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Abstract: In this study, we investigated the mechanical
properties and chloride ion permeation resistance of geo-
polymer mortars based on fly ash modified with nano-
SiO2 (NS) and polyvinyl alcohol (PVA) fiber and meta-
kaolin (MK) at dose levels of 0–1.2% for PVA fiber and
0–2.5% for NS. The Levenberg–Marquardt (L–M) back
propagation (BP) neural network, as well as the radial-
based function (RBF) neural network, was used to predict
the compressive strength and chloride ion permeation
resistance of the geopolymer mortar with different admix-
tures of nanoparticles and PVA fiber, wherein the electric
flux value was used as the index for chloride ion permea-
tion performance. The RBF–BP composite neural network
was constructed to study the compressive strength and
chloride ion permeation resistance of nanoparticle-doped
and PVA fiber ground geopolymer mortars. According to
the experimental results of the RBF–BP composite neural
networkmodel, the mean square error (MSE)was observed
to be 0.00071943, root mean square error (RMSE) was
0.026822, and mean absolute error (MAE) was 0.026822,
thereby showing higher prediction accuracy, faster con-
vergence, and better fitting effect compared with the single
BP neural network and RBF neural network models. In
this study, we combined the RBF–BP composite artificial
neural network, providing a new method for the future
assessment of the compressive strength and chloride ion
penetration resistance of geopolymer mortar merging PVA
fibers and NS in experiments and engineering studies.

Keywords: geopolymer mortar, RBF–BP composite neural
network, resistance to chloride ion penetration, compres-
sive strength, prediction

1 Introduction

With rapid population growth and damaged infrastruc-
ture, increasing attention is being focused on the con-
struction industry. Cement-based materials are one of the
most widely usedmaterials in the construction industry glob-
ally [1]. Most cement-based materials use silicate cement
(OPC) as a binder [2], and cement is produced from two
different sources of carbon dioxide,with rotary kilns operated
via fossil fuel combustion being the largest source and the
chemical process of calcining limestone into lime, which is
also produced by cement kilns [3]. The OPC releases almost
equal amounts of carbon dioxide during its production. Data
from the US Geological Survey show that since 2013, approxi-
mately 4 billion tons of polyester cement have been produced
annually, accounting for 8% of the total global carbon
dioxide emissions. With the rapid growth of the global
economy, it is estimated that in the next 30 years, cement
output will increase to approximately 5 billion tons globally
[4]. Such massive emissions of carbon dioxide have caused
serious environmental pollution and has brought about huge
social pressure. Many researchers are beginning to look for
materials that save energy and are environmentally friendly,
for example, Golewski discovered plain concretes prepared
based on a quaternary binder to reduce carbon dioxide emis-
sions [5]. In addition, cement-based materials have serious
dissolution problems that affect the strength and durability
of buildings [6]. Therefore, there is an urgent need for
an energy-saving and environmentally friendly alternative
material to fundamentally solve this problem [7,8]. As a
potential alternative to cement, geopolymers have demon-
strated many advantages such as excellent mechanical
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properties, high temperature resistance, corrosion resistance,
and low energy consumption in production owing to their
unique three-dimensional mesh structure [9,10].

Chithambaram et al. [11] explored the thermody-
namic phenomena of geopolymer mortar and showed
that it exhibited a change from crystalline to amorphous
state above 600°C. Bingol et al. [12] explored the thermo-
dynamic phenomena of geopolymer mortars and com-
pared the durability of slag geopolymer mortars with
cement mortars and observed that the durability of slag
geopolymer mortars was considerably higher than that of
cement mortars. Elyamany et al. [13] showed that geo-
polymer mortars were more resistant to magnesium sul-
fate attacks than ordinary silicate cement mortars. Owing to
the defects of slow curing, high porosity, and slow strength
development of geopolymers, in recent years, domestic and
foreign scholars have added nano-SiO2 (NS) to geopolymers
to improve the densification of geopolymers and concrete,
which in turn improves the mechanical properties [14–16],
durability [17,18], rheological properties [19], and post-
high-temperature mechanical properties [20]. Zidi et al.
[21] synthesized NS partially based geopolymers and
discovered that the mechanical strength of the geopolymer
was improved by adding a moderate amount of NS. Phoo-
ngernkham et al. [22] improved the bond strength between
the concrete matrix and the geopolymer. NS not only
improves the properties of geopolymer mortar but also
exhibits superiority of low cost and excellent performance.
Therefore, adding NS to geopolymer mortar is in line with
the scientific basis.

Owing to the low flexural and tensile strengths of
geopolymer mortars, the addition of certain fibers such
as steel fibers [23], polyvinyl alcohol (PVA) fibers, and
polypropylene fibers [24] to geopolymer mortars can
improve the toughness and enhance their durability
performance as shown in relevant domestic and inter-
national studies. Among them, PVA fiber demonstrates
excellent qualities such as high strength, high modulus
of elasticity, wear resistance, acid and alkali resistance,
good weather resistance, among others, and are non-
toxic, non-polluting, and non-damaging to human skin
and harmless to human body, which is one of the new
generation of high-tech green building materials [25].
Xu et al. [26] showed that PVA fibers can enhance the
toughness and denseness of fly ash geopolymer compo-
sites and improve their bonding, and Malik et al. [27]
observed that PVA fibers could enhance the strength
and durability of geopolymers; simultaneously, it was
observed that PVA fiber and NS materials could signifi-
cantly reduce the explosion spalling of geopolymers. The

properties of geopolymer mortar can be effectively improved
by adding NS and PVA fibers [28,29].

China is a vast country, and materials such as con-
crete face a variety of service environments, of which
saline environments are one of the most common. China
has a large number of marine and offshore projects, where
structures are susceptible to damage owing to the harsh
marine environment with complex multi-field coupling
effects such as waves, tides, dry and wet cycles, and salt
[30–32]. In coastal, marine, and offshore areas, the pre-
sence of chlorides can easily lead to severe deterioration of
reinforced concrete structures and high maintenance costs
[33]. Geopolymermortars are more resistant to chloride ion
penetration and have greater corrosion protection than
cement mortars [33,34]. The use of geopolymer mortar
for engineering construction can not only save costs, save
energy, and protect the environment but also enhance the
durability of the building [35]. Therefore, studying the
chloride ion permeability resistance of geopolymer mortars
with NS and PVA fibers is necessary.

With developments in artificial intelligence, various
properties of construction materials have been predicted
using machine learning. Golewski [36,37] proposed digital
image correlation technology to test the fracture perfor-
mance of fly ash concrete and achieved good results.
Owing to the diverse composition of building materials,
conducting experiments on each of them is not possible,
so the prediction of unknown data is often made using
artificial neural network models based on existing data.
Nagajothi and Elavenil [38] used an artificial neural net-
work (ANN) model to predict the mechanical properties of
aluminum silicate on geopolymer concrete, and the results
showed that the prediction results of the ANNwere in good
agreement with the experimental results. Rahman and
Al-Ameri [39] proposed an ANN model to assess the
bond behavior of self-compacting geopolymer concrete
with basaltic fiber reinforced plastics (FRP) bars. The
ANN predicted all properties of cement mortar [40–42],
geopolymer concrete [43–46], and geopolymer mortar
[47,48]. Li et al. [49] explored that radial-based func-
tion–back propagation (RBF–BP) neural network that
can identify the membership of six common basic pat-
terns of shape defects. Liu [50] realized fault attribute
classification and fault diagnosis of building electrical
system by using RBF–BP neural network. However, there
are few studies on the properties of geopolymer mortars
merging PVA fibers and NS at home and abroad, and there
are no suitable prediction methods and models for the
prediction of compressive strength and chloride ion per-
meability of geopolymer mortars merging PVA fibers and
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NS. Therefore, in this study, the proposed RBF–BP com-
posite neural network model is crucial for the prediction
of the compressive strength and chloride ion permeability
of geopolymer mortar merging PVA fibers and NS. The
RBF–BP composite neural network can provide guidance
for further experiments and engineering studies on the
mechanical properties and chloride ion permeation resis-
tance of geopolymer mortars merging PVA fibers and NS.

2 Experiment program

The objective of this investigation is to explore the effect
of different amounts of SiO2 nanoparticles and PVA fibers
on the compressive strength and chloride ion penetra-
tion resistance of geopolymer mortars. When designing
the proportion of geopolymer mortar with NS and PVA
fibers, the control variable method was used, that is,
fixing the water–binder ratio, cement–sand ratio, water–
glass modulus, and excitation ratio (the ratio of alkaline
exciter to cementitious material), while varying the amount
of NS or PVA fibers.

The NS, a loose white powder, has a content of
99.7%, with an average particle size of 30 nm produced
by Hangzhou Wanjing New Materials Co. The PVA fiber,
with the compressive strength of 1,560MPa, has a dia-
meter of 40 µm, standard length of 12 mm, and elongation
of 6.5%. The metakaolin concludes 54% SiO2 and 43%

Al2O3, and the margin of error is 2%. Besides, the meta-
kaolin contains less than 1.3% Fe2O3, 0.8% CaO and MgO,
and 0.7% K2O and Na2O. The fly ash whose water absorbing
capacity is 105% has the bulk density of 0.77 g/cm3, stan-
dard consistency of 47.1%, and specific gravity of 2.16 g/cm3.
The test mix design was carried out with reference to
the literature [51,52], and the parameters of the mix were
finally determined through trial mixing as follows: water–
binder ratio (the ratio of water contained in the added water
and alkali exciter to cementitious material) of 0.65, cement–
sand ratio of 1:1, 30% fly ash, and 70% metakaolin as raw
material for silica-aluminate, and alkali exciter solution
comprising solid sodium hydroxide, sodium silicate solu-
tion, and water. The modulus of water glass was decreased
from 3.2 to 1.3 by adding sodium hydroxide and then an
appropriate amount of water was added to adjust the mass
fraction of sodium oxide to 15%, referring to the water–glass
modulus adjustment and calculation proposed by other
researcher [53]. NS and PVA fibers were incorporated in
two forms: single and compound. The NS and PVA fibers
were incorporated into the compounded geopolymermortar,
where the NS dose was fixed at 1.0% and the PVA fiber dose
was 0.2, 0.4, 0.6, 0.8, 1.0, or 1.2% when the PVA fiber dose
was changed [54]; when the NS dose was changed, the PVA
fiber dose was fixed at 0.6% and the NS dose was 0.5, 1.0,
1.5, 2.0, or 2.5%.

To assess the resistance to chloride ion permeation of
geopolymer mortars with SiO2 and PVA fibers, we herein
use the electrical flux method for the chloride ion

Table 1: Mix proportions of geopolymer mortar for train set [32]

Mix no. Water Metakaolin Fly ash Quartz
sand

Water
glass

NaOH PVA
fiber

NS Water-
reducing
agents

Compressive
strength

Electric flux
values

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 % % kg/m3 MPa C

1 106.2 429.5 184.1 613.6 445.4 71 0 0 3.07 44.2 1426.31
2 106.2 429.5 184.1 613.6 445.4 71 0.2 0 3.07 50.8 1294.38
3 106.2 429.5 184.1 613.6 445.4 71 0.4 0 3.07 55.3 1216.08
4 106.2 429.5 184.1 613.6 445.4 71 0.6 0 3.07 58.5 1185.84
5 106.2 429.5 184.1 613.6 445.4 71 0.8 0 3.07 60.3 1150.24
6 106.2 429.5 184.1 613.6 445.4 71 1.0 0 3.07 50.5 1158.52
7 106.2 429.5 184.1 613.6 445.4 71 1.2 0 3.07 48.1 1195.41
8 106.2 427.2 183.1 613.6 445.4 71 0 0.5 3.07 45.0 1220.82
9 106.2 425.0 182.2 613.6 445.4 71 0 1.0 3.07 47.3 1185.06
10 106.2 422.7 181.2 613.6 445.4 71 0 1.5 3.07 50.1 1121.13
11 106.2 420.4 180.2 613.6 445.4 71 0 2.0 3.07 48.8 1164.84
12 106.2 418.1 179.2 613.6 445.4 71 0 2.5 3.07 46.4 1190.52
13 106.2 429.5 182.2 613.6 445.4 71 0.2 1.0 3.07 53.9 1147.62
14 106.2 429.5 182.2 613.6 445.4 71 0.4 1.0 3.07 57.4 1107.48
15 106.2 429.5 182.2 613.6 445.4 71 0.8 1.0 3.07 62.4 1071.78
16 106.2 429.5 182.2 613.6 445.4 71 1.0 1.0 3.07 55.7 1076.94
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permeation test that visually and accurately assesses the
chloride ion resistance of geopolymer mortars by testing
the electrical flux values. Conversely, the lower the mea-
sured flux value, the better is the resistance of the mortar
to chloride ions. The specific dosage and mix of each
material are listed in Table 1.

3 Model establishment

An RBF–BP composite neural network with a BP neural
network and RBF neural network was used to predict the
compressive strength and resistance to chloride ion pene-
tration of geopolymer mortar merging PVA fiber and NS
by combining fly ash, water, alkali exciter, metakaolin,
quartz sand, water-reducing agent, NS, and PVA fiber
dosing parameters.

Herein the NS and PVA fibers are the main objects of
our study; however, because NS will replace fly ash with
equal mass and simultaneously affect the amount of kao-
linite added, four material parameters affecting the com-
pressive strength and chloride ion penetration resistance
of the geopolymer mortar, namely, NS admixture, PVA
fiber admixture, kaolinite admixture, and fly ash admix-
ture, are finally chosen as input parameters, so each
neural network of the input layer has four neurons. In
the compressive strength experiment, the compressive
strength value was chosen as the output parameter. As
the electric flux method is used as the experimental
method in the chloride ion penetration resistance experi-
ment, the processed electric flux value was chosen as
the output parameter. Therefore, for each experiment,
the output layer was 1. In the training process, 70%
of the sample data were set as the training set data,
and the remaining 30% was the prediction set data.

3.1 BP neural network

On the basis of the error back propagation algorithm, the
BP neural network is a multi-layer feed-forward neural
network composed of an import layer, one or more inter-
mediate layers, and an export layer. In each layer, the
number of neurons relies on a specific analysis of the
problem.

Owing to slow convergence, low learning efficiency,
and difficulty in deciding the number of intermediate
layers and their neurons, as well as easily falling into local
minima of the traditional BP neural network, we herein
adopt the improved Levenberg–Marquardt BP neural

network. As a three-layer BP neural network was proven
to theoretically achieve any complex nonlinear mapping, a
BP neural network whose hidden layer is one which can
meet most prediction requirements. The number of neu-
rons in the implicit layer can be derived from the following
equation [55]:

( )= + +m n l a,
1
2 (1)

= +m n2 1, (2)

=m nlog ,2 (3)

where m, n, and l denote the number of neurons. m is in
the hidden layer, n is in the input layer, l is in the output
layer, and a is the constant = −a 1 10.

The above equation can calculate the range of the
number of neurons in the implicit layer, but a specific
and precise value cannot be obtained, and several experi-
ments are needed to combine the prediction accuracy and
convergence; finally, the number of neurons is set to
eight.

In this study, the excitation function of the implicit
layer selects the tansig function, the output layer transfer
function uses the purelin function, and the reverse training
uses the trainlm gradient descent method. Suppose that the
ith neuron in the model has input values X1, X2, X3,…, Xn
and the corresponding weights areW1,W2,W3,…,Wn,Yi, can
be derived from the following equation:

⎜ ⎟
⎛

⎝

⎞

⎠

∑= ×

=

Y f X W ,i
i

n

i i
0

(4)

where f is the excitation function, and Yi represents the
output value. In the Levenberg–Marquardt algorithm, the
values of the weight matrix of multiple neurons are dis-
tributed between ( )−1, 1 , which is determined by the
weight adjustment formula.

( )= − +
+

−W W J J μI J e.i i
T T

1
1 (5)

However, when using the weight adjustment for-
mula, assigning initial values to the weight matrix is
necessary; in this study, the weight matrix is initialized
using a random number generation method. As the BP
neural network is trained and learned, the error between
the output and the real result becomes increasingly small.
For the purpose of making the BP neural network model
training effect more accurate, the mean square error was
selected as 10−7, and to avoid too slow convergence, the
upper limit of the iterations number was set as 10,000.
Generally speaking, the larger the learning rate, the faster
is the convergence speed; however, a larger learning rate
is likely to cause oscillations in the convergence process,
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resulting in an increase in the number of iterations, whereas
a smaller learning rate will extend the training time and
cannot guarantee that the error value of the network jumps
out of theminima and eventually converges to theminimum
error. After several training sessions, it was observed that
when set to 0.5, the learning rate was optimal. The BP neural
network structure can be displayed in Figure 1, and the set of
parameters for the final constructed BP neural network are
listed in Table 2.

3.2 RBF neural network

The RBF neutral network is a feed-forward neural network
that includes a single implicit layer, and the topology of
the RBF neural network is similar to that of BP, which
comprises three layers. The input layer only transmits
the input signal without transforming the input informa-
tion and maps the input data directly to the hidden layer.
The radial basis function, including inverse multi-quad-
ratic functions, Gaussian functions, multi-quadratic func-
tions, among others, is the excitation function in the
hidden layer, which responds to the local signal and pro-
duces a larger output [56]. The output layer then acts in
response to the action of the input pattern. The mapping

from the input to output of the RBF neural network struc-
ture is nonlinear, while the mapping from the implicit
layer to the output layer is linear [57]. Hartman et al.
[58] observed that there are enough neurons in the implicit
layer, and RBF neural networks can approximate any con-
tinuous function with arbitrary accuracy.

Owing to its simple form, the excitation function for
neurons in the implicit layer chooses a Gaussian func-
tion, and its formula is shown in equation (6).

⎜ ⎟( ) ⎛

⎝

|| || ⎞

⎠
= −

−

= …φ x x c
σ

i hexp
2

, 1, 2, 3, , ,i
i

i

2

2 (6)

where x denotes the n-dimensional input vector, ci is the
center of the ith radial basis function, σi is the expansion
constant, h denotes the number of neurons in the implicit
layer, and || ||−x ci denotes the Euclidean distance between
x and ci.

The learning algorithm of RBF neural network needs
to solve three types of problems: first, determination of
the neuron numbers for the implicit layer and RBF cen-
ters; second, selection of the expansion constants; and
third, the weight matrix adjustment from the implicit
layer space to the output space. The neurons in the
implicit layer of regularized neural networks are sample
inputs; in this study, this number was 4. Radial basis func-
tion centers are determined by self-organized learning,
supervised selection, least squares, and random selection
methods [59]. The extension constant selection is calcu-
lated using equation (7). The weights of the implied layer
space and the output space are calculated using the least-
squares method and are given in equation (8).

= = …σ c
h

h h
2

, 1, 2, 3, , ,i
max (7)

⎜ ⎟
⎛

⎝
|| ||⎞

⎠
= − = …

= …

w h
c

x c h h

p P

exp , 1, 2, 3, , ,

1, 2, 3, , ,

i
max
2 (8)

where cmax denotes the maximum distance between the
chosen centers.

To increase the comparability of the BP and RBF
neural networks, the upper iteration limit, target error,
and learning rate were kept the same as those of the BP

Figure 1: Structure of BP neural network.

Table 2: BP neural network parameters

Parameters Hidden layer
neurons

Hidden layer transfer
function

Output layer transfer
function

Target error Iteration limit Learning rate

Value 8 Tansig Purelin 10−7 10,000 0.5
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neural network. The RBF neural network structure can be
displayed in Figure 2, and the set of parameters of the final
constructed RBF neural network are listed in Table 3.

3.3 RBF–BP composite neural network

Both the RBF and BP neural network have their own
characteristics. Complex nonlinear mapping can be rea-
lized by a BP neural network, whose disadvantages are
low learning efficiency, slow convergence speed, and

susceptibility to local minima in the learning process,
and the determination of the neural network structure
is extremely blind. The RBF neural network compensates
for the defects in the BP neural network, but the mapping
from the implicit layer to the output layer can only be
linear. Under nonlinear conditions, the prediction results
are more biased and the network generalization ability is
poor [60]. Therefore, combining these two types of neural
network structures can promote the respective defects of
the BP and RBF neural network. Based on the above, an
RBF–BP composite neural network has been proposed,
wherein the two networks are organically combined to
form a composite neural network with two hidden layers
comprising a BP subnet and an RBF subnet. The excita-
tion function of the first implicit layer, which is a Gaus-
sian function, is consistent with that of the RBF neural
network, and the excitation function of the second implicit
layer, using a sigmoid-type function, is consistent with
that of the BP neural network. The RBF–BP composite
neural network not only solves the shortcomings of slow
convergence and low learning efficiency of the BP neural
network model but also improves the performance of the
RBF neural network. The RBF–BP composite neural net-
work not only solves the problems of low learning effi-
ciency and slow convergence of the BP neural network
but also improves the problem that the RBF neural network
cannot make like nonlinear predictions and enhances the

Figure 2: Structure of RBF neural network.

Table 3: RBF neural network parameters

Parameters Hidden layer
neurons

Hidden layer transfer
function

Output layer transfer
function

Target error Iteration limit Learning rate

Value 4 Gauss Linear 10−7 10,000 0.5

Figure 3: Structure of RBF–BP composite neural network.
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nonlinear fitting ability, and the final obtained RBF–BP
composite neural network has more network generalization
ability and higher prediction accuracy.

The parameters of the RBF–BP composite neural net-
work model, including the learning rate, upper limit of
iteration number, and target error, are consistent with
those of the other two types of neural network models.
The RBF–BP composite neural network structure is dis-
played in Figure 3, and the set of parameters of the final
RBF–BP composite neural network are listed in Table 4.

4 Model training and result
analysis

On the basis of determining the research method and
training model, 70% of the sample data used the model
to train, and after the model was trained, the remaining
30% of the sample data was used for testing and the test
results were analyzed and evaluated, and the test set data
are shown in Table 5.

4.1 Network training and testing methods

The six sets of data above were learned and trained by
training the three types of neural network models to pre-
dict the compressive strength and chloride ion penetra-
tion resistance of the nanoparticle-doped PVA fiber in the
geopolymer mortar.

To avoid the influence of the absolute size and units
of the sample data of the training results and facilitate
subsequent data processing, the sample data were nor-
malized before applying the sample data, and the data
were mapped to between [−1,1] [61]. Simultaneously,
before the model is trained and the training results are
output, the output data are normalized back to the ori-
ginal value interval. The inverse normalization formula
for the input and output data can be calculated using
equation (9).

( )= + −Y Y Y Y Y1 ,predict predict,nor max predict,nor min (9)

where Ypredict is the normalized model prediction result,
and Ypredict,nor is the inverse normalized model prediction
result.

First, the neural network model was applied to train
16 sets of experimental data. Subsequently, the trained
neural network was used to predict the remaining six sets
of data. Finally, the training results were compared and
analyzed with real results.Ta
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4.2 Experimental results and analysis

Developing a set of practical evaluation indicators to
comprehensively measure the performance of the three
types of neural networks is necessary. According to the
evaluation principles and practices, we herein selected
mean square error (MSE), root mean square error (RMSE),
andmean absolute error (MAE) as the evaluation indicators.
MSE:

( )∑= −

=

n
o tMSE 1 .

i

n

i i
1

2 (10)

RMSE:

( )
=

∑ −

=

o t
n

RMSE .i
n

i i1
2

(11)

MAE:

| |∑= −

=

n
o tMAE 1 .

i

n

i i
1

(12)

In the above three equations, n is the sample size, ti is
the model-predicted value, and oi is the true value.

The compressive strength and resistance to chloride
ion permeability predicted from the three types of neural
networks were compared with the experimental values,
and the comparison results are shown in Figures 4 and 5.

The predicted results in Figures 4 and 5 show the
effect of SiO2 nanoparticles and PVA fibers on the com-
pressive strength and chloride ion penetration resistance
of the geopolymer mortar. When the NS content was
1.5%, the compressive strength of the geopolymer mortar
was the highest, which is generally consistent with pre-
vious studies where the optimum NS content in geopo-
lymer mortars was predicted to be between 1.0% and
2.0% [22,62]. However, unlike the optimum SiO2 content
in cementmortar and concrete [63,64], the geopolymermortar
showed optimum resistance to chloride ion penetration as the

dosage of PVA fiber was 0.6% and the NS content was 1.0%.
NS increases its hydration and makes the geopolymer mortar
denser owing to its high reactivity [65,66], reducing the
porosity of the material during geopolymer hardening and
increasing its density, which in turn leads to a denser
structure and reduced micro-cracking [67–69]. These results
are in general agreement with those of previous studies
[70,71].

The predictions obtained from three neural network
models were all close to the experimental values. However,
from the fitting effect, the RBF–BP neural network outper-
forms the other two types of neural networks, and the BP
neural network fits the worst, indicating that the RBF–BP
neural network has better generalization ability and approx-
imates the true results more accurately. In terms of errors, all
three neural networks had small errors and met the predic-
tion requirements. By comparing the evaluation indices of
three types of neural networks, the results are presented in
Table 6.

Table 5: Mix proportions of geopolymer mortar for test set

Mix no. Water Metakaolin Fly ash Quartz
sand

Water
glass

NaOH PVA
fiber

Nano
-SiO2

Water-
reducing
agents

Compressive
strength

Electric flux
values

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 % % kg/m3 MPa C

1 106.2 429.5 182.2 613.6 445.4 71 1.2 1.0 3.07 54.1 1102.36
2 106.2 429.5 183.1 613.6 445.4 71 0.6 0.5 3.07 59.1 1157.88
3 106.2 429.5 182.2 613.6 445.4 71 0.6 1.0 3.07 61.1 1096.02
4 106.2 429.5 181.2 613.6 445.4 71 0.6 1.5 3.07 63.6 1055.16
5 106.2 429.5 180.2 613.6 445.4 71 0.6 2.0 3.07 62.3 1107.06
6 106.2 429.5 179.2 613.6 445.4 71 0.6 2.5 3.07 59.7 11566.98

Figure 4: Compressive strength predicted results of three neural
networks.
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In general, MSE, RMSE, and MAE have a positive
correlation, and the smaller the MSE, RMSE, and MAE,
the better is the prediction effect, the higher is the pre-
diction accuracy, and the more stable is the prediction
data. Among the above three neural network models,
compared with the errors of the RBF neural network,
the RBF–BP composite neural network model is signifi-
cantly smaller, and the errors of BP neural network model
are largest. In terms of fitting ability, the RBF–BP compo-
site neural network fits best, and the BP neural network
has the worst effect. Furthermore, the RBF–BP neural
network has a better learning ability and faster conver-
gence speed. In summary, combined with two single
neural networkmodels, the RBF–BP composite neural net-
work model has a greater prediction effect than before,
and the performance of the RBF–BP composite neural net-
work is considerably better than that of the other two types
of neural networks. All three types of neural networks have
small error and good predicted effect. The above con-
clusions are similar to those obtained from previous stu-
dies on BP network, RBF network, and RBF–BP network
[72–74], and the three types of neural networks are com-
pared and supplemented by previous studies. Meanwhile,

this study applies the three kinds of neural networks to
geopolymer mortar merging PVA fiber and NS.

Comparative analysis of the predicted values revealed
that the predicted values of the compressive strength and
chloride ion permeation resistance of geopolymer mortar
merging PVA fiber and NS by the above three neural net-
works are in line with the actual situation and meet the
requirements for the prediction of compressive strength
and chloride ion permeation resistance index electric
flux values, thereby possibly providing guidance for the
study of the mechanical properties and chloride ion per-
meation resistance of geopolymer mortar merging PVA
fiber and NS. The results of the aforementioned three
neural network models can provide guidance for further
experiments and engineering studies on the mechanical
properties and chloride ion permeation resistance of geo-
polymer mortars merging PVA fibers and NS.

5 Conclusion

1) BP neural networks use the gradient descent method
to reduce errors and correct the weight matrix during
the training process, requiring several iterations, a
slow convergence speed, and a long convergence
time. Simultaneously, the BP neural network requires
many experiments when selecting neurons in the
hidden layer, which is a tedious process. However,
the MSE is only 0.014563, which is small and meets
the accuracy requirements, and the predicted results
are close to the experimental results, with good net-
work generalization ability.

2) The RBF–BP composite neural network couples the
advantages of the other two types of neural networks
and adopts a double hidden layer structure, having
features wherein the BP neural network can solve
nonlinear problems and the RBF neural network has
a fast convergence rate. Among the three neural net-
works, the RBF–BP composite neural network fits the
best and makes the most accurate prediction.

3) According to the comparison analysis of the assess-
ment results of the three types of neural networks with
the real values, the RBF–BP composite neural network
model can accurately and effectively predict the com-
pressive strength and chloride ion permeability resis-
tance index electric flux values, and the prediction
results fit the real results to a high degree, and the
dispersion degree was small. The RBF–BP composite
neural network can provide effective guidance for the
prediction of the compressive strength and chloride

Figure 5: Predicted results of three neural networks against chloride
ion penetration.

Table 6: Comparison of evaluation indices of each neural network
model

Neural network models MSE RMSE MAE

BP neural network 0.014563 0.12068 0.12068
RBF neural network 0.0023757 0.048741 0.037715
RBF–BP composite neural
network

0.00071943 0.026822 0.026822
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ion permeation resistance of geopolymer mortars mer-
ging PVA fibers and NS.
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