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Abstract: Strain sensors are essential for health moni-
toring of complex-shaped structures. Here, carbon nano-
tube thin films (CNTFS) with different double-layers were
fabricated on a flexible polyethylene terephthalate sub-
strate using layer-by-layer self-assembly technique, and
their resistance behaviors and piezoresistive sensing per-
formances were comprehensively conducted. Results show
that the assembled layers of CNTFS are evenly and com-
pactly deposited with about 7-15um, and the resistance
decreases with the increase in the assembly layer number.
The piezoresistive sensing behavior increases first and then
decreases with the increase in the number of assembly
layers along with compression or tension cyclic loading;
the nine-double-layer CNTFS shows the best linearity, sen-
sitivity, hysterics, and repeatability of 3.22%, 0.12684/mm,
2.16%, and 3.06%, respectively.
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1 Introduction

Structural health monitoring (SHM) is an effective means
of non-destructive monitoring of the health of structures,
as defined by Housner et al., to evaluate the internal
damage and servicing status of the structure, to improve
structural disaster prevention and mitigation and to guide
the repair and maintenance of structures [1]. Sensors are
the key elements to achieving SHM. There are various
embedded sensor devices used for engineering, such as
resistance strain gauges (wires), piezoelectric ceramics,
fatigue life wires, shape memory alloys, and fiber optic
gratings [2-5], and the embedded process is generally
complex, with high cost, short life, poor interference resis-
tance and corrosion resistance, the low survival rate, and
poor compatibility with concrete further weakening the
structure integrity [6—8]. With the development of func-
tional materials, piezoresistive materials, piezoelectric
ceramics, and other conductive/piezoelectric materials
are mixed into cement concrete matrix to make intrinsic
sensing blocks, but the preparation of sensing blocks
requires complex operations such as mixing, pressing,
and polarization and is not suitable for practical con-
struction [9-12]. Zhang et al. studied the mechanical,
electrical, and piezoresistive properties of the electro-
static self-assembled carbon nanotube/nano carbon black
(CNT/NCB) cement-based sensor. It was shown that the
higher content of filler led to a significant reduction in
mobility and compressive strength, whereas at lower filler
content, cement hydration severely affected the resistivity
of the composite, and the piezoresistive sensitivity was
negatively correlated with loading rate, resulting in loss
of sensing information [13-17].

Compared to the intrinsically sensitive blocks men-
tioned above, the flexible strain sensor can be prepared in
advance, eliminating the need for onsite fabrication, and can
be adapting well to the requirements of various special sizes
and shapes of structures, with minimal impact on the perfor-
mance of the building material itself, and with high sensitivity.
Among several common strain thin-film sensors (e.g.,
piezoresistive, piezoelectric, and capacitive-type) [18-20],
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the piezoresistive strain gauge thin-film sensor has the
advantages of easy to fabricate, no polarization required,
high accuracy, and good linearity, and is well suitable to the
common needs of SHM.

With the continuous development of functional mate-
rials, more and more novel piezoresistive materials have
emerged, such as metal nanomaterials, conductive poly-
mers, and carbon-based conductive materials [21-24].
Since Iijima’s accidental discovery of CNTs by vacuum
arc evaporation of graphite electrodes in 1991 [25,26],
research around CNT has continued due to their unique
mechanical [27,28], electrical [29], thermal [30,31], dielec-
tric [32], and electromagnetic properties [33,34]. CNT has
an excellent modulus of elasticity, with Young’s modulus
of elasticity (0.27-0.95 TPa) reported for individual multi-
wall CNT (MWNT) by Yu et al. [35], and for single-wall CNT
(SWNT), the value is higher at 0.32-1.47 TPa [36]. This
results in structural changes between the carbon elements
of CNT when subjected to external forces, impeded elec-
tron movement, and changes in carrier mobility, which in
turn affects macroscopic resistivity and exhibits excellent
piezoresistive properties.

The piezoresistive effect of CNT-based composite is
the key to their application in the field of sensors. CNT
prepared by conventional methods is in the form of ultra-
fine powders, which can lead to agglomeration and uneven
distribution during application due to side effects, high sur-
face energy, and strong van der Waals forces between them,
resulting in the material’s excellent properties not being
effectively exploited. Young’s modulus of flexible piezo-
resistive nanocomposites made from a certain amount of
MWNT dispersed in polydimethylsiloxane (PDMS) was
investigated by Pardis et al. The results show that at
a small amount of MWNT (wf = 0.25%), the inclusion
of MWNT in the PDMS matrix resulted in a significant
increase in Young’s modulus of the nanocomposites; how-
ever, exceeding content of this nanofiller did not increase
Young’s modulus due to the agglomeration of MWNT
inside the nanocomposite [37]. Therefore, nanomaterials
should be made into macroscopic filaments, membranes,
or blocks to enlarge the internal reaction surface and
expand the range of molecular transfer [38], improving
the mechanical and electrical properties of the nanomater-
ials without affecting the original properties [39-41]. There
are various methods for the preparation of CNT macrobo-
dies, such as solution spinning [42,43], array spinning
[44-46], chemical vapor deposition [47], coating [48],
layer-by-layer self-assembly (LBL) [49], electrophoretic
deposition [50], Langmuir-Blodgett method [51,52], and
blown bubble method [53]. The LBL does not require com-
plex and expensive equipment, is used to obtain uniform
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and complete films at room temperature, simple to operate,
does not require an excessive investment of resources, can
be in-scale produced [54], and can finely control the com-
position and structure by adjusting the assembly conditions
(e.g., salt concentration, pH, and dipping times [55]) and the
components incorporated into the film [56]. It has become
the simplest and most practical of the many CNT film pre-
paration methods. Olek et al. reported a method for the
assembly of homogeneous polyelectrolyte/ MWNT films on
glass substrates by the LBL technique, showing that homo-
geneous CNT films could be produced by this method and
that the structural components of the assembled layers
showed strong adhesion to each other [57]. Mamedov
et al. assembled uniform polyelectrolyte/MWNT films on
glass substrates using the LBL technique. MWNT uni-
formly covered the entire surface of the glass substrate
and the resulting poly(acrylic acid) (PAA)/MWNT films
exhibited extremely high mechanical strength with an ulti-
mate tensile strength of 220 + 40 MPa, and the LBL film
strength could meet the requirements of the sensor [58].
Yang et al. assembled seven layers of Pt-CNT-CHIT
(polyelectrolyte chitosan)/polystyrene sulfonate films on
gold substrates, placed them in a 7% phosphate solution,
and stirred for 30 min, with no significant change in peak
current in cyclic voltammograms (CV). The relative stan-
dard deviation of the assembled films in ten consecutive
CV tests was 4.5%. This indicates that the LBL film has
sufficient stability against ionic attacks [59]. The stability
of LBL films was also confirmed by Hong et al. through
bending tests, where 25 layers of MWNT/reduced gra-
phene oxide (rGO) films on a polyethylene terephthalate
(PET) substrate maintained their initial resistivity values
after 100 times 90° bends [60]. The relationship between
the number of assembled layers and the electrical proper-
ties of the films was investigated by Park et al. using the
LBL method where 2-20 layers of SWNT and poly diallyl
dimethylammonium chloride (PDDA) were deposited
alternately on a fused silica substrate. The electrical
conductivity increased continuously with the increase
in the number of assembled layers, while the change
in conductivity was no longer significant when the
number of assembled layers exceeded 9 [61]. Zhu et al.
assembled a resistive vapor-sensing device using the
LBL technique, which showed excellent sensitivity, lin-
earity, and durability in humidity-sensing tests [62].
Most LBL CNT films are prepared on rigid substrates
such as silicon, glass, and metal, making them difficult to
use in flexible strain gauge thin-film sensors. Ma et al.
investigated the piezoresistive sensing characteristics of
LBL MWNT/rGO-polyurethane sponges under different
pressures, showing that the rate of change of resistance
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gradually increased with increasing pressure and that the
strain showed the same relationship with the rate of
change of resistance [63]. Zhang and his team prepared
LBL MWNT/PDDA human body thin films based on PDMS
with tensile properties and low modulus of elasticity. It was
found that the sensitivity of the LBL sensor depends on the
number of layers of the MWNT assembly. By adjusting the
number of layers of the assembly, sensors with different
sensitivity requirements can be obtained. However, they
used the two-electrode method to directly measure the
resistance of the sensor through a multimeter, which could
not avoid the influence of the contact resistance between
the sensor film and the electrode. On the other hand, the
influence of the number of LBL layers assembled on other
sensor characteristics was not thoroughly studied [64—66].

In this article, a flexible CNT strain transducer was
prepared based on the LBL technique. Positively charged
PDDA and negatively charged carboxylated CNT were
alternately deposited on a PET sheet to investigate the
effect of the number of assembled layers on the resistance
behaviors of the strain transducer as well as the piezo-
resistive sensing performance such as sensitivity, line-
arity, hysteresis, and repeatability.

2 Materials and test methods

2.1 Raw materials

The MWNT used in this experiment was >90% in purity,
10-20 nm in diameter, and 2-15pm in average length.
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MWNT was treated with a 3:1 volume ratio of mixed con-
centrated sulfuric acid and concentrated nitric acid, and
the mixture was diluted by cooling in a water bath at 80°C
for 4h. After cooling, the mixture was vacuum filtered
through a 0.22 pm mixed fiber membrane and diluted sev-
eral times until it reached a neutral filtrate; the mixture
was dried at 50°C for 4 h to obtain carboxylated MWNT.
The carboxylated MWNT dispersion was prepared at a con-
centration of 0.5 mg/mL and sonicated for 1h.

PDDA was purchased from Aldrich, a 20% aqueous
solution, prepared at a concentration of 15 mg/mL, with
the addition of 0.5 mol/L of NaCl. NaCl increases the con-
ductivity of the solution, increases the ionic strength,
increases the ionic adsorption capacity, and helps to
improve the self-assembly efficiency [67,68].

PET was selected as the assembly base, which had
weak polarity, low surface energy, and weak adsorption
capacity at room temperature. Therefore, the surface of
PET was oxidized by ozone, and the macromolecular
structure on the surface of PET was broken and wound,
and the molecular chain structure and side groups were
changed, forming —~COOH/COOR group. The surface of
PET became rough, and the adsorption capacity was
enhanced [69].

2.2 Film fabrication

As shown in Figure 1, at room temperature, PET treated
with ozone had a negative charge on its surface and is
immersed in PDDA solution. The positively charged
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Washing with Drying Soak in CNT
deionized 15min solution for
water 20min

Next round of assembly

Figure 1: Assembly flowchart of self-assembly CNT film.

3

"

Washing with
deionized
water

Drying



DE GRUYTER

Figure 2: Schematic section structure of CNTFS.

PDDA was adsorbed on PET, and the excess PDDA was
removed with deionizing water. After drying in the air for
15min, it was immersed in CNT solution for 20 min,
washed, dried to complete the first layer assembly, and
repeated the above steps to proceed to the next assembly
round. According to the above steps, we assembled carbon
nanotube thin films (CNTFS) with 3, 6, 9, and 12 different
double layers. Figure 2 shows the composition of the
assembled CNTFS structure.

2.3 Test methods

The four-electrode method is used to test the resistance
change of different layers of CNTFS. CNTFS, DC power
supply, and standard resistance box were in-series con-
nected, by measuring the voltage at both ends of the
CNTFS and standard resistance to obtain the resistance
value of CNTFS. The four-electrode method effectively
avoids the contact resistance between the electrode and
CNTFS caused by the electrode acting as both voltage

Voltage
sources

Resistance
box

e
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electrode and current electrode in the two-electrode method,
which brings out more accurate resistances.

Scanning electron microscopy (SEM, S-5100 type)
was used to observe the morphological characteristics
of the strain gauge thin-film sensor, and the sample was
broken up to observe the cross-sectional morphology.

A universal tensile testing machine (MTS (China) Ltd.
Co.) was used to carry out the three-point bending test of
the simply supported beam, as shown in Figure 3. The
mid-span displacement of the film was controlled from
0 to 5 mm, and the loading rate was 2 mm/min. The resis-
tance changes of the film with different assembly layers
were studied under tensile and compressive stress states
of the strain sensing film under five cyclic loads. And the
sensor parameters involving piezoresistive linearity, sen-
sitivity, repeatability, and hysteresis of the flexible film
were comprehensively characterized.

3 Results and discussion

3.1 Morphology of CNTFS

Figure 4(a) shows SEM images of the surface of the
CNTFS. Figure 4(b) and (c) shows the film cross-section,
where the boundaries between the assembled layers are
clear and the CNT is tightly connected to the PDDA,
which is conducive to the connection between different

| sensors
X 2

Multimeter

Figure 3: Piezoresistive testing of CNTFS under cyclic loading with four-electrode method by a universal testing machine.



2054 — Xiaoyang Zhou et al.

WD1l.1lmm 25.0kV x70 500um

16-Jan-15

SE 16-Jan-15

DE GRUYTER

NV T
16-Jan-15 WD 9.6mm 25.0kV x2.0k 20um

*
s

16-Jan-15 WD11.6mm 25.0kV x30k  lum

Figure 4: SEM images of self-assembled nine-double-layer CNTFS: (a) x70, (b) x2.0 k, (c) x15 k, and (d) x 30 k (yellow line — assembled layer

interface; dashed red circle — CNT distribution network).

layers of CNT and the improvement of electrical conduc-
tivity [70]. These pictures show that the CNT is uniformly
deposited on the PET sheet, forming a dense, well-bonded,
high-purity random CNT structure in the polymeric mate-
rial, as shown in Figure 4(d), with a homogeneous mixture
of CNT and PDDA and a stable ratio distribution, indi-
cating a well-dispersed CNT solution.

3.2 Effect of the number of layers of CNTFS
assembly on resistance properties

The trend of the film resistance properties with the number
of assembled layers is shown in Figure 5. As the number of
layers increases, the film resistance properties tends to
decrease. It decreases rapidly at the beginning and then
decreases slowly, and after the ninth layer, the trend of
decreasing resistance properties is not obvious. The resis-
tivities of 3, 6, 9, and 12 double-layer CNTFS are 127, 103,
18.3, and 7.98 kQ cm, respectively, and the resistivity of the
three-double-layer films is accordingly 15.9 times higher
than that of the 12 double-layer film.

Figures 6 and 7 show that the relative rate of change
in resistance is approximately linear with respect to

displacement over the displacement range of 0-5mm.
When the film is compressed, the resistance decreases
(AR < 0), and conversely when the film is stretched, the
resistance increases (AR > 0). As the number of double
layers increases, the relative change in resistance is the
first to show an upward trend, and the relative change in
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Figure 5: Relationship between the number of layers and resistance
properties of CNTFS flexible film.
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Figure 6: Relationship between change rate of resistance and mid-
span displacement of varied double-layer CNTFS in compression side.

resistance of the film is the largest at nine layers, reaching
80%; the relative change in resistance decreases as the
number of double layers continues to increase, and the
relative change in resistance of the 12-double-layer film
is the smallest at about 50%.

This variation in resistance and strain can be attrib-
uted to the relationship between the change in cross-sec-
tional area and resistance from a macroscopic point of
view. We know that the resistance is inversely propor-
tional to the cross-sectional area when all other conditions
are equal. Assume that the volume of the CNTFS remains
constant during compression and stretching. When the film
is in compression, the cross-sectional area of the film
increases and the total film resistance decreases; when
the film is stretched, the cross-sectional area decreases,
and the total film resistance increases in response.

/ X1 I
10/ t X0
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// /V\’ )
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;\50.6 /
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Figure 7: Relationship between change rate of resistance and mid-
span displacement of varied double-layer CNTFS in tension side.
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From the microscopic point of view, it can be under-
stood as the change of CNT resistance. The resistance of the
CNT film consists of two parts: the CNT’s own resistance (R;)
and the contact resistance (R,) between the CNT tubes. The
inter-tube contact resistance also includes the resistance
Reontact generated by direct contact of CNT and the resistance
Ruunner generated by the tunneling effect. The piezoresistive
effect of CNT is mainly the change in the forbidden band-
width (E,) and the inter-tube contact resistance R, due to
deformation [71,72]. When the film is subjected to external
forces, the internal lattice structure of the CNT changes,
leading to changes in the tube diameter and helix angle,
causing changes in the forbidden bandwidth E; and even-
tually leading to changes in the CNT’s own resistance R;. The
effect of CNT deformation on E; was noted in the study by
Jamal et al. The E; of the original CNT was 0.879 eV, and the
E; of the CNT was 0.135 and 1.147 eV for 10% compression
and tensile deformation, respectively [73]. Deformation also
leads to changes in R,. Bao et al. argued that the contact
between CNT and CNT occurs at the nanoscale, and the
contact region consists of only a few atoms, which has a
limited impact on the enhancement of conductivity [74].
Thus, film deformation mainly affects Rynne, and when
the film is deformed, the tunneling chance changes sub-
sequently, and the resistance transfer between CNTs is
affected, leading to the change of R,. The change in film
resistance is therefore the sum of the changes in R,
and R,.

The influence of the tunneling effect on resistance
can also explain the trend of resistance varies with the
increase in assembly layers. It also confirms the inter-
layer connection of the CNTs in the SEM image. The
PDDA only glues the CNTs to each other and does not
wrap the CNTs, and the layers of CNTs are not only simply
connected in parallel. When the number of assembled
layers increases from 3 to 9, the CNT spacing decreases,
and the tunneling probability increases. Under the con-
dition of high CNT, the chance of direct contact between
CNT is greatly increased, but CNT may appear agglomer-
ated, which is not conducive to the formation of the con-
ductive pathway. Moreover, mutually close, single-root
CNTs that can produce tunneling effects are rarely found.
It is easy to know from the circuit knowledge that when
two CNTS are effectively overlapped, the current will flow
through the path with low resistance formed by overlap.
The formed conductive network is not easy to change
under the action of external forces [75]. Therefore, when
the number of assembled layers continues to increase from
9 to 12, the resistance steadily decreases (Figure 5), but
the relative rate of change in resistance becomes worse
(Figures 6 and 7).
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Table 1: Linearity of resistivity—displacement curves for different
double layers of films

Number of double layers

Linearity Number of load 3 6 9 12
cycles
1 Tension 3.09% 6.07% 2.58% 6.54%
Compression 2.80% 3.33% 3.76% 3.51%
2 Tension 3.69% 3.23% 3.11% 6.31%
Compression 415% 3.91% 3.99% 6.52%
3 Tension 3.74% 2.25% 2.50% 6.58%
Compression 4.31% 3.77% 2.75% 5.89%
4 Tension 3.50% 4.46% 3.39% 6.97%
Compression 4.26% 3.41% 3.72% 6.72%
5 Tension 3.82% 4.67% 3.11% 6.57%
Compression 4.80% 4.40% 3.29% 6.51%
Average linearity 3.82% 3.95% 3.22% 6.21%

3.3 Effect of the number of layers of CNTFS
assembly on sensing performance

The linearity 6 is defined as the percentage of the max-
imum deviation A,y between the curve of the relative

(a)

Linearity/%
TN NS S =

2 3 4
Number of load cycles

3 double-layers
—e— 6 double-layers
4— 9 double-layers
12 double-layers
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Hysteresis/%

2 3 4
Number of load cycles
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Repeatability (%)
A A - L B L < LR <
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rate of change of resistance—displacement relationship
and its fitted straight line at standard conditions (20 + 5°C)
and the full-scale output value of the relative rate of
change of resistance (AR/R)¢s.

The ideal sensor should have a strict one-to-one cor-
respondence between input and output, and the smaller
the linearity value, the better. The vast majority of current
flexible sensors do not have the same characteristic line-
arity as rigid sensors [76,77], Table 1 shows that the
average linearity of the 9-double-layer film is 3.22%
minimum and the average linearity of the 12-double-layer
film is 6.21% maximum, with a difference of 2.89%.
Yasuoka et al. assume that the direct contact resistance
is equal to the tunneling resistance and point out that the
nonlinear variation of resistance is mainly caused by the
tunneling resistance [78]. It is obvious that the linearity
of the 12-double-layer CNT/PDDA-PET film cannot be
explained.

Figure (8b) gives the sensitivity GF of CNTFS with
different assembled layers under five cycles of loading
and the same variation pattern as in Table 1. Nine-
double-layer films have the largest GF with the average
GF value of 0.12684/mm, and 12-double-layer films have

0. 147 (b)

0. 12
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o
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o
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Figure 8: Effect of the number of layers of CNTFS assembly on sensing performance: (a) linearity, (b) sensitivity, (c) hysteresis, and

(d) repeatability.
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the smallest GF of 0.03774/mm. Nine-double-layer films
have 3.36 times the GF value of 12-double-layer. Figure 8(c)
shows the hysteresis curve, where hysteresis is defined as
the percentage of the maximum deviation Al between the
forward and reverse travels of the resistance relative rate of
change—displacement relationship curve and the full-scale
output of the change rate of resistance (AR/R)rs, which
reflects the degree of non-coincidence between the forward
and reverse travels of the resistance relative rate of the
change—displacement curve and can be expressed as fol-
lows [79]:

!
Amax

—= % 100%. 2
@R/Ryrs 0% @

e, ==
The smaller the hysteresis, the better the performance
of the sensor. The hysteresis decreases and then increases
with the increase in the number of film layers, reaching a
minimum hysteresis average of 2.16% at nine layers.
Repeatability is also an important indicator to describe
the sensing performance. When the displacement is changed
multiple times for the full range according to the agreed
direction, the degree of inconsistency in the relative rate of
change of each resistance for each change—displacement,
which also reflects the stability of the sensor. The repeat-
ability error,

"
max

— % 100%. 3)
@R/Rys 00

er = il
2

The efis described by the maximum deviation in the
forward and reverse travels, as shown in Figure 8(d). The
maximum repeatability error is 6.35% for the six-double-
layer film, and the minimum is 3.06% for the nine-
double-layer film, and the nine-double-layer CNTFS has
the best sensing repeatability.

Actually, the resistance of the film decreases linearly
with increasing compression displacement and increases lin-
early with increasing tensile displacement. Microscopically,
this is because when the CNT is subjected to loading,
resulting in changes in diameter and helicity, causing
changes in E,, which affects the resistance of the CNT itself.
Moreover, the inter-tube distance of CNT also changes,
which affects the electron transport and thus causes the
inter-tube resistance of CNT to change. Macroscopic analysis
suggests that under tensile displacement, the entire length
of the film increases, the cross-sectional area decreases, and
the overall total resistance of the film increases. In compres-
sion, the cross-sectional area decreases and the total resis-
tance decreases.

The change rate of resistance increases with the increase
in the number of assembled layers, but when the number of

CNT flexible film and its piezoresistive sensing behaviors

— 2057

assembled layers exceeds 9, the connection between CNT
layers increases, and more conductive networks are formed
by direct contact between CNTSs, yet the chance of tunneling
decreases and the change rate of resistance decreases.

4 Conclusion

1) The assembled layers of CNTFS are evenly and com-
pactly deposited with about 7-15 pm.

2) The resistance decreases gradually with the increase
in the number of layers of film assembly, and the
decreasing trend becomes flat when the number of
assembled layers exceeds nine layers.

3) The CNTFS with varied double layers all show superior
piezoresistive performance in terms of linearity, repeat-
ability, and recoverability under five cyclic loadings. The
nine-double-layer CNT film shows the most outstanding
strain-sensitive performance in terms of linearity, sensi-
tivity, hysteresis, and repeatability whose values are
3.22%, 0.12684/mm, 2.16%, and 3.06%, respectively.
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