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Abstract: The bactericide is one of the major objective
consequences related to healthcare in the world. Natural
enzymes have been broadly utilized in various applica-
tions such as biomedical areas due to their broad catalytic
activities and substrate particularity. While anticipating, it
has drawbacks like higher cost, low stability, and troubles
in reprocessing. Additionally, artificial enzymes (nano-
zymes) have favors above natural enzymes, for example,
the effortless yield on a big scale, low costs, and high
stability in coarse surrounds. The amount of antibiotic
repellent microorganisms has activated big concern in
the growth of stuff with essential bactericide potentials
such as metal or metal oxide nanoparticles, cationic poly-
meric compounds, graphene oxide, and other carbon
materials that can be used as antibacterial agents by
altering cell morphology. In this report, we have summar-
ized catalytic antibacterial strategies by natural enzymes,
artificial enzymes, or photocatalytic activity. Furthermore,
the demands and hereafter contents about catalytic anti-
bacterial strategies are supposed in this report.

Keywords: antibacterial activity, strategies, natural enzyme,
nanozymes

1 Introduction

The developing health troubles due to bacteria is one of
the major concerns causing infective diseases conducting
to millions of illnesses and demises yearly [1–3]. Haunting
diseases invariably relate to establishing bacterial colonies
[4–6]. The bacteria in the exo-polymeric matrix were
highly tolerant to formal antibiotics due to developed
resistors, controlled dissemination, and deactivation of
antibiotics [7–9]. To overcome this limitation, significant
attempts have been devoted to colloidal materials to defend
the world versus diseases caused by bacteria [10–16]. Due to
the lack of bioavailability, they had to be more attentive in
their virtual efforts. ROS stands for reactive oxygen species,
including chemicals like hydrogen peroxide and superoxide,
effective against antibiotic-resistant bacteria [17–20]. ROS
and hydrogen peroxide has affected bacterial structure by
disturbing biomolecules that lead to the death of a cell
[21–23]. Unfortunately, hydrogen peroxide has limitations
in applications such as lower efficiency, slow procedure,
and eminent concentrations [24]. Particularly, high concen-
trations of hydrogen peroxide induce immunogenicity and
inflammation and have perniciousness extravagantly to
healthy tissues and yet delay wound healing [25,26]. Practi-
cality surface modification of nano-stuffs supplies a flexible
stage to pattern new disinfectants to fight multidrug-resis-
tant (MDR) pathogens [27]. Similarly, nanomaterials have
limitations over antibacterial activity, such as high doses
of AgNPs can affect the mammalian cells. Techniques such
as core-shell (Au@AgNPs) material production or surface
coating of particles on or in electrospun fibers have been
introduced to minimize the toxicity of nanomaterials. How-
ever, many researchers are still working to develop a
superior antimicrobial infection treatment. Recently, cata-
lytic antimicrobial materials are getting more attention;
such materials have enzyme-like activities and are safer
for cells. Peroxidase and oxidase in lysosomes can catalyze
ROS production to fight bacterial encroachment because
the living mechanism has a self-defensive arrangement
that can work as a biocatalyst to inhibit bacterium or
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interrupt biofilm state. Nevertheless, natural enzymes fre-
quently endure underlying defects. Therefore, materials
having photocatalytic activity are prominent antibacterial
materials due to oxygen reduction and bringing forth ROS
as though −˙O2 and hydrogen peroxide [28–30]. Enzyme-
mimicking catalytic performances of nanomaterials have
been reported by Chen et al., in a recent report [31]. Despite
lots of fantabulous exploits that have been described, to
our know-how, no comprehensive report has been given
on catalytic antibacterial strategies. Despite lots of fanta-
bulous exploits that have been described, to our know-
how, no comprehensive report has been given on catalytic
antibacterial strategies. In this report, the recent develop-
ments in the area of catalytic antibacterial strategies have
been presented. Briefly, catalytic antibacterial strategies
including natural enzymes, nanozymes, and photocata-
lytic antibacterial strategies have been discussed.

2 Catalytic antibacterial strategies

Serial publications of examinations have been brought
out to figure out the antibacterial mechanisms. The most
recent reports on performance of nanozymes have been
described by Dong et al., Huang et al., and Sun et al.
[32–34]. Hence, antibacterial strategies have been well
described, but it still needs a flick to make them simpler
for the research world.

2.1 Enzymes effective antibacterials and
antibiofilms

Enzymes are effective biocatalysts and are primarily
made up of proteins, although some are catalytic RNA

molecules [35,36]. Where distinctive catalysts are fre-
quently employed in coarse considerations like level of
temperature and pressure [37,38], they are principally
applied to catalyze the salvation of biological specks,
and these reactions are generally brought out beneath
comparatively modest circumstances [39,40]. Enzymes
have been broadly employed in the area of industry, med-
icine, and biology [41–44]. The classification of bacteri-
cide enzymes is shown in Figure 1. However, it has been
depicted that natural enzymes have intrinsic shortcom-
ings or disadvantages. Extremely developed enzymes –
lysins have a bacterial effect (Figure 2). Phage lytic
enzymes are extremely effective specks that have been
purified over decades of evolution. This lysin directs the
incorruptibility of the cell wall and is intended to affect
one of the five important bonds in the peptidoglycan.
However, lysins only exploit gram-positive bacterium
because they can interact with the cell wall and are
intended to affect one of the five important bonds in the
peptidoglycan. However, lysins only exploit gram-posi-
tive bacteria because they can interact with the cell wall
carbohydrates and peptidoglycan since the gram-nega-
tive bacterium defends this contact due to the outer mem-
brane. Furthermore, T4 lysozyme is acknowledged as a
bactericide protein having antibacterial activity versus
both types of bacteria. The bacterial property of T4 lyso-
zyme is supposed to occupy in its muramidase action that
extends to change in the state of the murein layer and
reduction of the mechanical intensity of the microbial cell
wall and finally leading to death by lysis. It has been
detailed on construction and role states the value of
amino acid components for the muramidase action of
T4 lysozyme. The performance of T4 lysozyme for bac-
terial membrane degradation or lysis is as detected for
respective antimicrobic peptides [45].

Figure 1: Antimicrobial enzymes.
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Aforementioned, one enzyme catalytically should
be enough to properly break bonds to inhibit bacteria.
Regarding the efficacy of lysin, it only kills the organisms that
produced it. Particularly, it is C streptococcal phage that
destroys C, A, and E streptococci set, also Streptococcus uberis
and the horse-infective bacteria S. equi can be resisted by a
bovine infectious agent. Moreover, streptococci did not found
effective in the oral cavity. Recently, lysin CF-301 phage has
been introduced for the disruption of Staphylococcus aureus
biofilm [46]. Figure 3 shows the morphology of control and

lysin CF-301 phage biofilm using scanning electron micro-
scopic images. Before and after treatment of lysin CF-301
phage has different morphologies, which means it has an
effect on lysin. Bacteriophage as a bicomponent molecule,
such as holin and endolysin, allow novel produced phage
offspring to depart dead bacterium and occupy early sensitive
host bacterium. In the inner membrane of the bacterium kiln,
a molecule of permeable enzyme can create pores, thereby
inhibiting bacterial growth. Another component of phage
disturbs the exo-membrane of cells that demolish the pep-
tidoglycan layer [47]. The clinical testing CF-301 against
methicillin-resistant Staphylococcus aureus (MRSA) is cur-
rently complete. Human trials are currently underway to
cure patients in hospitals with MRSA germs or inflamma-
tion of the endocardium and heart valves [48].

2.2 Nanozymes – effective antibacterials

The name “artificial enzyme” was created verbally by
scientists to explain mimic enzyme models [50]. It is a
material with sizes of 1–100 nm [51,52]. Artificial enzymes
are productively employed as chemical catalysts. Newly
published literature is significantly lined up on consid-
eration of nano-size materials that possess the biocata-
lytic ability. Artificial enzymes have benefits over natural

Figure 2: Lysine-affected bacillus displaying attribution of the
cytoplasmic membrane [49].

Figure 3: MRSA strain ATCC BAA-42 biofilms developed for 3 days in the catheter lumen against CF-301 [46].
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enzymes like low cost, high stability, and so on [29,53–55].
Artificial enzymes have contributed to the area of medical
science. Subsequently, a number of nanozymes have been
found, and from those, some are shown in Figure 4 with
types of nanozymes. New scientific findings for artificial
enzymes are as follows:
1) Sensing, ion determination, molecule determination,

nucleic acid determination, protein determination, and
cancer cell determination.

2) Environmental intervention and degradation of con-
tamination in the environment.

3) Nanozymes for cancer treatment and the most impor-
tant for this report, antibacterial, and antibiofilm. The
basic of nanozymes antimicrobial properties was neces-
sary before the antibacterial flick performance of
nanozymes.

2.2.1 Antibacterial performance of nanozymes

A series of nanozymes have been discovered for antibac-
terial activities and biofilms such as single atom nanozyme
[56], o-carbon nanotubes [13], copper oxide nanorods [57],
GQDs [58], gold nanoclusters [59], platinum hollow nano-
dendrites [58], hybrid GQD AgNPs [60], mesoporous silica/
AuNPs or porous Pt/AuNPs [31], PEG-MoS2 nanoflowers
[61], CaO2/H-G@alginate [62], IOPs [63], DMAE [64], V2O5

nanowires [31], CeO2−x nanorod [65], PAN/FeNPs nanofibers
[108], etc. In brief, the antibacterial mechanism of nano-
zymes is based on the release of ˙OH and −˙O2 . Figure 5

Figure 4: Types of nanozymes.

Figure 5: (i) Illustration of antibacterial mechanism of nanozyme; (ii)
transmission electron microscopic images of copper oxide nanorods
against E. coli at various treatments: (a) control; (b) copper oxide
nanorods with hydrogen peroxide in the absence of light; and (c)
copper oxide nanorods with hydrogen peroxide in the presence of
light [57].
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demonstrates oxidase- and peroxidase-like activity and
death of bacteria due to ˙OH release; however, in the
absence of light, the dark copper oxide nanorods release
lower ROS than visible light and also affect the death rate
of bacteria. The bactericide effect of artificial enzymes initi-
ates from their capability to regulate the phase of ROS like
–OH and −˙O2 [66]. Due to higher oxidation potentiality,
ROS may affect bacteria and biofilms; undiscriminating
disturbs the function of biomolecules inside or in the cell
resulting in damaging of the cytoplasmic membrane and
the death of bacteria. Enhancing the ROS and the death
of bacteria faster destroys bacterial cell membrane and
makes bacterial resistance rate lower toward nanozyme
[30,61,67]. Moreover, it is well known that only hydrogen
peroxide can work as an antimicrobial agent, but it may
have an effect on tissues as well; therefore, the presence of
nanozymes having an activity like peroxidase has fortune
in the biomedical era [61,67–69].

The catalytic activity of nanozymes can be tuned by
altering pH, temperature, ionic changes, light and mor-
phology [70–80]. It is well described in a previous report
by Huang et al. [33]. Many factors have been described
well but still, nanozyme is a hot research topic and it is
gaining importance day by day. Considering these chal-
lenges, Gao and co-workers have introduced the impact
of metal states and their antimicrobial effects that are
predominately little known [81]. Further investigation
has shown that copper/carbon is a mimic enzyme mate-
rial and is described as copper/carbon state-dependent
nanozymes; Cu0 has shown better enzyme-like activity
than Cu2+. Bactericide performances of copper/carbon
hybrid nanozyme showed that ROS and transfer of ions
from Cu2+ are responsible for the inhibition of bacteria.
However, Cu2+ release can inhibit only gram-negative
bacteria, and ROS generation can kill both gram-positive
and gram-negative bacteria; therefore, controlling the
state of metal can be beneficial for selective bacteria
destruction. In addition, injury of the intestine caused
by S. typhimurium can be treated by copper/carbon arti-
ficial enzyme [81]. Furthermore, iron oxide has been
used against the influenza virus, which had a great
breakthrough in the nanozyme area [82]. An excellent
impact on the viral lipid envelope was demonstrated to
deactivate it and give shelter from the contagion of the
virus. The mechanism of antiviral nanozymes can be
understood through the oxidative breakdown of lipids
presented in Figure 6. Ag@Fe3O4 core@shell has been
developed for antibiofilm activity [83], due to the well-
known magnetic property of Fe3O4 antimicrobial activity,
which can be enhanced by external magnetic force. Hence,

the magnetic property of Fe3O4 and silver ions released
from silver are responsible for the killing of microbes [84].

2.3 Photocatalysis as an antibacterial agent

Photocatalysis plays an important role in microbial degra-
dation, but it is well known for the degradation of pollu-
tants [85,86]. Herein, we have briefly described the best
photocatalytic antimicrobial agent. Ferrite nanoparti-
cles (NPs) have been examined as antibacterial and
antibiofilm [87] agent that is an excellent catalyst for
many reactions [88]. The CeO2–TiO2 has shown excel-
lent antibacterial effect against gram-positive and gram-
negative bacteria in the presence of light [89]. However,
ferrite NPs and CeO2–TiO2 mechanism has not been
described. The possibility of bacterial disruption is due
to photocatalytic activity of relevant stuff such as TiO2.
TiO2 possesses low antibacterial activity due to a band
gap [90], but it can be improved by the addition of
substitutes or increasing visible light [91]. Wang et al.
have designed photocatalytic CT/poly(vinyl alcoho) (PVA)
hydrogel as an antimicrobic agent and wound dressing
material [92]. The antibacterial effect of CT/PVA hydrogel

Figure 6: Illustration of viral oxidative breakdown of lipids by iron
oxide nanozyme [82].
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is due to the generation of –OH and ROS. Zinc oxide is
widely utilized as a photocatalytic and antimicrobial agent
due to its unique properties such as being cheaper, atoxic,
etc. [93–101]. The toxic effect of ZnO is restricted, and
bacterial death is usually due to the generation of ROS
and disrupting bacteria. Moreover, nano-ZnO is atoxic
to mammalian cells and more effective toward bacteria
[102–104]. Commonly employed organic compounds such
as pigments, dyes, and catalysts in organic synthesis are
known as Schiff bases. It has been demonstrated with a
wide range of antimicrobial activities [105,106]. Recently,
it has been studied against MDR bacteria (MDRB), while
the mechanism is not well defined [107]. Furthermore, the
attachment of groups, such as aldehyde or amino with
cell wall of bacteria, could be the reason for bacterial
inhibition.

3 Conclusion

In this report, recent development in the area of catalytic
antibacterial strategies has been presented. Briefly, cata-
lytic antibacterial strategies including natural enzymes,
nanozymes, and photocatalytic antibacterial strategies have
been discussed. As a result, ROS, –OH, aldehyde or amino
can inhibit microbes and Cu2+ can only inhibit gram-nega-
tive bacteria. Iron oxide possesses antiviral activity, and
carbon-based material has been reported as a great enzyme
mimic material. Yet researchers have many challenges to
produce novel antibiotics such as for nCovid-2019.
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