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Abstract: In recent years, several strategies have been pro-
posed and demonstrated to enhance the efficiency of
organic light-emitting diodes (OLEDs) and organic photo-
voltaics (OPVs). In both types of devices, poly(3,4-ethyle-
nedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is
commonly used to enhance hole injection. The layer is
further designed by incorporating metallic-based, carbon-
based, organic, inorganic, and hybrid nanoparticles with
the aim of improving the performance and hence the
efficiency through the improvement of light out-coupling
in OLEDs and enhancement in light absorption generation
of hole-charge carriers in OPVs. This review elucidates
the use of different types of nanoparticles that are doped
into PEDOT:PSS and their effects on OLEDs or OPVs. The
effects include surface plasmon resonance (SPR), scat-
tering, better charge transport, improvement in surfacemor-
phology and electrical properties of PEDOT:PSS. Promising
results have been obtained and can potentially lead to
low cost, large-area manufacturing process.

Keywords:OLED, OPV, nanoparticles, PEDOT:PSS, organic
electronics, surface plasmon resonance

1 Introduction

Organic optoelectronic devices, particularly organic light-
emitting diodes (OLED) and organic photovoltaic (OPV)
solar cells, have attracted attention in recent decades
due to various advantages such as low cost, thinness,
lightness, semi-transparency, and ability to be fabricated
onto flexible substrates [1–6]. However, the efficiencies
and long-term stability need to be improved. The improve-
ment strategies include the use of new active layer mate-
rials [7–10], new functional layer materials (hole transport
layer–HTL or electron transport layer– ETL) [3,11], doping
of nanoparticles [12,13], and optimising the device struc-
ture [14].

In OLEDs, the injection of charge carriers from the
contacting electrodes are required for emitting light. Holes
are injected from the anode, and electrons are injected from
top metallic cathode; hole-electron pairs are then recom-
bined at the emissive layer where emission occurs [15].
OPVs work in the opposite way where light is absorbed,
for example, in bulk heterojunction (BHJ), which con-
sists of the blend of two semiconductors, a donor, and
an acceptor. Due to the opposite charges of the hole and
electron, they are attracted together to form electron-hole
pair known as exciton. The electron-hole pair then sepa-
rated into cathode and anode in a process known as
exciton dissociation. In order to generate electric cur-
rent, the photons must be continuously absorbed and
converted into free charge carriers (electrons and holes)
effectively [15].

The optical loss for OLEDs is about 80%, where most
of the emitted light is trapped inside the OLED devices,
and only the remaining ∼20% is able to be extracted out
of the substrate [16], as shown in Figure 1. Therefore,
various approaches have been investigated to improve
optical loss, including the use of silica microspheres [17],
microlens arrays [18], and photonic crystal structure [19]
for OLEDs. Another promising approach is by applying
nano-structures into OLEDs as a scattering layer using
nanoparticles (NPs) [20,21]. Compared to the othermethods,
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embedding NPs into OLED is a relatively simple method
suitable for large-area manufacturing.

In the case of OPV, one of the significant constraints
that limit the performance is the effective absorption of
incident light and photogeneration of current. However,
a large portion of the incident light tends to be reflected
at the surface of air and glass, absorbed in electrode,
buffer layers, or escape into the air [22]. Therefore, to
acquire high-efficiency OPVs, it is important to reduce
the optical losses and increase light absorption in the
active layer. Optical losses can be reduced by designing
a structured back reflector, a structured substrate, and
NPs to induce plasmonic effects, scattering, or near-field
enhancement [23].

In both the OLED and OPV, a layer between the active
layer and the indium tin oxide (ITO) anode layer is added
to improve the charge transfer. The layer is known as hole
injection layer (HIL) for OLED and the hole extraction
layer (HEL) for OPV. Poly(3,4-ethylenedioxythiophene):
poly(styrene sulfonate) (PEDOT:PSS) (Figure 2) is the most
commonly used HIL or HEL layer for both the devices.
PEDOT:PSS is a polyelectrolyte with the combination of
electrically conducting conjugated PEDOT (positively
charged) and insulating PSS (negatively charged) stea-
dily dispersed in water [24]. Oxidised PEDOT is highly
conductive, but it is insoluble in water. The insulated
PSS is a polymer surfactant that facilitates PEDOT to
disperse in water [25]. PEDOT:PSS is commercialised
under the trade name CleviosTM formerly known as Bay-
tron P [25]. The PEDOT:PSS aqueous solutions (Clevios)
are widely used for preparing highly conductive and
flexible electrodes such as Clevios PH500 [25,26] and Clevios
PH1000 [27–30]; whereas the less conductive PEDOT:PSS

(Clevios P VP Al 4083 [31–33]) is used as hole injection/
extraction layers. The antistatic coating, solid electrolyte
capacitor, and printed circuit board were the first practical
applications of PEDOT:PSS [34]. The importance of PED-
OT:PSS as a hole injection layer has been documented by
many groups [35,36]. Until now, PEDOT:PSS has been exten-
sively reported as being used as a buffer layer in organic
optoelectronics [25]. The commercially available PEDOT:PSS
is a widely used material for organic optoelectronic owing
to its high transparency in the visible range, easy to
process, excellent surface morphology, great mechanical
flexibility, adjustable conductivity, high work function,
and excellent thermal stability [20,37,38]. Nevertheless,
higher hole injection and conductivity are beneficial.
However, pure PEDOT:PSS having low conductivity, is
sensitive to air, and adhere weakly to hydrophobic
substrates [37]. One strategy is to incorporate NPs such
as gold (Au) NPs [39], silver (Ag) NPs [40], or carbon
nanotube [41] into the PEDOT:PSS layer for applications
in flexible or even stretchable devices [24]. A few effects
improve device efficiencies when NPs are doped into
PEDOT:PSS, such as better hole injection, higher con-
ductivity, plasmonic effect, scattering, etc. [39–41].

There are varieties of NPs or nanomaterials available,
such as metal-based [13], metal oxides [42], organic-
based [27], carbon-based [43], 2D materials [44,45], and
hybrid-based NPs [46]. They exhibit unique physical
and chemical properties and are used in wide range of
fields such as water treatment [47], agriculture [48], biolog-
ical [49–51], optoelectronics [52], sensors [53], construc-
tion materials (cement) [54,55], photocatalyst [56,57], etc.
Furthermore, NPs can be synthesised into different shapes,

Figure 1: Various optical loss modes such as substrate mode,
waveguided mode, and surface plasmon mode in an OLED.

Figure 2: The chemical structure of PEDOT:PSS.
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sizes, and structures. It can be spherical, triangle, square,
or irregular form. The combination of NPs such as metal-
metal, metal-metal oxide, carbon-metal, and organic-metal
forms hybrid NPs, which possess synergetic properties of
each type of NP [58,59]. Metallic NPs are widely used
in organic optoelectronics due to the surface plasmon
resonance effect (SPR) or localised surface plasmon
resonance (LSPR). At the same time, they also enhanced
the transport layer conductivity to improve the overall
device performance [4,60,61]. SPR is defined as the
resonant oscillation of conduction electrons that occurs
between materials with negative and positive permittivity.
At the same time, LSPR is light-induced and matches the
frequency of the metallic surface, causing free surface
electrons to oscillate collectively.

There are few strategies of using NPs on organic
optoelectronic devices in terms of the position, which
included: (i) between anode and hole injection or extrac-
tion layer (ITO/HIL or HEL) [62–64] (Figure 3(a)), (ii) in
HIL or HEL [21,40,65,66] (Figure 3(b)), (iii) between
active layer and HIL or HEL [67] (Figure 3(c)), and (iv)
in active layer [68–70] (Figure 3(d)). In this review, we
will be focusing on the NPs embedded into the HIL for
OLEDs or HEL for OPVs (Figure 3(b)). The use of NPs at
this position has been proposed for light trapping, absorp-
tion, re-scattering of light, and a near-field enhancement
[71]. The easiest way is to dope the NPs into a hole
injection material such as PEDOT:PSS or deposit them
at the top of the anode layer.

This review article presents a brief technical summary
of the types of NPs embedded into PEDOT:PSS nanocom-
posite for OLEDs and OPVs. The performances are listed
and reviewed. The effects of the NPs in PEDOT:PSS for
organic are discussed and summarised. Finally, outlooks
and conclusions on nanoparticles-doped PEDOT:PSS for
OLEDs and OPVs are drawn.

2 NPs-doped PEDOT:PSS for OLED

Incorporation of NPs into PEDOT:PSS has evolved into
one of the most common ways to improve OLED perfor-
mance irrespective of the spectral range. It has been used
for blue, red, and green-emitting OLEDs. The typical device
configuration has been reported are mostly in ITO(anode)/
NPs:PEDOT:PSS(HIL)/HTL/EML/ETL/EIL/aluminium (Al)
(cathode), (Figure 4).

2.1 Metallic-based NPs

The most commonly used metallic NPs are Ag and gold
Au with the size of 5–80 nm; the size and concentration
are optimised to achieve the best improvement in current
efficiency (CE), as shown in Table 1.

In 2012, Mucur et al. synthesised Ag NPs with parti-
cles size of around 6 nm diameter and mixed them into

Figure 3: Schematic diagram of device structure with NP in OLEDs and OPVs, (a) between anode and hole injection or extraction layer (ITO/
HIL or HEL), (b) in HIL or HEL (main focus in this review), (c) between active layer and HIL or HEL, and (d) in active layer.

Figure 4: Device structure of a typical OLED with NPs-doped
PEDOT:PSS.
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PEDOT:PSS. 12.5 wt% Ag NPs exhibited the highest per-
formance and the increase in CEs by 28.90% is mainly
due to more efficient charge injection without affecting
the emission colour [13]. In another work, the CE was
also improved (∼13%) using larger Ag NPs (30 nm) with
the concentration of 0.025 wt% Ag NPs doped into
PEDOT:PSS, it is attributed to the enhanced hole injec-
tion [72]. However, larger size ∼60 nm Ag NPs into
PEDOT:PSS as HTL was found to exhibit a negligible
effect on the hole injection efficiency due to the excita-
tion of LSPR around Ag NPs [12].

The investigation by the same group using copper
(Cu), Ag, and Au NPs and also dual metal NPs imbedded
into PEDOT:PSS with the device architecture of ITO/NPs-
PEDOT:PSS/CBP:Ir(MMPIPA)2(acac)/LiF/Al further con-
firm the LSPR effects [73]. The optimum particle size and
concentration used were Ag (55 nm, 40%), Au (20 nm,
24%), Cu (21 nm, 50%), Cu-Ag (21–55 nm, 62%), and
Au-Ag (20–55 nm, 80%), respectively. After doped metal
NPs into PEDOT:PSS, all the devices are exhibited better
stability due to the alleviated acidic and the hygroscopic
nature of PEDOT:PSS. The results also showed that co-
doped Au and Ag or Cu and Ag for green OLEDs exhib-
ited higher efficiency due to the synergistic effect of
stronger near-field resonance of Au NPs and broadband
resonance of Ag NPs. In another work, Au NPs of different
sizes and shapes were used in PEDOT:PSS composite. At
the same time, Au nanorods showed the highest efficien-
cies compared to the other spherical-shaped Au NPs with
the size of 5, 10, and 20 nm. The results suggest that Au NPs

with larger size and higher surface area have more obvious
“far-field” surface plasmon resonance (FSPR) effects that
acquire higher reflectivity [21].

Biologically synthesised gold nanoparticles (Bio-Au NPs)
have been introduced into polymer OLEDs. They used
microorganisms to grow at high metal ion concentra-
tions. It can eliminate the toxic effect of metals by
adjusting the redox state and metal NPs were formed
intracellularly from the metal ions. They optimised the
bio-Au NPs’ concentration with 0.125 wt%, which is
improved by 85.90% of the current efficiency compared
to the non-doped PEDOT:PSS layer [74].

2.2 Inorganic NPs

The investigation of inorganic NPs in PEDOT:PSS for
OLED is listed in Table 2. The enhancement of efficiency
is mainly attributed to better hole injection. Molybdenum
trioxide (MoO3) NPs with the optimal volume ratio of
PEDOT:PSS to MoO3 of 3:1 were studied for OLEDs [20].
The composite solution coated as HIL results in a smooth
and pin-hole-free morphology compared to the solution-
processed pure MoO3. Another advantage of adding MoO3

to PEDOT:PSS as HIL possesses a high work function
(5.54 eV) compared to the PEDOT:PSS pristine film. The
work function is increased by 0.3 eV, which reduced the
energy barrier and improved hole injection. In another
work, molybdenum disulphide (MoS2) was added into
PEDOT:PSS as HIL and effectively promoted hole

Table 1: Device characteristics of OLEDs with metallic-based NPs-doped PEDOT:PSS

NPs Size of
NP (nm)

Thickness
(nm)(a)

Function CE (cd/A) PE
(lm/W)

EQE (%) Enhance in
CE (%)(b)

Remarks Ref.

Ag 6 70 HIL 0.64 — — 28.90 Improved hole injection [13]
Ag 30 30 HIL — — 0.94 13.25 (EQE) Improved hole injection [72]
Ag 60 55 HIL 1.46 — — 18.70 Improved hole injection

and LSPR
[12]

Ag 55 40 HIL 31.00 6.80 8.20 72.20 LSPR [73]
Cu 21 40 HIL 26.60 6.20 6.30 47.80 LSPR [73]
Au 20 40 HIL 27.00 7.20 8.00 50.00 LSPR [73]
Cu and Ag 21 and 55 40 HIL 32.10 7.50 8.30 78.30 LSPR [73]
Au and Ag 20 and 55 40 HIL 35.30 8.20 9.80 96.10 LSPR [73]
Au 5 75–80 HIL 15.10 — — 14.40 SPR [21]
Au 10 75–80 HIL 16.40 — — 24.20 SPR [21]
Au 20 75–80 HIL 17.10 — — 29.50 SPR [21]
Au Nanorod — 75–80 HIL 17.50 — — 32.60 SPR [21]
Bio-Au 10.4 50 HIL 1.58 — 1.09 85.90 SPR and scattering [74]

CE: current efficiency, PE: power efficiency, EQE: external quantum efficiency, HIL: hole injection layer, (—): no data provided.
(a): thickness of PEDOT:PSS:NPs composite layer, (b): compared with pristine PEDOT:PSS.
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injection. MoS2 incorporation in the PEDOT:PSS matrix
contributed to promoting conductivity and improved the
device durability for the UV OLEDs. At the same time,
the current efficiency of the OLED was improved by
68.75% [75].

In addition, tungsten oxide (WOx) doped into PEDOT:
PSS also showed a similar effect that improved hole injec-
tion and device durability for the UV OLED devices [76].
The improvement is due to the non-stoichiometry in WOx

and WOx:PEDOT:PSS accompanied by slight oxygen defi-
ciency [77,78], which provides a hole transport channel
to promote hole injection or transport in organic elec-
tronic devices [76].

Furthermore, commonly used inorganic NPs, tita-
nium dioxide (TiO2) NPs (20 wt%, 25 nm), was doped
into PEDOT:PSS as HIL, and an impressive improvement
in the CE of around 760.5% was found and it was due
to the improvement in light out-coupling from light
scattering layer [79]. Meanwhile, the same group tested
the incorporation of zinc oxide (ZnO) nanorod in PED-
OT:PSS [80], a lower improvement (138.7%) was achieved
compared to TiO2. The ZnO nanocomposite results in
strong interaction between ZnO and thiophene rings of

PEDOT:PSS and polymer chains changes from coiled to
linear [81]. π-electrons are more delocalised in linear
PEDOT:PSS; hence, charge mobility and conductivity
increase. In addition, it is also possible for nanostruc-
tured ZnO to enhance light out-coupling [80].

2.3 Carbon-based NPs

Recently, carbon-based NPs or nanomaterials have been
widely used as transparent conducting films (TCFs) [82]
in optoelectronic devices [29,37]. Carbon nanomaterials
such as nanotubes, graphene, and graphene oxide (GO)
have been investigated as substitutes for ITO (Table 3).
For example, graphene possesses high transmittance and
conductivity, and exhibits optical transmittance compar-
able to ITO at visible wavelengths [82]. A highly efficient
ITO-free OLEDs were obtained by using PEDOT:PSS:GO
as an anode with the device configuration of anode/NPB/
Alq3/LiF/Al [83]. The highest CE of the device (PED-
OT:PSS:GO with the ratio of 15:1) is 5.71 cd/A, while for
pristine PEDOT:PSS layer is only 3.47 cd/A; thus, a 55%

Table 2: Device characteristics of OLEDs with inorganic NPs-doped PEDOT:PSS

NPs Size of
NP (nm)

Thickness
(nm)(a)

Function CE
(cd/A)

PE
(lm/W)

EQE
(%)

Enhance in
CE (%)(b)

Remarks Ref.

MoO3 3:1(c) 30 HIL — 89.2 23.9 ∼84.00 (EQE) Reduced energy barrier and
improved hole injection

[20]

MoS2 2:1(c) — HIL 8.10 5.70 4.14 68.75 Promotes conductivity and
device durability

[75]

WOx 20:1(c) — HIL — — 2.30 42.86 (EQE) Promotes conductivity and
device durability

[76]

TiO2 25 — HIL 7.30 3.15 — 760.50 Improved light out-coupling [79]
ZnO 200 (length) — HIL 11.03 4.34 — 138.70 Improved charge mobility and

conductivity
[80]

CE: current efficiency, PE: power efficiency, EQE: external quantum efficiency, HIL: hole injection layer, (—): no data provided.
(a): thickness of PEDOT:PSS:NPs composite layer, (b): compared with pristine PEDOT:PSS, (c): ratio of PEDOT:PSS with NPs
(PEDOT:PSS:NPs).

Table 3: Device characteristics of OLEDs with carbon-based NPs-doped PEDOT:PSS

NPs Concentration Thickness
(nm)(a)

Function CE (cd/A) PE
(lm/W)

EQE (%) Enhance in
CE (%)(b)

Remarks Ref.

GO 15:1 PEDOT:PSS/GO 57 Anode 5.71 — — 55.00 Improved hole
injection

[83]

PRPOHA-GO (2mg/mL; in EG)
15:1 v/v

44 Anode ∼0.11 ∼0.06 ∼0.10 ∼1.60(c) Lower
resistivity

[28]

CE: current efficiency, PE: power efficiency, EQE: external quantum efficiency, (—): no data provided.
(a) thickness of PEDOT:PSS:NPs composite layer, (b) compared with pristine PEDOT:PSS, and (c) compared to ITO.
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enhancement was obtained. This improvement indicates
that PEDOT:PSS:GO composite possibly reduces the
energy level difference, hence better hole injection [84].
Graphene oxide sheets are vigorously oxidised by hydroxyl
and epoxide groups, and it helps assemble other materials
through π–π stacking and hydrogen bonding [85]. There-
fore, GO-doped PEDOT:PSS is able to promote the inter-
action between GO and PEDOT but not PSS due to the
electronegativity of GO.

On the other hand, several amines such as n-propy-
lamine (nPRYLA), dipropylamine (DPRYLA), and propa-
nolamine (PRPOHA) have been used to modify GO and
doped into PEDOT:PSS (PH1000) with additional ethylene
glycol (15:1) used as anode [28]. The device structure is
anode/PEDOT:PSS(Al4083)/ADS231BE/Cs2CO3/Al. All the
devices show enhancement in CE, PE, and EQE (1.6-,
1.5-, and 1.9-fold enhancement, respectively) compared
to the device with ITO anode. PRPOHA-GO was the best
device among the amine-modified GO devices due to
lower surface resistivity.

2.4 Hybrid NPs

Hybrid NPs are defined as when two or more distinct NPs
are assembled but still in nanoscale dimensions. Hybrid
NP systems can be obtained by combining two different
materials such as organic-inorganic, decorated-metal oxide
NPs, metal-metal oxide, and core-shell to obtain unique
or synergetic properties [58,59].

When PdCo alloy NPs supported on polypropyleni-
mine dendrimer-grafted graphene (PdCo/PPI-g-G) with
0.02 wt% was doped into PEDOT:PSS, the highest lumi-
nous efficiency (2.36 cd/A) and luminous PE (0.11 lm/W)
were obtained for poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO)-
based blue OLED. When PdCo/PPI-g-G is doped in
PEDOT:PSS, the energy barrier between the ITO anode
and the PEDOT:PSS is around 0.5 eV. At low doping con-
centrations of 0.02 wt% PdCo/PPI-g-G, the luminance
improvement was related to an increase in hole injec-
tion, which led to a better balance of electron/hole in the
PFO layer. However, further increase in the concentration
of PdCo/PPI-g-G (>0.02 wt%) shifted the recombination
zone toward to cathode; thus, the luminescence efficiency
was decreased [86].

Several studies have been carried out using a com-
bination of a metal core with organic material outer
shell doped PEDOT:PSS. Polystyrene (PS)-coated gold
core-shell NPs (Au@PS NPs) were studied in green phos-
phorescent OLEDs with the device configuration of glass/

ITO/Au@PS NPs-PEDOT:PSS/PVK:PBD:Ir(PPy)3/LiF/Al.
It improved the current efficiency by 42.36% compared
to the device with a bare PEDOT:PSS layer. At ambient
conditions, the cross-linked PS shell for Au@PS NPs pro-
vided hydrophobic and structural stability by ensuring their
structural stability against oxidation and minimising the
adverse effect of the hygroscopic and acidic PEDOT:PSS
film on the organic electronic devices. By using emulsion
polymerisation, Au NPs were encapsulated in PS shells. The
thickness of PS shell is tunable to optimise plasmonic
coupling efficiency between the Au NPs and the emitting
or active layers [1]. In another similar work, smaller Ag
NPs (3–6 nm) were encapsulated with organic material
(o-phenylenediamine [o-PDA]). o-PDA@Ag NPs displayed
a surface plasmon absorption band cantered at 448 nm.
The improvement is due to the insulating NPs attributed
to the film morphology change and enhanced balance of
injected electrons and holes. The device consisting of
o-PDA@Ag NPs exhibited ∼20% improvement in current
efficiency compared to pristine PEDOT:PSS as HIL [87].

Magnetic NPs have recently been reported as a hole-
transport layer for OLEDs. Magnetic NPs induce tuning
the ratio of singlet to triplet excitons in the emissive
layer [88]. In addition, the combination of magnetic NPs
Iron(II,III) oxide – Fe3O4) with other materials Fe3O4@G,
Fe3O4@SiO2, and Fe3O4@Au have also been studied [89].
Fe3O4 are modified by graphene (G), silicon dioxide (SiO2),
and Au nanoclusters, respectively, then mixed with the
PEDOT:PSS as HIL. The nanocomposite serves as a light-
out coupling layer that contributes to EQE enhancement
by combining magnetic, localised surface plasmon reso-
nance, and scattering effects. Compared to bare PEDOT:PSS,
the current efficiency enhancement for Fe3O4@G, Fe3O4@SiO2,
and Fe3O4@Au are 8.2, 27.1, and 35%, respectively. This
enhancement has also been observed in carbon-coated mag-
netic alloy NPs (CoPt and FePt) [90]. Introducing GO-silver
nanowire (AgNWs) [69] and also Ti3C2Tx (MXene)-nanosheet-
AgNW [91] doped into PEDOT:PPS as anode can lower the
sheet resistance, smoothen the surface roughness as com-
pared to AgNWs:PEDOT:PSS or pristine AgNWs layer [69,91].
The enhanced luminescence intensity is also attributed to the
SPR effect from the AGNW, thereby reducing the waveguide
loss by light scattering [69]. A summary of the data is pre-
sented in Table 4.

3 NPs-doped PEDOT:PSS for OPVs

Many groups have reported incorporating NPs into OPV to
improve the performance of OPVs by inducing plasmonic
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effects, increasing light absorption, enhancing the rate
of exciton generation, or increasing multiple scattering
events, thereby enhancing light absorption efficiency
[39,92]. Most of the reported device configuration for
OPVs is based on ITO(anode)/PEDOT:PSS(HIL)/BHJ(active
layer)/EIL/Al(cathode). P3HT:PCBM blends are commonly
used as the active layer for OPV, (Figure 5).

3.1 Metal NPs

Metal NPs, especially Ag NPs and Au NPs, are most com-
monly embedded into PEDOT:PSS to enhance efficiency
[4,60,61] (Table 5). Ag NPs usually have an absorption

peak between 400 and 450 nm, and Au NPs have an SPR
peak between 500 and 600 nm, which relies on the
thickness, shape, and distance of the nano-structures
[93]. When decahedral and icosahedron of Ag NPs are
doped into PEDOT:PSS as hole extraction layer [94], the
absorption peaks for decahedral Ag NPs (50–65 nm) are
at 407 and 502 nm, while the absorption peak of icosa-
hedron Ag NPs (30–40 nm) is at 412 nm, indicating that
the decahedral Ag NPs have a wider light-harvesting range
than icosahedron Ag NPs. The AFMmeasurements revealed
that the PEDOT:PSS:Ag-decahedral NPs composite film had
a higher roughness, improving the cell’s hole collection
efficiency because larger particles lead to a stronger plas-
monic scattering effect. It results in an improvement of
12.10% as compared to PEDOT:PSS layer. Meanwhile,
improvements in the efficiency of CuPc/C60 solar cells with
various AgNP sizes (43, 45, 51, 54, and 57 nm) have been
observed [40]. Among the particle sizes tested, 57 nm had
the highest power conversion efficiency (PCE) at ∼0.93%,
owing to the SPR effect, which can decompose the excitons
electron-hole pair into e− and h+ that have moved to the
cathode and anode of the cell, which is affecting the
efficiency.

In another report, 80 nm Ag NPs with a spherical
shape dispersed in PEDOT:PSS were then fabricated into
P3HT:PCBM-based organic solar cells [32]. The Ag NPs are
nearly spherical and distributed uniformly on the glass
surface; no apparent aggregation is observed. Compared
to pure PEDOT:PSS, PEDOT:PSS incorporated with Ag NPs

Table 4: Device characteristics of OLEDs with hybrid NPs-doped PEDOT:PSS

NPs Size of NP (nm) Thickness
(nm)(a)

Function CE
(cd/A)

PE
(lm/W)

EQE
(%)

Enhance in
CE (%)(b)

Remarks Ref.

PdCo/PPI-g-G 0.02 wt%(e) 5 HIL 2.36 0.11 — 223.29 High hole injection [86]
Au@PS 34 (core) 100

(outer)
— HIL 28.90 6.50 7.80 42.36 SPR [1]

o-PDA@Ag 3–6 40 HIL ∼2.10 — — ∼20.00 Improved hole injection [87]
Fe3O4@G 8.6 — HIL 4.11 3.16 1.35 8.20 Magnetic, LSPR, and scattering [89]
Fe3O4@SiO2 15.8 — HIL 4.83 4.27 1.59 27.10 Magnetic, LSPR, and scattering [89]
Fe3O4@Au 19.7 — HIL 5.13 3.5 1.73 35.00 Magnetic, LSPR, and scattering [89]
C-FePt 11.5 40 HIL 5.40 2.20 1.83 47.10 Magnetic, LSPR, and scattering [90]
C-CoPt 3.4 40 HIL 5.45 3.15 1.84 21.30 Magnetic, LSPR, and scattering [90]
GO-AgNW AgNW 5 μm

(length) and
50 nm (dia.)

— Anode 6.20 — — 47.62(c) Lower sheet resistance,
smoothened surface
roughness, and scattering

[69]

AgNW-MXene AgNW 22 nm (dia.) — Anode 21.0 — 25.9 766.70(d) Lower sheet resistance,
smoothened surface
roughness, and scattering

[91]

CE: current efficiency, PE: power efficiency, EQE: external quantum efficiency, HIL: hole injection layer, (—): no data provided, dia.: diameter.
(a): thickness of PEDOT:PSS:NPs composite layer, (b): compared with pristine PEDOT:PSS, (c): compared with ITO, (d): compared with bare
AgNW, and (e): concentration.

Figure 5: Device structure of a typical OPV with NPs doped into
PEDOT:PSS.
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exhibit an increase in PCE up to 16.20%. The author
clarified that LSPR is not the origin of efficiency; the
concentration of Ag NPs (80 nm) (0, 0.1, and 1 wt%)
with PEDOT:PSS composite films show almost similar
transmittance ∼90% at the wavelength 300–800 nm,
which means the concentration of Ag NPs has no apparent
impact on the optical effects. The PEDOT:PSS layer incor-
porated with Ag NPs exhibited higher conductivity that
contributed to PSC improvement. Besides, another study
reported the effect of Ag Nps- or Au Nps doped PEDOT:PSS
composite as hole extraction layer compared with pristine

PEDOT:PSS with the device configuration of ITO/Compos-
ite layer/P3HT:PCBM/LiF/Al [26]. PCE was improved by
8.5% for both Ag NPs and Au NPs in the 20–40 nm size
range, which was attributed primarily to the SPR effect and
improved hole extraction by increasing surface roughness
at the buffer layer [26].

Furthermore, a detailed comparison of PEDOT:PSS +
Au NPs and PEDOT:PSS + Ag NPs with the average par-
ticle size for Ag NPs (∼10 nm) and Au NPs (∼20 nm) was
reported [95]. The absorption peaks of Au NPs and Ag
NPs were observed at 521 and 431 nm. The optimised

Table 5: Device characteristics of OPVs with metallic-based-NPs doped PEDOT:PSS

NPs Active layer Size of
NP (nm)

Thickness
(nm)(a)

Function FF (%) PCE
(%)

Enhance in
PCE (%)(b)

Remarks Ref.

Ag PTB7:PC71BM 50–65 40 HEL 63.20 6.50 12.10 Better hole collection [94]
Ag CuPc:C60 57 — HEL 39.70 0.93 — SPR [40]
Ag P3HT:PCBM 80 55 HEL 38.80 2.65 16.20 Higher conductivity [32]
Ag P3HT:PCBM 20–40 40 HEL 51.20 3.20 8.50 SPR and improved hole

collection
[26]

Au P3HT:PCBM — 40 HEL 51.50 3.19 8.50 SPR and improved hole
collection

[26]

Ag rrP3HT: PC61BM 10 40 HEL 62.00 4.94 5.55 SPR, increases absorption
length and scattering

[95]

Au rrP3HT: PC61BM 20 40 HEL 62.00 4.99 6.62 SPR, increases absorption
length and scattering

[95]

Ag rrP3HT: PC71BM 10 40 HEL 61.00 5.29 6.65 SPR, increases absorption
length, scattering

[95]

Au rrP3HT: PC71BM 20 40 HEL 61.00 5.65 13.91 SPR, increases absorption
length and scattering

[95]

Au P3HT:PCBM 11 ± 3 30 HEL 53.30 3.23 32.40 enhanced extraction of
charge in hole transport layer

[99]

Au CuPc/C60 12–23 — HEL 49.00 1.02 30.80 SPR and improved hole
collection

[96]

Au P3HT:PC70BM 18 40 HEL 69.21 3.51 18.50 SPR and improved hole
collection

[97]

Au P3HT:PCBM 45 ± 5 50 HEL 70.32 4.24 18.80 SPR and improved hole
collection

[4]

Au P3HT:PCBM 14 ± 4 — HEL 30.02 1.00 66.67 SPR and improved hole
collection

[98]

Au P3HT:PC60BM 50 30 HEL 66.10 4.14 15.00 Stronger near-field
enhancement, thus higher
photocurrent output

[101]

Au PBDT-TS1:PC70BM 50 30 HEL 67.34 10.29 27.98 Stronger near-field
enhancement, thus higher
photocurrent output

[101]

Au and Ag PTB7:PC70BM 40 and 50 60 HEL 69.00 8.67 19.60 Absorption enhancement and
broadens the wavelength
range

[102]

Au and Ag rrP3HT:PC61BM 10 and 20 40 HEL 62.00 5.31 — SPR and absorption
enhancement

[103]

Au and Ag rrP3HT:PC71BM 10 and 20 40 HEL 50.00 5.71 — SPR and absorption
enhancement

[103]

FF: field factor, PCE: power conversion efficiency, HEL: hole extraction layer, (—): no data provided.
(a): thickness of PEDOT:PSS:NPs composite layer, (b): compared with pristine PEDOT:PSS.
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OPV device structure for both metal NPs is fabricated
with a configuration of ITO/PEDOT:PSS + metal NPs/
rrP3HT:PC61BM/BCP/LiF/Al and ITO/PEDOT:PSS + Metal
NPs/rrP3HT:PC71BM/BCP/LiF/Al. The surface roughness
of the bare pristine PEDOT:PSS layer was around 2.61 nm,
whereas the PEDOT:PSS + Au NPs composite and the PED-
OT:PSS + Ag NPs composite was 2.69 and 3.56 nm, respec-
tively. Ag NPs and Au NPs have better performance for
both BHJ structures than the bare PEDOT:PSS. The PCE
improvement in PEDOT:PSS + Ag NPs and Au NPs with
rrP3HT:PC61BM were 5.55 and 6.62%, respectively, whereas
6.65 and 13.91% for PEDOT:PSS + Ag NPs and Au NPs with
rrP3HT:PC71BM. The surface plasmon effect for metal NPs
increases photo absorption length, scattering, and trapping
of incident light passing through the HIL. Compared to the
device’s performance for both PEDOT:PSS + Ag NPs and
PEDOT:PSS + Au NPs, the devices with PEDOT:PSS + Au
NPs showed better results due to the absorption range of Au
NPs, which absorbed more in visible range [95].

In recent years, incorporating Au NPs with PEDOT:
PSS in different OPV device configurations and different
Au NPs sizes have resulted in performance enhancement
with optimised Au-NPs concentration in PEDOT:PSS
[4,95–99]. They shared a similar outcome where Au
NPs enhanced charge extraction in the hole transport
layer; thus, the energy barrier was lowered and promoted
carrier transport [99,100]. Besides that, Au NPs have
unique optical properties of the LSPR that enhance the
light absorption efficiency to improve the performance
of the OPVs [4,96,97]. Optimising the concentration of
Au NPs in PEDOT:PSS is important as above a concen-
tration threshold, the additional leakage current was
detected resulting from increased defects in the hole
transport layer that act as a recombination centre [99].
A fairly high increment of PCE efficiency can be achieved

when Au NPs are doped into PEDOT:PSS as hole extraction
layer and compared to control devices (bare PEDOT:PSS);
32.4% [99], 30.8% [96], 18.5% [97], 18.8% [4], 66.67%
[98], 15.00% [101], and 27.98% [101], respectively. Further-
more, by taking advantage of both Ag NPs and Au NPs
with different absorption regions, a mixture of AgNps and
Au NPs showed even better solar cell performance than
only a single type of metal NPs. EQE spectra and UV-vis
absorption spectra for dual NPs showed absorption
enhancement compared with single NPs and without NPs
with a broader absorption spectrum [102]. The highest PCE
value is 5.71%with Jsc = 16.44mA/cm2 for an optimised ratio
of Au NPs (10 nm):Ag NPs (20 nm) (25:75) in PEDOT:PSS
which consisted of devices architecture of ITO/PEDOT:PSS +
Au NPs:Ag NPs(25:75)/rr-P3HT:PC71BM/BCP:LiF:Al, whereas,
for ITO/PEDOT:PSS + Au NPs:Ag NPs(25:75)/rr-P3HT:PC61BM/
BCP:LiF:Al the best PCE was 5.31%with Jsc = 14.77mA/cm2

[103].

3.2 Organic NPs

Another strategy to further improve the performance of
OPV is using organic NPs as listed in Table 6. Cross-
linked PS NPs are able to enhance the mechanical dur-
ability of flexible electronics [27]. A flexible organic solar
cell was investigated using the stamping process of the
PEDOT:PSS layer with PSNPs. The PSNPs with a particle
size of 68 nm are doped into PEDOT:PSS and diluted by
IPA, then spin-coated onto the polyurethane acrylate
(PUA)/PC stamp and stamped onto the PH1000/PEN sub-
strate. The complete device structure is PEN/PEDOT:PSS/
PEDOT:PSS:PS NPs/PTB7:PC71BM/TiOx/Al; the processes
are illustrated in Figure 6. The stamped PEDOT:PSS:PS

Table 6: Device characteristics of OPVs with organic NPs-doped PEDOT:PSS

NPs Active layer Size of
NP (nm)

Thickness
(nm)(a)

Function FF (%) PCE (%) Enhance in
PCE (%)(b)

Remarks Ref.

PS PTB7:PC71BM 68 30 HEL 0.52 5.71 0.70 Lowered work function and better
device mechanical stability

[27]

PPy PTB7:PC61BM 30 40 HEL 67.93 3.35 15.12 Changes in pH value, increase in
conductivity, and morphological
changes

[104]

PPy PTB7:PC71BM 30 40 HEL 71.06 9.44 17.90 Changes in pH value, increase in
conductivity, and morphological
changes

[104]

FF: Field factor, PCE: power conversion efficiency, HEL: hole extraction layer, (—): no data provided.
(a): thickness of PEDOT:PSS:NPs composite layer, (b): compared with pristine PEDOT:PSS.

1878  Guang Liang Ong et al.



NPs exhibited significant mechanical stability enhancement
when undergoing a bending test. At the same time,
the work function of the PEDOT:PSS:PS NPs provided
by stamping is 5.09 eV which is lower than the usual
spin-coated process for PEDOT:PSS at 5.20 eV. The PED-
OT:PSS:PSNP samples possess the highest occupied
molecular orbital (HOMO) energy level of 5.15 eV; thus, it
has a slightly better hole transport than that of spin-coated
PEDOT:PSS. The transferred PEDOT:PSS:PS NPs have the
best PCE at 5.71% for PTB7:PC71BM based flexible solar
cells and the spin-coated device is only 5.37%. Further-
more, the transferred PEDOT:PSS:PS NPs layer of the flex-
ible organic solar cell device with 1,000 cycles of bending
test and retained 65% of its initial efficiency, outper-
forming the spin-coated PEDOT:PSS device without PS
NPs, which retained only 42% of its initial efficiency [27].

Besides that, an impressive PCE of 9.48% was obt-
ained for PTB7:PC71BM based solar cells when water-
soluble polypyrrole NPs (PPy NPs) doped PEDOT:PSS
was used as buffer layer [104]. PTB7:PC71BM based solar
cell was coated a 20% PPy NPs doped PEDOT:PSS layer
and obtained a PCE of 9.44%. Comparing this to the
pristine PEDOT:PSS and without PEDOT:PSS layer, an
improvement of 18 and 152% was achieved. Besides,
PTB7:PC61BM based solar cells also improved by 15
and 154% compared to the pristine PEDOT:PSS and
without the PEDOT:PSS layer, respectively. Notably,
the conductivity of 20% PPy NPs:PEDOT:PSS film with
2.22 × 10−4 ± 0.2 × 10−4 S/cm is 4 times higher than
pristine PEDOT:PSS. The pH value of 2.2 for pure PED-
OT:PSS is modified to pH value of 7.4, when 20% PPy NPs
doped into PEDOT:PSS. The composite is neutralised, while
the conductivity and its long-term stability are improved,
where hole extraction is much better, and the damage to
the ITO surface is lower than the device with pure PED-
OT:PSS. Aside from that, the PPy NPs:PEDOT:PSS compos-
ite film exhibits phase separation and a bicontinuous
interpenetrating network, which are useful for hole trans-
port [104].

3.3 Inorganic NPs

Inorganic semiconductors have shown excellent elec-
tronic properties, for example, high dielectric constant,
high charge mobility, and thermal stability, while the
NPs also exhibit enhanced electronic, photo-conducting,
and luminescent properties [105]. The reported work for
devices using inorganic NPs doped into PEDOT:PSS is
presented in Table 7. An increase in efficiency is observed
in small molecule OPVs by incorporating TiO2 NPs with
PEDOT:PSS as transparent electrode [106]. With 0.5 wt%
TiO2 mixed with PEDOT:PSS, higher transmittance is
obtained as compared to the bare PEDOT:PSS layer. The
device with the optimised concentration of TiO2 in PED-
OT:PSS showed the best PCE of 7.92%, improved by a
factor of 1.08 compared to bare PEDOT:PSS devices.
TiO2 NPs act as a scattering volume for increased light
coupling for OPV devices and the composite layer also
enhances mechanical flexibility. Next commonly used
vanadium pentoxide (V2O5) NPs have been studied for
the effect of carrier mobility, hole-only devices with dif-
ferent HTLs [107]. In this study, for the embedded V2O5NPs
in PEDOT:PSS layer, the hole mobility (μh) was calculated
according to the Mott-Gurney law. The value of μh
increases from 2.54 × 10−4 cm2 v−1 s−1 for V2O5 and
3.19× 10−4 cm2 v−1 s−1 for PEDOT:PSS to 4.19× 10−4 cm2 v−1 s−1

for V2O5 NPs:PEDOT:PSS. The larger hole mobility can
promote charge transfer to enhance photocurrent JSC
and fill factor (FF). Notably, wide-angle X-ray scattering
(GIWAXS) revealed a stronger lamellar intensity and π-π
peaks in the active layer for V2O5 NPs:PEDOT:PSS compared
to the pristine PEDOT:PSS layer, further proof that the
crystallinity of the active layer (PTB7-Th:PC71BM) coated
on the V2O5 NPs:PEDOT:PSS is enhanced. Therefore,
V2O5 NPs:PEDOT:PSS acquired a PCE of 9.44% (improved
by 14.70%).

Another paper used inorganic oleylamine-functiona-
lised molybdenum disulphide (FMoS2) nanosheets doped
into PEDOT:PSS as hole extraction layer for P3HT:PCBM

Figure 6: The stamping transfer process of the PPy NPs:PEDOT:PSS layer for PTB7/PC71BM based flexible solar cell [27]; Copyright (2018)
Royal Society of Chemistry.
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based organic solar cell [108]. Introducing a 2D sheet-like
FMoS2 into PEDOT:PSS would increase surface hydropho-
bicity and facilitate the subsequent deposition of the
hydrophobic active layer. The device with FMoS2:PE-
DOT:PSS as HTL has lower sheet resistance (RS) and
higher shunt resistance (RSH) than PEDOT:PSS. There-
fore, FMoS2:PEDOT:PSS films exhibited a PCE of 3.74%,
which is 15.1% higher than the reference device with only
PEDOT:PSS layer. In another work, the author demon-
strated MoO3 mixed with PEDOT:PSS as hybrid ink resulted
in better wettability and forming a smoother surface. The
film-forming ability of the MoO3:PEDOT:PSS hybrid ink
was improved due to the stronger bonding between the
MoO3 NPs and the photoactive layer. The PCE for MoO3:
PEDOT:PSS is improved by 7.87% as compared to only
MoO3 layer [109].

Furthermore, WOxNPs blended with PEDOT:PSS as
HTL can improve device efficiency and surface free energy
(γS) [110]. The morphology of BHJ films depends highly
on the surface free energy of the underlying interfacial
layer [111]. Surface free energies of WOx, WOx:PEDOT:PSS,
and PEDOT:PSS HTLs were calculated to be 73.98, 62.09,
and 59.30mN/m, respectively. The introduction ofWOxNPs
to PEDOT:PSS affected the work function and surface
roughness and increased the surface free energy. Based
on the optimised WOx:PEDOT:PSS composite layer, an
impressive PCE of 14.57% with FF near 81% is achieved,
mainly due to efficient carrier extraction, leading to
reduced nonradiative recombination [110]. In addition,
tungsten disulphide nanosheet (WS2NS) was produced
using a low-cost liquid-phase exfoliation method [112].
Incorporating WS2NS into PEDOT:PSS improved the
work function to form an Ohmic contact between the

photoactive layer and the anode. At the same time,
WS2NS increased the hole mobility and lower charge
carrier-recombination in PM6:Y6 based OPV.

3.4 Carbon-based NPs

Carbon-related nanomaterials usually possess high con-
ductivity; thus, the series resistance can be improved
when doped into PEDOT:PSS layer. The related works
are summarised in Table 8. When multi-walled carbon
nanotube (MWCNT) with an optimum concentration of
0.04 wt% was doped into PEDOT:PSS, the PCE improve-
ment of 12.7% was achieved as compared to bare PED-
OT:PSS as a result of enhanced conductivity that led to
a lower series resistance of the device [43]. However,
at higher MWCNTs concentration (>0.2 wt%), the trans-
mittance of the composite film was dropped from 93.2
to 86.2%. The MWCNTs-doped PEDOT:PSS OPV device
showed an improvement in overall performance, inclu-
ding short-circuit current density, fill factor, and power
conversion efficiency from 8.82 to 9.03mA/cm2, 0.43 to
0.474, and 2.12 to 2.39% as compared to the device with a
bare PEDOT:PSS layer. Besides, CNT-related materials,
ultra-large GO-PEDOT:PSS was tested as a hole extraction
layer with the device configuration ITO/PEDOT:PSS:GO/
P3HT:PCBM/LiF/Al [113]. Optimised power conversion
efficiencies of PEDOT:PSS:GO (0.04wt%) with 6 wt% dim-
ethyl sulfoxide (DMSO) is improved by 13.6%.When DMSO
is added to the PEDOT:PSS solution, the PEDOT and PSS
chains separate. The coulombic attraction of the PEDOT
and PSS chains is weakened; thus, the coulombic repul-
sions among the positive or negative charges in the

Table 7: Device characteristics of OPVs with inorganic NPs doped into PEDOT:PSS

NPs Active layer Size of
NP (nm)

Thickness
(nm)(a)

Function FF (%) PCE
(%)

Enhance in
PCE (%)(b)

Remarks Ref.

TiO2 DCV5T-Me:C60 100 — Anode 60.0 7.92 8.60 Scattering and better
mechanical flexibility

[106]

V2O5 PTB7-Th:PC71BM 0.5% v/v(c) — HEL 70.14 9.44 14.70 Promotes hole mobility [107]
FMoS2 P3HT:PCBM ∼6.7 nm(d) — HEL 62.24 3.74 15.10 Lower series resistance [108]
MoO3 P3HT:PC61BM 5 30 HEL 63.00 3.29 7.87(f) Improved wettability and

film-forming ability on the
polymer surface

[109]

WOx PBDB-TF:IT-4F 1:1(e) 42 HEL 80.79 14.57 9.63 Increased surface free energy [110]
WS2 PM6:Y6 3%(g) 40 HEL 73.50 15.67 9.20 Increased WF and increased

hole mobility
[112]

FF: field factor, PCE: power conversion efficiency, HEL: hole extraction layer, (—): no data provided.
(a): thickness of PEDOT:PSS:NPs composite layer, (b): compared with pristine PEDOT:PSS, (c): volume ratio of NPs, (d): FMoS2 film
thickness, (e): ratio of PEDOT:PSS with NPs (PEDOT:PSS:NPs), (f) compared with only e-MoO3 layer, and (g): volume ratio of WS2

nanosheet.
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PEDOT or PSS chain become the dominant factor for
the chain conformation and shift to the linear and
extended-coil conformations. At the same time, GO func-
tional groups (–COOH and –OH) also effectively separate
PSS and PEDOT chains, which helps the PEDOT and PSS
chains to form linear and extended-coil conformations.
The linear PEDOT chains have stronger inter-chain inter-
actions, which facilitate charge transport between the
chains. Therefore, the conductivity of PEDOT:PSS doped
with GO increases. In another report with PEDOT:PSS:
GO composite, pre-annealing of GO sheets significantly
improves the hole collection ability of the PEDOT:PSS
buffer layer, and PCE achieved was 3.8% [114]. The value
is 1.8 times better than a pristine PEDOT:PSS buffer
layer.

Apart from using carbon-based nanomaterials-PEDOT:
PSS as a hole extraction layer, the composite layer has
also been studied as an anode. A stable flexible inverted
organic solar cell with HClO4 (0.1 M) doped printed
PEDOT-SWCNT films on a PET substrate with the device
configuration of PET/PEDOT-SWNTs + (0.1 M) HClO4/
PTB7:PC71BM/VOx-PEDOT-PSS/Ag structure has been stu-
died [29]. The bottom electrode (PEDOT:PSS-SWNTs +
(0.1 M) HClO4) and VOx-PEDOT:PSS film interface layers

were printed with digital materials deposition (DMD),
while the PTB7:PC71BM active layer is deposited by spin
coating and the Ag electrode by thermal evaporation.
Using PEDOT-SWCNTs + (0.1 M) HClO4 as a cathode,
better performance and stability are obtained compared
to the device based on ITO as an anode. SWNTs increased
conductivity by adding a small percentage of HClO4 to
improve further the interfacial contact with the electron
transporting layer and enhance adhesion to PET substrate.
PEDOT:PSS:SWNTs:HClO4 as transparent electrode and
VOx-PEDOT:PSS as hole transport layer showed the best
PCE of 8.6%, which is about 15.4% improvement as com-
pared to ITO.

3.5 Hybrid NPs

A wide variety of hybrid NPs, such as bimetallic noble
metal or metal/metal oxide hybrid nanoparticles, or org-
anic capped metal NPs have been explored for OPV.
These special class NPs are gaining interest since the
hybrid NPs possess the properties of both the materials
(Table 9). The hybridisation of the two distinct NPs can lead

Table 8: Device characteristics of OPVs with carbon-based NPs doped PEDOT:PSS

NPs Active layer Concentration Thickness
(nm)(a)

Function FF (%) PCE (%) Enhance in
PCE (%)(b)

Remarks Ref.

MWCNT P3HT:PCBM 0.04 wt% 90–100 HEL 47.40 2.39 12.70 Enhanced conductivity [43]
GO P3HT:PCBM 0.04 wt% — HEL 62.80 3.39 13.60 Enhanced conductivity [113]
GO P3HT:PCBM — 40 HEL 43.00 3.80 81.00 Enhanced hole

collection
[114]

SWCNTs +
HClO4

PTB7:PC71BM (10:1) + (0.1 M) 100 Cathode 54.00 8.60 15.40(c) Improved interfacial
layer contact and
conductivity

[29]

FF: field factor, PCE: power conversion efficiency, HEL: hole extraction layer, (—): no data provided.
(a): thickness of PEDOT:PSS:NPs composite layer, (b): compared with pristine PEDOT:PSS, (c) compared with ITO.

Table 9: Device characteristics of OPVs with hybrid NPs doped PEDOT:PSS

NPs Active layer Size of
NP (nm)

Thickness
(nm)(a)

Function FF (%) PCE
(%)

Enhance in
PCE (%)(b)

Remarks Ref.

PEG-capped Au P3HT:PCBM 18 30 HEL 62.0 3.51 13.20 Higher roughness and
better hole collection

[115]

Cu-Au P3HT:PC61BM 50 40 HEL 52.3 3.63 13.10 LSPR and better hole
collection

[116]

Cu-Au PTB7-th:PC61BM 50 40 HEL 57.9 7.13 9.50 LSPR and better hole
collection

[116]

Cu-Au PTB7-th:PC71BM 50 40 HEL 60.1 8.48 12.60 LSPR and better hole
collection

[116]

FF: field factor, PCE: power conversion efficiency, HEL: hole extraction layer, (—): no data provided.
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to remarkable properties for nanomaterial applications.
Poly(ethylene glycol) (PEG)-capped Au NPs with a dia-
meter of ∼18 nmwere doped into the PEDOT:PSS for OPV
[115]. A PCE of 3.51% was obtained at the optimised
concentration (0.32 wt%) of PEG-capped Au NPs in PED-
OT:PSS with the device structure of ITO/PEG-capped
Au NPs:PEDOT:PSS/P3HT:PCBM/LiF/Al. There was a 13%
improvement as compared to the bare PEDOT:PSS, pos-
sibly because PEG-Au NPs reduce the resistance of the
PEDOT:PSS layer. Upon increasing the PEG-capped AuNP
concentration, the surface morphology of the PEG-capped
Au NP:PEDOT:PSS film also increases in roughness by
5% (0.32 wt%) and 40% (0.64wt%), respectively. Higher
anode surface roughness led to a higher interface area
between the anode and the active layer and enhanced
the device’s hole collection. Performance is achieved
with no discernible difference in the transmission of
PEDOT:PSS with or without Au NPs, so the performance
enhancement was concluded to not be due to the optical
effects.

Cu-Au bimetallic NPs with core-shell nanostructures
with highly stable and broad LSPR has been reported
[116]. In particular, LSPR bands for Au NPs and CuNPs
are at 530 nm [117] and 590 nm [118], respectively, while
Cu-Au NPs exhibit a wide absorption peak at wavelengths
650–700 nm. The PCEs of the P3HT:PC61BM, PTB7-th:
PC61BM, and PTB7-th:PC71BM based organic solar cells
were 3.63, 7.13, and 8.48%, respectively. After incor-
porating 0.88 wt% Cu-Au NPs into the PEDOT:PSS,
the improvements are 13.1, 9.5, and 12.6%, respectively.
The reason for improvement is the increase in the Jsc
or the plasmonic effect from the Cu-Au NPs, IPCE; this
is confirmed by the optical absorption measurements
[116].

4 Outlook and challenges

Overall, the best consistent improvement in efficiency
is obtained for devices with metallic NPs doped with
PEDOT:PSS for OLEDs (up to 96%) and OPVs (up to
67%), which involve the effects of SPR. OLEDs with the
best performance is obtained from the devices with co-
doped Au NPs and Ag NPs in PEDOT:PSS, where the CE,
PE, and EQE are 35.30 cd/m2, 8.20 lm/A, and 9.80%,
respectively. The efficiency was improved by 96% with
the co-doped NPs, the huge enhancement is mainly
attributed to SPR and the synergistic effect from the
stronger near-field resonance of Au NPs and the relative
broadband resonance of Ag NPs. The co-doped devices
showed better electrical properties and long-term stabi-
lity of OLED devices [73]. For OPV, the most significant
improvement of 67% was obtained when Au NPs (14 ±
4 nm) were doped in PEDOT:PSS. The improvement is
due to the SPR effect and better hole collection [98]. On
the other hand, the device with co-doped Au and Ag
in PEDOT:PSS resulted in PCE of 8.67%, which was
improved by 19.6% [102]. The improvement was ascribed
to the broad wavelength range of the two distinct metal
particles.

In SPR, resonant oscillation of conduction electrons
occurs between the negative and positive permittivity
materials. LSPR occurs when the incident light matches
the frequency of the metallic surface and causes free
surface electrons to oscillate collectively, this has been
seen in the case of using gold or silver NPs. The schematic
of LSPR is illustrated in Figure 7. The enhanced near-field
amplitude of these electrons thus occurs at the resonance
wavelength. The extinction wavelength and improve-
ment of emission for LSPR are determined by the shape

Figure 7: Schematic of LSPR where incident light caused the free conduction electrons in the metal NPs to collective oscillation.
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and size of the NPs [1,39]. Different sizes, shapes, and
structures of NPs that match the photoluminescence (PL)
of the emissive layer will be significantly enhanced [21].

The size of plasmonic NPs that exhibit forward
scattering is typically between 30 and 70 nm [119,120]
(Figure 8a). As the particle size increases, more light is
scattered, thus improving the light-out coupling for
OLED devices. However, large NPs embedded in the
layer are bad for the device because of the inferior layer
morphology and strong metallic absorption [121]. The
optimum size of plasmonic NPs for OLEDs is in the
region of 50–70 nm to achieve the optimum device effi-
ciency [120]. Furthermore, for plasmonic NPs less than
30 nm, the enhancement is dominantly from the LSPR
effect instead of scattering [122]. The plasmonic near-
field induced in the buffer layer (Figure 8b) is able to
enhance the absorption and electric field of OPVs [122].
NPs with different shapes and sizes trigger surface plas-
monic effects in organic optoelectronic [123–125]. NPs size
in the range of 20–60 nm in PEDOT:PSS exhibited a more
significant enhancement in OLED devices (30–100%),
while minor enhancement was obtained when the size
is less than 20 nm. Whereas, in the case of OPVs, smaller
NPs (10–20 nm) in PEDOT:PSS is preferable for more
extensive PCE enhancement (20–70%). The enhance-
ment is lower when the size is larger than 20 nm.

In addition, metal oxide NPs also show significant
enhancement for OLEDs and OPVs. The highest enhance-
ment in current efficiency for OLEDs is 760.5% for the
device with TiO2 NPs (20wt%, 25 nm) doped PEDOT:PSS

compared to a bare PEDOT:PSS layer [79]. The current effi-
ciency is 7.30 cd/m2, and the power efficiency is 3.15 lm/A.
The impressive improvement was achieved due to imp-
roved light out-coupling from light scattering from the
modified layer. The best enhancement in power conversion
efficiency (81%) are obtained for the OPV devices with
GO:PEDOT:PSS. GO sheets were first pre-heated and then
mixed with the PEDOT:PSS solution. Pre-annealing of GO
sheets significantly improves hole collection ability, with
1.8 times improvement over pristine PEDOT:PSS as a buffer
layer [114]. The addition of NPs to PEDOT:PSS improves
hole injection and conductivity by lowering the sheet resis-
tance of the film after mixing GO with PEDOT:PSS [83].
Films with low sheet resistance, high transparency, and
high conductivity are critical for ITO-free OLEDs. Incor-
porating GO into PEDOT:PSS improves surface mor-
phology and higher work function, which is advantageous
for hole injection. The overview effects of NPs:PEDOT:PSS
in OLEDs and OPVs are shown in Figure 9.

Although promising results have been obtained with
the reviewed strategies for doping NPs in PEDOT:PSS, the
quest to find a universal solution to improve the effi-
ciency of OLEDs and OPVs continues. NPs synthesis
and the properties of NPs are active research areas with
new and rapid development. Thus, there are still a lot of
new, possible approaches that are yet to be explored
extensively. For example, the size of NPs, shape, and
concentrations of NPs are also crucial for OLED and
OPV as they affect light out-coupling for OLEDs, light
trapping for OPVs, and the electrical properties of the

Figure 8: Schematic diagram of OLEDs and OPVs with plasmonic NPs, (a) NPs in HIL for OLEDs with scattering effect and (b) NPs in HEL for
OPVs with LSPR effect.
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PEDOT:PSS layer. However, in most of the reports, the
NPs used are spherical and rod in shape [21]. To our
best knowledge, an extensive study into the effects of par-
ticle shape has not been reported in nanoparticles doped
PEDOT:PSS for OLEDs and OPVs specifically. Shape-
dependent metal NPs in the active layer were studied
in depth. The various polyhedral gold (Au) NPs are
included; cubic, rhombic dodecahedral (RD), edge and
corner truncated octahedra (ECTO), and triangular shape
are used in the device ITO/ZnO/P3HT:PC61BM:NPs/MoOx/
Ag [126] (Figure 10). LSPR peaks were detected at 590 nm
(cubes and RD), 558 nm (ECTO), and 564 nm (triangular)
for each shape. Au NPs with a RD shape have the greatest
increase in PCE from 3.4 to 4.4%, followed by ECTO, cube,
and triangle (RD > ECTO > cube > triangle). In addition,
to further verify the electromagnetic field around the
particle surface, 3-dimensional FDTD using transverse
electric polarisation with an excitation wavelength of
550 nm was also performed. The result showed that
LSPRs around the edges or corners of the RD was sig-
nificantly enhanced and presented the most potent elec-
tric-field responses, followed by ECTO and cube (RD >
ETCO > cube). The FDTD results are shown in Figure 11.
For Au triangular plates, no electric resonance was
induced; thus, the enhancement is mainly caused by scat-
tering. Meanwhile, both simulation and experimental
results showed that Au RD NPs demonstrate the most
significant enhancement [126].

It has also been challenging to study the individual
effects of NP doped PEDOT:PSS, such as SPR, scattering,
carrier transport, etc. The complex optical and electrical
processes are difficult to be modelled in numerical simula-
tion alone; thus, extensive experimental work is needed.
The combination of both experimental results and numer-
ical analysis can contribute to a better understanding of
the carrier behaviour caused by the NP doped PEDOT:PSS
layer. On the other hand, non-conducting or non-metallic-
based NPs can be used to study pristine optical effects

Figure 9: Overview effect of NPs-doped PEDOT:PSS for OLED
and OPV.

Figure 10: SEM images of: (a) cubes, (b) RD, (c) ECTO, and (d) tri-
angular plates of AuNPs. (e) Absorption spectra of cubes, RD, ECTO,
and triangular plates of AuNPs solutions [126]; Copyright (2015)
American Chemical Society.

Figure 11: FDTD simulation analysis of time-averaged and normal-
ised transverse electric field distribution with different polyhedral
AuNPs: (a) cube, (b) RD, (c) ECTO, and (d) triangle plate. [126];
Copyright (2015) American Chemical Society.
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such as scattering, reflectivity, and excluding the plas-
monic effect.

Furthermore, ITO-free TCF have recently received
much attention because of the scarcity of indium and
the process cost. The estimated ITO cost range of organic
solar cells is around 40–150 € per m2, PET/ITO accounting
for the largest share of total costs, around 38–51% of the
total cost of the device [127]. Therefore, alternative mate-
rials like PEDOT:PSS are able to lower the cost by using the
roll-to-roll process. PEDOT:PSS has a higher HOMO level
than ITO, making it more suitable for hole injection, but
the low conductivity of PEDOT:PSS limits its applica-
tion. Thus, NPs doped with PEDOT:PSS have also been
explored [124]. PEDOT:PSS with AgNW, GO, etc., have
been used to improve the conductivity, but the best con-
ductivity is still in the range of 800–1,500 S/cm [128–130].
The performance remains poor and needs to be improved,
and the physical mechanism of the composite electrode
remains unclear [60].

5 Conclusion

Despite advancements, organic optoelectronics continues
to face significant challenges in device stability, including
degradation, efficient charge transport, light absorption
(OPV), and light out-coupling (OLEDs). NPs doped
PEDOT:PSS hole transport layer is one of the promising
solutions for both devices because of its capability
to improve photo absorption or light out-coupling by
either increasing the light scattering process or plasmonic
resonance effect without increasing the active layer thick-
ness. At the same time, the morphology of the doped
PEDOT:PSS layer can also be optimised. Although the
optical properties of NPs, such as plasmonic effects, have
received the most attention to date, the effects on the
electrical properties of organic optoelectronics, such as
charge carrier extraction after exciton dissociation, are
not entirely understood and remain a major challenge.

This review highlights the recent effort of NP incor-
poration in PEDOT:PSS for OLEDs and OPVs. It is clear
that the presence of NPs in PEDOT:PSS affords a straight-
forward yet promising solution to increase the light out-
coupling from OLEDs and also better light trapping in
OPVs. A few typical effects of the NPs enhance the optical
and electrical properties. Optical effects include the sur-
face plasmon effect due to NPs, enhanced scattering, and
better absorption of photons. In addition, the SPR effects
also improved the hole injection, hence electrical conduction
by increasing the hole mobility for organic optoelectronics.

Although most of these published works focused on the SPR
effects of metallic NPs, other factors that contributed to
the device improvement, such as the charge carrier extrac-
tion after dissociation and the effects of the shape of the
NPs are still not fully understood for plasmonic-based
OPVs. In addition, the electrical and morphological
properties of the composite are also crucial in nanoscale
devices. Further understanding and development will
undoubtedly accelerate the implementation of low-
cost, large-scale manufacturing.
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