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Abstract: The field of tissue engineering is poised to be
positively influenced by the advent of supramolecular bio-
polymers, because of their promising tailorability coming
from the bottom-up approach used for their development,
absence of toxic byproducts from their gelation reaction
and intrinsic better mimicry of extracellular matrix nano-
topography and mechanical properties. However, a deep
understanding of the phenomena ruling their properties
at the meso- and macroscales is still missing. In silico
approaches are increasingly helping to shine a light on
questions still of out of reach for almost all empirical
methods. In this review, we will present the most signifi-
cant and updated efforts on molecular modeling of SBP
properties, and their interactions with the living counter-
parts, at all scales. In detail, the currently available mole-
cular mechanic approaches will be discussed, paying
attention to the pros and cons related to their represent-
ability and transferability. We will also give detailed
insights for choosing different biomolecular modeling
strategies at various scales. This is a systematic over-
view of tools and approaches yielding to advances at
atomistic, molecular, and supramolecular levels, with
a holistic perspective demonstrating the urgent need
for theories and models connecting biomaterial design
and their biological effect in vivo.

Keywords:molecular dynamics, supramolecular biopoly-
mers, tissue engineering

Nomenclature

AA-MD all-atom molecular dynamics
AFM atomic force microscopy
AI artificial intelligence
CAPs complementary co-assembling peptides
CG coarse grained
CG-MD coarse-grained molecular dynamics
DFT density functional theory
DPD dissipative particle dynamics
dsDNA double-stranded DNA
dsRNA double-stranded RNA
ECM extracellular matrix
FE finite element
FS fully saturated
GQDs graphene quantum dots
HA hyaluronic acid
MD molecular dynamics
PAs peptide amphiphiles
PU polyunsaturated
QM quantum mechanics
RMD reactive molecular dynamics
SAPs self-assembling peptides
SBPs supramolecular biopolymers
SEM scanning electron microscopy
SLPs surfactant-like peptides
SMD steered molecular dynamics
TE tissue engineering
UCG ultra-coarse grained
µFE micro-finite element

1 Introduction

The future of medical treatments relies on the investiga-
tion and understanding of the mechanisms underlying
the complexity of life [1–7]. In the last two decades, par-
ticular attention has been paid to tissue engineering
(TE) and regenerative medicine applications. TE, like
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regenerative medicine, is an interdisciplinary research
field aiming to heal injured or degenerated tissues to
regain their own physiological states [8–11]. Healthy tis-
sues are characterized by precise interactions among
cells and the extracellular environment, that are finely
regulated, among others, by the architecture of extracel-
lular matrix (ECM). ECM mainly consists of differently
glycosylated intertwined fibrillar proteins.

The advances in bioorganic chemistry enabled the
design of supramolecular biopolymers (SBPs), which can
spontaneously organize into fibrillar structures resembling
the main structural and mechanical features of the ECM
with no (or minimal) chemical reactions involved. As
shown in Figure 1, SBPs found several applications in TE
due to their promising biocompatibility and biodegrad-
ability. Among SBPs, collagen was used as injectable

hydrogel for central nervous system repair of traumatic
injuries, correction of peripheral nerve defects, remedia-
tion to cardiovascular defects, regeneration of renal tissue,
and a component for scaffolds designed for bone and skin
regeneration [12–22].

Another promising SBP is hyaluronic acid (HA) used
as a component for hydrogels in TE of nervous and car-
diovascular systems; when mixed with chitosan and
fibrin glue hydrogels, HA was adopted to reestablish
skin, bone, cardiovascular and connective tissue proper-
ties [23–26]. 3D bio-printed chitosan-based hydrogels,
thanks to their good biocompatibility and mechanical prop-
erties, were used for the TE of hearth and cardiovascular
system, skin, bone, and connective tissues [19,26–30]. Some
applications in TE also employed alginate, amenable of
ready processing properties by using physical and chemical

Figure 1: Schematic overview of SBPs used in TE. TE applications of SBPs according to the target tissue. Different SBPs are suitable for
neural TE applications, such as collagen, HA, alginate, chitosan, and SAPs. These SBPs are versatile enough to be used also for the
regenerative approaches of cardiovascular, renal, skin, muscle, and bone tissues. Lastly, SAPs and DNA origami, also known as pro-
grammable SBPs, were found to be suitable for other various TE applications.
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methods. Alginate and its derivative materials have largely
been used for the healing of bone, connective, muscle,
renal, cardiovascular, and nervous tissues [31–39].

Polylactic acid was also combined with other SBPs in
diverse TE applications [40–42]. Furthermore, other syn-
thetic SBPs were used for the development of electrospun
self-standing implants as reported in other review articles
[43–46]. Among the realm of synthetic animal-free SBPs,
programmable SBP hydrogels show intriguing properties,
such as reversible and tunable self-assembly, high bio-
compatibility, and good mechanical properties. Pro-
grammable SBPs can encompass almost all the SBPs’
molecular classes: however, for the sake of conciseness,
such classification, in this review, will be used for the
most advanced classes of SBP biomaterials, such as
DNA-based bioconjugates and self-assembling peptides
(SAPs) [47–49].

Both DNA-based bioconjugates and SAPs are widely
adopted in TE applications as hydrogel-forming mole-
cules. DNA–peptide hybrid hydrogels, with assembling
properties of informational molecules, feature an easy
control of the assembly via both pH shifts and the addi-
tion of oligonucleotides [50–52].

1.1 DNA–peptide based biomaterials

Nucleic acids represent one of the most used molecular
building blocks for the design of SBPs. Nucleic acid nano-
technology encompasses DNA origami, DNA hydrogel,
DNA nanorobot, molecular tweezers, and DNA walkers
[53,54] and found applications in drug delivery, biosen-
sing, and bioimaging [55,56]. Just recently, the progress
in click-chemistry allowed the design of DNA conjugates:
among them, DNA–peptide bioconjugates found several
applications because they combine the properties of both
informational molecules.

For example, DNA–peptide bioconjugates could find
application in systems biology. A DNA–peptide tethering
system was demonstrated to exert control on the adhe-
sion of the cells on surfaces. It was made of three com-
ponents: (1) an oligonucleotide sequence immobilized on a
solid surface; (2) a DNA moiety complementary to the
immobilized oligonucleotide; and (3) a competitive oligonu-
cleotide sequence capable of replacing the DNA–peptide
oligonucleotide, thus modulating the anchoring of the cells
on the surface. Indeed, the cells adhered and spread on the
surface by establishing receptor–ligand interactions with
the functional motif of the DNA–peptide conjugates when
bound to the immobilized oligonucleotide sequences
[57,58]. Thus, DNA–peptide bioconjugates, which exhibit

bioactive peptide sequences, such as RGD, IKVAV or
growth factors, were used for promoting the proliferation
of the neuronal or osteoclast cells [57].

Such tailorability encouraged the use of DNA–peptide
hybrids in TE. Indeed, the DNA–peptide hybrids have been
demonstrated to be suitable hydrogel-forming molecules.
DNA–peptide hydrogels showed intriguing properties, such
as the reversibility of the aggregation state. Insights from
coarse-grained molecular dynamics (CG-MD) and experi-
mental characterization unveiled that the DNA–peptide
hybrids spontaneously assemble into nanofibrils. The
growth of such fibril bundles has been manipulated by
adding “invaders” oligonucleotides, thus modulating the
resulting mechanical properties of the hydrogels [50]. DNA
bioconjugates were demonstrated to be suitable also for
nanomedicine applications, such as drug delivery or gene
therapy. DNA aptamers can be anisotropically functiona-
lized onto branched DNA nanostructures to control cell
adhesion and for the fine-tuning of 3D cell cultures [52].

1.2 SAPs

As shown in Figure 1, SAPs found large applications in TE
applications for skin regeneration, muscle repair, heart
failure, and trauma at the level of central nervous systems
[59–66]. For example, three main classes of SAPs were
used for neural TE applications, i.e., RADA-like SAPs, com-
plementary co- assembling peptides (CAPs), and peptide
amphiphiles (PAs) [2,67,68]. The serendipitous discovery
of RADA-like SAPs comes from studies of Shuguang Zhang
on Zuotin, a Z-DNA-binding protein [69]. Since then, dif-
ferent variants of RADA-like SAPs have been designed and
studied, such as Ac-(RADA)3-CONH2, Ac-(KLDL)3-CONH2,
and Ac-(RADADADA)2-CONH2 [70–72].

As demonstrated through CG-MD investigations, pep-
tides belonging to this class of SAPs self-assemble into
cross-ß structures. CG-MD simulations showed that interac-
tions among hydrophobic residues lead to peptide assembly
into nanofibers with charged amino acid side chains
exposed to the aqueous environment [2,68,73–75]. In addi-
tion to TE applications, RADA-like SAPs have been used as
hemostat solutions. CAPs are made of positive Ac-(LKLK)3-
CONH2 and negative Ac-(LDLD)3-CONH2modules, eventually
functionalized, i.e., Ac-KLPGWSG-(LDLD)3-CONH2 [60,68].
The electrostatic interactions between positively and nega-
tively charged modules drive the co-assembly, while the
strong self-repulsion of each module allows for mixing of
one module of CAPs and cells at neutral pH without gelation
taking place, thus preserving cell viability in a less harmful
environment than in classic SAPs. This finely tuned process
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leads to the formation of nanofibrillar networks. At the
mesoscale, both SAP and CAP nanofibers yield to 3D hydro-
gels that retain water and form porous scaffolds [68].

PAs’ molecular structures resemble those of phos-
pholipids in cell membranes, comprising hydrophobic
alkyl tails and hydrophilic heads. In functionalized PAs,
the peptide moiety is usually formed by three sections: (1)
a hydrophobic sequence capable of forming ß-sheet struc-
tures; (2) a hydrophilic, eventually charged, section; and
(3) a bioactive epitope, also named functional motif [5,50].
In PAs, the hydrophobic peptide sequence consists of non-
polar amino acid residues (G, A, V, L, I, P, F), while the
hydrophilic head consists of positively charged (H, K, R) or
negatively charged (D, E) residues. PA’s self-assembly is
ruled by the hydrophobic interactions of alkyl tails, hydrogen
bond formation, and electrostatic repulsion among charged
amino acids [50,65]. Other SAPs can assemble into tubular
structures because of π–π interactions among aromatic side
chains of amino acid residues, such as diphenylalanine
SAPs. Instead, cyclic peptides self-assemble into hollow ß-
sheet-rich cylinders by stacking on top of each other through
stable hydrogen bond formation [76–78].

Functional motifs or other bioactive moieties can be
incorporated into the sequence of SAPs to provide them
with biomimetic properties or to alter their self-organiza-
tion. Functional motifs are short peptides linked to N-
and C-terminus of the self-assembling backbone and
can be spaced with flexible linkers, usually a few glycine,
to ensure flexibility and proper exposure to biological
targets. Notably, functional motifs may alter the self-
assembling propensity of the original SAP backbone [79]:
therefore, a proper in silico design should be always per-
formed to optimize functional motif, self-assembling back-
bone, and spacer sequences.

According to the evidence from proteomics and gly-
comics of ECM, glycosylation is a fundamental post-
translation modification, which affects protein stability,
folding, and cellular localization. Glycoproteins are also
involved in cellular communication, extracellular vesi-
cles’ recognition, and modulation of immune response
[80]. The modification of SAPs with carbohydrates repre-
sents an intriguing strategy to facilitate the control over
supramolecular arrangements and confer additional bio-
mimetic features [81–84]. Chemical cross-linking repre-
sents another promising strategy for improving the control
over supramolecular architectures of SBPs’ nanostructures
and in particular SAP hydrogels. Such strategy was
reported for the development of self-standing bioproth-
esis for neural TE [85]. Furthermore, physical and che-
mical cross-linking is a method suitable to provide a
safe release of therapeutic compounds [86–88].

1.3 The role of computational modeling in
supramolecular bio-polymers design

The advent of SBPs fostered the engineering of molecular
structures with programmable shapes and properties. Indeed,
molecular self-assembly and subsequent hierarchical organi-
zation arise from the interplay of non-covalent interactions
(i.e., hydrogen bonding, hydrophobic forces, Van der Waals
forces, π–π interactions, and electrostatic interactions) among
molecular subunits. Flexible approaches have been devel-
oped to design a variety of programmable SBPs, such as
DNA origami, DNA brick, DNA wireframe, SAPs, CAPs, PAs,
DNA–peptide hybrid, and glycosylated SAPs [89–91]. A large
variety of these SBPs have been realized by combining design
software, dedicated computational workflows, and experi-
mental validation [10,59,68,91–93].

As a result, efficient computational methods for accel-
erating the design process of SBPs became a priority.
Modeling and simulation approaches were introduced
but balancing computational demands and prediction
accuracy was the winning strategy. For example, quantum
mechanic (QM) simulations provide results at atomic detail,
accurately describing covalent and non-covalent interac-
tions, but are prohibitively expensive in terms of computa-
tional cost [94,95].

Molecular dynamic (MD) simulations too, due to their
high level of cost/accuracy, can feasibly elucidate non-
covalent interactions and structural features of limited-
size systems only [78,96–98].

CG-MD simulations played a pivotal role to further
reduce the computational cost associated with the simu-
lations of large SBP systems [96,99–104]. For example,
several coarse-grained (CG) models were developed
for reproducing the fundamental properties of different
SBPs (see Table 1): among them, OxDNA and MARTINI
force fields deserve a short digression. OxDNA captures
nucleic acid structural information more accurately than
MARTINI [105,106]: indeed just recently, MARTINI appli-
cations have been extended to the simulations of carbohy-
drates and nucleic acids [107–112]. On the other hand,
main applications of MARTINI are traditionally located in
the realm of protein and lipid system simulations. OxDNA
represents each nucleotide as a single bead that interacts
with other ones through potentials implicitly reproducing
the effect of the ionic solution [106]. Instead, MARTINI
condenses the atomic models of nucleotides and solvents
to four grains or heavy atoms (N, C, O, S) [107–112].

Although these models have the main advantages of
describing detailed characteristics, such as the hybridiza-
tion process, thermal dissociation, and partition coeffi-
cient, they implement iterative numerical methods like the
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classical MDs, simulating large supramolecular structures,
which are characterized bywidemotion ranges, and requiring
a time scale of days/weeks for their production. Combining
supramolecular and multi-resolution models was reported
as the most promising approach to predict structural
features while achieving computational efficiency, i.e.,
lowering production times to a few hours. For example,
DNA nanostructures were approximated as continuous
medium or beam-like structures, achieving higher compu-
tational efficiency [114]. Nonetheless, suchmodels still rely
on the validation through experimental characterization
because electrostatic interactions and sequence-depen-
dent mechanical properties are usually ignored [115]. To
overcome this problem, Lee and coworkers developed
an innovative multiscale analysis framework for fast
analysis of engineered DNA assemblies at quasi-atomic
resolution [115]. Their framework sequentially integrates the
atomistic properties of DNA with a continuum description
[116]. All-atomMDs (AA-MDs) simulate the structural motifs
constituting the structured DNA and determine the sequence-
dependent geometric/mechanical properties of DNA assemblies.
Subsequently, these properties and electrostatic interactions

between the DNA helices are embedded into a finite element
(FE) structural model. As shown in Figure 2a and b, this
method predicted the angle and curvature of different DNA
origami nanostructures, providing results in good agreement
with experimental characterization [116].

Differently from DNA assemblies, a complete compu-
tational analysis workflow for SAP hydrogels is still missing.
CGMARTINImodels found large applications in determining
structural and mechanical features of peptide assemblies
and eventually validated through experimental data
[108,113,117–120]. For example, MARTINI CG-MD simu-
lations, combined with customized software analysis
tools, have been used to high-light structural features
of high-performance SAP hydrogels composed of a mix-
ture of branched and linear SAPs (see Figure 2c) [91]. In
another work, atomistic steered MD (SMD) and GoMAR-
TINI CG-SMD were used to derive the elastic and shear
moduli of SAP fibrils [120,121]. The comparison between
the abovementioned SMD approaches suggested that
GoMARTINI CG-SMD simulations provide comparable
results to atomistic SMD simulations.

Although these results highlight a clear connection
between atomistic features of SAPs and their nanomecha-
nical properties, a demonstration of how they reverberate
at the macroscale on SAPs’ mechanical properties is still
missing.

Other research groups used a multiscale model to elu-
cidate SAPs’ hierarchical organization [122–124]. Indeed,
Liu et al. employed a bottom-up multiscale theoretical
model to analyze co-assembling complementary di-pep-
tides systems. Their model combined density functional
theory (DFT), AA-MD, CG-MD, and dissipative particle
dynamic (DPD) simulations. The morphologies obtained
from DPD simulations were in good agreement with scan-
ning electron microscopy (SEM) and transmission electron
microscopy measurements. Their approach represents a
promising strategy to study the mechanism of spontaneous
hierarchical self-assembly, fostering a better rational design
of peptide nanostructures [124].

In a recent work, Zhao and coworkers introduced
another intriguing strategy for elucidating structural fea-
tures of peptide nanostructures [125]: MARTINI CG simu-
lations unveiled the early stages of self-assembling while
AA-MD and mixed resolution models simulated the assembly
and reorganization of peptide fibrils [125]. Nonetheless, it
must be kept in mind the limited reliability of MARTINI CG-
MD simulations in predicting the hydrogen bond dynamics
that play a pivotal role in the first stage of peptide self-
assembly [120,121,126].

Table 1: Biomolecules vs force fields

Biomolecules Atomistic (AA) CG

Nucleic acids AMBER AWSEM
AMOEBA MARTINI
CHARMM OPEP
Drude OxDNA
Gromos TIS
OPLS 3SPN

Protein/peptides AMBER AWSEM
AMOEBA Bereau and Deresno
CHARMM CABS
GROMOS MARTINI
OPLS OPEP

PaLaCe
PRIMO
Rosetta
Scorpion
UNRES

Lipids AMBER M3B
CHARMM MARTINI
GLYCAM
GROMOS
OPLS

Carbohydrates AMBER MARTINI
CHARMM
GROMOS
OPLS
SLIPIDS
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Figure 2: Computational analysis workflow for SBP development. (a) Analysis of bundle DNA nanostructures through AA-MD simulations.
Angle control by hinge stiffness or adjuster module length. The designed DNA origami include angles ranging from 15 to 150 and controlled
by the stiffness of the hinge module and of the adjuster module length. (b) Analysis of bundles of DNA nanostructures through AA-MD
simulation. Curvature control of DNA origami by BP insertion or deletion. For the quarter (Q) and the half (H) circle designs, the radius of
curvature and the angle of curvature are quantified by fit to positions in the predicted structures. Figures (a) and (b) have been adapted from
Lee et al. [116], with the permission of ACS publications. (c) Workflow (from left to right columns) for the development of hydrogels from
branched SAPs mixed with linear (LDLK)3. Branched SAPs have been developed starting from (LDLK)3 backbone moieties, connected with
one or multiple “lysine knots.” Branched SAPs were created by increasing the number of (LDLK)3-branches and/or by adding the BMHP1
neuro-regenerative functional motif as a single branch. CG-MD simulations unveiled the conformations of branched SAPs within (LDLK)3
self-assembled nanostructures. Then, SAPs were classified according to their contribution to the stability of fibril nanostructures by
calculating their degree of integration. Lastly (right column), SAP hydrogels were synthesized and characterized via AFM imaging.
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1.4 The multiscale paradigm in material
science and TE

SBPs’ high versatility makes them suited for different
purposes. This is mainly due the tailorability of their
properties capable of matching various requirements in
terms of (1) molecular architectures and nanostructuring
propensities; (2) mesoscale topological arrangements;
and (3) mechanical properties. Such features can be
investigated in silico and potentially validated via dedi-
cated experimental characterization tests.

The multiscale approach (see Figure 3) has been
widely used for elucidating the hierarchical organization
and mechanical properties of animal-derived materials,
such as collagen or spider silk [118,125,126]. This approach
relies on the combination ofmultidisciplinary theories, mul-
tiscale simulation methods, and multiscale experiments.
The molecular interactions across many hierarchical scales
heavily affect the mechanical behavior of biological mate-
rials. At the microscale and nanoscale, SBPs feature mole-
cular unfolding or sliding when subjected to mechanical

stresses, while at larger length scales, where the interac-
tions with biological structures become more evident,
more complex mechanisms contribute to SBPs’ biomecha-
nics. As an example, the multiscale analysis framework of
SAP hydrogels is depicted in Figure 3. At the nanoscale,
recent progress in solid-state nuclear magnetic resonance
(ssNMR) technique allows retrieving information aboutmole-
cular movements at natural isotope abundance, such as MD
restraints needed to run atomistic MD simulations [104,121].

The structures of SAP fibril seeds obtained from
restrained MD simulations can be used to run MARTINI
CG-MD simulations at the mesoscale level [105,121], such
as SMD simulations to extract mechanical properties.
Such approach allows to derive the Young and Bending
moduli mechanical properties of fibril seeds (nucleation
seeds) [121,127]. CG-MD simulation has been used for the
characterization of SAPs at meso- and microscale levels.

Indeed, the supramolecular arrangement of SAP fibrils
can be predicted by combining atomistic and validated
and directly compared with nano- and microscale charac-
terization techniques, such as atomic forcemicroscope (AFM)

Figure 3: SBP multiscale modeling. A full understanding of the hierarchical organization properties of biomaterials requires an ensemble of
computational and experimental techniques. Computational approaches, supported and validated by experimental evidence, can be used
to transverse through a wide range of length and time scales. As an example, here is described the multiscale analysis framework for SAP
hydrogels. (a) ssNMR characterization can be used to derive the MD restraints for running atomistic MD simulations. The results from MD
simulations can be used for validating atomistic or CG model of SAP fibril and fibril seeds. (b) SMD simulations of atomistic and CG models
are useful to derive mechanical properties (e.g., Young and Bending moduli) of fibril and fibril seeds. (c) Then, multiscale MDs can be used
to predict the supramolecular arrangement of SAP fibrils at the mesoscale. Such results can be validated and directly compared with
mesoscale experimental analysis, such as AFM and SEM. (d) Lastly, these data integrated in dedicated workflows, also encompassing FEM
analysis, could be used for corroborating macroscale analyses, such as rheology measurements.

Modeling of SBPs: leading in-silico revolution of TE and nanomedicine  2971



and SEM [104]. On the other hand, DPD simulations and
FE analyses are likely the most promising candidates
enabling quantitative validations of macroscale simula-
tions via mechanical tests [128].

Despite significant advances in biomaterial infor-
matics, thanks to the application of machine learning
and artificial intelligence (AI) algorithms, a multiscale
description of SBPs is still missing [129,130]. Just recently,
voxel-based FE and micro-finite element (μFE) methods
were employed for the simulation of non-linear deforma-
tions of bone tissues [131,132] that are crucial phenomena
to be considered for the prediction of biocompatibility and
stability of implanted prosthetic devices [132].

To this purpose, non-linear FE analysis will likely play
a pivotal role in the design and development of innovative
SBPs for bone TE applications. In a recent critical review of
Roy and Chatterjee, the deformations of bacteria nano-
structures are described as key players for the biocompat-
ibility of mechanobactericidal biomaterials [133].

It is author’s opinion that the combination of CG-MD
simulations and FE analysis of cell membrane structures
and biomaterials will be a promising strategy to tackle
the challenge of predicting biomaterials’ biocompatibility
and pro-regenerative potential.

1.5 Summary of the review

The remaining chapters of this review are structured as
follows and dedicated to themainmethods shown in Table 2.
In Sections 2.1.1 and 2.1.2, the molecular mechanics’ (MM)
methods for simulating biopolymer’s building blocks are
introduced. In Section 2.1.3, the authors point out the poten-
tial applications of such methods in drug discovery. In Sec-
tion 3, the attention moves toward density functional theory
for predicting SBPs’ electronic structures. Section 4 intro-
duces the classification of different CG (Section 4.1) strategies
and their potential impact in multiscale modeling (Section
4.2). Section 5 addresses the duality of the problem of
thermodynamic-mechanical stability of SBPs. Section 5.1
introduces the role of SMD for calculating the mechanical
properties of SBPs. Section 5.2 describes MD for studying
the thermodynamic stability of SBPs. In Section 6, the authors
showcase the potential beneficial impact of combining
the different modeling methods. Section 6.1 highlights
the potential applications of parallel and serial multiscale
simulations for studying the properties of SBPs. Section 6.2
addresses the ultimate challenge of reactive MD simula-
tions for predicting cross-linking reactions products. Sec-
tion 6.3 points out the lack of a connection between the

microscale andmacroscale simulationmethods. Lastly, Sec-
tion 6.4 reports a few examples of multiscale MD used for
the simulation of organelles and cells.

2 MM for biopolymers
development

2.1 Modeling self-assembling biopolymers
building blocks: proteins,
carbohydrates, lipids, and nucleic acids

2.1.1 Atomistic MD simulations of polymeric building
blocks

MD approaches are largely used for the investigation of
supramolecular systems, due to the high accuracy in the
prediction of exact conformation of molecular building
blocks. Indeed, AA-MD allow to monitor H-bonding
as well as aromatic and charge–charge interactions by
representing them using Coulomb and Lennard-Jones
potential [134–136].

Historically, proteins were the first simulated biomo-
lecular class. The route for the simulations of proteins
lays its foundation in 1977 with the study of bovine pan-
creatic trypsin inhibitor [137,138]. Such work demon-
strated that AA-MD simulations are suitable tools for
the description and understanding of the protein folding
mechanisms. Nowadays, AA-MD simulations allow the
investigation of complex phenomena inherent to protein
and peptide folding, for example, allosteric regulation of
biochemical reactions [139,140]. AA-MD applications also
encompass the study of protein/DNA interactions shed-
ding new light on genomic regulation mechanisms [141].

As shown in Table 1, different types of force fields
have been developed for the simulation of proteins. The
AMBER force field family, commonly associated with
the AMBER software package, was extensively used in the
study of SAPs and intrinsically disordered proteins (IDPs)
[142]. Indeed, amber AA-MD simulations allowed to eluci-
date the mechanism underlying the self-assembly of ß-
sheet forming SAPs, which mimic ß-barrel proteins [143].
Besides, thanks to amber AA-MD simulations, a system for
the controlled drug release of glucagon-like peptides was
developed, setting up a milestone in the treatment of type 2
diabetes [144]. Amber AA-MD simulationswere also employed
for the investigation of halogenated amyloidogenic peptides to
expand the applications of halogen bond chemistry [145–147].
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Further applications of amber AA-MD simulations,
relying on QM and machine learning approaches, consisted
in the molecular design and elucidation of π-conjugated
oligopeptides structural properties [148,149]. Subsequently,
AMBER was upgraded with the introduction of novel para-
meters for the simulation of carbohydrates, nucleic acid,
and lipids. In particular, the new AMBER parameters for
carbohydrates laid the foundation of GLYCAM [136], opening
new opportunities for the investigation of protein–carbohy-
drate interactions [150].

AMBER was exploited for the simulation of glycosylated
protein systems in various fields, such as cancer treatment as
well as in computational virology [151]. In other works,
AMBER simulations were used for nucleic acid structural
characterization: for example, they allowed to elucidate struc-
tural transitions amongA-DNA, B-DNA, and Z-DNA [152–154].

AMBER parameters have also been optimized for the
simulation of protein-lipids systems [155–157] and even
for larger lipid membrane systems [156,157]: hence, AMBER
simulations were used to elucidate the molecular mechan-
isms of membrane proteins, a prominent target of many
pharmacological therapies.

On the other hand, OPLS force field, initially devel-
oped for the simulations of small organic molecules and
peptides, features a strong influence from AMBER. Indeed,
some parameters of OPLS force field have been retrieved
from AMBER simulations and were used to reproduce the
gas-phase structures and thermodynamic properties of
organic liquids [158,159], as well as for the simulations
of DNA base pairs [160]. Nonetheless, published works
comparing AMBER, CHARMM, OPLS, and GROMOS MD
simulations unveiled that OPLS underestimates the H-bond

strengths between the complementary bases of B-DNA and
poorly reproduces properties heavily dependent on tor-
sional energetics [161,162]. After additional optimizations
of OPLS-AA parameters, consisting of better fitted QM
torsional energetics of dipeptides [168], OPLS has been
successfully used for AA-MD simulations of SAPs, even
crosslinked, in explicit solvent [158,159]. Recently, the
parameters for MD simulations of RNA molecules have
been introduced in OPLS: AA-MD simulations of dinucleo-
tides/tetranucleotides revealed good accuracy in reprodu-
cing 3J couplings found in ssNMR studies without the
onset of several unphysical states observed with CHARMM
and AMBER simulations. OPLS AA-MD correctly quantified
the interactions among hydrogen bonds belonging to dif-
ferent atomic groups [158,163,164].

CHARMM is a force field suitable for supramolecular
biochemistry studies: it has been largely used for simu-
lating systems comprising SAPs, lipids, and nucleic acids.
SAP fibrils and the influence of functional motif on SAPs’
self-assembling propensity was investigated with CHARMM
MD simulations [165,166]. Thanks to the last CHARMM
update, it became possible to simulate small drug-like
molecules and other organic moieties (e.g., Fmoc moiety)
currently unrepresented in AA-MD simulations [167].

These advances enabled the applications of the
CHARMM force field for comprehensive characteriza-
tions of diverse supramolecular systems [165,167]. GROMOS
denotes another family of force fields initially developed for
performing MD simulations through its bundled software
package. The first version of GROMOS, released in 1987,
was developed as a united-atom force field to cope with
the limited computational resources. In this way, the heavy

Table 2: Main MD simulation methods described in this review

Methods Description Advantages Limitations

AA-MD MD approach in which each atom is
explicitly considered

Temporal and spatial resolution of
position of all atoms

High computational cost required for the
simulation of systems of biological
interest

CG-MD MD approach in which each interaction
sites correspond to multiple atoms

Simulation of larger molecular
systems compared to those
simulated in AA-MD approaches

Limited monitoring of non-covalent
interactions interplay, such as H-bond
formation and breakage

DFT Quantum mechanical method used to
investigate the electronic structure of
atoms, molecules and condensed phase

High accuracy in prediction of
electronic configuration of
molecular systems

Many approximations and limits for
strongly correlated systems. Low
computational efficiency for liquids

DPD Stochastic simulation method for
simulating the properties of complex
fluids. Applied in rheology and fluid
dynamics

Simulation of the behavior of
molecular systems on longer time
and length scales

Simulation of mesoscale systems, not
appliable to small size systems

RMD MD simulations of the formation of
covalent bonds, enabling the description
of chemical reactions

Simulation of molecular systems
involving formation or breakage of
covalent bonds

High computational cost
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atoms (carbon) and the attached hydrogen were repre-
sented as single-interaction sites.

Since then, GROMOS force field has been repeatedly
improved and refined. In 2004, the GROMOS force field
has been reparametrized with the 53A5 and 53A6 para-
meter sets and optimized by fitting the solvation-free
energies of small polar molecules [168–170].

In the validation of the 53A6 parameter set, the simu-
lated structures of protein (egg-white lysozyme), peptides
(ß3-dodecapeptide), and DNA dodecamer were in good
agreement with ssNMR data [171]. Still, helical folding of
different proteins did not comply with experimental char-
acterization. The new 54A7 parameter set was introduced
for protein structures and further extended to peptides
[169,172]. Lastly, the introduction of the 53A6GLY C para-
meter set overcame the main limitations of the 53A6 and
54A7 and laid the foundation of realistic simulations of
carbohydrates and nucleic acids [168]. Additional para-
meters were introduced for the simulations of halogen
bonds and furanose-based carbohydrates [147,173] to
allow the investigation of glycosylated SBPs and haloge-
nated SBPs, such as SAPs [145,146].

Large efforts were devoted to improving atomistic
force fields based on fixed-charged models, such as
AMBER, CHARMM, and GROMOS; however, QM calcula-
tions have demonstrated that fixed-charged models are
not appropriate to represent ionic interactions, hydrogen
bonding, and base stacking [162]. To overcome these
drawbacks, polarizable force field models, such as CHARMM
Drude and AMOEBA (atomic multiple optimized energetics
for biomolecular applications), have been developed. Both
CHARMM Drude and AMOEBA exhibit significant advances
over fixed-chargedmodels in the simulations of nucleic acid,
protein, and organic molecules [174–176]. The parameters of
AMOEBA force field have been recently validated for nucleic
acid simulation by investigating the stability of the native
structures and comparing their properties with experimental
results (3J coupling, nuclear Overhauser effect) [174,175].

3 CG-MD simulations of
biopolymers building blocks

CG force field has proven to be useful for the investigation
of systems of biological relevance, such as soft matter sys-
tems. The main advantage of CG modeling relies on the
reduction of computational cost associated with the MD
simulations iterative workflow. CG force fields map diverse
atom groups and monomers (nucleotides/amino acids) as
single interaction sites. However, the main drawback of CG

force fields is represented by the limited compatibility with
different biomolecular classes: most CG models were
developed to reproduce specific molecular features, such
as partition coefficient or enthalpy of solvation.

In details, the parameter sets of CG force fields can be
derived to reproduce microscopic properties from fine-
grained simulations (bottom-up approach) or macroscopic
thermodynamic quantities (top-down approach). The vali-
dation of a new CG model requires the assessment of the
ability of the model to predict of the system properties at
the thermodynamic state point used during its develop-
ment (representability) and at different state points
(transferability).

A multitude of CG force fields has been developed to
simulate different biomolecular systems (see Table 1).
Each CG force field relies on different mapping strategies
and works accordingly to its limited assumptions: thus,
each CG force field is suitable for limited applications.

The AWSEM (associative memory, water mediated,
structure, and energy model) is a CG force field suitable
for the investigation of protein folding mechanisms [190].
Indeed, the AWSEM parameter sets were derived through
bioinformatics approaches, which consider the many-
body effects modulated by the primary sequences of pro-
teins. Besides, the AWSEM parameter set encompasses
physically derived terms, like hydrogen bonds and elec-
trostatic interactions [177]. AWSEM force field has been
successfully adopted to demonstrate that the mechanisms
underlying the protein dimerization process is driven by
heterogeneity and flexibility of monomers [178]. AWSEM
CG-MD simulations were also employed for elucidating
genetic switches found in both transcription factors and
DNA: de facto obsoleting the classic interpretation of the
“binding and release process” involved in genetic regula-
tion and introducing the so-called “molecular stripping”
concept [177]. Furthermore, the server tool, dubbed
AWSEM-Suite, was adopted for predicting monomer struc-
tures when a suitable structure template is not available
[177]. It was also possible to simulate protein–DNA sys-
tems, within a reasonable amount of clock time, by com-
bining AWSEM and 3SPN, a supramolecular force field for
DNA molecules [143].

Similarly, to the AWSEM model, OPEP (optimized
potential for efficient protein structure prediction) was
developed through bioinformatics approaches and vali-
dated through AMBER MD simulations [179,180]. In the
OPEP model, each amino acid is represented by six
beads: five for the backbone and one for the sidechain
[179,180]: OPEP model was used to study protein folding
and amyloid fibrils formation and to model protein, DNA,
and RNA complexes [179].
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The CG Rosetta model is one of the leading approaches
used for ab initio (from first principles, i.e., the pursue of
Schrodinger equations solution from the positions of nuclei
and electronic densities) structure predictions.

The Rosetta model represents each protein structure
with the distribution of the center of masses of its own
backbone. Recently, the Rosetta model was upgraded to
enable protein–protein docking, protein–ligand docking,
and modeling of protein–DNA interactions [131,132].

The elucidation of the mechanisms underlying pro-
tein–protein interactions represents the last frontier in
systems biology. To this purpose, Bereau and Deresno
developed a model where each amino acid is mapped
using three-to-four beads: (1) one bead for the amide
group (N), (2) another one for the central carbon (Cα),
(3) a third one for the carbonyl group (C′), and (4) even-
tually, a side chain bead (Cß) [181,182]. Analogously to
AWSEM model, the Bereau and Deresno CG-MD simula-
tions demonstrated that peptide folding is competitive
with peptide aggregation [182].

Similarly, to the Bereau and Deresno model, in the
CABS (C-Alpha, C-Beta, Sidechain) model, each amino
acid is mapped using three-to-four beads [183,184]. CABS
CG-MD simulations were used for the modeling of loop for-
mation [185,186], protein folding [185,187], and the binding
of IDPs [184]. In particular, the multiscale framework,
obtained from the combination of AMBER and CABS MD
simulations, has been used for elucidating the folding
pathway of the B1-binding domain of G protein [187].

In the Palace (Pasi–Levery–Ceres) CG model, amino
acids are mapped using three-to-five beads [128]. The
Palace CG model found applications in analyses of the
mechanical properties and conformational flexibility of
different proteins, giving better results than traditional
elastic network models [109,128].

The PRIMO model makes use of more accurate pro-
tein representations than those of previously mentioned
force fields: each amino acid is represented with five-to-
seven interaction sites. Nonetheless, due to its higher
computational costs, the PRIMOmodel was only employed
for the prediction of small protein structures [129,130].
Lastly, SCORPION (solvated CG protein interactions) and
UNRES (united residue)models represent each amino acid
with three beads: one for the backbone and two for the
sidechains: they have been used for the investigation of
protein–protein interactions, considering their solvation
conditions [133,134].

Nucleic acid structuring attracted great interest for
a better understanding the genomic regulations, but
nowadays CG-MD simulations are also employed for eluci-
dating structural and mechanical properties of nucleic

acid-based hydrogels. For example, OxDNA force field
has been widely used for their mechanical characteriza-
tion. The original OxDNA parameters sets were derived
through a “bottom-up” approach: indeed, each DNA
base pair was represented by two beads of the same type
with potentials derived fromAA-MD simulations [106,107].
In 2015, an improved version of the OxDNA force field,
dubbed OxDNA2 [106,107,139], showed a clear signature
of twist-bend coupling, still absent in OxDNA, in good
agreement with experimental characterization [107,139].

Recently, the OxDNA2 force field was used for the simu-
lation of DNA nanodevices, such as DNA origami [116].
OxRNA model was also adopted to elucidate the complex
phenomenon involved in toehold RNA displacement [188]
and enabled the development of autonomous DNA motors
[189]. The TIS (three interaction sites) model, where nucleo-
tides are mapped by TIS (a phosphate, sugar, and base), has
also been used to investigate the mechanical unfolding
of single-stranded RNA hairpins and ribozyme folding
[141,190], giving results in agreement with empirical data.

While all CG models introduced so far have been
designed to simulate a limited number of biomolecules,
the MARTINI force field represents the most flexible and
used CG model nowadays (see Table 1).

Indeed, MARTINI features good properties of represent-
ability and transferability [100,108], enabling the simulations
of several biomolecular classes, such as DNA, proteins,
lipids, and carbohydrates [110,112,113,191]. MARTINI MD
simulations demonstrated the self-assembly pathways and
structuring propensities of several SAPs at both nano- and
mesoscale. In the last years, MARTINI CG-MD simulations
were also used for the elucidation of emerging fibrillar
networks of bioconjugated SAPs currently used in TE
applications [68,91]. Lastly, being carbohydrates crucially
involved in protein folding, stability, cellular localization,
and modulation of immune reactions, the M3B CG model
was specifically designed for the simulation of malto-oli-
gosaccharides and their aqueous mixtures [192]. Its map-
ping strategy was used for the extension of MARTINI to the
modeling of carbohydrates and glycans [112,193].

3.1 Modeling of cellular membranes and
their interactions with biomaterials/
pharmaceutical compounds

Cellular membranes are complex assemblies of lipids, pro-
teins that separate intracellular from the extracellular envir-
onment and are also involved in signal transduction, cellular
homeostasis, and recognition. Improved experimental
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techniques (e.g., nuclear magnetic resonance, single-
particle tracking, mass spectroscopy) give more and
more insights into the organization of the cell mem-
branes [232,233]. Also, synthetic biology methods, making
use of synthetic membrane-like structures, have been used
for the investigation of cell membranes [194–197]. How-
ever, detailed membranes organization is still far from
being fully described. To this purpose, MD simulation
techniques became precious tools for describing the inter-
actions among all the components of the membrane sys-
tems. Thanks to the steadfast improvements in force field
parametrization and computer performances, membrane
systems became a target at hand of MD simulations. While
different force fields were developed to allow for reliable
simulations of lipids, just a limited number was successfully
adopted for the simulation of lipid membrane systems: in
case of atomistic force fields, CHARMM played a major role
(see Table 1).

CHARMM represents the most elaborated force field
for lipids, encompassing the main families of lipids found
in higher organisms and bacteria [155–157]. The repository
of lipid parameters is CHARMM-GUI, an online web server
suitable for building realistic cell membranes. Slipids is
another promising force field parametrized to be consistent
with AMBER for simulating lipidic systems [166,198–200].
Despite these efforts, atomistic force fields allow the inves-
tigation of limited size systems and show limited reliability in
the simulation of complex membranes featuring embedded
proteins. To overcome these limitations, several CG models
have been developed and tested.

As shown in Figure 4a, the MARTINI CG-MD simula-
tions were reported to be suitable for the simulations of
the cell membranes. The proposed model consists of
63 different lipid species asymmetrically distributed across
two bilayers. MARTINI CG-MD simulations elucidated the
“lipids domain” dynamics [201] and unveiled an enrichment

Figure 4: Realistic cellular membrane modeling. (a)Modeling of an idealized plasma membrane. The model of plasma membrane comprises
63 different lipid types, including cholesterol, phosphatidylcholines (PC), sphingomyelins (SM), phosphatidylethanolamines (PE), gang-
liosides (GM), phosphatidylserines (PS), and phosphatidylinositol phosphates (PIPs). The overall headgroups composition and number of
unsaturated bonds in the lipid tails are shown for the outer and inner leaflet (pie charts), together with snapshots of both leaflets (full
leaflets with a zoom-in underneath) after 80 μs of simulation. The lipid headgroups and tails are depicted with the same colors in the pie
charts. This figure has been adapted from Figure 2 of Ingólfsson et al. [203], under the license number 5380391174086 provided by Elsevier.
(b) Cross-sectional view of local lipid environment around AQP1. The simulation setup consists of a plasma membrane with four embedded
membrane proteins. The two-dimensional lateral density maps show local fluctuations around AQP1 in upper leaflet (top row) and lower
leaflet (bottom row) of PU lipids, FS lipids and cholesterol (CHOL). Major variations are pointed by arrows: I, nonspecific binding; II,
nonuniform distribution; III, leaflet asymmetry; IV, specific binding; V, membrane fluctuations. This figure has been adapted from Figures 1a
and b and 2a of Corradi et al. [201]. (c) Unbiased MD simulations can be employed for the investigation of interactions among amphiphiles
anticancer drugs and phospholipid membranes, resembling the chemical physical features of cellular membrane. This figure has been
adapted from Figure 1c of Tang et al. [207].
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of the cholesterol in the outer layer contemporaneous with
its depletion in the inner one [202]. These simulations
unveiled a complex interplay among fully saturated (FS)
and polyunsaturated (PU) lipids that was detected in simu-
lations of neural plasma membrane as well [201,203]: again,
the concentration of FS lipids increased in the outer leaflet
and decreased in the inner leaflet while PU lipids showed
an opposite tendency [202,203]. These CG-MD simulations
enabled the investigation of complex cell membranes
embedding different protein structures [201,203].

Corradi and coworkers used MARTINI CG-MD simu-
lations for the characterization of the lipid environment
of 10 different membrane proteins [201]. Figure 4b shows
the simulation setup consisting of a plasma membrane
embedding four aquaporins (AQP1): a two-dimensional
lateral density analysis revealed domain fluctuations of
the lipids surrounding the proteins [201]. The FS enrich-
ment was observed in the outer leaflet near the AQP1,
while PU concentration increased in the inner leaflet
close to AQP1. Besides, a series of specific interactions
has been detected in both leaflets, between CHOL and
AQP1 [201]. These tendencies have been also observed
for other proteins, such as prostaglandin H2 synthase
(COX1), dopamine transporter (DAT), epidermal growth
factor receptor (EGFR), AMPA-sensitive glutamate receptor
(GluA2), glucose transporter (GLUT1), voltage-dependent
Shaker potassium channel 1.2 (Kv1.2), sodium, potassium
pump (Na, K-ATPase), δ-opioid receptor (δ-OPR), and P-gly-
coprotein (P-gp) [201]. This inspiring work gave new insights
on lipid-mediated interactions by showing how different sets
of lipids and bilayers can mediate cellular recognition via
specific interactions with proteins [201,203].

Intriguingly, non-uniform lipid mixing and lipid seg-
regation can also modulate membrane properties and
heavily influence membrane permeability, cell aggrega-
tion, and trafficking [204–206]. As shown in Figure 3c, in
MARTINI CG-MD simulations, we detected potential inter-
actions among self-assembling amphiphilic drugs and
phospholipid membranes. Results suggest that the shape
of drug delivery vehicles can have a tremendous impact
over bioavailability of the carried drugs, then affecting the
overall therapeutical treatment efficacy [207].

4 QM approaches for biopolymers:
density functional theory

Non-covalent interactions, such as hydrogen bonding,
metal coordination, hydrophobic and Van der Waals
forces, π–π, electrostatic interactions, and rule molecular

self-assembly. Therefore, an accurate modeling of such
interactions is crucial for the development of reliable
tools predicting the stability of supramolecular complexes.
To this purpose, QM approaches were largely adopted for
the accurate descriptions of both covalent than non-cova-
lent interactions in molecular systems [94,96,208,209].

Among ab initio QM methods, DFT, making use of
electronic functional of electronic densities instead of
the exact form of the electronic distributions, attracted
increasing attention in supramolecular biomaterials mod-
eling. Indeed, DFT, used for the prediction of the electronic
structure of DNA base pairs and amino acids [210], reduces
the computational costs related to the calculation of
empirical potentials. Being difficult to determine the
empirical potentials of the various energy contributions
of H-bonding and/or their electronic distributions, DFT
is a good compromise, balancing computational costs
and accuracy, to investigate small atom clusters resem-
bling the main features of biopolymers [210].

Further applications of DFT consisted in the elucida-
tion of the adsorption mechanism of biomolecules on dif-
ferent material surfaces, such as graphene, metal oxides,
or hydroxyapatite [96,208,209,211,212].

DFT molecular simulations demonstrated that inter-
actions among amino acids and graphene nanostructures
are mainly driven by Van der Waals interactions [208],
while their aggregation state on graphene nanostructures
is mainly stabilized by hydrogen bonding [96,208]. In
addition, DFT simulations demonstrated that the electric
properties of graphene are affected by the interactions
with amino acids. These results enabled the development
of different nanotechnological applications, exploiting
the peculiar properties of graphene in biosensors, storage
devices, nanoporous membranes, and biomolecule delivery
devices [208,213].

DFT approaches have also been used for the investi-
gation of bindingmechanisms of several ligands in ß-amy-
loid structures involved in Alzheimer’s disease [95,214].
DFT simulations demonstrated that interactions among
metal ions and amyloid-like peptides are fluxional, with
most of the cationic groups mainly interacting with metal
ions. This prodromic work laid the foundation for MD
simulation analyses of conformational flexibility of Aß
peptides [95].

Interestingly, the similarity of SAPs’ supra-molecular
structures resembling the organization of amyloid fibrils
encouraged the application of DFT approaches to the pre-
diction of structural and vibrational properties of SAP aggre-
gates [78,215]. DFT methods allowed to predict IR spectra of
SAPs and demonstrated that such spectra can be altered by
the presence of functional groups, such as Fmoc [215].
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Ab initio DFT methods unveiled the effects of chirality
on the self-assembly of L-diphenylalanine and D-diphe-
nylalanine peptides. While both types of diphenylalanine
peptides self-assemble into nanotube-like structures, the
effect of chirality plays a pivotal role in the self-assem-
bling process. D-FF peptides form thicker and shorter
peptide nanotubes than those detected on L-FF. Also,
in terms of nanotubes’ topology, L-FF form helical turns,
while D-FF form rings [79]. These results demonstrated
that DFT calculations, combined with infrared spectro-
scopy, can be used for the characterization of SAPs lar-
gely used in TE [216–218].

Other applications of DFT approaches comprise simu-
lations of carbohydrates and nucleic acid structures to
develop different nanotechnological applications, such
as nanodots and quantum dots [111,219–224].

Applications of DFT methods in lipid simulations are
limited as they have been used mainly for the improve-
ment of CG-MD simulations [225,226].

Nonetheless, the plethora of applications of DFT for
SBP development is expanding rapidly: e.g., DFT was
used to calculate the binding energy of cross-linked
supramolecular binders for the improvement of lithium
batteries capacity [227]. DFT simulations also unveiled
that glycine could affect the ß-structuring propensity of
SAP nanofibrils [228]. Lastly, DFT allowed to elucidate
the role of aryl amino acids (such as phenylalanine or
tyrosine) in the self-aggregation of different structures,
ranging from crystalline to organogels [229].

The development of conductive SBPs represents the
last frontier in TE. Conductive SBPs have been developed
to comply with electrical properties of muscle, bone, and
nervous tissues. A limited number of SBPs have been
used for the development of conductive 3D-scaffolds (e.g.,
silk fibroin, chitosan, peptides, nanofibers, and DNA nano-
wires) [230–233], while other biopolymers (e.g., alginate,
agarose, lipid-based, and carbohydrate-based gels), usually
characterized by low conductivity, need supplements of
metals or conductive polymers to match the good conduc-
tivity properties of the target tissues [231,232]. DFT simula-
tions played a pivotal role in calculating the conductivity
properties of bioinorganic SBP hybrids. DFT simulations
were used for building a graphene-based biosensor for tyr-
osine: DFT simulations demonstrated the high reactivity of
graphene toward tyrosine and how it influences its elec-
tronic properties. Authors demonstrated that graphene,
shaped as nanoribbons, can be a promising candidate for
the detection of amino acids and a novel biosensor in
different biomedical applications [208,213]. In another
work, DFT simulations quantified graphene quantum dots’
(GQDs) adsorption on DNA fragments, demonstrating the

low genotoxicity of GQDs, potentially suited for biomedical
applications [224].

5 CG modeling of supra-molecular
biopolymers

5.1 The phylogeny of CG approaches

CG strategies have been largely used for the simulations
of biomolecular building blocks: they were proven to be
suitable for the prediction of mesoscopic phenomena and
to provide precious insights for empirical experimental
tests [234].

CG approaches for SBPs can be categorized in three
classes: structure-based, knowledge-based, and dynamic-
based approaches.

Structure-based approaches make use of atomic-scale
data of molecular structures to derive the respective CG
models [235–237]. MARTINI CG force field represents the
most used structure-based approach where each CG inter-
action site represents a different residue or functional
group [106,108,113].

Two approaches are currently used to describe the CG
interactions in structure-based models: (1) a model pre-
dicting minimal energy configurations (i.e., the ground
state) of the reference structures, to be used for the para-
metrization, and (2) a model where native contacts are
represented using attractive non-bonded interactions,
while other interactions are assumed to be purely repul-
sive. This method, known as Go-Model, has been recently
combined with network models to investigate large ampli-
tude protein conformational transitions [238].

Knowledge-based approaches leverage on the growing
collection of solved experimental structures (or measured
macroscopic properties) of different macromolecules and
their conformers. These approaches aim to design CG
models with high degree of transferability and chemical
specificity. A major example of knowledge-based models
is represented by the critical assessment of structure pre-
diction experiments for protein structure prediction and
homology modeling [239], where training sets are com-
posed by related proteins. Other knowledge-based approaches
deploy Bayesian inference techniques for the calibration of the
optimal force field for CG-MD simulations [240,241].

Dynamic-based approaches use systematic algorithms
to derive CG parameters from atomistic simulations.
Despite the clear connection between atomistic and CG
scales, these methods do not recap in CG models’ some
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phenomena strictly linked to the atomistic scale, such as
hydrophobicity. Nonetheless, these approaches were used
to parametrize molecular interactions as elastic networks
(REACH) and ultra-CG (UCG) models [242–244].

Lyman and coworkers employed the dynamic-based
approach to parametrize a heterogeneous elastic network
model for proteins, laying the foundation for its potential
applications at any level of coarse graining. Such approach
was used to extrapolate the CG potentials for the REACH
force field, designed for investigating the dynamics of
dimeric protein interactions [244].

Dama and coworkers recently defined the theoretical
bases of UCG modeling: they introduced the UCG-fitting
procedures from atomistic-scale data [245] and they intro-
duced the UCG rapid local equilibrium simulations, an
UCG force field method suitable for the simulations of sev-
eral related molecules [245]. UCG approaches have also
been adopted and improved by Zhang’s group: authors
proposed an intriguing advance in UCG simulations by
using the fluctuation matching method for building a
stable UCG model with a Go-like potential particularly
suited for the simulations of SBPs. The same group intro-
duced another advance: the double-well UCG model,
which was used to describe the conformational transi-
tions of different proteins, such as adenylated kinase,
glutamine-binding protein, and lactoferrin [246].

5.2 Challenging the multiscale paradigm:
limits and assets

The development of multi-resolution modeling approaches
marks another important step toward the multiscale simu-
lation framework for SBPs. As discussed in Section 1.3,
multiscale frameworks take advantage of computational
techniques, ranging from simulations of QM to continuous
modeling. These approaches have already been used to
study the main SBPs found in the human tissues, such as
keratin, elastin, collagen, and actin. In particular, the multi-
scale modeling of keratin elucidated the molecular origin
of keratin-related diseases, such as epidermolysis bullosa
simplex, epidermolytic palmoplantar keratoderma, and epi-
dermolysis hyperkeratosis (EHK) [247]. The combination of
AA-MD and CG-MD simulations provided better under-
standings of different highly conserved regions of keratin:
authors showed that supramolecular arrangement of keratin
depends on punctual mutations tremendously influencing
the assembling of keratin intofilament structures. Their study
allowed personalized medical treatments for EHK, caused by
point mutations along one of the keratin subunits [247].

Multiscale simulations of collagen led to the “conti-
nuum modeling” of collagen-based biomaterials: such
studies constituted the first attempt of multiscale inves-
tigation of muscle and bone tissues to unravel the mole-
cular roots of various pathological conditions [248].

The multiscale framework has been extended to dif-
ferent SBPs used in TE, such as spider silk or SAPs.
Atomistic MD simulations demonstrated that the pro-
mising mechanical properties of spider-silk were closely
related to the presence of β-sheet nanocrystals and a
well-balanced ratio of hydrophilic and hydrophobic
domains in the silk fibroin protein [249,250]. CG-MD
simulations identified a combination of crystalline phase
and semi-amorphous proteinmatrix as a key factor endowing
silk with superior mechanical properties [249,250]. Such
developments enabled to process silk into differently
shaped biomaterials, such as membranes, composites,
or hydrogels.

Similarly, multiscale modeling simulations are cur-
rently exploited for understanding the supramolecular
organization and the mechanical properties of SAPs’
nanofibers or amyloid-like structures [91,167,230,251],
demonstrating how mechanical properties of SAPs are
closely related to the presence of specific structural
domains, such as cross-β structures [79,85,167,215,230],
thus complementing the experimental characterization of
SAP-based hydrogels [79,85,167,215,230]. At larger length
scales, CG-MD simulations demonstrated that the mechan-
ical properties of SAP nanofibrils are also dependent on
themutual SAPs’ alignmentwithin cross-β domains [127,252].
It is authors’ opinion that next promising steps in this area
should be (1) finding innovative methods to integrate
CG-MD information into a continuum model and (2)
developing algorithms based on machine learning tech-
niques to accelerate the design and investigation of
SBPs [148,253,254]. Currently, machine learning techni-
ques play a pivotal role in simulations of biomolecules
by reducing the computational costs associated with MD
simulations approaches. For example, AlphaFold is by
far the most successful application of AI approaches for
the prediction of protein tertiary structures from their
amino-acid sequences. Recently, two machine-learning
systems, which outperformed AlphaFold, have been
developed and published: AlphaFold 2 and RoseTTa-
Fold [255,256].

Although AI approaches for predicting the structure
of SBPs are still lacking, such advances are going to open
new opportunities in biomaterials design and drug dis-
covery as well. Therefore, machine learning techniques
will likely be employed for multiscale investigations of
complex supramolecular systems soon.
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6 Assessing biomaterial
biomechanics via SMD

6.1 SMD simulations vs experimental
characterization

The success/failure of TE applications of SBPs is also
closely dependent on their mechanical properties: ade-
quate mechanical features promote ingrowth of host
regenerating tissues into the implanted scaffolds and
foster appropriate integration of the implants within
the surrounding host tissue. Such evidence lays the foun-
dation of mechanobiology, which is a rapidly emerging
holistic approach for the development of innovative TE
scaffolds [307–309].

Since mechanical properties are related to the struc-
tural properties of the scaffolds at the nano- and micro-
scales, SMD simulations of fibrils/seeds are a valid
approach for the investigation of macromolecular struc-
ture biomechanics. Indeed, SMD simulations were proven
to be suitable for the investigation of different SBPs, from
nucleic acid to carbohydrate macromolecular chains (see
Table 3).

SMD approaches provide results comparable to those
obtained through experimental techniques, such as AFM
or optical tweezers. More specifically, via SMD simula-
tions researcher can extrapolate biopolymers properties,
such as bending or elastic stiffness, as well as persistence
length, which defines the rigid behavior of the polymer
chains. More specifically, persistence length is intimately
connected to other mechanical properties, such as twisting,
in long biopolymer chains [308,309].

Genomic regulation relies on both nucleic acid
sequences and their mechanic features: as such, it is
also influenced by twisting and torsional rigidities of
nucleic acids [310–315]. Single-molecule experiments
of AFM and optical tweezers unveiled that double-
stranded DNA (dsDNA) and RNA (dsRNA) show similar
values of persistence length, ranging from 51 to 66 nm
(see Table 3) [310,314]. Hence, dsDNA and dsRNA show
similar folding patterns, as confirmed by investigation
through MD and SMD simulations (see Table 3) [312,313].
However, further investigations unveiled that dsDNA
molecules are about 3-fold stiffer than dsRNA molecules
(see Table 1) [310,313,314]. Such results, combined with
analysis of torsional rigidity, depicted an unexpected
behavior of dsRNA molecules [310,315]. Indeed, it was
demonstrated that the twist-stretch coupling of dsRNA
could affect the typical size of dsRNA molecules when
injected into cells in RNA interference experiments.

The investigation of the mechanical properties of
amyloid fibers is attracting increasing attention due to
various factors: (1) amyloid fibers are associated with
a range of human diseases; (2) they serve biological
functions, such as biofilm formation in bacteria; and
(3) their chemical–physical features inspired several
researchers to develop ß-structuring biomimetic SBPs
for TE applications. The mechanical properties of amy-
loid fibers have been elucidated by fluorescent-force or
atomic force microscopy [257,258]. Additional investiga-
tions with SMD simulations unveiled how their high
ß-sheet content well correlates with strong mechanical
features [259,260].

As highlighted in Table 3, the difference among
computational and experimental characterizations is
negligible. Hence, the combination of different MD simu-
lations techniques can be used for the development
of amyloid-inspired SAPs [68,72,105,127,258–261]. Indeed,
atomistic SMD approaches elucidated the role of hydrogen
bonding and charge interactions on the bending stiffness
of ER/K alpha-helix peptides [262]. Other SMD simulations
provided clear links between mechanical properties of
peptide aggregates and structural motifs of Aß1-42 amy-
loid fibrils or coiled coil structures [258,261,263].

A combination of experimental and computational
approaches was adopted for the investigation of other
biomacromolecules like collagen [264–267], cellulose
[268–272], actin [273–275], silk [252,269,276,277], and HA
[278,279]. Historically, studies on the mechanical properties
of collagen represented the first attempts to approach a mul-
tiscale model [119,265,267,280]: CG-MD simulations were
used to investigate the structural and mechanical features
of collagen fibrils, but results were in poor agreement with
experimental data (see Table 3) [264–267,280].

Conversely, SMD simulations of silk nanostructures
provided values comparable to experimental data and
elucidated the phenomena underlying brittle failure of
silk domains [252]. A similar approach was also employed
for investigating mechanical failures of nanotubes of
cyclic peptides [263]. Atomistic SMD simulations unra-
veled the connection between mechanical behavior of
actin and its binding propensity to ATP/ADP molecules,
thus giving new insights on the functioning of muscle
cells [275]. Such evidence encouraged the development
of CG models for understanding the molecular mechanisms
of the mechanic failure of SAP fibrils. CG-SMD simulations
were also used to investigate the mechanical properties
of large SAP aggregates, but MARTINI SMD approach has
been modestly used for this purpose since it does not allow
conformational transitions typical of biological systems
[108,113]. On the other hand, GoMARTINI-SMD [121] was
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feasibly adopted to elucidate mechanical properties of SAP
fibrils and provided comparable results to atomistic SMD
simulations [121,127,281]: UA-SMD and GoMARTINI simu-
lations’maximum bending stresses were comparable (163MPa
for UA-SMD, 150MPa for GoMARTINI SMD) (Figure 5b).
Instead, the axial UA-SMD stretching simulations of fibrils
showed lower mechanical stress value than those
observed in GoMARTINI SMD simulations (UA-SMD axial
stretching failure stress was 146MPa while in GoMARTINI
SMD themaximum stress was equal to 305MPa) (Figure 5c).
The same tendency is observed in bending simulations of
fibrils (UA-SMD axial bending failure stress was equal
to 195MPa while in GoMARTINI SMD it was equal to
280MPa) (Figure 5d). The figure has been adapted from
Figures 1a and b and 2a, c, d, and f from Fontana et al.
(https://doi.org/10.1039/C9NA00621D).

6.2 Thermodynamic stability and
mechanical properties of biopolymers:
two sides of the same coin

SMD simulations were also used for the estimation of the
interaction strength in peptide monolayers or aggregates
[282–285], allowing to quantify the thermodynamic sta-
bility in aqueous solution of surfactant-like peptide (SLP)
fibrils and oligomers (see Figure 6). In these simulations,
an external mechanical force is applied to one SLP, which
is dragged out from the core of an aggregate: the poten-
tial of mean force (PMF) profile, representing the disso-
ciation energy from the fibril (or the oligomer), is then
calculated [285]. Results showed that the required energy
to pull one SLP out of the fibril structure is 3-fold of one
for the oligomeric structure. Therefore, fibril structures
are more stable than the oligomer configurations. Since
the magnitude of the dissociation energy is an indicator
for the thermodynamic stability of the supramolecular
assemblies, these results suggest that an increasing number
of charges in the head-group, when subjected to a mechan-
ical stress, causes more perturbations in the fibril structures
than in the less-ordered oligomers.

Such results extended the conclusions of the work of
Yu et al. [283], which used SMD to force the transition of
90 PAs in aqueous solution from the bound state (corre-
sponding to a cylinder nanofiber) to a free state. They found
that Pas’ assembly pathway is mainly dominated by con-
formational disorder-to-order transition, encompassing sec-
ondary structures’ formation along with tail–head core–
shell alignments and condensation, leading to the total
exclusion of water from their cores [283,284]. These frag-
ments of evidence lead to a new understanding of the

thermodynamic characteristics, which underly the mechan-
ical properties of SAPs and other SBPs.

7 Outlook

The complexity and heterogeneity of biological systems
will require complex in silico approaches capable of reca-
pitulating larger systems for longer timeframes: bioma-
terials will be investigated but the biological counterpart
will soon become the priority. Different tools should
also be used depending on the accuracy needed for the
phenomena investigated and the computational cost
required. Also, being biomacromolecules and biosys-
tems intrinsically evolving over time, it will be essential
to capture chemical modifications to better simulate
and predict the biological effect of existing and novel
biomaterials.

7.1 Mixed approaches: serial and parallel
multiscale MG simulations (QM/MM/CG)

Understanding physicochemical reactions at different
scales in biological systems represents the ultimate chal-
lenge in the field of biomateriomics, the science behind the
development of innovative SBPs for TE applications. The
issue must be addressed across different spatial–temporal
scales, ranging from the nanoscale to the macroscale. As
shown in the previous chapters, several research groups
developed an arsenal of computational and theoretical
approaches for investigating SBP systems. Intriguingly,
two opposed philosophies emerged for modeling multi-
scale phenomena: (1) serial multiscale approaches and
(2) parallel multiscale approaches.

Rad-Malekshai and coworkers used a solid serial multi-
scale approach comprising CG and AA-MD simulations for
elucidating the structural details of a peptide-based nano-
carrier [104]. Even though computational results agreed
with the experimental characterization data, their work suf-
fers from using the backmapping approach of that time for
peptide structures from CG to the atomistic model [285,286].
Indeed, since then, backmapping has been ameliorated
and validated for membrane and protein–ligand systems
[109,287].

The QM/MMmethods represent a relevant example of
parallel multiscale approach that has become the method
of choice for modeling reactions in biomolecular sys-
tems [287–291]. Since one of the main drawbacks of
this approach was the limited electrostatic coupling among
different models [279,292], Wassenaar and coworkers
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Figure 5: Computational nanomechanic characterization of (LDLK)3 fibril seeds and fibrils. Mechanical failure of SAP fibril seeds and fibrils
was studied via SMD simulations. In each plot, the number of ß-interactions refers to the number of ß-contacts among (LDLK)3 self-
assembling backbone identified through a customized software dubbed Morphoscanner [72]. (a) Axial UA-SMD stretching simulations of
fibril seeds showed higher mechanical stress values than those observed in GoMARTINI SMD simulations. (UA-SMDmaximum stress of axial
stretching was equal to 323MPa, while in GoMARTINI it was equal to 236). (b) UA-SMD and GoMARTINI simulations’ maximum bending
stresses were comparable (163 MPa for UA-SMD, 150MPa for GoMARTINI SMD). Instead, (c) the axial UA-SMD stretching simulations of
fibrils showed lower mechanical stress value than those observed in GoMARTINI SMD simulations (UA-SMD axial stretching failure stress
was 146MPa while in GoMARTINI SMD the maximum stress was equal to 305 MPa). (d) The same tendency is observed in bending
simulations of fibrils. (UA-SMD axial bending failure stress was equal to 195MPa while in GoMARTINI SMD it was equal to 280MPa). The
figure has been adapted from Figures 1a and b and 2a, c, d, and f from Fontana and Gelain [127].
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introduced an efficient electrostatic coupling in hybrid AA/
CG MARTINI systems [285].

Such advance opened new opportunities in the par-
allel multiscale approaches: for example, QM/MM/CG
modeling was used for investigating the factors that

influence the potential energy profiles of the enzymatic
reaction catalyzed by chorismate mutase [292,293].

Likely, future applications of QM/MM/CG approaches
will also rely on elastic networks like GoMARTINI to elu-
cidate the connections between mechanical properties

Figure 6: Control over the fibrillization yield by varying the oligomeric nucleation propensities of SLPs. (a) Primary sequence of SLPs,
isoleucine and leucine, are colored in green, while anionic groups are colored in red. (b) Schematic representation of the two-step
nucleation of peptide self-assembly, in which peptides first assemble into oligomeric particles through condensation; nucleates are then
formed within the oligomeric particles. (c) PMF profiles of fibril (left) and oligomer (right)models along the reaction coordinate derived from
SMD simulations provides information on the thermodynamic stability of fibrils and oligomer structures. Increasing the number of charges
of the head-groups reduced the structural stability of the fibrils, but, not in the oligomers. A representative snapshot of SMD trajectory is
shown in each graph. The figure has been adapted from Figures 1a, b and 6a from Lau et al. [285].

Modeling of SBPs: leading in-silico revolution of TE and nanomedicine  2983



and molecular features of SBPs at respectively the macro-
and nanoscales [121,127,293].

7.2 Reactive coarse-grained (RCG) MD for
covalent cross-linking

The development of reactive force fields represents one
major challenge in molecular modeling. Atomistic reac-
tive force fields are applied for the simulation of diverse
polymeric systems [294,295] and represent the key factor
for implementing reactive MD (RMD).

In RMD simulations, the topology of the molecular
system changes at each integration step: hence, RMD
simulations come at the price of high computational costs
if compared to serial multiscale MD simulations [117,295].

Indeed, implementing CG-MD simulations and sub-
sequent AA-MD simulations require less computational
power than RMD simulations [104].

Few applications, mainly related to organic polymers,
have been reported in literature due to the high computa-
tional costs associated with this approach [294,296]. Voth
and Lafage developed a promising RCG model using AA
data to create a CG model able to represent chemical reac-
tions with an evolving bonding topology [297]. However,
RCG applications for SBPs are still lacking and not yet
suitable for macroscale studies [234,297].

It is authors’ opinion that in the near future RCG
simulations could find applications in the investigation
of cross-linked SBPs [85,87,91,298,299].

Chemical cross-linking represents a promising strategy for
tailoring architectural and mechanical features of SBPs
[85,87,88,91,298,299]: it was used for enhancing structural and
mechanical properties of peptide-based systems [300]. SAP
hydrogels crosslinked with genipin, a natural extract from gar-
denia jasminoides, were more suitable for TE applications due to
their improved mechanical stability enabling their electro-spin-
ning into well-defined solid flexible channels or mats [85,91].
Also, chemical cross-linking led to the development of DNA-
based systems [87] or chitosan microspheres [88] for the con-
trolled release of active biomolecules. Presumably, RCG models
will be frontrunners in the improvement of cross-linking, by
bringing additional understandings to enable the control of
both cross-linked scaffold topologies and reaction yield.

7.3 Linking molecular scale to macroscale:
moving toward the continuum models

Most of TE approaches rely on the development of scaffolds
providing specificmechanical cues to the cells through their

microarchitectures [302]. Indeed, cells can “react” to phy-
sical and chemical signals generated by other cells and/or
the extracellular environment [303]: a deep understanding
of these complex signaling interplay will allow the devel-
opment of novel high-performing scaffolds.

To this purpose, several FE approaches have been
adopted to describe the propagation of mechanical defor-
mations through scaffold architectures [302,304] but were
mainly limited to the mechanical properties of scaffolds,
disregarding the interplay of biochemical signaling
[302,304].

The combined use of FEmethods and MD simulations
features the potential to elucidate the complex relation-
ships between scaffold biomechanics and molecular prop-
erties [305].

To tackle this issue Solernou’s lab developed the fluc-
tuating finite element analysis (FFEA) software package
[306]. FFEA is suited for simulations of large proteins and
protein complexes at the mesoscale (from 5 nm to 1 μm),
where modeling tools are lacking the most. As input
FFEA requires volumetric information like cryo-electron
tomography (cryo-ET) maps or high-resolution atomistic
coordinates [306].

Still, efficient mesoscale MD simulation methods will
be highly needed to be accessible to mesoscale character-
ization data. In this way, a mesoscale model could be
easily validated using easily accessible experimental char-
acterization methods. Thus, if the experimental validation
confirms the results of mesoscale MD simulations, this
evidence could guide the understanding of how individual
changes at the molecular level affect the macroscale prop-
erties of SBPs.

7.4 In silico models of “whole” viruses,
organelles, and unicellular organisms

Recent progresses in molecular modeling enabled the
simulation of complex biomolecular structures, like cell
membranes (see Section 2.2). In a recent work, Pezeshkian
and coworkers introduced a multiscale algorithm that
backmaps a continuum membrane model, represented as
a dynamically triangulated surface (DTS), to its corre-
sponding CG molecular model based on the Martini force
field [288].

DTS simulations enabled the investigation of slow
conformational changes of large-scale membranes, demon-
strating how MARTINI CG simulations may be applied to
explore the local properties of complex membrane systems
[288]. This approach was used for investigating the local
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Figure 8: Computational virology applications: mesoscale simulations enhance conformational sampling of viral glycoproteins. AA-MD
simulation of a fully intact all-atom model of the influenza A H1N1 2009 (pH1N1) viral envelope (a). Hemagglutinin (HA) glycoproteins are
shown in dark blue; neuraminidase (NA) glycoproteins are shown in light blue. In (b), a single NA monomer is shown (top view) with its
catalytic site (white), secondary site (yellow), 150-loop (green), and 430-loop (red). In (c–e), principal component analysis (PCA) is
performed by considering the motions of C atoms of 19 1° pocket residues. In (c), the PCA of the four monomers is sampled during a single-
NA-tetramer simulation. In (d), the PCA of the 120 monomer trajectories is extracted during the last 8.33 ns of the viral envelope simulation.
In (e), the PCA of all 120 monomer simulations is extracted from the full simulation of the viral envelope. The figure has been adapted from
Figure 1a–e from Durrant et al. [151]. In (f) and (g), a multiscale model of the SARS-Cov-2 virion is shown. An exterior view and an interior
view of the SARS-CoV-2 virion are given in (f) and (g), respectively. The S-protein trimers are depicted in teal, with the glycosylation sites
represented as black spheres. M-protein dimers are in blue, with pentameric E ion channels in orange. The experimental characterization
addressed the appropriate density of S, M, and E proteins. The diameters of the membrane envelope span from 100 to 140 nm, including the
S proteins on the virion surface. The figure has been adapted from Figure 3a and b of Yu et al. (2021) [316].

Figure 7: MD of large organelles. (a) Modeling scheme of mitochondrial membrane at near-atomic resolution. (Ai) Composition of mito-
chondrial membrane. POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethano-
lamine; SAPE, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-ethanolamine; SAPI, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoino-
sitol; CHOL, cholesterol; CRDL, cardiolipin. (Aii) Cross-section of the generated surface points for the outer monolayer of outer membrane
(blue), inner monolayer of outer membrane (green), outer monolayer of inner membrane (red), and inner monolayer of inner membrane
(yellow). Figures (Ai) and (Aii) have been adapted from Pezeshkian et al. [288]. (b)MD simulation of transfection using large lipoplexes. (Bi)
Schematic structure of large lipoplex, showing connecting channels. (Bii) Snapshot of MD trajectory, showing the fusion of lipoplex on top
of a large endosomal model bilayer patch. (Biii) Last stage of dsDNA transfection: release of dsDNA from large lipoplex. Figures (Bi), (Bii),
and (Biii) have been adapted from Bruininks et al. [314], with the permission of eLife Sciences Publications Ltd.
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deformations of a vesicular bud induced by the binding of
Shiga Toxin. Remarkably, the same multiscale model was
adopted to elucidate the organization of an entiremitochon-
drion to near-atomic resolution, as shown in Figure 7a,
where the mitochondrion system (without solvent mole-
cules) contains more than 83 million particles and repre-
sents over six million lipids. To note, their system did not
showsignificant changings in themembrane shape throughout
2ns of MD simulation [287,288].

Recently, Bruininks’s lab used CG MARTINI simula-
tions to investigate the molecular mechanisms under-
lying the DNA transfer from lipoplexes (see Figure 7B):
they unveiled the fusion mechanisms of large lipoplexes
with lipid membranes in 10-μs-long CG-MD simulations.
Their findings opened the door to new applications of
non-viral vectors for in vivo gene therapies [307].

Lastly, simulations of large organelles may also allow
to elucidate mechanisms underlying different metabolic
cell states.

The simulations of complete viruses represent the
last host topic in multiscale modeling: the current coro-
navirus pandemic and the annual surge of diverse influ-
enza strains represent a crucial challenge for modern
societies and healthcare systems. Indeed, multiscale simu-
lations are deeply used to discover newmedical treatments
targeting specific virus structures [151,308].

As shown in Figure 8a, Durrant and coworkers devel-
oped an all-atom model of an intact H1N1 virus. MD ato-
mistic simulations, coupled with Markov state model
theory, have provided new insights on the potential
role of the neuraminidase secondary site, where terminal

sialic acid residues can bind before transferring to the
primary site (responsible for the enzymatic cleavage).
Their work broke new ground in terms of molecular simu-
lation size, complexity, and methodological analyses.
It also provided fundamental insights into the under-
standing of substrate recognition processes, enabling
new strategies for influenza treatments [151].

Recently, Yu and coworkers reported an ongoing
development of a largely “bottom-up” CG model of the
SARS-Cov-2 virion, shown in Figure 8b [309]. Their multi-
scale model of the SARS-CoV-2 virion, built by retrieving
CG interactions from AA-MD simulations, it is deemed to
reveal new routes to target the virus and enable new
antiviral treatments [308,309].

8 Conclusions

The remarkable progresses in HPC have nurtured dif-
ferent modeling approaches for SBPs. We foresee that
diverse TE applications of SBPs will likely need dedicated
different computational workflows. Multiscale methods
will soon connect the atomistic changes and the macro-
scale morpho-mechanical characteristics of SBPs. Besides,
recent advances in the modeling of membrane structures
will enable accurate investigations of biomaterial–cell
interactions. Further progresses in modeling of cell com-
partments will drive the study of complex cellular systems,
thus leading the way to the computational characteriza-
tion of tissues. Lastly, SBP–tissue interactions will also be

Table 3: Experimental and computational characterization of the most important SBPs used in TE and nanomedicine

Biopolymers Young modulus
experimental (GPa)

Persistence length
experimental (nm)

Young modulus
computational (GPa)

Persistence length
computational (nm)

dsDNA 0.3–1 [301] 51 [302] 0.3 [303] 63 [304]
dsRNA 0.09 [305]* 63–65 [306] 0.205–0.259 [305]* 66.3 [305]

57–60 [302,305]
Prion 0.35–0.80 [257,258] 1500–3300 [257,261] 13–18 [259,307] 1000–4000 [259,307]
Collagen 3 [280] 10–20 [264] 4.5–4.75 [265,266] 51.7 [267]
Actin 2.6 [274] 15690 [274] 1.80[ATP] [275]

1.90[ADP] [275]
15410 [275]

Silk 14–36 [276] 3 [269] 6.2–22.6 [252,277] 2.5 [252]
Cellulose 78 [270] 5–20 [271] 161 [268] 14.5 [272]
CPNs 18.5–40 [263] 600 [263] 7.8 [263] 460 [263]
HA 5.9 [279] 7.1 [278]
SAP fibril seed 0.5–1.626 [127] 593–1928 [127]*
SAP fibril 2–6 [127] 2110–7116 [127]*

Note: Values marked with * were calculated using the following length (P) formula: P = Bs/(TKP) indicates the length of the persistence and
Bs Young’s modulus.
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elucidated by novel AI-based approaches so far applied to
proteins only. Hence, the development of safer and more
precise biomedical treatments will be soon made possible
by a multi-facet arsenal of computational approaches tar-
getingmost of the different phenomena to be considered in
biomaterial design and characterization.
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