
fringes 0.35, 0.32, and 0.29 nm correspond to the crystal
plane of anatase (101), rutile (110), and brookite (121),
respectively.

3.3 Element composition

Figure 4(a) shows the full XPS spectra of ARB and
Ag@AgCl–ARB. The Ag@AgCl–ARB is mainly composed
of Ti, O, Ag, and Cl. No other impurity peaks were
detected in ARB and Ag@AgCl–ARB, indicating the high
purity of samples. Figure 4(b) shows the high resolution
spectra of Ti 2p. Two peaks at 458.4 and 464.1 eV in the

spectrum of ARB are indexed to Ti 2p3/2 and Ti 2p1/2, ver-
ifying that the Ti element exists in 4+ valence state [27,28].
In Figure 4(c), the O 1s peaks of ARB are located at 529.6
and 530.3 eV, corresponding to lattice oxygen (O2−) and
surface hydroxyl group (OH−), respectively [28]. After
Ag@AgCl modification, the binding energies of Ti 2p and
O 1s shift to lower position, which can be ascribed to the
interaction between Ag, Cl elements, and Ti, O elements
[29,30]. The peaks at Ag 3d5/2 366.7 and Ag 3d3/2 372.8 eV
are attributed to metals Ag0 and Ag+ in Figure 4(d) [31,32].
As demonstrated in Figure 4(e), the characteristic peaks
of Cl 2p3/2 and Cl 2p1/2 of Cl element are located at 197.5
and 199.0 eV, respectively, which indicate that Cl ele-
ment is in −1 valence state [31].

3.4 Photogenerated charges separation
analysis

Figure 5(a) shows the PL spectra of samples. Since the PL
peaks are responsible for the recombination between
photogenerated electrons and holes, the stronger the PL
peak intensity, the higher the recombination of photo-
generated charge [33]. Compared with ARB, although
the PL peak positions of Ag@AgCl modified ARB does
not change, the peak intensity is significantly lower
than that of ARB, implying that Ag@AgCl modification
retards the recombination effectively.

Figure 5(b) shows the EIS Nyquist plots of ARB and
Ag@AgCl–ARB. According to Nyquist theorem, the arc
radius of Ag@AgCl–ARB is smaller than ARB, which indi-
cates that Ag@AgCl–ARB possesses lower charge move-
ment resistance [34–36]. Figure 5(c) shows the PC curves
of samples. Generally, the higher the photocurrent, the
stronger the photoinduced electrons and holes separa-
tion ability [35,37]. Both ARB and Ag@AgCl–ARB pro-
duce photocurrent under light irradiation. Nevertheless,
Ag@AgCl–ARB shows higher photocurrent density, implying
that Ag@AgCl modification is beneficial to the separation
of photoinduced charges. The electrochemical test results
are consistent with PL spectra.

3.5 Optical absorption analysis

Figure 6 presents the UV-visible absorption spectra and
band gap of the samples. It can be found in Figure 6(a)
that the absorption edges of ARB and Ag@AgCl–ARB are
basically the same, both showing absorption edges at
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400 nm approximately. Figure 6(b) shows the (αhv)1/2–hv
curves of the samples. The band gap width of the semi-
conductor can be estimated by Tauc-plot [38–40]. The

gap width of Ag@AgCl–ARB (2.84 eV) is smaller than
that of ARB (2.93 eV). In the visible region, Ag@AgCl–ARB
shows higher absorption than that of ARB, indicating

Figure 2: SEM images of ARB (a), Ag@AgCl–ARB (b), element mappings (c–g), and EDS analysis of Ag@AgCl–ARB (h).
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that the plasma resonance effect caused by Ag particles
is beneficial to increasing the absorption of visible light
[41].

3.6 Photocatalytic activity

Figure 7(a) presents the degradation degree curves of MB.
The self-degradation of MB without photocatalyst is 8%,
which is relatively low in the degradation process. There-
fore, the degradation of MB is mainly derived from the
presence of photocatalysts under irradiation. After illu-
mination for 60min, the degradation degree of MB by
ARB is 75.7%, and it is 97.3% for Ag@AgCl–ARB, indi-
cating that the photocatalytic efficiency is significantly
improved for Ag@AgCl modification. For comparison,
Ag–ARB (Ag/Ti = 2%) was prepared, which shows a
degradation degree of 86.5%. It is proved that Ag

modification improves the photocatalytic activity of
TiO2, but the effect is inferior to Ag@AgCl modification.

The kinetics fitting results are shown in Figure 7(b).
It can be found that the time t shows a linear relation-
ship with –ln(C/C0), which suggests that the reaction of
photocatalytic degradation of MB conforms to the first-
order reaction [42]. The higher the reaction rate constant,
the higher the photocatalytic activity. The first-order reac-
tion rate constants of ARB, Ag–ARB, and Ag@AgCl–ARB are
0.022, 0.032, and 0.055min−1, respectively. Ag@AgCl–ARB
shows the highest k value, which is in line with the
photocatalytic degradation results.

To study the reusability of Ag@AgCl–ARB photo-
catalyst, the cycling experiment of degradation MB was
carried out. The experimental results are shown in Figure 8.
As the number of cycles increases, the degradation degree
of MB decreases slightly. After 5 cycles, the degradation
degree of Ag@AgCl–ARB composite decreases from 97.3
to 85.2%.

Figure 3: TEM images of ARB (a), Ag@AgCl–ARB (b), HRTEM images of ARB (c), and Ag@AgCl–ARB (d).
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Figure 4: XPS survey of ARB and Ag@AgCl–ARB (a), high resolution spectra of Ti 2p (b), O 1 s (c), Ag 3d (d), and Cl 2p (e).
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The XRD pattern of Ag@AgCl–ARB composite photo-
catalyst after five cycles is shown in Figure 9. Compared
with the initial sample, it is found that the diffraction
peak intensity of AgCl (200) crystal plane at 32.3°
decreases after cycle experiment, implying that part of
AgCl is decomposed during the photocatalytic experiment
[43]. The positions of other peaks are unchanged; how-
ever, the peak intensity decreases slightly, which may be
caused by a small amount of undegraded MB molecules
covering the surface of Ag@AgCl–ARB [44,45]. Mean-
while, it also causes the decline in photocatalytic activity,
which is consistent with the cycling experimental results.

Inductively coupled plasma optical emission spectro-
meter was used to investigate the silver ion leached out
from the photocatalyst in the supernatant after reaction.
It is measured to be 0.0660 ± 0.0003mg/L in the solu-
tion, indicating that a small amount of Ag ion was lea-
ched into the solution.

3.7 Photodegradation mechanism

Figure 10 shows the results of active group capture
experiment of Ag@AgCl–ARB. After adding BQ, IPA,
and AO in MB degradation system, the order of photoca-
talytic degradation degrees of MB in the samples are BQ
(30.8%) < IPA (76.5%) < AO (84.2%) < no Scavenger
(97.3%), which suggests that · −O2 is the main active spe-
cies, while ·OH and h+ are the secondary active species.

The formation of · −O2 was further verified by the nitro
blue tetrazole (NBT) experiment. Figure 11(a) shows the
absorbance curves of Ag@AgCl–ARB. With the increase
in illumination time, the absorbance of NBT decreases
gradually, which verifies the formation of · −O2 species
[46–48]. Figure 11(b) shows the NBT absorbance curves
of ARB and Ag@AgCl–ARB after 30min irradiation. The
NBT absorbance of Ag@AgCl–ARB is lower than that of
ARB, indicating that more · −O2 species are generated in
Ag@AgCl–ARB photocatalyst compared to ARB, which
is consistent with the PL spectra.

The band potential can be estimated through the
electronegativity equation of ECB = X – E0 – Eg/2 and
EVB = Eg + ECB, where EVB is the valence band potential,
ECB is the conduction band potential, E0 is the free elec-
tron energy on the hydrogen scale (E0 = 4.5 eV), Eg is the
bandgap energy of the photocatalytic material, and X
is the absolute electronegativity of the semiconductor
[49–51]. Based on the DRS result (the band gap of

Figure 5: PL spectra (a), EIS (b), and PC curves (c) of ARB and
Ag@AgCl–ARB.
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ARB = 2.93 eV), the ECB and EVB of ARB are –0.15 and
2.78 eV, respectively. ARB consists of anatase, rutile,
and brookite, and brookite shows the highest conduc-
tion band, followed by anatase and rutile [20,44,52,53].
On the other hand, the ECB and EVB of AgCl are determined
to be −0.06 and 3.2 eV [54]. Based on the above content,
a possible mechanism of the photogenerated charges
separation and transfer for Ag@AgCl–ARB is proposed,
as shown in Figure 12. In UV light region, photogener-
ated charges are generated, as TiO2 is three phase mixed
crystal structure, which can accelerate the migration of

carriers [52,53]. Moreover, the conduction bands of TiO2

and AgCl are higher than the Fermi level of metallic
Ag, and the photogenerated electrons generated in
TiO2 and AgCl will transfer to Ag particles, further inhi-
biting the recombination [54–57]. In visible light region,
due to the SPR effect of Ag, the hot-electrons generated
in Ag particles can be transferred to the conduction
band of TiO2 and AgCl, which are captured by O2

to generate · −O2 radicals, advancing the photocatalytic
activity [58]. On the other hand, the holes will oxidize
Cl− to form Cl0 radicals, which also contributes to the

Figure 6: UV-visible absorption spectra (a) and band gap (b) of the samples.

Figure 7: Degradation degree curves (a) and kinetic curves (b) of ARB, Ag-ARB, and Ag@AgCl–ARB.
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improvement in the photocatalytic activity [18,59]. Con-
sequently, Ag@AgCl–ARB exhibits the best photocata-
lytic performance.

4 Conclusion

ARB and Ag@AgCl–ARB were prepared by one step
hydrothermal method. ARB shows a three-phase mixed
crystal structure composed of anatase, rutile, and broo-
kite. Ag@AgCl modification does not change the crystal
structure of ARB. The formation of Ag@AgCl–ARB het-
erojunctions is advantageous to the separation of photo-
generated charges and the absorption of visible light,

Figure 9: XRD patterns of Ag@AgCl–ARB photocatalyst before and
after the photocatalytic experiment.

Figure 10: Active species experiment of Ag@AgCl–ARB.

Figure 8: The reuse experiment of Ag@AgCl–ARB photocatalyst for
MB degradation.

Figure 11: The NBT absorbance curves of Ag@AgCl–ARB with increasing time (a) and the comparison of ARB and Ag@AgCl–ARB (b).
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which can be explained by the fact that Ag@AgCl–ARB
exhibits the highest photocatalytic activity.
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