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Abstract: The principal focal point of the current review is
the second-grade nanofluid (SGNF) stream with slanted
magnetohydrodynamics and viscous disintegration impacts
across a moving level flat surface with entropy investiga-
tion. Here, we have done a comparative study on copper–
methanol and iron–methanol second-grade nanoliquids.
The governing conditions of the SGNF model are
changed into ordinary differential equations (ODEs) by
using supportive changes. To tackle the non-straight
ODEs, the Runge-Kutta Fehlberg-45 procedure is uti-
lized. The result reveals that the velocity gradient of
copper–methanol second-grade nanoliquid is strongly
affected by suction, magnetic, and second-grade fluid
parameters and declines faster when compared to iron–
methanol second-grade nanoliquid. Copper–methanol
SGNF shows improved heat transfer than iron–methanol
SGNF for improved values of Eckert and Biot numbers.

Keywords: second-grade nanofluid, inclined magnetic
effect, Joule heating, entropy generation

Nomenclature

A unsteadiness parameter
Aς1, Aς2 Rivlin–Ericksen tensors
Biς Biot number
Br Brinkman number
Cf skin friction
d/dt material time derivative
Ec Eckert number

( )f η non-dimensional velocity profiles
hf coefficient of heat transfer rate
I identity tensor
k thermal conductivity
k0 thermal conductivity of solid
k⁎ mean absorption coefficient
K porous medium parameter
M magnetic parameter
Nr radiation parameter
Nux Nusselt number
p pressure
Pr Prandtl number
qr radiative heat flux
Ref local Reynolds number
S mass transfer variable
T temperature

∞T ambient temperature
( )u v, velocity components
V fluid velocity
Vw porous stretching surface
( )x y, directions
α second-grade parameter
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αf thermal diffusivity parameter
α1 and  α2 material variables
Γ angle of inclination
η dimensionless similarity coordinate

( )θ η dimensionless thermal profile
μ dynamic viscosity
ν kinematic viscosity
ρ density
ρCp heat capacitance
σ electrical conductivity
σ⁎ Stefan–Boltzmann constant
Ω dimensionless thermal gradient
Λ velocity slip variable
ϕ volumetric fraction coefficient

Subscripts

f fluid
nf nanofluid
s solid nanoparticle
w wall/surface
∞ ambient

1 Introduction

A few fluid dynamics problems have appreciated the
attention given to the flow involving non-Newtonian
liquids because of their application in industry and tech-
nology. It is well known that engineers, physicists, and
mathematicians face a superior challenge in the dynamics
of non-Newtonian fluids. In many fields, including food,
drilling operations, and bio-engineering, non-linearity can
manifest itself in a number of ways. For such fluids, the
Navier–Stokes principle is insufficient and no single con-
stitutive equation is available in the literature that exhibits
the properties of all fluids. Many fluid models have been
proposed as a consequence of the complex behavior of
such fluids. Among these, viscoelastic-type liquids have
received much attention. The subclass of viscoelastic
liquids is the second-grade liquid (SGL) model that
can reasonably be expected to have an analytical solu-
tion. Nowadays, major research is being carried out on
the regime of non-Newtonian liquids due to their con-
siderable functional efficiency. Sahoo et al. [1] quizzed
the aspects of Joule heating and slip impact on the mag-
netohydrodynamic (MHD) stream of SGL past a sheet
with viscous dissipation. Imtiaz et al. [2] pondered the
Ohmic and magnetic effects to deliberate SGL flow

provoked by the rotating disk. Hayat et al. [3] quizzed
the SGL stream with nanoparticle suspension over a
sheet with magnetic impact. Kalaivanan et al. [4] delib-
erated the activation energy effect on the SGL stream on
a surface with stretching. Wakeel Ahmed et al. [5] quizzed
the upshot ofmodified-Fourier heatflux on SGLwith nano-
particle suspension past a stretchy geometry.

In recent years, themodeling and analysis of nanofluid
flows have become a frequent area of study. Nanofluids are
being developed as a breakthrough means of improving
heat transmission. Nanoparticles may be used to overcome
cooling issues in thermal frameworks by using heat
transport fluids containing suspended nanoparticles.
In connection with this, numerous investigators exam-
ined the stream of nanoliquids over dissimilar surfaces.
Shafiq et al. [6] swotted the bioconvection steam of SGL
with nanoparticle suspension past a surface with a che-
mical reaction effect. Gowda et al. [7] swotted the ther-
mophoresis effect on liquid flow with twin nanoparticle
suspensions past a poignant disk. Christopher et al. [8]
scrutinized the chemical reaction power of hybrid nano-
liquid flow on a cylinder. Jayadevamurthy et al. [9]
examined a bioconvection stream of fluid with dual
nanoparticle suspension on a poignant disk with spin.
Hayat et al. [10] quizzed the magnetic field upshot on
the SGL stream past the Riga wall.

Nuclear engineering relies heavily on the magnetic
effect and Ohmic heating. In Joule or Ohmic heating,
electricity flows into an item and creates heat at the
same time. A number of scholars have explored the
boundary layer stream issues with Joule heating on var-
ious geometric forms. Shashikumar et al. [11] studied the
Brinkman–Forchheimer stream in a microchannel with
numerous slips, viscous dissipation, and Ohmic heating.
According to Hayat et al. [12], Ohmic heating and melting
may have a major influence on the flow of viscous fluid
over a stretchable plate. Dusty hybrid nanoliquid flow
was studied by Radhika et al. [13] for the stimulation
of the magnetic effect. The stream of a Sisko nanoliquid
owing to a spinning disk was examined by Ijaz et al. [14]
with radiation effects. The MHD flow of hybrid nanoliquids
through an disk with activation energy was examined by
Reddy et al. [15].

The effects of viscous dissipation are often ignored,
but when the liquid viscosity is high, its presence becomes
important. It alters the distribution of temperatures by
playing a role as a source of energy that affects the rates
of heat transfer. Hayat et al. [16] debriefed the viscous
dissipation upshots in the nanoliquid stream initiated
by a disk. Sithole et al. [17] quizzed the radiation effect
on the MHD flow of SGL with suspended nanoparticles
past a sheet. Hazarika et al. [18] reduced the solutions
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for the MHD stream of nanofluid past a sheet with vis-
cous dissipation. The upshot of Joule heating in the
radiative heat transport of non-Newtonian liquids like
power-law, third-grade, and Jeffery fluids is an essential
factor for scientists because of their dynamic applica-
tions in micro-fluidic devices, micro-electromechanical
systems, aerospace, and chemical reactors. Enthused by
these applications, several scholars scrutinized the sti-
mulation of Joule heating and thermal radiation on
diverse liquid streams. Gireesha et al. [19] deliberated
the impact of radiation on the MHD flow of Jeffrey nano-
liquid past a porous extending sheet. Shit and Mandal
[20] quizzed the entropy creation on MHD flow of Casson
nanoliquid on an extending surface with radiation effect.

During the past several decades, several researchers
concentrating on the generation of entropy have con-
ducted various studies on energy production in diverse
fluid stream conditions. Thermodynamic performance is
a thought-provoking characteristic of building the right
apparatus when energy saving is a foremost issue. The
relevance of entropy generation in liquid flow, as well as
its importance in several industrial applications such as
ACs, heat pumps, and fire engines, has encouraged many
researchers. Bejan [21] was the first to bring up the topic
of entropy management. He demonstrated that thermo-
fluidic systems can be treated with characteristics of
entropy and provided a calculation formulation for the
production rate of entropy. Captivated by these indica-
tions, many researchers discuss the generation of entropy
in several fluid streams through different surfaces. Yusuf
et al. [22] quizzed the generation of entropy in an MHD
Williamson nanoliquid stream passing over a sheet. Azam
et al. [23] looked at the production of entropy in a Wil-
liamson fluid flow with nanoparticle suspensions while
accounting for Ohmic heating. Bhatti et al. [24] quizzed
the formation of entropy in a Williamson liquid stream
with nanoparticle suspension while accounting for thermo-
phoretic and Brownian motion. Alsaadi et al. [25] quizzed
the paraphernalia of radiative heat flux on the MHD stream
of Williamson nanomaterial liquid on a surface. Refs.
[26–40] include new additions that consider conven-
tional and nanofluids with heat and mass transmission
in various physical circumstances.

The aforementioned writing features the basic ele-
ments of the liquid stream across different calculations.
The progression of SGL fluid over a moving surface with a
thermal radiation impact has not yet been explored. As a
result, the primary goal of this study is to investigate the
features of non-uniform stretching velocity with thermal
radiation, Ohmic, and viscous dissipation effects in an
SGL stream. In addition, graphical representations are

used to explain the main effects of various non-dimen-
sionless factors on fluid profiles.

2 Mathematical formulation

The mathematical representation of the moving flat hor-
izontal surface with non-uniform stretching velocity is
given as follows:

( ) =

−

U x t bx
ξt

,
1

,w (2.1)

where b is the initial rate of stretching of the porous

sheet. ( ) = +∞
−

T x t T,w
b x

ξt
⁎

1 is the temperature of the insu-
lated sheet under consideration, and for the sake of ease,
the sheet’s left end is supposed to be fixed at =x 0.
Furthermore, the temperature variation rate is represented
by b*. The mathematical model is considered under the
following conditions and assumptions (Figure 1):
• Second-grade nanofluid (SGNF)
• Tiwari and Das nanofluid model
• Porous medium
• Porous stretching flat surface
• Laminar unsteady flow
• Viscous dissipation
• Radiative heat flux
• Newton and slip boundary conditions.

The Cauchy stress tensor in an SGL is mathematically
represented as follows (see, for details, Shah et al. [41]):

= + + −S μA α A α A pI,ς ς ς
⁎

1 1 2 1 1
2 (2.2)

( ) ( )=   +  A grad V grad V ,ς
T

1 (2.3)

Figure 1: Flow geometry.
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( ) ( )=   +   +  A
A

A A
d

dt
grad V grad V .ς

ς
ς ς

T
2

1
1 1 (2.4)

The Clausius–Duhem inequality is confirmed. Fur-
thermore, we find that the Helmholtz free energy is
minimal in equilibrium for the liquid is at rest when

≥ ≥ + =μ α α α0, 0, 0.1 1 2 (2.5)

If + =α α 0,1 2 then the equation of SGL reduces to a
viscous liquid.

The SGNF flow equations [41] under normal boundary
layer assumptions, viscous dissipation, and joule heating
with radiation heat flux are as follows:

∂

∂

+

∂

∂

=

u
x

v
y

0, (2.6)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎤

⎦
⎥

⎛

⎝

⎞

⎠

( )
( )

 ∂

∂

+

∂

∂

+

∂

∂

=

∂

∂

∂

∂

+

∂

∂ ∂

+

∂

∂ ∂

+

∂

∂

∂

∂

+

∂

∂

+

∂

∂

−

u
t

u u
x

v u
y

α
ρ

u
x

u
y

u
t y

u u
x y

u
y

v
y

v u
y

μ
ρ

u
y

σ B t
ρ

u sin Γ ,

nf

nf

nf

nf

nf

1
2

2

3

2

3

2

2

2

3

3

2

2

2
2

(2.7)

⎜ ⎟ ⎜ ⎟

⎜ ⎟

( )
⎛

⎝

⎞

⎠ ( )
⎛

⎝

⎞

⎠

( )
⎛

⎝

⎞

⎠ ( )
( ) ( )

∂

∂

+

∂

∂

+

∂

∂

=

∂

∂

−

∂

∂

+

∂

∂

+  

T
t

u T
x

v T
y

k
ρC

T
y ρC

q
y

μ
ρC

u
y

σ
ρC

B t u

1

sin Γ .

nf

p nf p nf

r

nf

p nf

nf

p nf

2

2

2
2 2 2

(2.8)

The relevant boundary conditions are as follows:
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The dispersion of nanoparticles into methanol liquid
causes improved thermophysical features. Table 1

summarizes the material parameters for the SGNF (see,
for example, refs. [42–46]).

The material features of the methanol and the nano-
particles being utilized in this work are given in Table 2
(see, for instance, refs. [47–49]).

Using the Roseland approximation, Brewster [50],
one can write
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3 Solution to the problem

By using the similarity approach to the governing partial
differential equations, equations (2.1)–(2.3) of boundary
value problems have been transformed into ordinary dif-
ferential equations (ODEs). The stream function can be
defined as
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into equations (2.1)–(2.3). We obtain

Table 1: Thermophysical features of second-grade nanoliquid

Properties Nanofluids

Dynamics viscosity μ μ ϕ1 −nf f
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Table 2: Primary properties of the base fluid and nanoparticles at a standard temperature

Thermophysical properties ρ (kg/m3) Cp (J/kg K) k (W/mK) σ (S/m)

Copper (Cu) 8,933 385 401 5.96 × 107

Iron (Fe3O4) 5,180 670 9.7 0.74 × 106

Methanol (MeOH) 792 2,545 0.2035 0.5 × 10−6

Entropy production simulation of second-grade magnetic nanomaterials  2817



⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠
(

⎛
⎝

⎞
⎠

)

( )

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

′″ +

″ − ′ − ″ + ′ + ′ ′″

+ ″ + − ″ −

− ′

=

f ϕ

ϕ ff f A χ f f α f f

A f χ f f ff

ϕ
ϕ

M f

2
2

2
2

sin Γ

0,

iv iv
1

2
2

2

4

2

2

(3.3)

⎡

⎣
⎢

⎛
⎝

⎞
⎠

( ) ⎤

⎦
⎥

⎜ ⎟
⎛

⎝

⎞

⎠
″

+ ′ − ′ − + ′

+ ″ +   ′ =

+

θ
ϕ
ϕ

fθ f θ A θ χ θ

ϕ ϕ
f

ϕ
ϕ

M f

Pr
2

Ec Ec sin Γ 0,

ϕ N1 1 Pr 3

5

1 3

2 4

3

2 2

r
4

(3.4)

with

( ) ( ) ( )

( ) ( ( ))

( ) ( ) ( )

⎫

⎬

⎪

⎭
⎪

=   ′ = + ″

  ′ = − −

′ → ″ →   →     → ∞

f S f f
θ θ
f χ f χ θ χ χ

0 , 0 1 Λ 0 ,
0 Bi 1 0

0, 0, 0, as

,ς (3.5)

where ′ϕ si is ≤ ≤i1 5 in equations (3.3) and (3.4) repre-
senting the following thermophysical properties for the
SGNF:
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Equation (2.1) is satisfied identically. In the above equa-
tions, ′ takes derivatives w.r.t χ, where = =A α,ξ α b

μb f

1

and
( )

=

−K ,ν ξt
bk
1f

=Pr ν
α

f

f
,

( ) ( )
= =

∞N α,r
σ

κ ν ρC f
κ

ρC
16
3

¥
f p f

f

p f

⁎ 3

⁎ ,

= −
−

 

S Vw
ξt

ν b
1

f
.

( )
=

−

μΛ b
ν ξt f1 ,f ( ) ( )

=
− ∞

Ec U
C T T

w

p f w

2
, and

( )
=

−Biς
h
k

ν ξt
b

1f f

0
.

The skin friction ( )Cf and the local Nusselt number
(Nux) can be stated as follows (see, for example, Shah
et al. [41]):
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where τw and qw represent the heat flux determined by
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Applying the non-dimensional transformations (3.2),

one obtains
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4 Entropy generation minimization

There is a constant fear among scientists and engineers
that valuable energy will be squandered. A thorough
entropy generation study of the system causing irrever-
sible useful energy is thus essential. MHD is a non-ideal
phenomenon that results in a growth in the system’s
entropy. Then, we have [51]

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎧

⎨
⎩

⎛

⎝

⎞

⎠ ( )
⎛

⎝

⎞

⎠

⎫

⎬
⎭

⎛

⎝

⎞

⎠

( ) ( )

=

∂

∂

+

∂

∂

+

∂

∂

+

∞

∞

∞ ∞

E
k
T

T
y

σ T
κ ν ρC

T
y

μ
T

u
y

σ B t u
T

16
3

sin Γ
.

G
nf

f p f

nf nf

2

2 ⁎ 3

⁎

2

2 2 2 2
(4.1)

This equation’s first component reflects the irreversi-
bility of heat transmission, the second term is related to
fluid friction, and the third is related to inclined MHD
phenomena.

NG represents the dimensionless entropy generation,
which is defined as [52–56]:
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According to equation (3.2), the non-dimensional
form of the entropy equation can be determined as
follows:
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5 Computational procedure:
shooting approach

The shooting method [57] is employed for finding mod-
eled equation solutions. The localized solution of equa-
tions (3.3) and (3.4), subject to (3.5) constraints, is found
via the shooting technique. The shooting methodology is
given as follows (Figure 2).

Initial order ODEs are required for this method’s first
step. To satisfy these criteria, conversion of (3.3)–(3.5)
into first-order system yields

=
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6 Code validation

Although this approach was tested by comparing its heat
transfer rate findings to those found in earlier studies
[58–61], it was shown to be valid. Comparing the levels
of consistency found across the various research is sum-
marized in Table 3. It is important to note that the find-
ings of this study are absolutely correct.

7 Numerical results and
discussions

The intention of this part is to display the encouragement
of several dimensionless parameters on intricate profiles.
For example, the current problem indicates the SGNF
stream with inclined MHD, viscous dissipation effects,
and entropy analysis. Here, we have done a comparative
study on copper–methanol and iron–methanol second-
grade nanoliquids. In this section, we analyzed the actions

Figure 2: Shooting technique methodology.
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of frequent dimensionless parameters on the respective
profiles by using appropriate graphs.

Figure 3 demonstrates the sway of M on f′ of both
copper–methanol and iron–methanol second-grade nano-
liquids. Here, the upsurge in M declines the f′. Physically,
M corresponds to the Lorentz force that slows the move-
ment of the liquid particles, resulting in the declination
of f′. Furthermore, the f′ of copper–methanol SGNF is
strongly triggered by the magnetic field and decays faster
when compared to iron–methanol SGNF. The change in f′
of both nanoliquids for varied Λ is exemplified in Figure 4.
Here, gain in Λ declines the f′. Furthermore, the f′ for
copper–methanol SGNF is strongly triggered by Λ and
declines faster when compared to iron–methanol SGNF.
The provocation of S on f′ of both copper–methanol and
iron–methanol SGNFs is demonstrated in Figure 5. The
escalation in S drops the f′ for both nanoliquids. Here,
the f′ of copper–methanol SGNF is strongly triggered by
S and declines faster when compared to iron–methanol
SGNF. Figure 6 displays the sway of α on f′ of both cop-
per–methanol and iron–methanol SGNFs. The gain in α
progresses the f′. Moreover, the f′ of iron–methanol

SGNF is strongly exaggerated by α and inclines faster
when compared to copper–methanol SGNF.

Figure 7 reveals the upshot of Eckert number on the
thermal profile representing both iron–methanol and

Figure 3: Sway of M on f′.

Table 3: Comparison of −θ′ 0( ) by variation in Prandtl number, ϕ = 0, A = 0, Λ = 0, Nr = 0, M = 0, Ec = 0, S = 0, and Bi ∞ς →

Prandtl number (Pr) 10.0 7.0 3.0 1.0 0.72

Ishak et al. [58] 3.7207 3.0723 1.9237 1.0000 0.8086
Ishak et al. [59] 3.7006 3.0723 1.9236 1.0000 0.8086
Abolbashari et al. [60] 3.72067390 3.07225021 1.92368259 1.00000000 0.80863135
Das et al. [61] 3.72055436 3.07314679 1.92357431 1.00000000 0.80876122
Present results 3.72055429 3.07314651 1.92357420 1.00000000 0.80876181

Figure 4: Sway of Λ on f′.

Figure 5: Sway of S on f′.
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copper–methanol SGNFs. The rise in Ec enhances the
thermal profile. It is moderately clear from the descrip-
tion of Ec that its higher values give rise to the strong
heat effect, which raises the temperature. Here, copper–
methanol SGNF shows improved heat transfer than
iron–methanol SGNF for improved values of Ec. The
impact of Biς on thermal gradient for both copper–
methanol and iron–methanol second-grade nanoliquids
is depicted in Figure 8. The enhancement of Biς improves
the thermal profile of both nanoliquids. Physically, the
boom in Biς produces large heat transport via convection,
which results in increased heat transport. Furthermore,
copper–methanol SGNF shows improved heat transport
than iron–methanol SGNF, for improved values of Biς.

The influence of Nr on heat transfer for both nanoliquids
is typified in Figure 9. The upsurge in Nr advances the heat
transference of both nanoliquids. When the Nr is inclined,
internal heat is generated, resulting in increased heat
transport. Furthermore, copper–methanol SGNF shows
improved heat transport than iron–methanol SGNF, with
improved values of Nr. The influence of M on the thermal
profile of both liquids is typified in Figure 10. The increase
in M enriches the thermal profile in both the fluid flows
representing copper–methanol and iron–methanol second-
grade nanoliquid. An increase in the magnetic parameters
intensifies the magnetic field. Here, the fluid temperature
gradually increases due to the thermal radiation effect,
which supplies the additional heat to the flow system.
Figure 11 illustrates the impact of M on the entropy

Figure 6: Sway of α on f′.

Figure 7: Sway of Ec on θ.

Figure 8: Sway of Biς on θ.

Figure 9: Sway of Nr on θ.
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generation profile versus radiation parameter for both
nanoliquids. The upsurge inmagnetic parameters improves
the entropy generation of both iron–methanol and copper–
methanol SGNFs. Moreover, the entropy generation pro-
file of copper–methanol SGNF is strongly affected and
inclines faster when compared to iron–methanol SGNF,
for improved values of both M and Nr.

The encouragement of various non-dimensional
parameters on Nusselt number and skin friction for
both iron–methanol and copper–methanol second-
grade nanoliquids are tabulated in Tables 4 and 5.
The impact of S N M ϕ α γ, , , Λ, , , Bi,r , and A on sur-
face drag force is displayed in Table 5.

In this case, increasing the values of S M ϕ α, , , ,
γBi ,ς , and A decreases the friction factor of both nano-

liquids. But the conflicting trend is portrayed as boosting
the values of Λ for both iron–methanol and copper–
methanol second-grade nanoliquids. Table 4 displays
the consequences of N M ϕ α γ, , Λ, , , Bi ,r ς , and A on
the rate of heat transference of both iron–methanol and
copper–methanol SGNFs. It is interesting to note from the
table that the escalation in N α,r , and Bi improves the
rate of heat transport in both SGNFs. But the conflicting
trend is seen to boost up the values of Λ.

8 Final remarks

In this study, relative requests of the stream for the
copper and iron non-Newtonian methanol-based nano-
fluids were accomplished over a piercing level plane
surface with a non-uniform extending speed. The exam-
ination was conducted in the event of various physical

Figure 10: Sway of M on θ.

Figure 11: Sway of Nr on NG.

Table 4: Influence of varied dimensional parameters on Nusselt number

M Nr Ec Biς α A Λ γ S ϕ NuRe x
−1 2 / Cu–methanol NuRe x

−1 2/ Fe3O4–methanol

0.1 0.2 0.15 0.5 0.5 0.4 0.2 π 2/ 0.5 0.02 0.51278 0.512147
    0.510233 0.509482

0.3     0.507687 0.506817
0.1       0.484522 0.483892
0.15       0.498614 0.497982

0.1         0.519784 0.518999
0.2       0.505777 0.505421

0.4         0.4239 0.478266
0.6         0.596058 0.451237

0.6       0.514054 0.513416
0.7       0.5152 0.514431

0.5         0.512653 0.51202
0.6         0.512526 0.511893
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impacts. The primary comments of the present review
are as follows:
• The velocity of copper–methanol SGNF is sturdily trig-
gered by the suction parameter and declines faster than
iron–methanol SGNF.

• The velocity of copper–methanol SGNF is sturdily trig-
gered by a magnetic field and drops faster than iron–
methanol SGNF.

• The velocity of iron–methanol SGNF is strongly exagger-
ated by α and inclines faster than copper–methanol SGNF.

• Copper–methanol SGNF shows improved heat trans-
port than iron–methanol SGNF for improved values
of Biς.

• Copper–methanol SGNGF shows improved heat trans-
port than iron–methanol SGNF for improved values
of Ec.

• The entropy generation profile of copper–methanol
SGNF is strongly affected and inclines faster when com-
pared to iron–methanol SGNF for improved values of
both magnetic and thermal radiation parameters.

• Copper–methanol SGNF shows an improved rate of
heat transference than iron–methanol SGNF.

• The shooting method could be applied to a variety of
physical and technical challenges in the future [62–71].
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