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Abstract: In recent years, the adsorptionmethod is usually
adopted in the actual treatment of crude oil spills.
However, the high viscosity of crude oils prevents them
from diffusing into the internal pores of the adsorbent,
resulting in ineffective oil capture. Photothermal materials
can reduce the viscosity of crude oil by in situ heating
through the photothermal conversion effect, making it
easier for crude oil to occupy the internal pores of the
adsorbent. At present, the review of the application of
photothermal materials in the field of crude oil adsorption
is still blank. This review focuses on the application of
novel photothermal conversion materials in the field of
crude oil adsorption and their performance comparison.
Among the photothermal conversion materials used in
the field of crude oil adsorption, some are commercial
sponges with high porosity and photothermal coating,
while others are self-assembled three-dimensional porous
structures of materials with inherent photothermal proper-
ties. This review mainly introduces the types and research
progress of materials with good photothermal effect at
home and abroad in recent years and summarizes some
new research ideas and materials that can be applied to
photothermal conversion.

Keywords: sunlight utilization, photothermal conversion
mechanism, photothermal conversion materials, crude
oil adsorption

1 Introduction

Oil is an indispensable resource for human production. In
the process of oil exploration, recovery, and transporta-
tion, oil leakage will cause significant harm to the eco-
system [1,2]. Various efforts, such as gravity separation,
oil boom isolation, solidification, dispersion, bioremedia-
tion, and combustion [3–7], have dealt with crude oil
spills. However, these methods often lead to massive
energy consumption, resources, and time [8]. They are
also inefficient for crude oils with high viscosity and
low mobility, and the chemicals used or produced in
the process sometimes cause secondary pollution [9].
Adsorption is a simple, efficient, and effective method
for dealing with oil spills without secondary pollution
[10]. The porous photothermal material can be used for
crude oil spill repair due to its adsorption, photothermal
conversion, and robust reproducibility. It does not nega-
tively impact the environment when used for in situ
heating to harvest crude oil from the ocean surface or
oil/water mixtures.

In recent years, more and more studies have been
conducted on light-absorbing materials to apply the solar
thermal conversion to crude oil adsorption. Metal-based
nanoparticles and inorganic semiconductor materials are
rarely studied in crude oil adsorption because they do not
have a pore structure and only have light absorption
properties at some wavelengths. They are usually used
in photothermal therapy and solar water evaporation.
Two mainstream 3D network photothermal conversion
structures are currently studied in crude oil adsorption:
the first is the interconnected commercial sponge, which
has been widely studied due to its low cost, high porosity,
and robust mechanical properties. However, it has no
self-heating performance, and its photothermal conver-
sion performance can only be improved by coating
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graphene [11], dopamine [12,13], and other photothermal
coatings. The practical application is achieved by coating
the hydrophobic and thermally conductive layers [14].
The second is to use graphene and its derivatives [15–17],
carbon nanotubes (CNTs) [18,19], MXene materials [20],
etc., to self-assemble into framework materials with self-
healing properties. Then, the photothermal elements (such
as metal coordination compounds [21–23] and inorganic
semiconductors [24,25]) are loaded to improve their photo-
thermal conversion performance further. Therefore, this
article mainly reviews recent advances in photothermal
materials for solar-driven crude oil adsorption.

2 Photothermal conversion
mechanism

Photothermal materials capable of harnessing solar energy
have attracted great interest in the past few decades. An ideal
photothermal conversion material should have broad-spec-
trum solar absorption and high photothermal conversion
efficiency. Under sunlight irradiation, the material absorbs
photons in the sunlight, causing it to be photoexcited.
Driven by photoexcitation, hot electrons are generated,
resulting in the distribution of thermal charge flow, which
ultimately converts solar energy into thermal energy.
According to the type of electrons and the bandgap struc-
ture, the photothermal conversion mechanism can be
divided into the following three categories: (1) Localized
Surface Plasmon Resonance (LSPR) effect, (2) electron–
hole generation and nonradiative relaxation, and (3) con-
jugation or hyperconjugation effect.

2.1 LSPR effect

Common metal-based nanoparticles have the LSPR effect
[26]. When the diameter of metal nanoparticles is smaller
than the excitation wavelength, an electric field of a
specific frequency will cause the coherent oscillation of
metal-free electrons when they pass through the nano-
particles. Optical radiation induces electrons to oscillate
from an occupied state to an unoccupied state, generating
hot electrons that are converted into thermal energy. The
lattice then transfers heat to the surrounding medium
through phonon–phonon coupling, thereby raising the
surrounding temperature. Gold, silver, and platinum nano-
particles are the most common plasmonic metals for photo-
thermal conversion applications. It has been reported that

when the plasmon resonance wavelength of gold is equal
to the wavelength of laser illumination, its temperature
can reach above 70°C [27].

2.2 Electron–hole generation and
nonradiative relaxation

Electron–hole generation and nonradiative relaxation of
semiconductors generally exist in inorganic semicon-
ductor materials. When the incident light is greater than
the bandgap energy of the semiconductor, strong absorp-
tion occurs at wavelengths where the bandgap energy
matches, generating electron–hole pairs [28] equivalent
to the bandgap energy. When the excited electrons return
to the lowest energy level, there are two release paths. One
part is released in the form of photons by radiative relaxa-
tion [29]; the other part is released in the form of phonons
by nonradiative relaxation, and the phonons interact with
the lattice to generate heat. This mechanism applies to var-
ious narrow-bandgap semiconductors, such as CuS [30]
and MoS2 [31]. For wide-bandgap semiconductors, most of
the absorbed energy is re-emitted in the form of photons,
which are prone to electron–hole pair recombination.

2.3 Conjugation or hyperconjugation

In a conjugated system, the overlapping of adjacent π
electrons or the interaction of π bonds with p orbital
electrons redistributes the electron density, resulting in
conjugation effects. While most chemical bonds, such as
C–C, C–H, O–H, and C–O, exist as σ bonds, the interac-
tion between the electrons of the σ bond and the adjacent
empty orbitals or partially filled p orbitals also produces
a conjugation effect called the hyperconjugation effect.
The conjugation effect and hyperconjugation effect make
electrons have strong light absorption in the near-infrared
region and accelerate the migration between electrons.
These electrons can be excited from π to π* orbitals with
lower energy inputs, releasing heat on their return to the
ground state. These two effects enable the photothermal
conversion of many carbon-based materials with conju-
gated structures, such as graphene and CNTs. In addition,
some organic polymers with conjugated structures, such
as polydopamine (PDA) and polypyrrole (PPy), also have
photothermal properties. The excited state electrons relax
from the lowest occupied molecular orbital to the highest
occupied molecular orbital through electron–phonon
coupling, thereby generating thermal energy.
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3 Crude oil adsorption

3.1 Liquid adsorption mechanism

For the liquid adsorption process of three-dimensional
porous materials, the adsorption efficiency is mainly
determined by the porosity, surface wettability, absor-
bent pore size, average tortuosity factor, and liquid visc-
osity. The adsorption efficiency increases with increasing
adsorbent porosity, pore size, surface tension, decreasing
liquid viscosity, and decreasing tortuosity of the adsor-
bent [32]. Based on the liquid adsorption mechanism, we
can improve the oil absorption efficiency from the fol-
lowing three aspects to achieve the purpose of adsorbing
crude oil: (1) hydrophobic/oleophilic modification; (2)
enhancement of the inner capillarity action of oil adsorp-
tion materials (tortuosity reduction); and (3) combination
of heating methods with oil adsorption materials [33].

3.2 Application of photothermal conversion
to crude oil adsorption

Generally speaking, the composition of crude oil is very
complex. Due to their molecular structure [34] and the
influence of other heteroatoms or groups [35], they have
such high viscosity that they are difficult to be adsorbed by
ordinary porous adsorbents. The viscosity of crude oil is a
key parameter affecting its recovery, production and trans-
portation, and remediation [36]. The viscosity of crude oil
is largely dependent on two external factors: temperature
and pressure. Elevated temperature causes crude oil to
become less viscous and increase its fluidity. Photothermal
conversion materials can use their own characteristics to
convert absorbed sunlight into heat energy to heat crude
oil in situ to reduce the viscosity of crude oil, so that it
is easier to be adsorbed. Therefore, this review mainly
focuses on the use of solar energy to assist adsorbents
with photothermal effect to achieve high-efficiency photo-
thermal conversion to accelerate the crude oil adsorption.

4 Research status of new
photothermal conversionmaterials
and their crude oil adsorption

With the development of science, technology, and human
society, the demand for clean energy utilization in various

fields has increased. Photothermal materials with low
price, easy functionalization, easy preparation, and broad
spectral absorption have been widely studied. At present,
common new photothermal conversion materials mainly
include: metal-based nanoparticles [37], inorganic semi-
conductor materials [38], organic polymers [39–41], Mxene
materials [42,43], and carbon-basedmaterials [44,45]. Porous
photothermal conversion materials have been widely studied
in crude oil adsorption applications.

4.1 Metal-based nanoparticles

Metal-based nanoparticle photothermal conversion mate-
rials are mainly silver, gold, palladium, and other precious
metals. Surface plasmon oscillations of metal electrons lead
to enhanced light absorption in electromagnetic fields. The
surface plasmon absorption spectrum undergoes a red shift
as the particle size increases. Nanoparticles of the right size
can strongly absorb visible hooks and near-infrared light.
Therefore, the photothermal conversion properties of these
metal-based nanoparticles are affected by their shape, size,
and environment. At the same time, its light absorption
range is limited, and it is generally used in conjunction
with other photothermal materials with broad spectral light
absorption. Metal-based nanomaterials are usually only
supported simply. It is easy to be detached during use,
which greatly reduces the light-to-heat conversion perfor-
mance of the material. Shi et al. [46] prepared magnetic
lignin-based polyurethane foam by adding polyurethane
and Fe2O3 nanoparticles during lignin foaming. The pre-
pared foam has good photothermal conversion and recy-
cling performance and can be used to remove viscous crude
oil in water. Ding et al. [47] reported a UV-initiated cross-
linking of polysodiummethacrylate (pNaMMA), then replaced
Na+ ions with Ag+, and then photothermally in situ reduced to
silver nanoparticles (AgNPs). The prepared pNaMMA/AgNPs
fabric has the effect of oil–water separation and sterilization.
The materials reported by them all make the matrix material
have strong bonding with metal-based nanoparticles and
have good recycling performance.

4.2 Inorganic semiconductor materials

Black inorganic semiconductor materials have become
the research focus of photothermal conversion materials
due to their advantages of various types and easy func-
tional modification, usually including black titanium
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dioxide, Cu7S4, Ti3AlC2, etc. Generally speaking, inor-
ganic semiconductors are commonly used in fields, such
as photothermal therapy [48] and solar water evaporation
[49], due to their excellent processability and biocompat-
ibility [50]. Inorganic semiconductors are rarely used in
crude oil adsorption and must be combined with other
materials. Inorganic semiconductor materials are similar
to metal-based nanoparticles. In the field of crude oil
adsorption, attention should also be paid to the problem
of photothermal unit falling off. Li et al. [51] used carbon
black nanoparticles to decorate the viscous polymer foam
skeleton, which could be heated to more than 80°C under
the irradiation of 1 Sun, and the adsorption capacity
reached 6 g/g. Sun et al. [52] assembled CuFeSe2 nanopar-
ticles synthesized by wet chemistry with graphene aerogels
to synthesize graphene aerogel-CuFeSe2 (GA-CuFeSe2). It
has an ultrafast adsorption rate and a large adsorption
capacity at a specific wavelength (808 nm). Niu et al. [53]
deposited CuS nanoparticles on melamine sponges (MSs)
(Figure 1a). Under sunlight, the sponge can be quickly
heated, effectively reducing the viscosity of the surrounding
crude oil and enhancing the fluidity. The peristaltic pump
can continuously absorb crude oil at 5.30 g/min. Li et al. [54]
designed a layered CuO@CuS/PDMS nanowire array (NWA)
inspired by the Crassula perforata-Structured (Figure 1b).
This structure has excellent photothermal conversion
performance and thermal conductivity, and the adsorp-
tion capacity of crude oil can reach 1.56 × 106 g/m3 in the
adsorption process of 5 min.

4.3 Organic polymers

Common organic polymer photothermal conversion mate-
rials mainly include dopamine and PPy. The construction
of a donor–acceptor structure within the dopamine system
resulted in a lower energy gap and increased electron

delocalization [55]. The unique wrinkled structure of mul-
tilayer PPy is formed spontaneously during the polymer-
ization process. The PPy surface will absorb incident light
at different angles after multiple reflections, promoting the
broad-spectrum light capture capability of the multilayer
PPy nanosheets [56]. Compared with metal-based nanopar-
ticles and inorganic semiconductors, which have photo-
thermal conversion effects only in a certain wavelength
range, organic polymers have the ability to capture broad-
spectrum light. While sunlight has a very wide wavelength
range, organic polymers can better utilize the energy of
sunlight and can be better applied in practice. Thence, these
advantages make them suitable for crude oil adsorption.
While organic polymers need to pay attention to their envir-
onmental stability, they are prone to corrosion and photo-
degradation. Therefore, they usually need to be protected
by other functional coatings in practical use. In 2015, Wu
et al. [57] integrated the sunlight-induced photothermal
conversion effect of PPy and the thermoresponsive proper-
ties of poly(n-isopropyl acrylamide) (PNIPAm) into an MS.
The material successfully achieved rapid absorption of
heavy oil under sunlight and passive oil release underwater
at room temperature. In 2018, Zhang et al. [58] synthesized a
self-heating hydrophobic/lipophilic sponge by depositing
PDA and polydimethylsiloxane using an aqueous deposi-
tion process, benefiting from the photothermal conversion
effect of PDA coating. The temperature of the sponge is
rapidly increased, reducing the viscosity of the crude oil
in situ. The adsorption capacity of the self-heating sponge
can reach 1.29 ± 0.37 × 106 g/m3. At the same time, they
integrated a self-heating sponge with a peristaltic pump to
create a self-heating vacuum cleaner (Figure 2a) that
enables continuous cleaning or collection of crude oil
from the water surface. In 2021, Li et al. [59] constructed
a polydimethylsiloxane (PDMS)/polyaniline (PANI)-modified
MS by simple polymerization and dip coating (Figure 2b).
The unique photothermal coating makes the surface equi-
librium temperature rise rapidly to 81.80°C within 2min,

Figure 1: (a) Solar-assisted in situ crude oil recovery [53]. (b) CuO@CuS/PDMS NWA growth and crude oil adsorption diagram [54].
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thus showing an excellent adsorption capacity of
1.17 × 106 g/m3. In 2022, Zeng et al. [60] prepared a super-
hydrophobic cotton fabric with a photothermal conversion
effect by the PPy deposition method. The surface of the
modified cotton fabric was heated to 68.20°C through the
photothermal conversion effect to reduce the viscosity of
crude oil and selectively absorb crude oil in water. The
efficiency increased from 83.20 to 91.80%.

4.4 Inorganic compound MXene materials

The research on inorganic compounds MXene is still in its
infancy, and the mechanism is not fully understood.
MXene and other materials are necessary for their photo-
thermal behavior due to their excellent solar light absorp-
tion properties. At the same time, sunlight can pass through
the lattice structure of MXene and can be reflected multiple
times between layers, so MXene has efficient light absorp-
tion in a wide range of the solar spectrum. MXene is

characterized by high mechanical properties, high elec-
trical conductivity, and shape diversity in structure and
composition. They are also hydrophobic, so they are also
used in crude oil adsorption. Inspired by wood, Cai et al.
[61] synthesized MXene aerogels with excellent photo-
thermal conversion ability with functionalized cellulose
nanocrystals by green mechanochemistry. The desired
microstructures can be controllably diversified for struc-
turally adaptive functions through nucleation-driven
fine-tuning. MXene aerogels exhibit durable superhy-
drophobicity, mechanical superelasticity, efficient light
oil absorption, and excellent light-to-heat conversion.
Ma et al. [62] modified lignin-based polyurethane foam
with MXene nanosheets (Figure 3a), the maximum equi-
librium temperature reached 83.50°C, and the adsorption
capacity reached 7.60 ± 0.20 g/g under 1 Sun. At the
same time, it is easy to degrade in an alkaline solution,
leaving only TiO2 particles that are harmless to the envir-
onment, which makes it safer and more environmentally
friendly to recycle. Gong et al. [63] used a simple strategy
to prepare Ti3C2TX Mxene-wrapped commercial sponges

Figure 2: (a) Schematic illustration of the solar-driven vacuum cleaner [58]. (b) Schematic diagram of PDMS/PANI photothermal conversion
crude oil adsorption [59].

Figure 3: (a) Schematic diagram of LPUF photothermal conversion crude oil adsorption and recovery [62]. (b) Schematic illustration of
all-weather Ti3C2TX@PU used for viscous oil cleanup [63].
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(Ti3C2TX@PU) (Figure 3b). Under the irradiation of 1 Sun,
the temperature was raised to 75°C within 2min, and the
adsorption capacity reached 43 times its own. The sponge
has a good electrothermal conversion effect and can be
used for all-weather crude oil adsorption.

4.5 Carbon-based materials

Compared with photothermal conversion materials, such
as metal-based nanoparticles, organic polymers, MXene
materials, or inorganic semiconductors, carbon-based 3D
materials have the advantages of broad-spectrum light
absorption, excellent photothermal conversion perfor-
mance, low cost, and tunable pore structure. In addition,
the surface of carbon-based materials is easy to expand
and modify and can be integrated with various sub-
strates. Carbon-based nanomaterials have been selected
as excellent photothermal conversion materials due to
their properties and are widely used in crude oil adsorp-
tion. Wu et al. [64] reported a three-dimensional porous

material with a radially arranged porous structure pre-
pared from carbonized natural wood coated with PDMS
as the hydrophobic layer (Figure 4a). Low adsorption
resistance and high capillary effect make it easier for
crude oil to enter the pores of balsa wood for fast cleaning
of crude oil. It can raise the surface temperature to 75°C
in 1 min under 1.5 Sun. It also compresses and releases
at a constant 50% strain for extended periods without
structural damage. Luo et al. [65] reported a reduced gra-
phene oxide (RGO)-based microsphere aerogel with many
radially oriented microchannels (Figure 4b), which was
synthesized by growing CNTs within the microchannels
and reducing graphene oxide components at high tempera-
ture. Due to the efficient photothermal conversion effect and
the rough lipophilic surface of the large surface area micro-
channels, this aerogel promotes the absorption of sunlight,
thereby enhancing the adsorption of crude oil. Under 1 Sun,
the aerogel surface temperature rapidly rose to 83°C within
1 min. In addition, the aerogel with a large number of
radially oriented microchannels has an extraordinary
adsorption capacity for heavy crude oil, with an adsorp-
tion capacity as high as 267 g/g in 10 min.

Figure 4: (a) Schematic comparison between PDMS@WCS with aligned channels and commercial MS with random pores [64]. (b) Schematic
diagram of CNTs/RGO microspherical aerogels photothermal conversion crude oil adsorption CNTs/RGO microspherical aerogels [65].
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5 Performance comparison of
photothermal materials toward
removal of oil spills

In recent years, the efficient and pollution-free applica-
tion of photothermal materials in crude oil adsorption by
converting solar energy into heat has attracted consider-
able attention. Photothermal materials in high-viscosity
oil spill remediation rely on their unique structural prop-
erties, such as surface hydrophobicity, high surface area,
and tunable pore structure. Judging the advantages and
disadvantages of photothermal materials in the field of
crude oil adsorption mainly depends on the adsorption
capacity, adsorption time, cycle stability, and photo-
thermal conversion performance. Table 1 summarizes
the photothermal materials in crude oil adsorption in
the past 5 years.

6 Summary and outlook

Photothermal conversion materials based on sunlight uti-
lization technology can absorb sunlight, convert it into
heat energy, and then reduce the viscosity of crude oil
through the transfer of heat energy to achieve the purpose
of crude oil adsorption. Metal materials have problems,
such as complex preparation process, environmental pol-
lution, high cost, and low photothermal conversion effi-
ciency, limiting their application in crude oil adsorption.
However, semiconductor materials are expensive, and
some are difficult to prepare on a large scale. Long-term
service may lead to reduced stability, which limits their
practical application. Organic polymers are usually com-
pounded with commercial sponges. Generally, their slow
heating rate, low thermal conductivity, and low maximum
equilibrium temperature limit their application in crude oil
recovery.

In contrast, carbon-basedmaterials have attracted much
attention in crude oil adsorption due to their broad-spectrum
absorption, tunable pore structure, stable mechanical
properties, acid and alkali corrosion resistance, and
high photothermal conversion efficiency. At present, the
light absorption properties of most materials reach more
than 90% and should no longer be the focus of research.
The relationship between the physicochemical properties
of materials and the photothermal conversion needs to be
further explored to improve the energy conversion effi-
ciency. Carbon-based materials are prone to defects,
resulting in additional thermal resistance, which cannot

exert their inherent excellent physical properties well.
In addition, the extra-loaded photothermal absorption
element is easily detached under long-cycle conditions,
thereby significantly reducing the photothermal conver-
sion effect, and further research is needed.
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