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Abstract: During the orthodontic process, increased micro-
bial colonization and dental plaque formation on the ortho-
dontic appliances and auxiliaries are major complications,
causing oral infectious diseases, such as dental caries and
periodontal diseases. To reduce plaque accumulation, anti-
microbial materials are increasingly being investigated and
applied to orthodontic appliances and auxiliaries by various
methods. Through the development of nanotechnology,
nanopatrticles (NPs) have been reported to exhibit excellent
antibacterial properties and have been applied in ortho-
dontic materials to decrease dental plaque accumulation.
In this review, we present the current development, anti-
bacterial mechanisms, biocompatibility, and application of
antibacterial NPs in orthodontic materials.
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1 Introduction

Orthodontic materials, including fixed and removable
orthodontic appliances and orthodontic auxiliaries, are
essential components in orthodontic treatments. However,
the potential adverse effects associated with these appli-
ances and auxiliaries remain unresolved. Increased micro-
bial biofilm accumulation on orthodontic appliances and
auxiliaries and subsequential dental caries and periodon-
titis are common complications during orthodontic treat-
ment [1,2]. Various attempts have been made to inhibit
biofilm accumulation on orthodontic appliances and aux-
iliaries [3], and the addition of antimicrobial agents to these
appliances is one of the most effective strategies [4,5]. Some
particles have been reported to exhibit excellent antibac-
terial properties against both gram-positive bacteria and
gram-negative bacteria when transformed into nanometer
size [6-10], and these nanosized antibacterial agents are
preferred to be added to dental materials due to the greater
surface-to-volume ratio of nanoparticles (NPs), which have
intimate interactions with microbial membranes and pro-
vide a considerably larger surface area for antibacterial
activity [11-13]. NPs can be used in dental materials through
two mechanisms, including mixing NPs with dental mate-
rials or preparing NP coatings on the surface to reduce
microbial adhesion and prevent caries [14,15]. In ortho-
dontic treatment, NPs have been proposed for a variety of
purposes, such as inhibiting bacteria [15], reducing friction
[16], and increasing bond strength [17]. The purpose of this
article is to review the antibacterial mechanism, biocompati-
bility, and application of NPs in orthodontic materials and
put forward the prospect of the possible research direction of
the combination of antibacterial NPs and orthodontic mate-
rials in the future.

2 Antibacterial mechanism of NPs
applied in orthodontic materials

When the particles applied for orthodontic material modifi-
cation are reduced to nanometer size, new physicochemical
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and mechanical properties can be obtained, and some NPs
can improve the antibacterial ability of orthodontic materials
in different ways [18]. NPs can exhibit antibacterial function
when in contact with bacterial cells through electrostatic
attraction [19], van der Waals forces [20], receptor-ligand
interactions [21], and hydrophobic interactions [22]. At pre-
sent, the antibacterial mechanism of NPs is not clearly
understood, and many details of the dynamic process of
their interaction with bacterial cells are not clearly known,
but with the help of numerous analytical tools and research
methods, some common understandings have been accu-
mulated (Figure 1).

2.1 Inhibition of biofilms

Biofilms are complex communities that form when a
group of microorganisms self-secrete a polysaccharide
matrix that retains nutrients for the constituent cells
and protects them from both the immune response and
antimicrobial agents [23]. Reducing the adhesion of bio-
films is an effective way to prevent oral infections. Some
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evidence shows that NPs can affect bacterial adhesion

and biofilm formation [24,25], and the mechanisms that

have been concluded are as follows:

1) Reduction of the formation of biofilms: The mechanism
by which NPs inhibit the formation of bacterial biofilms
is related to the regulation of bacterial metabolism,
which is an important activity of biofilms. NPs were
reported to adhere to and diffuse into biofilms, act on
the ion channels in bacterial biofilms that are helpful for
the long-distance electrical signal conduction of bacteria
in a biofilm, disrupt the membrane potential, and lead to
enhanced lipid peroxidation and DNA binding, thus reg-
ulating the metabolic activity of bacteria and decreasing
the ability of bacteria to form biofilms [26-28].

2) Reduction of the adhesion of biofilms: NPs can modify
the surface of the material and make it not conducive to
the adhesion of the biofilm. Jasso-Ruiz demonstrated
that the orthodontic brackets coated with nanosilver pre-
sent smoother surfaces, which reduced the adhesion
of both Streptococcus mutans and Streptococcus sobrinus
to the orthodontic brackets, demonstrating the antibac-
terial properties of silver NPs (Ag NPs) [15]. In the study
of Lee, an anti-adherent effect against Candida albicans

Extracellular

NPs act on the ion channels

b

NPs depositing on the
bacteria cell membrane

ROS causes oxidative stress
Metal ions bind with

Bacteria cell rupture,leakage of
cellular contents and bacterial death

Figure 1: Antibacterial mechanism of NPs applied in orthodontic materials.
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and Streptococcus oralis was observed with the incorpora-
tion of mesoporous silica NPs (MSNs) into poly(methyl
methacrylate) (PMMA) [29].

2.2 Extracellular antibacterial effects

Before penetrating bacteria cells, NPs exhibit antibac-
terial effects through the disruption of the bacterial cell
membrane. The main disruption methods are as follows:

D

2)

Depositing on the surface and interaction with the
components of the cell membrane: Visualization methods
such as electron microscopy and atomic force microscopy
have shown that the appearance of the bacterial cell mem-
brane could be changed when NPs deposit on the surface
of bacteria. This deposition causes large holes that cannot
be repaired on the surface of the bacterial cell [30], which
is followed by the NP’s penetration into the bacterial cell
[31]. The destruction of cell morphology and integrity was
observed after the deposition of ZnO NPs [32], and depres-
sions in the cell membrane of Escherichia coli and a large
amount of Ag NPs embedded in the cell membrane of
bacteria were found after the deposition of Ag NPs on
the bacterial cell membrane [33-36]. In addition, some
NPs were reported to exhibit the antibacterial effects
through the direct interaction with bacterial cell mem-
brane components, which is followed by cell death due
to the increasing membrane permeability and the leakage
of cellular contents [37].

Reactive oxygen species (ROS)-induced oxidative stress:
NPs reduce oxygen molecules to produce different types
of ROS, including superoxide radicals (O, ), hydroxyl
radicals (OH), hydrogen peroxide (H,0,), and singlet
oxygen (0O,), which have strong positive redox poten-
tial and exhibit different levels of dynamics and
activity [38]. The excess of ROS disrupts the balance
between the production and clearance of ROS in
bacterial cells and causes oxidative stress, which
damages the individual components of bacterial cells
[24,39]. Oxidative stress has been proven to be a
key factor in changing cell membrane permeability,
which can lead to the destruction of the bacterial cell
membrane, causing the leakage of cellular contents
and resulting in bacterial death [40]. Danilczuk reported
Ag-generated free radicals through the electron spin
resonance (ESR) study of Ag NPs [41], and Kim con-
firmed the production of free radicals by ESR ana-
lysis of Ag NPs and concluded that the antibacterial
mechanism of Ag NPs is related to the formation
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of free radicals and subsequent free radical-induced
membrane damage [42]. As reported, titanium dioxide
NPs can produce hydroxyl radicals with a strong bac-
tericidal effect [43].

Effects of dissolved metal ions: The positively charged
metal ions of NPs are released to bind with the nega-
tively charged functional groups of the bacterial cell
membrane, resulting in the confusion and dispersion
of the originally ordered and closely spaced cell mem-
branes, destroying their inherent function and leading
to bacterial death [44,45]. Sondi and Salopek-Sondi
demonstrated that sulfur-containing proteins/key
enzymes in the membrane or inside the cells are likely
to be the preferred binding sites of Ag NPs, and the
accumulation of Ag NPs on the bacterial membrane
can cause permeability and lead to cell death [33].

2.3 Intracellular antibacterial effects

NPs penetrate in bacterial cells and interact with impor-
tant functional molecules, resulting in the inhibition of
the growth of bacterial cells in the following ways:

1)

2)

ROS-induced oxidative stress: NPs introduce ROS and
metal ions into bacteria by diffusion, and ROS can
help to improve the gene expression level of oxidized
proteins, which is an important mechanism of bac-
terial apoptosis [46]. ROS can attack proteins and
inhibit the activity of certain periplasmic enzymes
essential for maintaining the normal morphology and
physiological processes of bacterial cells [44,47].
Effects of dissolved ions: Metal ions absorbed into
bacterial cells directly interact with the functional
groups of proteins and nucleic acids, including mercapto
(-SH), amino (-NH), and carboxyl (-COOH) groups,
damaging enzyme activity, changing the cell structure,
affecting normal physiological processes, and ultimately
inhibiting microorganisms [38,42,48,49]. Morones
et al. [50] and Sondi and Salopek-Sondi [33] studied
the bactericidal effect of Ag NPs and found that these
NPs were able to penetrate inside the bacteria and
cause further damage, possibly by interacting with
sulfur- and phosphorus-containing compounds, such
as DNA. Feng et al. [51] found that DNA lost its replica-
tion ability and that the protein became inactivated and
Yamanaka et al. [52] found that the expression of ribo-
somal subunit proteins and other cellular proteins and
enzymes necessary for ATP production was inactivated
after Ag+ treatment.
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3 NPs applied for antibacterial
purposes in orthodontic
materials

NPs applied for antibacterial purposes in orthodontics
are mainly combined with dental materials or coated
over the surfaces of orthodontic materials. According to
the sources and modes of action, they can be roughly
divided into three types: inorganic NPs, organic NPs,
and natural macromolecule compound NPs.

3.1 Inorganic NPs

Inorganic NPs include metals, metal oxides, their doped
form, and some novel surface-modified NPs.

3.1.1 Nanoparticulate metals

Metals have been used as antimicrobial agents for cen-
turies, and they can obtain stronger antibacterial activity
when the size is reduced to the nanometer scale.

3.1.1.1 Ag

According to recent studies, nanosilver is the most com-
monly used antibacterial nanometal in orthodontic mate-
rials. Whether used alone or in combination with other
reagents, Ag NPs have shown excellent antibacterial
properties. Ag NPs formed in situ show substantial anti-
bacterial activity through oxidative stress and the release
of silver ions [53,54]. Silver ions are very active and can
quickly bind to negatively charged proteins, RNA, DNA,
and so on, which is the most important part of their anti-
bacterial mechanism [55]. It has been observed that Ag
NPs can attach to the bacterial cell membrane and pene-
trate the bacterial internal respiratory chain, leading to
bacterial cell leakage and eventual cell death [56]. As
expected, Ag NPs have been studied in a variety of ortho-
dontic appliances and auxiliaries and have shown extra-
ordinary antibacterial effects [15,57-60].

3.1.1.2 Au

Gold NPs (Au NPs) exert favorable biocompatibility and
can be easily modified due to their controllable size and
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chemical stability [61]. 4,6-Diamino-2-pyrimidinethiol-
conjugated Au NPs (AuDAPT) were previously reported
to effectively kill multidrug-resistant gram-negative bac-
teria and induce drug resistance to a much smaller extent
than conventional antibiotics [62]. AuUDAPT-coated aligners
have been proven to have antibacterial effects on the sus-
pension of Porphyromonas gingivalis, slow biofilm forma-
tion, and favorable biocompatibility [63].

3.1.1.3 Cu

As an NP with an antibacterial effect, copper is signifi-
cantly more affordable than silver or gold, so it is econom-
ically attractive. Antibacterial effects on Staphylococcus
aureus, E. coli, and S. mutans were observed in the study
of Argueta-Figueroa et al. when Cu NPs were added to
orthodontic adhesives [64].

3.1.2 Nanoparticulate metal oxides

Highly ionic nanoparticulate metal oxides are very valu-
able as antimicrobial agents, since they can be prepared
with extremely high surface areas and special crystal
morphologies with a large number of edges and corners,
as well as other potentially reactive sites [65].

3.1.2.1 CuO

Khan et al. showed that CuO NPs had a strong inhibitory
effect on the growth and colonization of microbial plaque
[66]. The study of Toodehzaeim et al. showed that ortho-
dontic adhesive containing CuO NPs had antibacterial
properties and could inhibit the growth of S. mutans [67].

3.1.2.2 ZnO

Previous studies have proven that nanozinc oxide has a
strong bactericidal effect on gram-positive and gram-
negative bacteria as well as spores resistant to high tem-
perature and high pressure. The antibacterial mechanism
of ZnO includes the reduction of bacterial viability, the
generation of hydrogen peroxide, the accumulation of
ZnO NPs on the surface of bacteria, the production of
ROS on the surface of particles, the release of zinc ions,
the dysfunction of bacterial cell membranes, and the
internalization of ZnO NPs [68]. ZnO NPs were used to
prepare a unique coating on the surface of NiTi archwire,
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and the coating had a superior antibacterial effect on
both gram-negative bacteria and gram-positive bacteria
and had superior frictional performance [69]. In addition,
cationic curcumin-doped zinc oxide NPs (cCur/ZnO NPs)
have been added to orthodontic adhesives to control a
variety of cariogenic biofilms and reduce their metabolic
activity [70].

3.1.2.3 TiO,

Among all kinds of nanomaterials, titanium dioxide NPs
have excellent properties, such as high chemical stabi-
lity, good biocompatibility, and nontoxicity. Previous
experiments have shown that titanium dioxide can gen-
erate superoxide anion radicals and hydroxyl radicals
with strong chemical activity and bactericidal activity
due to its electronic structure [43,71]. These ROS are
strong oxidants that react with biomolecules, such as
lipids, proteins, and nucleic acids, resulting in oxidative
damage to cell membranes and bacterial death [72-74].
TiO, NPs were reported to be added to glass ionomer
cement in orthodontic treatment and the results showed
that TiO, NPs caused rapid intracellular bacterial damage
and could significantly improve the antibacterial effect
[43]. In addition, fixed retainer composites filled with
TiO, NPs showed a statistically significant increase in
antibacterial activity [75].

Although the nanometals and nanometal oxides listed
above exhibit effective antibacterial properties, their bio-
compatibility and safety are still not confirmed and still
need to be determined by further intraoral studies. Silver
and copper ions have been reported to be cytotoxic in in
vitro studies for several types of cells, and the toxicity
mechanism is not yet clear, which may be mostly attrib-
uted to the size and concentration of NPs [76,77]. Au NPs
exert favorable biocompatibility, while the cost is a vital
problem when Au NPs are applied in orthodontic materials
for bacterial inhibition. ZnO and TiO, NPs show biocom-
patibility and minimum cytotoxicity [43,70], making them
possible types of antibacterial NPs for application in ortho-
dontic materials.

3.1.3 Fluoride NPs

During an acidic challenge, the presence of fluoride initi-
ates the formation of fluorapatite to replace the dissolved
hydroxyapatite, which is conducive to remineralization
[78]. Fluorides with significant antibacterial activity have
been found to affect bacterial metabolism mainly through
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intracellular antibacterial effects. They can act either directly
or by forming metal-fluoride complexes that have signifi-
cant effects on a variety of enzymes and regulatory phos-
phatases [79]. Released F-ions can act as glycolytic enzyme
inhibitors and transmembrane proton carriers to inhibit oral
microorganisms by inducing cytoplasmic acidification and
have long-distance antibacterial activity [80,81]. Fluoride
NPs can exhibit antibacterial effect and play a role in demi-
neralization and remineralization processes, while many
oral bacteria are insensitive to the direct action of fluoride
unless they are prepared as metal—fluoride complexes. Asiry
et al. evaluated the antibacterial effect of a conventional
orthodontic composite resin blended with yttrium fluoride
(YF3) NPs and a remarkable antibacterial effect was
proven [82]. In addition, Yi developed a resin-modified
glass ionomer containing NPs of calcium fluoride (nCaF2)
with antibacterial and remineralization capabilities to combat
enamel white spot lesions [83].

3.1.4 Mesoporous bioactive glass NPs (MBNs)

MBNs are bioactive substances consisting of SiO,, CaO,
Na,0, and P,0s. MBNs have been widely used as biolog-
ical materials because of their high chemical stability,
mechanical stability, and effective bioactive functions
[84]. They can remineralize enamel and dentin with
high bioactivity, lower cytotoxicity to dental pulp stem
cells, and antibacterial activity against intraoral bacteria
[85,86]. MBNs exhibit the antibacterial effects mainly
through extracellular antibacterial effects. It has been
hypothesized that the antibacterial activity of bioactive
glass is attributed to the increase in local pH following
the exchange of sodium ions with protons in body
fluids, and the alteration to a highly alkaline environment
stresses bacteria and induces them to modify their form and
ultrastructure, thus changing numerous genes and protein
phenotype patterns [87]. Another factor that contributes to
antibacterial activity is the release of ions, such as silica,
calcium, and phosphate, which interfere with bacterial
membrane perturbation, resulting in higher osmotic
pressure [84]. In addition, resin-modified glass iono-
mers and adhesives containing MBN can release calcium
and phosphate, thus improving the mechanical proper-
ties of demineralized hard tissues [85,86,88]. Nam con-
firmed the antibacterial effect of fluorinated bioactive glass
NPs added to orthodontic bonding resin on S. mutans [89],
and the remineralization ability of MBNs added to a self-
adhesive resin and its antibacterial effect on both gram-
negative and gram-positive bacteria was further proven by
Choi et al. [90].
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3.1.5 MSNs

The direct bactericidal effect of MSNs has not been reported.
Lee et al. first utilized MSNs themselves as antimicrobial
additives and an anti-adherent effect against C. albicans
and S. oralis was observed with the incorporation of MSNs
into PMMA [29]. The major mechanism of the anti-adherent
effect against microbes is related to the hydrophilic surface
energy. Moreover, in this study, MSN was reported to be a
carrier of amphotericin B and the performance after loading
amphotericin B into MSN-incorporated PMMA suggested a
long-term antimicrobial effect [29].

3.1.6 Nanographene oxide (N-GO)

N-GO has antibacterial activity because it has several
chemical groups, which makes it able to form different
interactions between covalent and noncovalent, and
N-GO may show more activity at the edges than at the
surface due to ROS [91]. Pourhajibagher and Bahador [92]
highlighted that 5wt% N-GO could be considered an
orthodontic adhesive additive to reduce the microbial
count and biofilm with no adverse effect on the shear
bond strength and adhesive remnant index. The antibacterial
property of N-GO has been proven, and its high water solu-
hility, good biocompatibility, low toxicity, good mechanical
properties, and high cost-effectiveness allow it to be used for
bacterial inhibition in orthodontic materials.

3.2 Organic NPs
3.2.1 Quaternary ammonium compounds

Polymerizable quaternary ammonium salt (QAS) is a
broad-spectrum cationic biocide and possesses signifi-
cant antibacterial activities against a variety of bacteria,
fungi, and viruses [93]. Cationic QAS exhibits the anti-
bacterial effects mainly through extracellular antibac-
terial effects by attracting and penetrating negatively
charged bacterial cell membranes [93,94]. Studies have
shown that the addition of insoluble antibacterial qua-
ternary ammonium polycationic polyethyleneimine (PEI)
NPs to orthodontic adhesives and cements, such as Neo-
bond and GC Fuji Ortho LC, results in stable antibacterial
properties and may prevent S. mutans from growing adja-
cent to orthodontic appliances [95]. Sharon et al. [96] also
confirmed that the addition of quaternary ammonium poly-
ethyleneimine (QPEI) NPs to orthodontic cement appeared
to significantly reduce the number of viable S. mutans and
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Lactobacillus casei, as well as bacterial biomass around
orthodontic brackets. In addition, these NPs could be highly
effective for months without compromising the chemical,
physical, or biological compatibility of the combined base
materials [97].

3.3 Natural macromolecule compound NPs

The delivery of traditional antibacterial natural macro-
molecule compound materials in the form of nanolipo-
somes and NPs can improve the transport efficiency of
drugs and enhance the stability and targeting of drugs,
which is the main form of clinical use of nanoantimicro-
bials at present. Some natural macromolecule compound
nanomaterials are reported to exert antimicrobial effects
with high levels of biodegradability and biocompatibility
without causing toxicity and have been applied in ortho-
dontic materials for antibacterial purposes.

3.3.1 Chitosan NPs

Chitosan is a cationic material, as it contains one primary
amine group and chitosan has shown antifungal activity in
the free form of the polymer [37] or its derivatives [98,99],
especially against C. albicans. Chitosan NPs inhibit bac-
teria mainly through extracellular antibacterial effects. The
antibacterial and antifungal activity of chitosan is mostly
associated with its polycationic nature, which interacts
with negatively charged phospholipid components on
the bacterial and fungal membrane, resulting in increased
membrane permeability and the leakage of cellular con-
tents, which subsequently leads to cell death [37,100-102].
Hosseinpour et al. [2] added chitosan NPs to orthodontic
primers and found their antibacterial activity against S.
mutans, Streptococcus sanguinis, and Lactobacillus acido-
philus lasted up to 7 days in a rat model.

3.3.2 Curcumin NPs and curcumin-doped poly lactic-co-
glycolic acid (PLGA) NPs

Curcumin is a natural hydrophobic compound derived
from the common food spice rhizome of Curcuma longa
(turmeric) with therapeutic properties, including antimi-
crobial, anti-inflammatory, and wound healing properties
[103]. Curcumin can inhibit the growth and proliferation of
many bacterial strains, such as staphylococci, lactobacilli,
and streptococci, and its antibacterial activity is attributed
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to the destruction of the bacterial peptidoglycan cell wall
[104]. Curcumin has been proven to have antibacterial
activity against S. mutans, S. sanguinis, and L. acidophilus
when added to orthodontic adhesives [105]. The application
of curcumin has been limited by its poor bioavailability due
to its low water solubility, poor permeability, and rapid
metabolism. PLGA has been used to carry curcumin for anti-
bacterial purposes because of its sustained drug delivery,
biocompatibility, biodegradability, and high stability in bio-
logical fluids and during storage [106,107], and curcumin-
doped poly lactic-co-glycolic acid NPs (Cur-PLGA-NPs) have
been proven to serve as an orthodontic adhesive additive with
anti-biofilm activity and can be used to control S. mutans
biofilm formation [108].

4 Biocompatibility and safety of
antibacterial NPs applied in
orthodontic materials

The biocompatibility and safety of nanomaterials and
NPs remain uncertain. The toxicity of antibacterial NPs
is affected by many factors, such as NP type, dose, par-
ticle size, distribution, action duration, concentration,
and interaction with other compounds. Some researchers
have pointed out that there are current limitations of NPs
applied in the dental sector related to the topics of bio-
compatibility and safety [109], while others have sug-
gested that there is little evidence for these limitations
[110]. Previous studies on NPs applied in orthodontic
materials usually investigated the antibacterial charac-
teristics for very short periods, varying from days to a
few weeks, and were mostly carried out under in vitro
conditions, which could not provide sufficient evidence
for biocompatibility and safety. The long-term perfor-
mance of orthodontic materials with NPs needs further
investigation to develop fully biocompatible and safe
nanomaterials [111-113].

5 Materials with antibacterial NPs
and the main bacteria inhibited in
orthodontic therapy

Microorganisms mainly exist in the form of biofilms on

the surface of teeth, oral mucosa, and oral materials. Oral
flora imbalance during orthodontic treatment can lead to
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oral infectious diseases, including dental caries, periodontal
disease, candidiasis, endodontic infections, orthodontic
infections, and peri-implantitis [65,114]. The antibacterial
NPs applied in orthodontic materials are mainly used to
prevent and solve these oral infections. Commonly used
orthodontic appliances and auxiliaries with NPs for anti-
bacterial usage are described as follows.

5.1 Orthodontic appliances and the
components

5.1.1 Orthodontic stainless-steel brackets

Brackets are necessary tools in fixed orthodontic treat-
ment, and the potential accumulation of microbial bio-
film may lead to enamel demineralization around the
brackets [115]. Stainless-steel brackets are mostly used in
fixed orthodontic treatment. As shown in Table 1, various
NPs used in orthodontic brackets have been proven to
have effective antibacterial activity. Jasso-Ruiz evaluated
the anti-adherent and antibacterial properties of different
nanosilver-modified orthodontic brackets with radiomar-
kers and found that nanosilver-modified brackets could
inhibit the biological activities of S. mutans and S. sobrinus,
indicating that nanosilver-modified brackets can prevent
the accumulation of dental plaque and the occurrence of
dental caries during orthodontic treatment [15]. Further-
more, Metin-Gursoy also confirmed the antibacterial effect
of nanosilver-coated orthodontic brackets on S. mutans
through an in vivo experiment in rats [56]. Salehi found
that N-doped TiO,-coated orthodontic brackets could pre-
vent the growth of S. mutans for at least 3 months and could
effectively prevent enamel decalcification during ortho-
dontic treatment [116]. Ghasemi found that 60 and 100
pm films of Ag NPs and titanium oxide NPs can be coated
on brackets to efficiently reduce bacterial count after 3h
[117]. Zhang et al. suggested that nano-Ag/TiO,-coated
brackets had antibacterial activity against several kinds
of bacteria in the dark, and the antibacterial activity after
20 min could reach 79% (Table 1 and Figure 2a) [118].

5.1.2 Orthodontic metal archwires

As an indispensable role in fixed orthodontic treatment,
archwires have mainly been studied to reduce the coeffi-
cient of friction to improve treatment efficiency [119].
With the development of nanotechnology in the dental
field, some NPs were reported to be combined with
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Table 1: Previous antibacterial NPs used in orthodontic appliances and the components
Ref. Orthodontic appliances NPs used Bacterial tested Study type
and the components
Jasso-Ruiz et al. [15] Orthodontic brackets Ag NPs S. mutans In vitro
S. sobrinus
Metin-Gursoy et al. [56] Orthodontic brackets Ag NPs S. mutans Animal
study
Salehi et al. [116] Orthodontic brackets N-doped TiO, NPs S. mutans In vitro
Ghasemi et al. [117] Orthodontic brackets Ag NPs, titanium oxide NPs  S. mutans In vitro
Zhang et al. [118] Orthodontic brackets Ag/TiO, NPs S. mutans In vitro
S. sanguinis
Aggregatibacter
actinomycetemcomitans
Fusobacterium nucleatum
P. gingivalis
Prevotella intermedia
Mhaske et al. [123] Orthodontic archwires Ag NPs L. acidophilus In vitro
Kachoei et al. [124] Orthodontic archwires Zn0 NPs S. mutans In vitro
Hammad et al. [69] Orthodontic archwires Mesoporous silica NPs S. aureus In vitro
S. pyogenes
E. coli
Prabha et al. [126] Orthodontic bands Ag NPs Gram-positive bacteria (not In vitro
specified)
Farhadian et al. [59] Removable orthodontic Ag NPs S. mutans In vitro
appliances and retainers
Ghorbanzadeh et al. [128] Removable orthodontic Ag NPs S. mutans In vivo
appliances and retainers S. sobrinus
L. acidophilus
L. casei
Lee et al. [29] Removable orthodontic Mesoporous silica NPs C. albicans In vitro
appliances and retainers S. oralis
Zhang et al. [63] Clear aligners 4,6-Diamino-2- P. gingivalis In vitro

pyrimidinethiol-modified
Au NPs

Figure 2: (a) Orthodontic stainless-steel brackets; (b) orthodontic metal archwires; and (c) orthodontic stainless-steel bands (black arrow

points).

orthodontic archwires and exhibited the ability to reduce
friction and inhibit bacteria in the form of coatings. As
shown in previous studies, NPs are deposited on the
orthodontic archwire as a spacer to decrease the surface
sharpness and frictional forces between the archwire and

the orthodontic bracket [120,121] and protect the metallic
wires against oxidation [122] to achieve the goal of friction
reduction. In addition, surface modification of orthodontic
archwires with Ag NPs has been reported to prevent the
accumulation of dental plaque and the development of
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dental caries during orthodontic treatment [123]. Ortho-
dontic archwires coated with ZnO NPs also exhibit signifi-
cant antibacterial activity against S. mutans [124], S. aureus,
Streptococcus pyogenes, and E. coli while reducing friction
[69]. Since few studies have been conducted on both friction
reduction and the antibacterial properties of orthodontic
archwires coated with NPs, no correlation between these
two characteristics has been reported (Figure 2b).

5.1.3 Orthodontic stainless-steel bands

Orthodontic bands are seated in supra- and subgingival
areas, which may compromise the health of the surrounding
periodontal tissues and can be associated with the occur-
rence of periodontopathogenic bacteria [125]. Prabha et al.
coated orthodontic bands with Ag NPs and concluded that
the coated bands were biocompatible, possessed distinct
antimicrobial activity, and could be potential antimicrobial
dental bands for future clinical use (Figure 2c) [126].

5.1.4 Removable orthodontic appliances

The use of orthodontic acrylic resins in the fabrication of
removable orthodontic appliances and retainers (Figure 3a)
is increasing due to the growing demand for orthodontic
treatments [11]. The accumulation of microorganisms on
acrylic resins increases the incidence of caries and oral dis-
eases and jeopardizes the efficiency of orthodontic treat-
ments [127]. The use of antibacterial materials in acrylic
resin of removable orthodontic appliances and retainers is
helpful to reduce bacterial aggregation during orthodontic
treatments. In a randomized clinical trial, Ghorbanzadeh
found that the average levels of test cariogenic bacteria in
saliva decreased approximately 2- to 70-fold (30.9-98.4%)

(a)
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in patients wearing orthodontic appliances with in situ-gen-
erated Ag NPs compared to those wearing normal base-
plates of orthodontic appliances [128]. Farhadian found
that Ag NPs with a 500 ppm concentration and 40 nm size
incorporated into the acrylic plate of retainers had a strong
antimicrobial effect against S. mutans colony-forming units
under clinical conditions [59]. An anti-adherent effect against
C. albicans and S. oralis was observed with the incorporation
of MSNs into PMMA and MSN has been reported to be a
carrier of amphotericin B. The performance after loading
amphotericin B into the MSN-incorporated PMMA suggested
a long-term antimicrobial effect (Figure 3) [29].

Despite the traditional removable orthodontic appli-
ances made of acrylic resins, clear aligners (Figure 3b)
are made of a transparent polymer material, which is a
new trend in orthodontic treatment in recent years, and
more patients tend to choose clear aligners as orthodontic
appliances than fixed appliances and traditional removable
orthodontic appliances due to their esthetics and comfort.
During clear aligner treatment, both the teeth and gingiva
are covered for nearly the entire day with aligners. Thus,
with proper modification, clear aligners may be used as a
long-term drug delivery system for patients with P. gingivalis
infection [63]. Zhang coated antibacterial AuDAPTs over
clear aligners, and these AuDAPT-coated aligners exhibited
antibacterial effects on a suspension of P. gingivalis, affecting
the neighboring area of the material, slowing biofilm forma-
tion, and showing favorable biocompatibility [63].

5.2 Orthodontic auxiliaries
5.2.1 Orthodontic adhesives and primers

Orthodontic resin, including orthodontic adhesive and
primer, is a binder between an orthodontic bracket and

(b)

Figure 3: (a) Traditional removable orthodontic appliances and (b) clear aligner.
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o tooth enamel that contacts the tooth surface directly.
s s . White spot lesions or enamel demineralization caused
-§‘ g g by acid biofilms usually develop in areas adjacent to
] = = orthodontic brackets [129]. To overcome these damages,
" antibacterial adhesives and primers containing different
S NPs were studied. As a commonly used antibacterial
§ material, silver has been added to orthodontic adhesives
§ in the form of NPs, which showed obvious antibacterial
§ effects [58,130,131], and a 5% concentration was reported
g to be the minimum concentration of Ag NPs with optimal
:E antimicrobial efficacy against S. sanguinis, L. acidophilus,
3 5 and S. mutans [131]. The antibacterial effect of Cu NPs
E 2 § on S. aureus, E. coli, and S. mutans was also found
= . § é’ 'a E § when 0.0100 wt% Cu NPs were added to the orthodontic
g § § § 2 § % § § adhesive [64]. Bioactive glass NPs were added to a self-
Bl VvuyyDduy adhesive resin and a statistically significant antibacterial
effect was found at the concentrations of 1, 3, and 5 wt%
[90]. In addition, the antibacterial properties of other NPs
in orthodontic resin were studied and their antibacterial
effects were reported, including CuO NPs at the concen-
tration of 0.01, 0.5, and 1.0 wt% [67]; TiO, NPs at the
concentration of 1, 5, and 10 wt% [132]; Ag/hydroxyapa-
tite NPs at the concentration of 5 and 10 wt% [133];
yttrium(m) fluoride NPs at the best concentration of 1wt%
[82]; cCur/ZnO NPs at the best concentration of 7.5 wt%
[70]; fluorinated bioactive glass NPs [89]; amorphous cal-
- cium phosphate NPs at a concentration of 5wt% [134];
§ & & curcumin NPs at the best concentration of 1 wt% [105]; cur-
Ky = = cumin-doped poly lactic-co-glycolic acid NPs at the best
= < < concentration of 7 wt% [108]; chitosan NPs at the best con-
centration of 5wt% [2]; polycationic PEI-based NPs at the
best concentration of 1.5 wt% [135]; and graphene oxide NPs
at a concentration of 5 wt% (Table 2 and Figure 4a) [92].
ke
]
% o @ 5.2.2 Orthodontic cement
o s s
€ Q [=%
S E § As a new adhesive material, glass ionomer cement is the
é S S product of the interaction between fluoro aluminosilicate
© = = glass powder and polyacrylic acid aqueous solution [43].
It is widely used in the bonding of brackets and bands
and so on in orthodontic treatment. The performance of
orthodontic cement directly affects the curative effect of
orthodontic treatment. To improve the antibacterial per-
_ formance of orthodontic cement, different kinds of NPs
< § were added to the orthodontic cement, and their antibac-
Y] — — . . .
2 < g terial properties were tested. Ren added different propor-
S s = tions of titanium dioxide NPs to traditional glass ion
Z § § cement and found that the antibacterial effect against S.
2 o %” %” mutans of glass ion cement significantly improved at a
= & 2 4 concentration of 10 wt% [43]. In addition, some different
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NPs, including Ag NPs at a concentration of 0.1 wt%
[57,136,138], nano-CaF2 at a concentration of 20 wt%
[83], quaternary ammonium polyethylenimine NPs at a
concentration of 1wt% [96], and polycationic PEI-based
NPs at a concentration of 1wt% [95], were added to
orthodontic cement and proved to be effective antibac-
terial agents (Figure 4a).

5.2.3 Fixed retainer composites

Many orthodontists presume that fixed bonded retainers
are the only way to obtain the desired alignment after the
debonding of orthodontic appliances, especially in the
lower anterior segment [138]. The fixed bonded retainer
is made of a piece of wire and composite resin bonded to
teeth, which means there would be potential bacterial
accumulation around the retainer. To overcome microor-
ganism aggregation, researchers have tried to add Ag NPs
into the composites of the fixed retainer and more anti-
bacterial effects were observed as the concentration of Ag
NPs increased, especially against S. mutans, S. sanguis,
and L. acidophilus at the best concentration of 5wt%
[139]. Kotta et al. evaluated the antibacterial activity of
retainers bonded with conventional and NP (TiO,)-con-
taining composites and found that composites containing
TiO, at a concentration of 1wt% showed a statistically sig-
nificant increase in antibacterial activity (Figure 4b) [75].

5.2.4 Orthodontic elastomeric ligatures

Orthodontic elastomeric ligatures are synthetic elastics
made of polyurethane material, with advantages, such
as quickness of application, patient comfort, and lower
cost than self-ligation clips [140]. However, apart from
their practical benefits, elastomeric ligatures exhibit a

Orthodontic Cement

Orthodontic

m Orthodontic
e __a—ad Elastomeric
Ligatures

\AATA/
(Ve

(@)

Figure 4: (a and b) Orthodontic auxiliaries.

Adhesives and Primers
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greater number of microorganisms in the plaque around
the brackets than steel ligatures [141]. In the study of
Hernandez-Gomora et al.,, Ag NPs were synthesized in
situ on orthodontic elastomeric ligatures and this study
suggested the potential of the material to combat dental
biofilms and in turn decrease the incidence of deminer-
alization in dental enamel (Figure 4a) [60].

5.2.5 Micro-implants

With the rapid development and advancement in ortho-
dontic and orthopedic technologies, micro-implants are
increasingly used for absolute anchorage. Ti-based
implants are susceptible to bacterial infections, leading
to poor healing and osteointegration and resulting in
implant failure or repeated surgical intervention [142].
To reduce bacterial infections and increase the success
rate of implants, NPs were used on the micro-implants.
Venugopal found that titanium micro-implants modified
with AgNP-coated biopolymers exhibited excellent anti-
bacterial properties [143] and in Qiang’s study, the antibac-
terial properties of Ag NP/silk sericin-coated Ti surfaces
were demonstrated to prevent bacterial cell adhesion as
well as early-stage biofilm formation and exhibited a neg-
ligible level of cytotoxicity in L929 mouse fibroblast cells
(Figure 4b) [142].

6 Conclusions and perspectives

Microbial accumulation is a common problem during the
orthodontic process. Orthodontic appliances and auxili-
aries promote supra- and subgingival biofilm accumula-
tion and hinder oral hygiene, causing adverse effects,
such as dental caries and periodontal disease. Studies

Fixed Retainer %’ ‘

Composites

(b)
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have shown that, during orthodontic treatment, there is
an elevated level of major oral pathogenic pathogens,
such as S. mutans [144] and P. gingivalis [145]. Various
attempts have been made to increase the antimicrobial
properties of orthodontic appliances and auxiliaries, and
research on the application of nano-antibacterial mate-
rials in orthodontics is also increasing. However, current
nanomaterials have not yet achieved the perfect balance
of antimicrobial effect and biocompatibility, which should
still be further studied. From the aspect of orthodontic
materials, clear aligners are a new trend in orthodontic
appliances, while there are few studies on the application
of NPs in clear aligners for microbe inhibition at present,
and antibacterial NPs combined with clear aligners should
be given more attention.
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