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Abstract: Developing efficient and robust electrocatalysts
is increasingly essential for water splitting, severely hin-
dered by the sluggish four-electron transfer process of
oxygen evolution reaction (OER). Amorphous/crystalline
heterophase engineering has recently emerged as a pro-
mising electronic modulation approach for OER catalysts
but suffers from poor conductivity of the amorphous
structure. Here, we coupled the amorphous/crystalline
NiFe,0, induced by vanadium doping with NiP hetero-
junction, highlighting the synergistic effect in modulating
the electronic structures and the complementary effect in
promoting conductivity. As a superior electrocatalyst to
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commercial Ru0O,, the as-prepared NFO-V,3-P showed a
low overpotential of 277mV at the current density of
20 mA cm™2, a Tafel slope of 45mV dec™, and long-term
stability. The excellent OER catalytic activity is attributed
to the synergistic effect at the heterophase interface with
rich active sites, fine-tuning of electronic regulation, and
enhanced conductivity.
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1 Introduction

Electrolysis of water to produce hydrogen and oxygen is a
promising approach to solving current energy crisis and
environmental pollution problems [1-3]. The bottleneck
of electrochemical water splitting is the slow oxygen
evolution reaction (OER) on the anode [4], while the com-
monly used noble metal iridium (Ir)-based and ruthe-
nium (Ru)-based catalysts are limited by their high cost
and poor stability [5-7]. Therefore, the development of
earth-abundant transition metals as high-performance OER
electrocatalysts has attracted more and more researchers’
attention [8-10]. For example, spinel nickel ferrite NiFe,O,
has become a promising catalyst due to its advantages such
as low cost, easy preparation, and easy structure control
[11]. Researchers have prepared a series of NiFe,0, catalysts
with different structures and properties by hydrothermal
method [12], solvothermal method [13], and sol-gel method
[14]. However, pure NiFe,0, is not suitable for OER due to
the shortcomings of active sites and electronic structure
and needs to be modified [15]. There are two main strategies
to prepare transition metals into high-performance OER
catalysts. The first is to adjust the morphology, geometry,
and size of materials to increase the number of active cen-
ters [16—18]. The second is to improve the intrinsic activity
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of each active center by adjusting the crystal and electronic
structures [19-21].

Doping can lead to heterophase, exhibiting optimized
catalytic activity [22,23]. Recently, it has been reported that
doping can induce the formation of amorphous/crystalline
heterophase, resulting in abundant surface defects and
coordinatively unsaturated sites, thereby increasing the
exposure of active sites [24]. Han et al. fabricated F-doped
Co,B with a high-density crystalline/amorphous interface
that significantly enhances OER activity [25]. V is favored
among all the dopants due to its low cost and robust exis-
tence in various valence states [26]. Li et al. reported that V
promoted the transfer of electrons from Ni to VO, and
reduced the adsorption energy; VO, also led to significant
decay of the Ni lattice, resulting in amorphous/crystalline
heterophase with increased electrochemically active sur-
face area [27]. However, the low electrical conductivity
of the amorphous structure severely limits the charge
transfer during catalysis [28]. The built-in electric field at
the heterojunction interface promotes charge transfer and
redistribution, effectively regulating the electronic struc-
ture and enhancing conductivity [29]. Thus, heterojunc-
tion might be a remedy for the amorphous/crystalline
structure. Furthermore, although spinel oxides have been
intensively reported previously, the amorphous/crystal-
line heterophase spinel oxides coupled with phosphide
heterojunction have not been reported yet. Therefore, it is
desirable to construct such a hybrid interface and investi-
gate the synergistic electronic regulation effect for boosting
OER.

Based on the above challenges, we combined V-doping
and phosphide heterojunction strategies to construct an
amorphous/crystalline heterophase catalyst NFO-Vg 3-P
to synergistically optimize the electrical structure and
conductivity for OER. The introduction of V weakened
the crystallization ability of spinel NiFe,0, and induced
the formation of amorphous/crystalline heterophase with
abundant oxygen vacancies and uncoordinated sites.
Although V doping alone promoted the rearrangement
of the electronic structure, the addition of NiP hetero-
structure improved the amorphous phase’s poor conduc-
tivity and further optimized the electronic structure by
reducing the e; occupancy of Ni to be around 1.2. The
as-prepared NFO-V, 3-P achieved a low overpotential of
277 mV at the current density of 20 mA cm™?, a Tafel slope
of 45 mV dec™, and long-term stability in alkaline media.
This work provides an insightful coupling strategy for
designing advanced OER electrocatalysts and performs
a practical evaluation from the perspective of the e, occu-
pancy in revealing its potential in synergistic electronic
regulation.
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2 Experimental

2.1 Materials

Nickel nitrate hexahydrate (Ni(NOs),-6H,0, analytically
pure), iron(m) nitrate nonahydrate (Fe(NOs)3-9H,0, ana-
lytically pure), hexadecyl trimethyl ammonium bromide
(CTAB, >98%), vanadium(m) chloride (VCls, >97%), ammonia
(NH5-H,0, analytically pure), sodium hypophosphite
(NaH,PO,, analytically pure), potassium hydroxide (KOH,
analytically pure) were purchased from Kelong Chemical
Agent. Ruthenium oxide (Ru0O,, 99.95%) was purchased
from Alfa Aeser. Nafion solution (5%) was purchased
from Dupont. All chemicals were used as received without
further purification.

2.2 Synthesis of NFO electrocatalyst

First, Ni(NOs),-6H,0 (1 mmol), Fe(NO3);-9H,0 (2 — x mmol),
and CTAB (0.2g) were dissolved in a mixed solution of
20 mL deionized water and 10 mL ethanol and stirred for
1h to obtain a homogeneous solution. Then, NH;-H,0
(3mL) was added dropwise under vigorous stirring.
Subsequently, the solution was transferred to a 50 mL
Teflon-lined autoclave and heated at 180°C for 12 h. The
precipitate was collected by centrifugation, washed with
ethanol and water, and dried at 50°C overnight. Finally,
the precursor was ground and calcined in a muffle fur-
nace at 400°C for 4 h to obtain the NFO catalyst.

2.3 Synthesis of NFO-V, electrocatalysts

Except for the raw materials, the preparation method of
NFO-V, (x = 0.1, 0.3, 0.5) catalysts is the same as that of
NFO. First, Ni(NO3),-6H,0 (1 mmol), Fe(NO3);5-9H,0 (2 — x
mmol), VCl; (x mmol), and CTAB (0.2 g) were dissolved in
a mixed solution of 20 mL deionized water and 10 mL
ethanol and stirred for 1 h to obtain a homogeneous solu-
tion. The following preparation steps are exactly the
same as that of NFO catalyst, and finally, the NFO-V,
(x = 0.1, 0.3, 0.5) catalysts were obtained.

2.4 Synthesis of NFO-V,-P electrocatalyst

The prepared NFO-V, 5 and NaH,PO, were loaded in two
porcelain boats with a mass ratio of 1:3 and were placed
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downstream and upstream of the tube furnace, respec-
tively. The NFO-V, 3-P catalyst was prepared by heating
to 300°C at a heating rate of 2°C min™" under an Ar atmo-
sphere for 2h.

2.5 Material characterizations

The phase structure of the catalysts was determined
using an X’pert Pro powder X-ray diffraction (XRD) from
20° to 80°. Scanning electron microscopy (SEM) images
and elemental mapping were obtained using a JEOL JSM-
7800 F field-emission SEM. Transmission electron micro-
scope (TEM) images were taken using a Tecnai G220
(S-TWIN, FEI). X-ray photoelectron spectroscopy (XPS)
was measured by Thermo ESCALAB 250XI. Electron para-
magnetic resonance (EPR) spectra were obtained using a
Bruker EMX plus X-band EPR spectrometer.

2.6 Electrochemical measurements

Electrochemical measurements were performed on Ivium
Vertex. C electrochemical workstation in a three-elec-
trode electrochemical cell. Pt sheet and Hg/HgO were
used as the counter electrode and reference electrode.
1M KOH solution was used as the electrolyte; 5mg of
catalyst was ultrasonically dispersed in a mixed solution
of ethanol (900 pL) and Nafion (5 wt%, 100 pL) to obtain
a homogeneous catalyst ink. Then, 100 pL of the as-pre-
pared ink was drop cast onto nickel foam (1 cm x 1 cm) to
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Figure 1: Catalyst preparation process diagram.
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prepare the working electrode with a catalyst loading of
0.5mgcm 2.

The electrolyte was bubbled with O, for 30 min before
the OER measurements and maintained an O,-saturated
electrolyte throughout the measurement. Cyclic voltam-
metry (CV) between 0 and 1V vs Hg/HgO at a scan rate of
50 mV s~! was performed to activate the catalysts surface
until a steady-state CV curve was established. Linear
sweep voltammetry (LSV) curves were collected at a
scan rate of 5mV s~! and corrected by solution resistance
(Rs). Electrochemical impedance spectroscopy (EIS) was
performed at open circuit potential over the frequency
range between 100 kHz and 0.1Hz. By calibrating the
reference electrode (Figure S1), all potential values were
calibrated concerning the reversible hydrogen electrode
(RHE) by Exug = Eng/ugo + 0.93 V. Overpotentials (17) was
calculated based on the formula n = Eggg — 1.23V.
Electrochemical active surface areas (ECSA) were obtained
by measuring electrochemical double-layer capacitance
(Cq1) of catalysts. Chronopotentiometry measurements
evaluated stability at the current density of 20 and
100 mA cm ™.

3 Results and discussion

3.1 Characterization analysis of catalysts

The synthesis of the NFO-V,3-P catalyst involved two
steps. As shown in Figure 1, the first step was to dope V
into the catalyst by hydrothermal method. CTAB as a
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surfactant modulated the shape and size of nanoparticles
and prevented excessive aggregation of nanoparticles.
After the first heat treatment, transition metal oxide
nanoparticles with the structural formula of NiV, 5Fe; ;0,
were prepared and denoted as NFO-V, 3. In the second
step, a small amount of NaH,PO, was pyrolyzed in a tube
furnace to grow metal phosphide on the catalyst surface
to obtain the final catalyst, which was named NFO-V, 3-P.
V and P have been successfully introduced into the cat-
alyst system in the corresponding steps, as shown in

NFO-V, ;-P
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Figure 2(a) and Figures S2, S3. The distribution of each
element in the catalyst is uniform.

The catalysts’ morphology and crystal structure evo-
lution after V introduction and surface partial phosphat-
ing were characterized using XRD and TEM. As shown in
Figure 2(b) and Figure S4, the diffraction angles and dif-
fraction intensity of the NFO catalyst are consistent with
those of NiFe,O, (PDF #10-0325), indicating the suc-
cessful preparation of an inverse spinel transition metal
oxide with the good crystal structure. The catalyst after
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Figure 2: (a) SEM image and the corresponding elemental mapping of NFO-V, 5-P. (b) XRD patterns of NFO, NFO-V, 3, NFO-V, 5-P. (c—e) TEM

and (f-h) HRTEM image of NFO, NFO-V, 5, NFO-V, 5-P.
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V doping also shows a similar XRD pattern, but the dif-
fraction intensity is reduced, indicating that the crystal-
line nature was affected due to the V doping. With the
increase in V content, the diffraction intensity gradually
decreases, indicating that the weakening of crystallinity
is caused by V and is closely related to the content of V.
The crystallinity of the catalysts is NFO (93.9%), NFO-V, ;
(91.6%), NFO-Vq 5 (59.2%), and NFO-V 5 (49.3%), respec-
tively. The XRD pattern of NFO-V,3-P shows that the
partial phosphating of the surface does not significantly
change the original crystal structure of the catalyst. The
new diffraction peaks with low intensity at 35.15°, 39.15°,
and 48.07° correspond to (112), (211), and (220) crystal
planes of NiP, respectively, which indicate that NiP
appeared after phosphating.

TEM and HRTEM images provide more details on the
changes in the catalyst structure. Figure 2(c) shows the
polycrystalline structure of NFO, consisting of irregular
nanoparticles with a particle size of 10 nm. The lattice
fringes corresponding to NiFe,O, on the (220), (311),
(440), and (400) planes are observed in Figure 2(f), which
verifies the above-mentioned XRD characterization. As
shown in the TEM image of NFO-V,3 (Figure 2d), the
polycrystalline structure still exists, but the nanoparticle
size is significantly reduced. The corresponding HRTEM
(Figure 2g) shows a sizeable blurred area without visible
lattice fringes, recognized as the amorphous phase, which
shows that the introduction of V in the catalyst weakens
the crystallization ability of NFO-Vg 3. The introduction of
a small amount of V causes part of Fe to be replaced by V.
Due to the differences in atomic radius and electronic
structure of V and Fe, the presence of V in the crystal
lattice hinders the crystallization process, thereby weak-
ening the crystallization ability of the catalyst [24]. Thus,
part of the crystalline phase is transformed into an amor-
phous phase. At the same time, the limited crystallization
ability prevents the catalyst nanoparticles from growing
large enough, resulting in the phenomenon of nanopar-
ticle size reduction after V doping. With an appropriate
amount of V doping, some regions in the catalyst are
transformed into the amorphous phase, but the rest can
still be crystallized normally. The amorphous/crystalline
mixed heterophase is constructed by adjusting the amount
of V doping. The amorphous/crystalline mixed hetero-
phase structure in NFO-V,; provides many vacancies
and interfacial defects, providing more reactive sites for
catalytic reactions [30]. As shown in Figure 2(h), such an
amorphous/crystalline heterophase structure is preserved
after phosphating in NFO-V,3-P. The lattice diffraction
fringes correspond to the NiP (122) plane to support the
XRD characterization.
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XPS was used to further evaluate the surface che-
mical composition and valence state of the catalysts. As
shown in Figure S6(a), the existence of the V 2p peak and
P 2p peak can be observed in the XPS total spectra of the
three catalysts, verifying the existence of V and P elements.
On the high-resolution P 2p XPS spectrum of NFO-V,3-P
(Figure S6b), the doublet peak in the 127-131eV region is
ascribed to P-metal bonding [31]. The broad peak centered
at 132.8 eV comes from the P-O bonding of phosphorus spe-
cies exposed to air [32], which further proves the existence of
metal phosphide on the catalyst surface.

For transition metal oxides, the e; occupancy of the
transition metal ions at the active site is an essential
descriptor of OER activity because the e, orbitals directly
participate in o bonding with surface oxygen [33]. A small
e, occupancy will lead to strong oxygen binding force,
and the intermediate cannot be effectively desorbed; a
large e, occupancy will inhibit the activation of oxygen
and weaken the binding force of the intermediate [34].
Previous studies have found that when the e, occupancy
is around 1.2, an ideal balance will be reached, and the
catalyst shows the optimal OER activity [35,36]. Since
Ni** has a valence electron configuration of (266 €g2), it
can be assumed that Ni*" (eg = 2) is in a high-spin state
and Ni** (eg = 1) is in a high-spin state. According to the
ratio of Ni** and Ni**, the e, occupy can be calculated
[37]. As shown in Figure 3(a), with the introduction of V,
a high oxidation state peak corresponding to Ni** appears
at 856.28 eV, and the characteristic peak corresponding
to Ni** is significantly reduced. According to the charac-
teristic peak area Ni’*/Ni** = 1.23, the calculated e, occu-
pancy is approximately 1.44. It is also observed in Figure
3(b) that the V 2p;/, peak, which should be observed at
517.5 eV, appears at 517 eV. The lower valence is due to the
acceptance of electrons from Ni. After growing the phos-
phide heterojunction, the corresponding binding energy of
Ni 2ps, shifts positively from 855.08 to 855.38 eV, and the
binding energy of the V 2ps, peak (Figure S3d) further
decreases to 516.8 eV. The ratio of Ni**/Ni** continues to
increase, and the e; occupancy is calculated to be 1.26 by
the ratio, which means the oxidation state of Ni is higher.
The characteristic peak at 853.4eV is attributed to Ni-P,
which proves the existence of the NiP crystal phase on the
catalyst surface [31].

In the Fe 2p spectra shown in Figure 3(c), the signal
mainly consists of two peaks near 712.7 and 724.3 eV,
which belong to Fe 2p;/, and Fe 2p,,,, respectively [38].
The Fe®* content in high valence state increases after V
doping and decreases after phosphating, which means
that the overall oxidation state of Fe increases first and
then decreases. The heterojunction changes the internal



3170 —— Hanpeng Deng et al.

DE GRUYTER
a b | V 2p|
V 2py,;

= - , V.2pis

L 8

%‘ "? INFO'Vo.s V2p,;

< g V 2p,,

£ = . : : .

NFO
© o o0 0 0 0 0 0 o O O o o
880 875 870 865 860 855 555 552 5‘i 9 5 1 6 513
Binding Energy (eV) Bindina Enerav (eV)
Fe 2p O 1s
() |nFowv, ,p (d) NEGRE P
' 3 =Vgar

—_ sat. Fe%Zsz Fe_ 2n sat. Fe  2py Fez+293«2 — O-H Sy O-M

] s Ul [ BN

S.f 1 1 L L 1 S.’ 1 1 1 1

2 |[NFO-V X > |[NFO-V

I“;’; sat. Fe3+9f)i Fe?2p,, ot Fe’ 2py, g 15 0.3 O-M

c : § Fe¥'2p,,| & O-H O

£ g

E 1 1 1 1 i - E 1 1 1 1

NSIa:'[O F93+ZP1/ Fez*Zm 2gat. Fes+2P3, Fez+2P3“7 NFO s
‘—M Lt
735 730 725 720 715 710 705 536 534 532 530 528

Binding Energy (eV)

Binding Energy (eV)

Figure 3: XPS spectra of NFO, NFO-V, 3, NFO-V, 3-P in (a) Ni 2p, (b) Fe 2p, (c) O 1s, and (d) V 2p region.

electronic structure of the catalyst, and more electrons
are transferred around Fe*" to ensure the high oxidation
state and low e, occupancy of Ni in the catalytic active
site. On the high-resolution O 1s XPS spectrum (Figure
3d), the peak at 529.7 eV is attributed to O-metal bonding,
the peak at 532.6 eV is related to the hydroxyl species of
surface adsorbed water molecules, while the peak at
531.2eV is attributed to a large number of defect sites
with low oxygen coordination, namely, oxygen vacancies
[39]. It is clearly observed that the peak area at 531.2eV
increases with V doping and phosphide heterojunction. It
indicates that amorphous/crystalline mixed heterophase
and phosphide heterojunction bring more defects to the
catalyst and are more favorable for OER activity [30]. EPR
spectroscopy (Figure S7) also demonstrated changes in
oxygen vacancies, and the enhanced EPR signal intensity

at g = 2.003 is attributed to the significant increase in
oxygen vacancies [40].

3.2 OER performance of catalysts

The OER activity of the catalysts was evaluated in 1M
KOH solution using a three-electrode cell, and commer-
cial RuO, was used for comparison. Clearly, catalysts
with different V contents showed different degrees of
OER activity improvement over NFO (Figure S8). NFO-V, 3
exhibits the lowest overpotentials of 309 and 350 mV at
current densities of 20 and 100 mA cm 2 The enhanced
OER activity is related to the formation of amorphous/crys-
talline heterophase and the regulation of electronic struc-
ture induced by V in the catalyst. After constructing the
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surface heterojunction, the OER activity of NFO-V, 5-P was
further enhanced. As shown in Figure 4(a), NFO-V,3-P
exhibits low overpotentials of 277 mV and 310 mV at
current densities of 20 and 100 mA cm 2, far superior
to commercial RuO,. The Tafel plots (Figure 4c) con-
verted from LSV curves can evaluate the reaction kinetics
of the catalysts. NFO-V, 5-P shows the lowest Tafel slope
of 45mV dec™' among all samples, outperforming NFO
(77mV dec™), NFO-V,3 (54 mV dec™), and commercial
RuO, (62mV dec™). This indicates that the OER reaction
kinetics of the catalyst are optimized by V doping and
phosphide heterojunction.

As shown in Figure S9, the intrinsic catalytic activity
of the catalysts can be compared by measuring the Cq in
the potential range from 0.83 to 1.03V to estimate the
ECSA. NFO-V,, 5 possesses the highest Cg4 (0.3 mF cm™),
attributed to more defects in the amorphous/crystalline
phases, exposing the most reactive sites. Although part of
the active surface area of NFO-V, 5-P is covered by the
phosphide heterojunction, the conductivity and more
oxygen vacancy defects brought by phosphating signifi-
cantly increase the OER activity. The charge transport
properties of the catalysts can be further explored through
the EIS tests. Figure 4(d) shows that NFO-V, 3-P has the
lowest R, verifying the enhanced overall conductivity by
phosphide heterojunction. Although the amorphous phase

Coupling the vanadium-induced amorphous/crystalline NiFe,0, with phosphide
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can provide many reactive sites, the electrical conductivity
of both the spinel phase and the amorphous phase is rela-
tively poor. Therefore, the phosphide heterojunction in
NFO-V, 3-P sacrifices little reactive surface area to signifi-
cantly improve the overall conductivity of the catalyst,
which is helpful to further improve the electrocatalytic
activity.

In our designed strategies, the enhanced OER activity
of the catalyst is achieved by tuning the crystal structure
and electronic structure. The amorphous phase induced
by V doping in the crystal structure can provide more
reactive sites, and its poor conductivity is improved by
the phosphide heterojunction. The V and P heteroatoms
introduced by the V-doping and NiP heterojunction stra-
tegies, respectively, jointly promote electronic rearrange-
ment. The transfer of electrons from Ni to V or other
atoms achieves a higher valence state of Ni and an e,
occupancy closer to 1.2, as well as lower binding energy
of the catalyst for oxygen intermediates. The optimization
of the catalyst's electronic structure benefits from the
synergistic regulation of the two designed strategies.
Therefore, the OER activity of the catalyst is greatly
enhanced after adjusting various factors such as active
sites, conductivity, and eg occupancy. Finally, we evaluated
the stability and durability of the synthesized catalysts in
an alkaline electrolyte by measuring chronopotentiometry
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Figure 4: (a) iR-corrected LSV curves of NFO, NFO-V, 3, NFO-V, 3-P, and RuO,. (b) A comparison of the overpotential values at the current

densities of 20 and 100 mA cm~2. (c) Corresponding Tafel plots of the

polarization curves in (a). (d) Nyquist plots of NFO, NFO-V, 3, NFO-V 5-

P. (e) The electrochemical C4 of NFO, NFO-V, 3, and NFO-V, 3-P. (f) OER chronopotentiometry measurement of NFO-V, 3-P catalyst at the

current densities of 20 and 100 mA cm 2,
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curves at 20 and 100 mA cm™ in alkaline media, which is
a critical factor for the large-scale application of catalysts
in industrial applications. Chronopotentiometry curves of
NFO-Vj3-P in 1M KOH (Figure 4f) show that the overpoten-
tial increased by only 4 mV after continuous electrolysis for
12 h, indicating good stability at both low and high current
densities.

4 Conclusion

In conclusion, we successfully constructed amorphous/
crystalline heterophase coupled with phosphide hetero-
junction in NFO-V,3-P by V doping and surface phos-
phating. The phosphide heterojunction improves the poor
conductivity caused by the amorphous phase and achieves
an eg occupancy of 1.26 for Ni. As a result, the catalyst
exhibits a low overpotential of 277 mV at 20mA cm™2,
a Tafel slope of 45mV dec”!, and long-term stability in
alkaline electrolytes. The amorphous/crystalline hetero-
phase and heterojunction provide more active sites and
higher conductivity and promote the electronic regulation
of active sites. This work provides an instructive strategy
to construct amorphous/crystalline heterophase coupled
with heterojunction for synergistically enhanced OER
performance.
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