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Abstract: Lung cancer (LC) has high morbidity and fatality
rate that can be attributed to its poor diagnostic and mon-
itoring facilities. Hence, there is a need to design advanced
detection and monitoring systems to facilitate fast, effi-
cient, and early diagnosis. The emerging research on novel
nanotechnology-based strategies and conceptual models
has made early-stage detection of LC possible by employing
magnetic nanoparticles (MNPs) to surmount the barriers of
slow diagnostic efficiency. Herein, the emphasis is on the
recent advancement of MNP-based detection and moni-
toring systems for LC diagnosis, and future perspectives in
the current scenario are discussed. The integration of MNP-
based advanced diagnostic tools (microfluidic chips, artifi-
cial intelligence, biosensors, biomarkers detection, machine
learning, nanotheranostics, deep learning, and internet of
things platform) with conventional ones bronchoscopy,
computed tomography scan, positron emission tomography,
distant metastases, transthoracic biopsy, andmagnetic reso-
nance imaging might help to resolve current challenges
related to early diagnosis of LC.

Keywords: magnetic nanoparticles, functionalization, lung
cancer, detection and monitoring based systems

1 Introduction

Cancer is the world’s largest cause of death, with approxi-
mately 10 million fatalities in the year 2020 [1]. Among the
various cancers known, the major contributors are lung
cancer (LC) (1.80 million deaths); colon and rectum cancer
(0.94 million deaths); liver cancer (0.83 million deaths);
stomach cancer (0.77 million deaths); and breast cancer
(0.68 million deaths) [1]. According to the World Health
Organization (WHO) estimate, a global death rate of 29.5
million is expected by 2040 [1,2]. The foremost risk factors
of LC include chewing, smoking, tobacco, exposure to
radioactive elements (asbestos), and harmful radiations
(radon gas). Of all reported LC cases, almost 80% were
diagnosed among smokers, consequently marking it the
principal cause of death. The past ten years have shown
radical transformation in clinical settings with respect to
early-stage detection and monitoring of LC garnering more
interest in the field as highlighted in various research arti-
cles [1–4]. However, the dynamic tumor landscape makes
specific and early-stage detection and monitoring of LC
more complex. Thus, there is a requirement to develop
nanoparticle-based detection systems because these mate-
rials have high penetration capability in tissues. Definitely,
early-stage LC diagnostics will be a key player in cancer
management [5]. MNPs, which are drug-loaded, magnet-
ically controlled, and targeted to diseased tissues, are being
studied as a prospective therapy [6]. The blood–brain bar-
rier, on the other hand, makes it difficult for MNPs to
permeate the central nervous system (CNS) and reach
the diseased tissue. Using a simplified geometrical model,
computational fluid dynamics, and the discrete element
approach, the recent article by Gkountas et al. [7] explores
numerically the transport of MNPs over the barrier driven
by normal pressure drop and external gradient magnetic
fields. The permeability of the brain barrier was examined
in relation to the nanoparticle size, external magnetic
field, and blood flow in the channel. The findings show
that applying a magnetic field improves drug delivery to
the CNS. The permeability of larger MNPs (∼100 nm) can
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be enhanced by up to 30% when subjected to an external
magnetic field; however, smaller MNPs (∼10 nm) cannot be
driven by the applied magnetic field and the permeability
remains unaltered. Finally, the increased blood flow results
in a 15% increase in permeability. Hence, it was concluded
that the geometric properties of the endothelial cells, the
nanoparticles' size, and blood flow are not as important as
the external magnetic force for drug transport into the CNS.

LC is mainly classified into three types: (1) non-small
cell lung carcinoma (NSCLC), (2) lung carcinoid tumor
(LCT), and (3) small cell lung carcinoma (SCLC) with
NSCLC as the predominant type comprising 85% of cases
and the remaining 15% of cases fall under SCLC and LCT.
In comparison to SCLC, is simple to identify and charac-
terize NSCLC. NSCLC represents the malignant form of
tumor and frequently arises in the lung peripheral tissues.
In the year 1943–1952, Denoix first proposed the LC staging
as per the standard “Tumor-Node-Metastasis” classifica-
tion. It differentiates the LC stages based on the tumor
size as “TX,” “T0–T4;” number of nodes “N0–N3;” and
degree of metastases “M0, M1a, and M1b” [3]. On the other
hand, SCLC is a considerably more severe kind of cancer of
LC than NSCLC because the rate of proliferation of malig-
nant cells into other body parts of SCLC patients is much
higher than in patients diagnosed with NSCLC. The funda-
mental difference between SCLC and NSCLC is related to
themalignant tumor size and the proliferation rate of these
cells. Oncologists widely use this classification for diag-
nosing different stages of LC. According to the WHO study,
there is no recognized histological grading system set up
for early diagnosis and monitoring of LC; nevertheless, the
grading system for neuroendocrine tumors categorizes
them as low-grade tumors, intermediate-grade tumors,
and high-grade tumors [3]. Most lepidic cancers are clas-
sified as low-grade tumors; however, large cell carcinoma
is usually categorized under high-grade tumor type [4].
The majority of SCLC metastases occur in the main and
secondary bronchi.

This review article highlights the use of magnetic
nanoparticles (MNPs) as diagnostic and monitoring tools
for early detection of LC and a concise view of the chal-
lenges involved in this field. There are considerable
reviews of literature covering research on MNP-based
cancer diagnosis [8–12]. However, this review presents
a concise classification of different types of MNPs with
their unique features and limitations as shown in Table
S1 (provided in Supplementary). In short, it will be
helpful for the readers to understand the use of advanced
technologies such as artificial intelligence (AI), machine
learning (ML), deep learning, internet of things (IoT), etc.

[10,13–15] in solving the current challenges involved in
the early diagnosis of LC. The preliminary section of this
review highlights the role of MNPs and their importance
in the biomedical field. The second section explains the
classification of MNPs, their synthesis and functionaliza-
tion methods, unique features and limitations [16–67]. In
this section, the role of MNPs in biomedical and clinical
diagnostic applications based on unique properties such
as superparamagnetic, nontoxic, biocompatible, chemi-
cally inactive and environmentally friendly have been
discussed. The ease of tunability and the customized sur-
face of conjugated MNPs make them a suitable choice
for synthesizing novel MNPs for diagnostic applications
[10,11]. MNPs serve as an antimicrobial agents, anti-
cancer agent and contrast agents in targeting, imaging,
diagnosis, and hyperthermia [12]. Nonetheless, various para-
meters must be considered while evaluating the treatment,
including temperature dependency over time, treatment
period, tumor form, tissue damage, and nanoparticle dose.
Polychronopoulos et al. [68] recently published a computer
model aimed at determining such parameters, especially for
ellipsoidal (prolate and oblate) tumors with a variety of
aspect ratios. The model is simple to use and duplicate for
a variety of treatment settings, and it might be valuable for
future therapy planning. In Section 3, conventional diag-
nostic and monitoring systems based on MNPs have been
elaborated, which encompasses bronchoscopy, computed
tomography (CT), magnetic resonance imaging (MRI), dis-
tant metastases and transthoracic biopsy and positron
emission tomography (PET) [12,16]. Although healthcare
workers and professionals routinely perform the afore-
mentioned means of diagnosis, however, conventional
techniques are not up to the mark with respect to precision
and sensitivity in tumor diagnosis. This leads to poor
patient compliance and chances of false-positive results
if the equipment is not properly cleaned and sterilized
adequately between subsequent analysis [10]. Hence, there
is an urgent need to integrate these conventional diagnostic
tools with advanced diagnostic and monitoring systems
such as biomarkers detection, microfluidic chips, biosen-
sors, nanotheranostics, AI, and wearable devices that form
part of Section 4 [9,13–15,69–71]. The limitations of each
one of these systems have been discussed. The concluding
section of this review recapitulates the future challenges
and refinements required in MNP-based diagnostic and
monitoring systems for the early diagnosis of LC. Although
the combination of conventional and advanced diagnostic
methods helps in resolving various diagnostic issues, there
are still numerous proposed challenges that are yet to be
resolved in future.
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2 MNPs

The emergence of MNPs in diagnostics and monitoring
systems has gained a lot of interest globally [8]. The
unique features and high penetration capability of MNPs
offer a significant advantage in tumor targeting and ima-
ging [12,16]. Moreover, MNPs can function as direct diag-
nostic agents due to their inherent superparamagnetic
properties [22]. Among all nanoparticles known so far,
MNPs have gained immense attention in oncology because
of their unique pharmacokinetic properties, MRI contrast,
simple and scalable synthesis, easy surface modifications,
low toxicity, and biocompatibility that assist them to serve
as outstandingmaterial for LC diagnosis [16–67]. Themag-
netic characteristics of MNPs are determined by the core
area in such a way that the superparamagnetic nature is
shown by particle sizes up to 100 nm, making it dimension
dependent. MNPs are typically smaller or comparable in
length to organic units, ranging from a few nanometers for
proteins and genes to nanometer loads for viruses and up
to 100 nm for cells [41]. MNPs are beneficial because of
their small size, which allows greater circulation and pre-
cise distribution within the network or near the targeted
site. Table S1, provided in the Supplementary information,
lists the classification of different types of MNPs with their
synthesis methods (details of each method can be found
in Table S2 provided in the SupplementaryInformation),
structural characterization, unique features, and limita-
tions. However, because the internal structure/cores of
MNPs are generally composed of iron (Fe), cobalt (Co),
and nickel (Ni), which are noxious to cells and therefore
are safer core materials (magnetite [Fe3O4] or maghemite
[−Fe2O3]), as well as a variety of biocompatible shells to
cover the noxious cores are put into use (Table S3 provided
in Supplementary information and Table 1). Other fluores-
cent markers, such as fluorescent protein molecules, luci-
ferase, and fluorescent dyes tagged on the surface of
MNPs, can also be used as contrast agents in addition to
magnetic cores. As a result, optical imaging techniques
can employ these fluorescent markers. The benefits and
drawbacks of various imaging techniques are summarized
in Table 2 as explained by Cores et al. [41].

MNPs as drug delivery vehicles were initially pro-
posed in the 1970s [72]. The magnetic drug targeting
(MDT) approach is a useful method for directing cells or
cell components to their intended sites. To accomplish
this, MNPs are frequently employed to label cells via co-
incubation. MNPs can pass through the cell membrane in
three ways: external binding (antibody-mediated), endo-
cytosis, and passive diffusion [41]. Magnetized cells would
be specifically directed to injured sites using magnetic Ta
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force if an external static magnetic field is applied. As
shown in Figure 1(a), an electromagnet and a high mag-
netic flux density were used to create a strong magnetic
field with a gradient of up to 72 T/m at the pole tip [6].
Chemotherapeutic or anticancer drugs were attached to
MNPs, and the resulting ferrofluid solution was injected
into an artery and delivered directly to the tumor location.
An external magnetic field concentrates the particles and
medications connected to them at the specific tumor site
(Figure 1(a)) [6]. According to Dames et al. [73], aerosol
droplets containing MNPs (Figure 1(b))might be utilized to
route medications to specific parts of the lungs, similar to
“traditional” MDT (Figure 1(a)) [74]. The aerosol droplet is
the real medication carrier. As a result, unlike “traditional”
MDT, the medication does not need to be attached directly

to the MNPs, removing the risk of drug desorption from the
particle during delivery or in the target tissue. In this
instance, the MNPs need not be customized for each med-
icine under consideration [74]. Because MNPs are known
to be effective MRI contrast agents, MRI can detect the
migration of magnetically targeted cells. Abdeen and Pra-
seetha [75] found that in the presence of a magnetic field
heat was generated due to the oscillating effect of MNPs
and the generated heat reduced the growth of the tumor.
This observation shows that future studies will focus on
the MNP pharmacokinetics to ensure enhanced perme-
ability and retention effect (EPR). Fallahzadeh et al. [76],
proposed that future research will focus on the favorable
response of the patient’s body to MNPs. Improving early
cancer detection methods and anticancer medication

Table 2: Pros and cons of various imaging methods and contrast agents applied for in vivo cellular imaging and tracking. Reprinted with
permission from ref. [16]

Imaging
techniques

Contrast agents Advantages Disadvantages

MRI SPIONs 3D scanning of the whole body,
painless, without the implication of
ionizing radiation, cell quantification
is challenging but feasible, external
magnetic field used to modify cells

Patients with implants are not suitable
for this treatment, cell division results
in tracer dilution, potential agent
transfer to other cells, it is possible that
the imaging procedure will make the
person feel claustrophobic

MRI Fluorescent agents,
perfluorocarbon, and gadolinium

3D scanning of the whole body,
without the implication of ionizing
radiation, individual cell detection is
achievable

Patients with implants are not suitable
for this treatment, cell division results
in tracer dilution, potential agent
transfer to other cells, it is possible that
the imaging procedure will make the
person feel claustrophobic

Optical Luciferase substrates, protein
fluorescent markers, near-infrared
fluorophores, and fluorescent dyes

The use of a huge proportion of
fluorophores allows for simultaneous
examination of several cell types and
lineages, and it may be coupled with
other imaging modalities. It also
avoids the use of ionizing radiation

Cell division results in tracer dilution,
dye cytotoxicity, limited tissue
penetration depth

PET and
spectroscopy
(SPECT)

PET: high-energy positron
emitters; SPECT: high-energy
gamma emitters

Highly elaborative, 3D scanning of the
whole body, no tracer signal dilutions
with transgenic methods because
there are no cell division dilutions,
quantification feasibility with SPECT

Quantification can be challenging in
PET, ionizing radiation, intravenous
injection of contrast agent, stem cells
are genetically modified, an allergic
response to radioactive tracer might be
possible

Ultrasound Microbubbles Detection of single cells without the
use of ionizing radiation, imaging of
soft tissues, relatively
inexpensive, fast

Limited to specific body parts, low
resolution, challenging quantification,
cell division results in dilution of
contrast agent and can transfer to other
cells

X-ray and CT High-density gadolinium or iodine CT allows whole-body scan, 3D
imaging, relatively inexpensive,
and fast

Too high concentrations of contrast
agent can be noxious, it is difficult to
quantify X-ray data, increased risk of
developing cancer at a later stage,
ionizing radiation in dyes
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administration by blending functionalized superparamag-
netic MNPs to the tumor site is one of the most widely
pursued areas of research. Superparamagnetic iron oxide
nanoparticles (SPIONs) induced hyperthermia treatment
can destroy malignant tissues all over the body [77–79].

2.1 Classification, synthesis, and
functionalization of MNPs

MNPs are categorized into the following types:
(1) Metals and their oxides (Fe, Co, Ni; Fe3O4, Fe2O3, NiO).
(2) Alloys (FePt, FePd).
(3) Ferrites (CoFe2O4, MgFe2O4, MnFe2O4, ZnFe2O4, NiFe2O4,

CuFe2O4).

SPIONs belong to a ferrimagnetic group of MNPs with
broad significance in the areas of biomedicine and bio-
engineering.While several SPION-based diagnosticmethods
are under clinical and preclinical investigation, others
have been already commercialized for diagnostic purposes
(Table 1). Fe3O4, γ-Fe2O3, and α-Fe2O3 are a few examples
of SPIONs [20]. The presence of ferric ions (Fe2+ and Fe3+)
has resulted in the dominance of SPIONs for utilization
in biomedical applications. Different types of MNPs with
their synthesis methods and unique features are elabo-
rated, as shown in Table S1. The synthesis of MNPs has
been achieved by diverse processes as listed in Tabe S2.
A number of these processes have led to extraordinary prop-
erties like monodispersity, shape control, and stabilization.

Co-precipitation or hydrothermal synthesis, as well as the
sol-gel technique, are the most widely employed methods.
Thermal breakdown, microemulsion, sonolysis, and bio-
synthesis are examples of some novel and modern techni-
ques. The type of MNPs has a greater influence on the
optimal synthesis pathway. The most used MNPs for diag-
nostic purposes are often spherical in shape. However,
researchers have investigated different morphologies
that imparted additional features to the nanoparticles
such as hollow rod shape for drug delivery [80] and nano-
cubes for guided chemotherapy and photothermal therapy
(PTT) [81].

2.2 Functionalization of MNPs

Functionalization of MNPs is required to improve their
applicability for further applications. Functionalization
is the process that involves the addition of new features,
properties, and functions to a material by changing its
surface chemistry [8,82–85]. This is a fundamental method
used throughout materials science, chemistry, pharmacy,
textile industry, bioengineering, nanotechnology, and bio-
medicine. Since the cores of MNPs are made up of toxic
materials, hence it is required to reduce their toxicity for
targeting and imaging purposes. To achieve this, the bare
cores of MNPs are covered with biocompatible capping
agents that act as shields/shells to lower their toxicity.
For example, nanoshells that have been used as dielectric
cores usually made up of silicon (Si), are coatedwith a thin

Figure 1: (a) MDT with intravascular administration. MNPs bind effectively to an anticancer drug that is directly injected into the tumor-
feeding blood vessel of the patient. It is then concentrated in the target tumor site by an external magnetic field. Reprinted from ref. [6] by
Creative Commons License. (b) Targeted delivery of magnetic aerosol droplets. Reprinted from ref. [74] by Creative Commons License.
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layer of the shell (gold or Au) surrounding them. It has a
size range between 10 and 300 nm [86]. The working prin-
ciple of these nanoshells involves the conversion of elec-
trical energy mediated by plasma into photon energy that
can be optically tuned through UV-IR emission/absorption
arrays. Although the large-size nanoshells have limited
usage, they are desirable because of their imaging process
and are being devoid of heavy metal toxicity [87]. Both
active and passive ways of targeting cells by Au nanopar-
ticles were demonstrated in the research conducted by
Nunes et al. [87,88]. The working principle of passive tar-
geting has been mediated by the assembly of Au nanopar-
ticles to enhance imaging by permeability and retention
effect (EPR) in tumors [88]. On the other hand, for active
targeting, Au nanoparticles get coupled with tumor-tar-
geted specific drugs. Earlier findings have significantly
influenced the early diagnosis of cancer because these
allow the detection of small tumors of millimeters (mm)
size in the patient’s body [87]. By using a one-step solvo-
thermal method, Qian et al. [89] synthesized Fe3O4 nano-
spheres/reduced graphene oxide (rGO) nanocomposites.
In contrast to Fe3O4 microspheres/rGO and Fe3O4 nano-
polyhedrons/rGO, the resultant nanocomposites had the
most peroxidase-like activity toward the usual peroxidase
substrate (3,3′,5,5′-tetramethylbenzidine) oxidation. This
suggests that using their peroxidase-like catalytic activity,
selective synthesis of Fe3O4/graphene composites with
desirable properties is crucial. Based on their high activity,
the Fe3O4 nanospheres/rGO nanocomposites were used to
construct an economical colorimetric platform for the sen-
sitive and selective detection of acetylcholine. Gao et al. [90]
described the synthesis of MNPs coated with chitosan
(CSMNPs) for use in a capture detection immunosorbent
assay in which antigen may be collected, sorted, and
enriched prior to the assay method. The carcinoembryonic
antigen (CEA)was identified by CSMNPswith a LOD of up to
1 ng/mL. Chitosan was employed as both a ligand and a
surface-modifying agent in a one-step solvothermal method
to make CSMNPs. The presence of surface amine groups in
CSMNPs provided high dispersibility in aqueous solution as
well as suitable locations for covalently attaching antibo-
dies to theMNPs. They also have catalytic characteristics for
catalyzing color reactions in immunoassays, as well asmag-
netic properties for capturing, separating, and enriching
antigens prior to the assay procedure. Table S3 in Supple-
mentary shows different types of capping agents that serve
as shell material to coat MNPs. The motif of coating MNPs
with capping agents is to improve its applicability by pre-
venting aggregation of MNPs and to provide protection to
cells from toxic cores. This can be attained by the proper
choice of shell materials that are hydrophilic in nature

(e.g., silica) and allows diffusion of MNPs in a liquid envir-
onment. The three most important methods of functiona-
lization include [8,82–85] the following:
(1) Ligand addition and functionalization via bioconjugation.
(2) Ligand-exchange strategy to MNPs.
(3) Coating of hydrophilic materials like silica.

2.2.1 Ligand addition and functionalization via
bioconjugation

The stabilization of MNPs can further be increased by
coating organic and inorganic materials. The presence
of hydroxyl groups (–OH) of nanoparticles produced by
coprecipitation or other synthetic techniques might readily
explain functionalization via bioconjugation at the MNP
surface. Depending on the pH of the medium, it can be
positively or negatively charged. If the –OH ligands are
free, nonpeptizable particles will be produced at pH 7.5;
however, ligands stay linked to MNPs in the pH range of
6–10. As a result, the free hydroxyl groups on the surface
of MNPs help in the binding with biomolecules. Some of
the clinically approved iron oxide MNP (IONP)-conjugated
compounds with their applications are listed in Table 1,
and the summarized form of MNPs as nanocarriers for
cancer diagnosis is shown in Figure 2.

IONPs/SPIONs are usually stabilized by the addition
of stabilizers or surfactants like oleylamine and/or oleic
acid that are generally hydrophobic. Now, these nanopar-
ticles are often made hydrophilic for biomedical applica-
tions by functionalizing their surface via surfactant/ligand
exchange or stabilizers [8,82–85]. The addition of surfac-
tant is achieved through the adsorption of the amphiphilic
molecules on the nanoparticle surface that contains both
hydrophobic and hydrophilic segments [82]. A double-
layer structural arrangement is formed by the hydrophobic
component with the initial hydrocarbon chain, while there
is an exposure of hydrophilic groups outside of the nano-
particles that render them to be dispersed in water easily.

2.2.2 Ligand-exchange strategy

Ligand-exchange strategy is achieved through the pre-
sence of a new bifunctional surfactant or ligand in place
of the original surfactant by direct replacement process
[85]. This bifunctional surfactant/ligand has at least two
functional groups attached to it such that one of them is
capable of tightly binding to the nanoparticles’ surface
via a strong chemical bond and the other functional

Nanoparticles for lung cancer detection  549



group present at the opposite end is polar in nature and
makes the nanoparticles disperse in water easily or be
further functionalized in a physiological environment.
The strong interaction between the bidentate/multidentate
functional groups and the MNP surface can be achieved
through the bifunctional ligand-exchange strategy that
provides better colloidal stability under physiological con-
ditions as compared to the amphiphilic micelle coating
method. The development of the bifunctional ligand-
exchange strategy [85] was made for the replacement of
hydrophobic ligands present on MNPs with organosilanes
that possess different functional groups [82]. These organo-
silanes feature alkoxyl moieties that establish a covalent
connection with surface hydroxyl groups (–OH) via esteri-
fication or dehydration to link with the metal oxide. Amino
(–NH2)-, carboxylic acid (–COOH)-, and polyethylene glycol
(C2nH4n+2On+1)-terminated silanes have been discovered to
render MNPs extremely water-soluble and stable.

Different types of functionalizations of MNPs are
shown in Table S3, which include
(1) Core/shell MNPs [8]
(2) Polymeric MNPs [8]
(3) MNPs entrapped in polymeric films [8]
(4) Magnetic heterodimers functionalized with two dif-

ferent functional units or biological species [40]

(5) MNPs modified with lipid mono- and bilayers [40].

Heterodimers are created when two distinct nanopar-
ticles (for example, magnetic and metal or semicon-
ductor) are combined in a single nanoassembly where
the particles are bonded to each other, resulting in a
unique multifunctional species [40]. The two nanoparti-
cles in this species are made up of two separate materials
with distinct characteristics, like “Siamese twins” (dumb-
bell-like bifunctional particles). Controlled development
of a second particle close to the original particle is used to
link two nanoparticles in a single composite assembly.
MNPs, Fe3O4 or FePt (8 nm), with a stabilizing organic
shell composed of a surfactant, were distributed in an
organic solvent (dichlorobenzene) and added to an aqueous
solution of Ag2+ salt, as explained by Katz [40]. Micelles
containing self-assembled MNPs (on the liquid/liquid inter-
face) were obtained by ultrasonication of this bi-phase
organic solution. The Ag+ ion is next penetrated through
defects in the surfactant shell, where it is catalytically
reduced by Fe2+ sites to generate Ag nanoparticle seeding.
Further reduction of Ag+ ions on the Ag seed caused seed
development and the production of Ag nanoparticles on
one side of MNPs, resulting in twin particles. In a similar
manner, another Ag nanoparticle was created on the FePt

Figure 2: Classification of MNPs employed as carriers for drug delivery in cancer therapy [8].
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MNP side. Using the difference in surface characteristics of
the two portions of the produced heterodimeric nanoparti-
cles, the two components of the dimer may be easily
changed using various chemicals.

3 Conventional diagnostic methods
for LC detection

3.1 Bronchoscopy

Bronchoscopy is an invasive technique that involves introdu-
cing a camera-connected illuminated tube (Bronchoscope)
into the patient’s lungs through the nose or mouth [71]. As
the bronchoscope exposes the interior tissues, bronchi, and
bronchioles, it is possible to identify many abnormalities in
the lungs, such as tumors, signs of infection, and excess
mucus, using bronchoscopy. Rigid and flexible are the two
different forms of bronchoscopy [71]. Rigid bronchoscopy
uses a bigger, more rigid piece of equipment to access the
proximal airways. It is usually done to remove foreign
objects and airway stents in order to manage severe
hemoptysis. Also, it has application in tumor debulking
and airway dilatation [91]. Flexible bronchoscopy, on the
other hand, accesses the lower airways using a smaller,
more flexible piece of equipment. Bronchoscopy is com-
monly suggested for the early detection of LC because it
provides a thorough review of distinct characteristics of
the lungs from the inside [92]. Fiber-optic bronchoscopy
is extensively utilized in practice because it is safe (0.12%
complication rate) and simple to conduct [93].

3.1.1 Autofluorescence bronchoscopy (AFB)

AFB is a form of flexible bronchoscopy based on the
finding that when dysplastic or carcinomatous lesions occur,
the emission spectrum of the bronchial mucosa alters under
blue light [69]. Normal bronchial mucosa appears green
after image processing, whereas dysplastic/carcinomatous
tumors appear reddish brown. The fundamental rationale
for utilizing blue light is to distinguish between normal
and cancerous tissue based on color alone, without the addi-
tion of any fluorescence-enhancing drugs. The white field is
more specific, while AFB is more sensitive, with bronchitis
being themost common confounder for AFB [94]. AFB ismost
suited for in situ application in squamous cell carcinoma,
which is an uncommon occurrence, restricting its use. It
has, however, been included as part of the work to be done

in the LungSEARCH research [94], a multicenter clinical trial
for the early identification of LC. The combination of AFBwith
other current techniques, such as white light bronchoscopy or
CT scans (Section 3.5), can considerably enhance the early
diagnosis of LC.

3.2 Endobronchial ultrasound (EBUS)

EBUS is a minimally invasive technique that is used to
identify a variety of lung diseases [71]. The interior tissues
and the airwall of the lungs are seen using EBUS in con-
junction with routine bronchoscopy [95]. EBUS is widely
applied in normal practice for early identification because
of its low risk and high diagnostic value. Linear EBUS and
radial EBUS are the two EBUS systems available [93]. The
ultrasonic transducer is utilized in the distal end of linear
EBUS to visualize the curvilinear pattern of the airways
using a fixed array. A mechanical radial microprobe is
utilized in radial EBUS to visualize the characteristics of
the lungs’ periphery. EBUS, in combination with frequent
bronchoscopy, has been shown to be a highly successful
technique for detecting the degree and depth of invasion
in the LC.

3.3 Confocal endoscopy

Confocal endoscopy, also known as confocal laser endo-
scopy (CLE), is a cutting-edge imaging method that allows
for real-time imaging of cellular and subcellular features in
the mucosa and live cells in the lung tissue [71]. CLE might
be used to investigate the architecture of alveolar elastic
fibers, microvessels in lung tissues, and bronchus mucous
membranes. For the reliable diagnosis of LC, Comino et al.
[96] investigated probe-based CLE (pCLE) combined with
computer-aided diagnostics techniques. The obtained data
were used to study the deep-learning feature spaces to
provide improved CLE pictures (83.4% accuracy) of lung
tissue neoplastic cells.

3.4 Biopsy

Lung biopsy is a procedure that involves removing a
sample of tissue from the lungs for evaluation. A specific
biopsy needle or surgery is used to remove a tiny portion
of the lung. A tissue biopsy is a sort of biopsy that is
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utilized to detect several lung diseases, including LC [71].
To identify lung disorders, many types of biopsies are
available [71]. A needle biopsy, for example, involves
inserting a needle into the lung and extracting a sample.
A bronchoscope (a long, thin tube with a small camera) is
used to perform a transbronchial biopsy. The thoraco-
scope, which transmits the chest picture to the computer
monitor, is used in video-assisted thoracoscopic surgery.
The thoracoscope is inserted into the chest cavity through
a tiny incision in this minimally invasive procedure. Open
biopsy, on the other hand, necessitates a bigger incision in
the patient’s skin in order to access and remove a tiny
section of the lung for further investigation. For years,
tissue samples have been used to detect/diagnose LC;
however, their invasive nature restricts its utility.

3.5 CT

In radiology, CT is used to obtain detailed pictures of the
body in a noninvasive manner [12]. CT scan uses a spin-
ning X-ray tube and detectors to measure the X-ray
attenuations of various tissues inside the body. X-ray
readings are often obtained many times from various
angles and then processed on a computer to reconstruct
the algorithms for creating tomographic pictures of the
body. Contrast agents (iodine- and gadolinium-based
contrast agents are the most common ones) for CT are
administered intravenously. On the other hand, patients
with renal impairment have been documented to be
extremely susceptible to widely used contrast agents
because they cause toxicity in cells and tissues. As a
result, MNPs were considered as a possible replacement
for iodine-based contrast agents [97,98].

In CT imaging, gold-coated iron oxide glycol nano-
particles can be employed as a contrast agent [12]. It was
discovered that nanoscale MNPs are extremely biocom-
patible, biodegradable, and have X-ray attenuation prop-
erties, as well as pose a minimal toxicity risk when
exposed to low levels over time. They are a good candi-
date for CT and MRI imaging because of these features
[99,100]. Naha et al. [99] synthesized a nanocomposite of
bismuth-IONPs with a dextran covering and tested the
nanoconjugate’s cytotoxicity, accumulation, and half-
life. HepG2 (human liver cancer cell line) showed less
cytotoxicity, and CT imaging was used to examine the
contrast in blood arteries and the heart following over-
night incubation with nanoparticles. The nanoconjugate
was discovered to have high X-ray attenuation, a long
circulation half-life in the body, and biocompatibility,

which makes it a promising candidate for use as a CT
and MRI contrast agent.

Reguera et al. [101] synthesized Janus MNPs that were
employed as a contrast agent in a range of techniques
including CT, MRI, TEM, PAI (photo acoustic imaging),
surface-enhanced Raman spectroscopy (SERS), and
optical imaging. The results showed that these can collect
the most cellular information, which make them an excel-
lent imaging tool in the biomedical platform [101]. On the
other hand, the negative consequences of ionizing radia-
tion might occasionally limit their usage in patients.

3.6 PET

PET is an imaging technique wherein radioactive mate-
rials known as radiotracers are employed to envision and
determine the changes in metabolic reactions [70]. Radio-
isotopes used in PET imaging possess a short half-life with
11C of 20min, 13N of 10min, and 15O of 2min. 64Cu was
widely studied due to its half-life up to 12.7 h. Researchers
found that cross-linked dextran nanoparticles had a note-
worthy affinity to tumor-associated macrophages [102,103].
64Cu-labeled dextran nanoparticles by macrocyclic chela-
tors can be applied in PET imaging for clinical oncologic
diagnosis. However, the poor stability of radiometal che-
lator complexes in vivo [104] greatly influenced the physi-
cochemical properties of nanoparticles in PET imaging.
Hence, the chelator-free 64Cu nanoclusters were developed
through a simple one-pot chemical reduction method by
employing bovine serum albumin as a framework for PET
LC detection to improve the stability and accumulation
[105]. Although Cu-based radionuclide has been studied
extensively and made some progress, the blemishes of its
instability and higher accumulation in the liver are still the
focus of lung diagnosis studies.

3.7 MRI

In vivo imaging of the cells is required to track and monitor
disease treatment, immune cell distribution into the body,
diffusion time, proliferation, and migration rate. PET, CT,
and MRI are some of the imaging methods utilized for this
purpose [12,70]. MRI, in particular, has been demonstrated
to have a high spatial resolution [106], making it an excel-
lent imaging method for in vivo imaging studies. It is a
high-resolution imaging method that uses a strong mag-
netic field and radio waves to create pictures of numerous
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organs in human and animal bodies. In experimental con-
texts, it has been frequently utilized in clinical radiology
with nonionizing radiation. In addition, the modality is
tomographic, allowing for high-resolution soft tissue pene-
tration. Themagnetic field, radio waves, or electric fields are
used in MRI to show the body’s precise interior structure. T1
and T2 contrast agents are the two types of MRI contrast
agents [12]. T1 agents affect water protons’ longitudinal
relaxation time, whereas T2 agents affect their transverse
relaxation time. It shortens the T1 and has a mild influence
onT2, resulting in abrighter picturewhenpositive T1-weighted.
Negative T2/T2*-weighted contrast, on the other hand, reduces
T2 relaxation time and results in dark pictures [107]. Because
of their superparamagnetic characteristics, MNPs lower the
relaxation period of surrounding protons, making them good
candidates for MRI contrast agents.

MRI cannot yet be directly applied in LC detection
due to the motion artifacts, numerous susceptibility gra-
dients, and low proton density [108]. By combining with
the optimized proton MRI sequences based on ultrashort
echo time (UTE), ultrashort echo-time magnetic reso-
nance imaging (UTE-MRI) can be applied in lung tissue
imaging [109]. Gadolinium is clinically used as the MRI

contrast material, showing the noninvasive detection of
NSCLC by UTE-MRI that can be achieved via the orotra-
cheal administration of nebulized gadolinium nanoparti-
cles with the enhanced signal. Moreover, gadolinium can
be selectively deposited in tumor tissues while removed
by healthy tissues [110]. Accurate and detailed detection
information can be obtained through the simultaneous
usage of two MRI contrast agents [70]. Longitudinal
relaxation contrast medium (T1 contrast medium), such
as Gd-DTPA and Mn-DPDP, and transverse relaxation con-
trast medium (T2 contrast medium), such as superpara-
magnetic iron oxide, among which T1 contrast medium
can effectively decrease the T1 relaxation time by inter-
actions with the neighboring T2 contrast medium [70].
The strong magnetic coupling between the T1 and T2 con-
trast medium could disturb the relaxation effect of the
paramagnetic T1 contrast medium, leading to an undesir-
able weakening and quenching of the magnetic resonance
signal. According to this, a smart MRI contrast agent with
Fe3O4 nanoparticles in core (T2 contrast medium) and
the silica shell containing water-soluble Mn-porphyrin
(T1 contrast medium) and anticancer drug doxorubicin in
the shell was constructed (Figure 3(a)) [111]. After the mod-

Figure 3: (a) Schematic presentation of synthesis, release, and imaging process of Fe3O4@SiO2@PAA-cRGD. Reprinted from ref. [111] by
Creative Commons License. (b) Drug release study using UV-Vis spectra. Reprinted from ref. [112] by Creative Commons License. (c) Schematic
presentation of the synthesis of contrast agent and imaging mode (MRI/PET/PAI). Reprint from ref. [70] by Creative Commons License.
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ification by poly(acrylic) acid (PAA) and c(RGDyK) peptides
(cRGD), the dual-mode MRI contrast medium was equipped
with functions of tumor-specific target and pH response
(Figure 3(b)) [112]. When the contrastmediumwas internalized
by cancer cells, the tumor acidic microenvironment facilitated
the release of porphyrin and recovered the quenched signal
caused by the combination of Fe3O4 and Mn-porphyrin
(Figure 3(a)) [111]. Compared to single-contrast medium ima-
ging, multimodal imaging with several contrast mediums can
provide complementary imaging information for cancer diag-
nosis. Co-delivery of various contrast mediums without ima-
ging signal interference is a great challenge. USRPs-Cy5.5
was constructed by covalently conjugating cyanine 5.5 on
nebulized gadolinium nanoparticles for fluorescence tomo-
graphy and UTE-MRI to detect LC noninvasively. Melanin
nanoparticles in photoacoustic imaging (PAI) can be used
as nanocarriers to codeliver124I (PET contrast agent) and
Mn2+ (MRI contrast agent) by an electrophilic substitution
reaction and a chelation reaction, respectively, which is an
ideal vector for tri-mode imaging (Figure 3(c)) to improve the
efficiency of LC diagnosis at an early-stage effectively.

3.8 Magnetic particle imaging (MPI)

MPI is a noninvasive tomographic method for detecting
tracer particles with superparamagnetic characteristics.
Diagnostics, imaging, and material characteristics are
all areas where MPI might be useful. MPI may be used
to create a signal by using nonionizing radiation to find
and quantify the number of nanoparticles at any depth
within the body. When superparamagnetic nanoparticles
are magnetized, MPI signals are created, which are 107
times more sensitive than MRI signals. When SPIONs
were used for lactoferrin conjugation, the magnetic par-
ticle spectrometer (MPS) provides the potential for 3D
in vivo imaging with excellent spatial resolution [113]. A
custom-built MPS was used to record the MPS signal
[113,114]. Overexpressed cancer cells release particular
proteases like trypsin and matrix metalloprotease-2 that
can be identified by MPS. SPIONs were aggregated in the
presence of biotin-labeled peptides, which were then pre-
ferentially recognized and broken by particular proteases
contained in the peptides, causing the SPIONs to dis-
perse. MPS signals detected the aggregation or dispersion
state of SPIONs based on magnetic relaxation properties.
As a result, MPS may be utilized in biomedical applica-
tions including fast detection of proteases in biological
materials like tissue extracts, urine, blood, and cell cul-
ture medium for LC diagnosis [115].

4 Advanced diagnostic MNP-based
systems for early detection of LC

The in vivo methods mainly include ultrasound-guided
needle aspiration, transthoracic and distant metastases
biopsy, AFB, EBUS, CT, PET, MRI, and other invasive
biopsies, which can reflect the disease information by
the visual image [69–71]. The anatomical structure and
boundary range of the tumor can be seen clearly due to
the ultrahigh resolution of MRI, but it was limited by a
longer imaging time and the lack of molecular imaging
information. Although PET imaging showed high sensi-
tivity and provided systemic lesions information, it is still
limited by insufficient spatial resolution and possible
false-positive results caused by unsatisfactory specificity
[12]. Low dose CT scans provide information to indicate
the size, shape, and position of cancer cells in lymph
nodes, but it has the disadvantages of low sensitivity
and low specificity due to severe artifacts in pictures
caused by internal organ motion and tattoos. Table 2
elaborates the pros and cons of different conventional
diagnostic systems for early detection of LC.

To overcome the problems related to conventional
diagnostics, the application of different kinds of functio-
nalized organic and inorganic MNPs is considered in com-
bating LC. The advanced technologies and machinery
requirements could offer an effective route for the early diag-
nosis of cancer and cancer-related diseases. Advanced
diagnostic tools for LC detection through MNPs include
biomarkers [69], microfluidic chips [9], biosensors and
aptasensors [10], nanotheranostics [10], AI, and wearable
devices [13–15] as shown in Figure 4.

4.1 Biomarkers detection

In the area of LC detection based on MNPs, one vital step
is biomarkers recognition. Cancer biomarkers are the mole-
cular structures (aptamers, peptides, DNAs, proteins) respon-
sible for disease development and its evolution. Therefore,
the selection of these molecules is of crucial importance.
Autoantibodies (AAbs), nasal signature, circulating tumor
DNA (ctDNA), microRNA (miRNA), proteins, methylated
DNA, and complement fragments are among the most
common biomarkers [69,71]. There are several specific
biomarkers depending on the type of LC, with the main
biomarkers being CEA related cell adhesion molecule-1
(CEACAM), cytokeratin 19 fragment antigen 21-1 (CYFRA21-1),
human epidermal growth receptor-2 (HER2), vasculo-endothe-
lial growth factor receptors (VEGFR), epidermal growth factor
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receptor (EGFR), class 1 phosphoinositide 3-kinase (PI3K),
neuron-specific enolase (NSE), and V-rafmurine sarcoma viral
oncogene homolog B (BRAF) [10]. Protein and peptide-based
biomarkers identified in blood and bronchoscopic samples
are the most commonly utilized and trustworthy biomar-
kers [116,117]. Different biological specimens, including
blood, urine, sputum, saliva, and exhaled air, are used
to extract and quantify biomarkers [10]. Biomarkers based
on genetic materials, such as DNA, miRNA, and others, are
primarily detected in blood, bronchoscopic samples, sputum,
and nasal epithelium, whereas volatile organic compounds
(VOCs) are mostly found in exhaled breath. Table 3 lists the
various widely used biomarkers.

Various sampling methodologies for biomarkers detec-
tion are [10]
(1) Liquid biopsy.
(2) Sputum cytology (SC).
(3) Breath analysis.

4.1.1 Liquid biopsy

Oncologists and basic researchers are interested in liquid
biopsy, a less invasive technique for the early diagnosis
of LC. The primary goal of this approach is to examine

Figure 4: Advanced diagnostic tools for early detection of LC.

Table 3: Various widely used biomarkers [10]

Biomarkers Details about the biomarker Reference

AAbs The activity of serum AAbs using tumor antigens was studied in this investigation.
ELISA results showed that serum anti-cyclin B1 and anti-HCC1 levels increased in
the first three stages of LC while anti-p53 levels increased significantly in stage I
only. Anti-Survivin-Aabs increased in the second and third phases of LC. This study
has shown to have a sensitivity of 65%

[118]

Complement fragments Complement factors C5a, H, C4d, and other biomarkers have been recommended as
biomarkers in LC by various research studies. Most NSCLCs exhibited complement
factor H, which enhanced C5a release and caused cytotoxicity

[119,120]

miRNA, ctDNA, and
hypermethylated DNA

According to a recent study, these biomarkers are vital for detecting LC with a
sensitivity >60–80%

[121]

Proteins Protein profiling using LB has a key role in identifying LC, according to foremost
research. The study created a panel with 71% sensitivity and 88% specificity for
diagnosing NSCLC using three blood proteins: cancer antigen 125, CEA, and
cytokeratin with AAb

[122]
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circulating tumor cells (CTCs) and/or circulating tumor
DNA (ct DNA) [71]. In addition to the diagnosis of LC, a
liquid biopsy may now be used to forecast customized
prognosis based on genetic changes and monitor dis-
eases based on characteristic molecular markers, making
it more practical in clinical practice than before [123].
LC has traditionally been diagnosed histopathologically
using information available from tissue samples. A tissue
biopsy can also assist oncologists in determining the
stage of LC and, as a result, therapeutic options. Tissue
biopsy, on the other hand, has the following drawbacks:
(i) it is an intrusive process, (ii) it is an inaccurate diag-
nostic method in terms of tumor heterogeneity and dis-
tant metastasis, and (iii) it is not reproducible [71]. These
features of tissue samples may necessitate additional
examinations of patients. Liquid biopsy, on the other
hand, has been shown to be a feasible proxy for the non-
invasive evaluation of tumor-specific biomarkers in the
diagnosis of LC. As a result, it has the potential to be
applied for various therapeutic and research applications
[124]. Several liquid biopsies were investigated in blood,
like circulating nucleic acid, CTCs, etc., to address the
limitations associated with early diagnosis of LC [124].
One of the most intriguing and increasing disciplines in
diagnosing LC is the capacity to examine the genetic pro-
file of cancer cells by a noninvasive sampling of blood or
other bodily fluids [125]. Further details on each of these
biomarkers can be obtained elsewhere [123–125].

4.1.1.1 MicroRNAs (miRNAs)

Both healthy individuals and LC patients have circulating
miRNAs in their blood. MiRNA could be utilized as a diag-
nostic biomarker because of its stability [69]. MiRNAs par-
ticipate in a variety of bioactivities by controlling gene
expression and are refactored by a number of important
components. Furthermore, particular deregulation of miRNAs
has been related to LC, making them a good candidate for
molecular diagnostics. EndogenousmiRNAs are also resistant
to nucleases and durable under severe temperature changes.
As a result, miRNAs can be accurately measured and repli-
cated via RT-PCR for LC detection [126]. Microvesicles (exo-
somes) produced by platelets or phagocytic mononuclear
cells may carry miRNA into the circulation. Exosomes ema-
nating from cancer cells have also been discovered [127],
suggesting the prospect of distant signaling and niche pre-
paration for metastatic dissemination, which is a developing
study topic [128]. The relationship between plasma miRNA
expression and LC has been studied by various researchers.
Wozniak et al. [129] examined circulating plasmamiRNAs in

stage I–IIIA LC with suitable controls to find a 24-miRNA
panel with differential expression. Another research looked
at two particular miRNAs, miR944 and miR3662, in 85
healthy controls and 90 patients, and observed that both
miRNAswere overexpressed bymore than fourfold in NSCLC
patients compared to healthy controls. Among squamous
cell carcinomas and adenocarcinomas, there was no signif-
icant change observed in the expression of these twomiRNAs
[130]. Shen et al. [131] discovered four miRNAs (miR-21, miR-
126, miR-210, and miR-486-5p) in plasma that had sensitivity
and specificity of 86 and 97%, respectively, in NSCLC patients
from controls. Surprisingly, this panel exhibited a greater
sensitivity (91%) for adenocarcinomas compared to squamous
cell carcinomas (82%). The same researchers examined the
expression of plasmamiRNA in benign andmalignant solitary
pulmonary nodules (SPNs). In malignant SPNs, miR-21 and
210 were increased, whereas miR-486-5p was downregulated
compared to benign SPNs. As a result, the authors were able
to construct a model that had sensitivity and specificity of
75 and 85%, respectively, for identifying malignancy in CT-
detected SPNs [132]. MiRNA analysis has been investigated in
such a way so that it can increase the efficacy of LC screening
programs. Boeri et al. [133] examined miRNA expression in
plasma from patients in an LDCT lung screening trial [134]
to find out the differential expression of miRNAs before and
after the onset of LC. A panel of 15 miRNAs was found for
detection prior to diagnosis, and a panel of 13 miRNAs was
identified for diagnosis (with considerable overlap to the first
15). These were tested on plasma samples from the MILD
research [135] and found to be accurate. Prior to diagnosis,
sensitivity, and specificity of 80 and 90%, respectively, were
achieved, whereas upon diagnosis, sensitivity and specificity
75 and 100%, respectively, were acquired. Furthermore, in the
validation cohort, a panel of nine miRNAs was able to predict
poor prognosiswith sensitivity and specificity of 80 and 100%,
respectively [133]. These miRNAs were combined into a panel
of 24, which was then used to create a miRNA signature clas-
sifier, which was used to categorize patients into low, mod-
erate, and high-risk groups. This technique was blindly
applied to a larger patient population from the MILD trial
and found to have sensitivity and specificity of 87 and
81%, respectively. It decreased the false-positive rate by
fivefold when coupled with LDCT [136]. Furthermore, in
terms of 5-year survival, there was a statistically signifi-
cant shift from low risk to high risk. Although the use of
circulatingmiRNAs appears to be promising for early iden-
tification of NSCLC, well-designed, independent, and high-
powered validation studies are the need of the hour to
validate its further applications.

Xing et al. [137] discovered that miRNA 21, miRNA 31,
and miRNA 210 detected in the sputum of the patient are
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excellent biomarkers for early diagnosis of LC and malig-
nant SPN in a recent clinical trial. The test’s overall spe-
cificity was found to be between 80 and 86%, while its
sensitivity was found to be between 82 and 88%. The use
of SC (Section 4.1.2) in combination with LDCT can
enhance the overall diagnostic sensitivity; however, bio-
marker validation is yet to be established [137]. Su et al.
[138] have observed that using hypermethylated genes as
a biomarker in conjunction with miRNA enhances the
specificity of NSCLC diagnosis. In a clinical investigation
of miRNA with three genes (RASSF1A, PRDM14, and
3OST2), it was discovered that combining miRNA 31 and
miRNA 210 with the genes RASSF1A and 3OST2 enhanced
specificity and sensitivity (by 90%) in the diagnosis of
NSCLC [138]. Another fascinating work focused on the
identification of noncoding RNA species, such as short
nucleolar RNA (snoRNA), which is known to have a role
in carcinogenesis. Sputum snoRD78 and snoRD66 are
effective biomarkers in the identification of LC, according
to clinical research [139], with a sensitivity and specificity
of 74 and 84%, respectively.

4.1.1.2 ctDNA

DNA is assumed to enter the plasma either passively or
actively [69]. In cancer patients, a part of this cell-free
DNA comes from the tumor, forming the so-called “cir-
culating tumor DNA” (ctDNA) fraction [140]. In a research
study, frequent mutations were found to establish a library
for identifying mutations linked with NSCLC, demon-
strating the usefulness of ctDNA in LC. In a validation
cohort of healthy controls and NSCLC patients, the sensi-
tivity of 85% and specificity of 96%, respectively, were
achieved. There was also a relationship between tumor
volume and the amount of ctDNA in patients over time,
suggesting that ctDNA may be used to track therapy
response. The presence of ctDNA was found in all late-
stage NSCLC patients, but only in 50% of early-stage
instances [141]. Blood samples were collected from healthy
adults at risk of cancer due to occupational/tobacco expo-
sure as part of the GENAIR project, a multinational European
prospective study. TP53 and Kirsten’s rat sarcoma viral onco-
gene homolog (KRAS) mutations were detected on average
20 months and 14 months before cancer diagnosis, but only
in 4.6 and 1.5% of patients, respectively. Furthermore, TP53
and KRAS mutations were found in 3 and 0.9% of controls,
respectively, who did not develop cancer during a 5-year
follow-up period [142]. In order to establish an early detec-
tion assay, one study looked at TP53mutations in early- and
late-stage SCLC and compared them to controls to see how

specific this method was. TP53 mutations were found in
35% of early-stage tumors and 54% of late-stage tumors,
as well as 11% of matched controls [143]. Quantifying the
human telomerase (hTERT) gene has been used to deter-
mine the total quantity of circulating DNA. Patients with
NSCLC exhibited substantially greater circulating levels
than age/sex/smoking matched controls using this method
[144]. The follow-up research looked at total circulating
DNA in a group of individuals with a long smoking history
who were part of an LDCT observational trial. Although
greater circulating DNA at diagnosis was indicative of a
poorer outcome, there was no link between total quantities
of circulating DNA at baseline and risk of future malignancy
[145]. Furthermore, total circulating DNA measurement is
not specific to NSCLC; for example, higher levels of circu-
lating DNA have been reported in idiopathic pulmonary
fibrosis [146]. The present therapeutic usefulness of ctDNA
rests in the customization of ctDNA assays based on biopsy-
derived genomic landscapes, as well as the subsequent
monitoring of patient response and emergent treatment
resistance, as well as tumor development [147]. Common
LC mutations, such as p53, can be utilized in screening,
although they are also present in individuals with a
smoking history who do not have LC, which leads to con-
fusing specificity [148]. Furthermore, evidence for wide-
spread genetic mosaicism in healthy tissue is accumulating,
including the presence ofmutations in genes known to have
a role in cancer [149]. While candidate gene analysis based
on droplet digital PCR has greater sensitivity, as the sensi-
tivity of next-generation sequencing (NGS) improves, a
larger panel of genetic alterations may be more informative
on tumor occurrence.

4.1.1.3 CTCs

As aggressive malignancies progress, cell subpopulations
change morphologies and becomemotile, infiltrating sur-
rounding tissue and obtaining access to the bloodstream
through a variety of processes such as epithelial-to-
mesenchymal transition [150], cell cooperation [151], and
vasculogenic mimicry [152]. These so-called CTCs are het-
erogeneous and are thought to include the fraction of cells
responsible for distant metastasis formation [153]. CTCs
generated from SCLC patients have been found to be
tumorigenic in mice, generating explants that perfectly
recapitulate the response to therapy seen in the original
patients [154], lending validity to this perspective in the LC
area. CTCs may be detected using a variety of techniques
[155] and they are increasingly being used as a qualitative
and quantitative indicator of cancer burden. CTCs counted
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(using the Cell-Search platform) and captured via epithe-
lial cell adhesion molecule (EpCAM) expression are predic-
tive in metastatic breast [156], prostate [157], and colorectal
malignancies [158]. CTCs identified by Cell-Search are very
common in SCLC; in one research, 85% of patients had
detectable CTCs, and having more than 50 CTCs in 7.5mL
of blood was an independent predictive biomarker [159].
Cell-Search CTCs were identified in only 23% of patients
with stage III/IV NSCLC, although being prognostic (at
higher than 5 CTCs in 7.5mL of blood) in NSCLC, compared
to a size-based filtering technique that generated detectable
CTCs in 80% of patients in the same cohort [160]. Despite
this, research on NSCLC was able to improve the sensitivity
of Cell-Search in NSCLC by quantifying CTCs from the pul-
monary veins at the time of surgery in stage I–IIIA NSCLC,
where larger quantities of CTCswere associated with shorter
patient survival [161]. These findings suggest that CTCs shed
from early-stage NSCLCs may help with LC early detection
and, as a result, patient survival. The use of CTCs in early-
stage diagnosis has piqued attention. Cell-Search was uti-
lized to quantify CTCs in single-center research of patients
sent to a thoracic center with either a histological diagnosis
of LC (SCLC and NSCLC) or high suspicion; however, they
were only present in 31% of patients who were later diag-
nosed with LC. The quantity of CTCs did, however, corre-
spond with later stages of illness, which is consistent with
earlier research [162]. Using a variety of CTC detection tech-
niques is likely to pay off in terms of early detection. Isola-
tion by size of epithelial tumor cells (ISET) identified CTCs
in 50% of NSCLC patients before radical therapy, compared
to 39% with Cell-Search. In 69% of cases, combining the
two methods resulted in detection [163]. Only five indivi-
duals with identifiable CTCs developed LC during a 5-year
follow-up period, according to the greatest evidence so far
for CTC usefulness in earlier identification of LC using ISET
alone in a cohort of 168 COPD patients. The rest of the
patients lacking CTCs, on the other hand, were LC-free at
the conclusion of the follow-up period [164]. A ligand PCR
technique was employed in another investigation to quan-
tify CTCs. Following immunological depletion of erythro-
cytes and leukocytes, cells were tagged with a folate
receptor (FOLR1) ligand coupled to an oligonucleotide,
allowing real-time PCR (RT-PCR)measurement. Thismethod
detected CTCs in 8 of 10 stage I/II NSCLC patients examined,
with an overall sensitivity of 82% and specificity of 93% for
stage I–IV NSCLC diagnosis compared to controls [165]. The
relatively uncommon occurrence of CTCs in even advanced
late-stage patients in comparison to the overwhelming
amount of blood cells in the sample is a technical obstacle
for CTC detection. Marker-dependent capture is hampered
by CTC heterogeneity, and not all CTCs are bigger than blood

cells, creating problems for size-based approaches. Further-
more, every CTC enrichment procedure results in cell loss.
The high-definition single-cell analysis platform, for example,
is better suited to early detection since all cells in the sample
are examined using a flexible panel of markers, and cells may
be photographed and physically chosen for single-cell genetic
analysis to establish tumor origin [166]. The value of CTC
analysis for early detection is yet to be fully explored, as
has the question of whether survival time will be extended
after CTCs are detected. Patients benefit from molecular pro-
filing of “early” CTCs since it allows for earlier intervention
and customized treatment.

4.1.2 SC

Exfoliated cells of the bronchial and pulmonary epithe-
lium make up sputum, a noninvasively accessible type of
bodily fluid [10]. SC is the process of generating, col-
lecting, and examining secretions from the lungs under
a microscope for abnormal cells. Advanced SC [167]
entails the identification of particular LC biomarkers in
sputum with enhanced sensitivity and accuracy. Exfo-
liated cells from the larynx, pharynx, bronchi, and buccal
cavity are found in the sputum. Induction and sputum
collection might be difficult since the quality and quantity
of sputum are typically inadequate for testing. Sputum is
collected spontaneously or artificially utilizing procedures
such as hypertonic saline aerosol preparations, salbu-
tamol (bronchodilator), and/or a physical approach of vig-
orous breathing aided by a qualified professional. The
delivery of hypertonic saline aerosol spray is the preferred
method due to higher patient compliance, whereas the
manual technique necessitates expert help [168]. When
the patient is unable to generate significant amounts of
sputum, additional or repeated inductions may be used
to improve accuracy [169]. This method is advantageous
because pooled sputum samples produce better results
than spontaneously inspected samples [170]. SC accuracy
is often determined by the examiner’s expertise, as well as
the size and position of the LC lesion. Due to these factors,
further testing CT or bronchoscopy is required to establish
the presence of a tumor. As a result, SC in combination
with techniques has emerged as a new diagnostic tech-
nique in the early identification of LC.

4.1.3 Breath analysis

Various exogenous and endogenous volatile biomarkers
have been investigated for the detection of LC in recent
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years [10]. The majority of exhaled breath indicators are
exogenous in origin and have been linked to cigarette
use. A variety of chemical and inorganic substances col-
lected at the respiratory tract’s periphery enhance exhaled
breath (EB). The presence of intermediate and end pro-
ducts of metabolism in these volatile mixtures indicates
cancer-related bioactivities. Any aberrant pathogenic activity
can be revealed by EB analysis. Due to the simplicity with
which data may be captured from EB, EB analysis is
becoming a more intriguing topic for gas sensing technol-
ogies. The methodological problems associated with EB
collection and analyses are highlighted in the recent
research by the European Respiratory Society Task Force
(ERS TF) [171]. Breath testing, according to the TF, should
look at three types of chemicals: EB nitric oxide, VOCs, and
EB condensate (EBC). Although the procedures for col-
lecting and analyzing nitric oxide and EBC are well-docu-
mented, these criteria for VOCs are not. Several variables,
including sample amount, collection duration, and so on,
should be controlled during the collection and analysis of
EB, according to the recommendations of the ERS Task
Force. To maintain the stability of the biological markers
contained in EB, the period between collection and inves-
tigation must be as brief as feasible. Also, before and after
processing, the pH of EBC should be verified using pH
measurements taken at calibrated CO2 concentrations
(5.33 kPa). Other factors such as EBC volume, dilution
factor, presence of nonvolatile components, and process
repeatability must also be standardized [171].

In the future, breath analysis would be used as a sup-
plementary diagnostic tool, alongside traditional radio-
imaging techniques [172]. VOCs in exhaled air and their
condensate can be measured to detect LC in confirmed
instances of NSCLC, according to a recent study. The find-
ings show that VOCs such as hexane, heptane, pentane,
and others are strong markers of NSCLC and assist to dis-
tinguish them from healthy individuals, with an AUC of
85–90% in smokers [173]. Furthermore, LC disrupts cur-
rent biological processes and promotes the onset of oxida-
tive stress. This process results in the production of VOCs,
which are metabolic products. According to recent clinical
research, carbonyl molecules can be utilized to diagnose
LC, with overall accuracy ranging from 80 to 100% [174].
Furthermore, a groundbreaking study revealed 2-butanone
and 1-propanol as the best and most promising VOC bio-
markers for LC detection [175]. In addition, a recent research
study looked intomethods such as enzyme-linked immuno-
assay, antibody-based microarray, and fluorescent bead-
based test for detecting VOCs in EBwith sensitivity ranging
from 50 to 70%. EB analysis also has the advantages
of reproducible assessments, noninvasiveness, and the

creation of customized therapy. In addition, a significant
study looked at the effect of expiration flow rate, anato-
mical dead space, and breath-hold on the efficiency of the
electronic nose in detecting LC. This study discovered that
flow rates, breath-hold, and dead space had a substantial
influence on breath prints created by the electronic nose,
which detects VOCs in EB. The results showed that there
was a substantial difference between the breath prints
of LC patients and healthy volunteers at a flow rate of
50mL/s, with an accuracy of 72%, and at a higher flow
rate of 75mL/s, with an accuracy of 78%. Similarly, with a
breath-hold of 10 s and 70% accuracy, the discriminating
power was substantial. According to the findings, elec-
tronic nasal standardization is necessary for obtaining pre-
cise analyte values. Furthermore, additional equipment
such as GC-MS should be used to increase VOC specificity
and discrimination [176].

4.2 Microfluidic chip

The microfluidic chip is a well-organized, competent, effi-
cient, rapid, and accurate diagnostic tool for LC patients.
The manipulation of fluids on a microscopic scale is pos-
sible by using a microfluidic chip to control relevant
parameters of cell culture [9]. This provides a better simu-
lation of the tumor microenvironment in vivo. More spe-
cifically, it is possible to operate the cells precisely using
the microscopic structure of a microfluidic chip and it is
easy to conduct high-yield output analysis by the use of
multiplexing microstructures [9]. The microfluidic control
is beneficial to impersonate the internal fluidic environ-
ment, and its specific material characteristics can better
mimic the microenvironment of tumor tissues. In precision
medicine, the application of microfluidic chips can become
a powerful assisting equipment to be realized in diagnostic
forms [177], especially in the tumor organoid culture field
single-cell sequencing, cancer biomarkers detection, and
nanoparticles synthesis. In view of these functions, the
combination of the microfluidic chip with downstream ana-
lysis can better identify cancer progression by studying its
cellular, molecular, and biophysical properties [178].

Microfluidic devices have a remarkable prospect for
development in the field of cancer metastasis because of
their customizable properties, and they can meet the
demands of various research works worldwide. These
chips have rapid and high throughput, require a small
volume of sample, have lower LOD, are flexible, are of
small footprint, and are suitable for longitudinal collec-
tion. In the organoid culture field, microfluidic devices

Nanoparticles for lung cancer detection  559



are used to culture two or more organoids to mimic
cancer progression and can be applied to different types
of cells. The separation of different organoids is conducted
by the use of some definite biomaterials, like polydimethyl-
siloxane (PDMS), while the channels and controllable fluids
are used to connect them with each other. The design and
construction of a multiorgan microfluidic chip have been
reported by Xu et al. [179] to mimic LC metastasis to dif-
ferent body organs such as the brain, bone, and liver. For
this purpose, the organoids were divided into different
chambers with an upper chamber for lung organoids
and a lower for the other three organoids. Each chamber
was seeded with various cell types to culture different
organoids and the side channels were used to link each
organoid. For simulation of blood circulation, the cul-
ture medium flowed through microvascular channels, and
simultaneously a circulating vacuum was connected to
mimic the physiological breathing as shown in Figure 5(a)
[179]. This system helps effectively in exploring the com-
plex process of underlying LC metastasis mechanisms. As
depicted in Figure 5(b), another research reveals a micro-
fluidic bone chip (BC) to explore metastasis of breast
cancer to bone marrow.

Based on the simultaneous growth dialysis principle,
there are two areas in the space of BC one for osteoblastic
tissue growth and the other for culture medium flow
[180]. This cancer model presented a natural bone
microenvironment that allows the formation of an extra-
ordinary thick layer devoid of artificial scaffolds by bio-
mineralization of osteoblastic tissues or in vivo growth
step. Moreover, researchers also developed osteoblastic
tissue in the BC for co-culturing the metastatic human
breast cancer cells and perceived various noteworthy
characteristics of bone metastasis in breast cancer.
Thus, the microfluidic BC has the potential to become
powerful equipment in the in vitro study of bone cancer
metastasis.

4.3 Biosensors

The functionalized MNP surfaces offer linkage groups to
permit binding events with the complementary biomole-
cules. As discussed in Section 2.2.1, different strategies for
bioconjugation include [8]:

Figure 5: Cancer models based on microfluidic chips; (a) a multiorgan microfluidic chip that mimics LC metastasis in the brain, liver, and
bone; (b) cancer model to study breast cancer metastasized to bone marrow. Reprinted from ref. [9] by Creative Commons License.
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(1) Physical interactions (hydrophilic–hydrophobic, affi-
nity interactions, and electrostatic interactions).

(2) Chemical interactions (covalent bonds).

These interactions make immobilization on MNPs or
transducers easy and simple. Specific interactions between
protein and their recognition elements have shown their
utilization in the development and designing of biosen-
sors. There are different sensing/biosensing methods to
determine the level of cancer biomarkers in blood, plasma,
or diseased tissues. Some of them are listed below:
(1) Electrophoresis.
(2) Optical methods (fluorescence, electrochemilumines-

cence, colorimetric assay, SPR, SERS, etc.) (Table 4)
[181–183].

(3) Immunological methods (ELISA, polymerase chain
reaction (PCR), etc.) [165].

(4) Microcantilevers.
(5) Electrochemical assay, electro-conductive, piezoelec-

tric, and amperometric biosensors [184–186].

There are different labeling approaches to outline
biosensing events depending on the method (electroac-
tive molecules, fluorescent labels, nano/microparticles,
enzymes, etc.). The following are the two primary tech-
niques for integrating MNPs into the biosensor design [8]:
(1) Direct labeling: In this approach, MNPs are immobi-

lized at the transducing element via an affinity recog-
nition reaction such as MNPs functionalized with
single-stranded DNA as a capture probe is used to
modify the sensor surface, and the hybridization
reaction occurs when complementary oligonucleo-
tides come into contact with the sensor, resulting in
a physical/chemical response.

(2) Indirect labeling: The ELISA technique is used in
this procedure such as primary antibodies that are
complementary to the targeted protein are immobi-
lized on the sensing surface, followed by an affinity
reaction with a biomarker-containing solution. Later
on, secondary biotin-labeled antibodies are added to
the system, allowing for an affinity interaction between
streptavidin-labeled MNPs and the sensor surface.

Microelectronics’ contribution to sensor technology
is helpful in the creation of devices that can detect LC
biomarkers. Several biosensors, including optical and
electrical conductance sensors, have been proven for
the diagnosis of cancer-associated proteins, in recent years
[10]. Simultaneously, the importance of investigating vola-
tile metabolites that might be directly examined from the
breath to identify LC is increasing [10]. Capuano et al.
[187] conducted a survey of current state-of-the-art volatile
chemical sensors and biosensors. CYFRA21-1 and NSE are
two of the most reliable LC indicators [70]. These indicators
are well-known for distinguishing between the two most
common types of LC: NSCLC and SCLC. In serum having
standardized immunosorbent tests, the identification of
these compounds can be detected. However, such methods
need the tagging of the target molecule in order to identify it.
The fast label-free technique of detection can identify immu-
noselective interactions. Cheng et al. [188] developed a field-
effect transistor biosensor in which the human antigen
CFYFRA21-1 and NSE were covalently linked on the sensitive
surface. Because of the lack of a labeling technique and the
great sensitivity of the device, these markers can only be
detected at concentrations of around 1 ng/mL. In a study,
the development of an ultrasensitive aptamer for the diag-
nosis of A549 LC in human blood serumwith high sensitivity

Table 4: Optical biosensors in LC detection [10]

Sensor Biomarker Details Reference

SPR-based sensor Cytokeratin-based CK-7
biomarkers

For the detection of cytokeratin required in LC, an optical biosensor
based on the lab-on-chip idea has been developed. SPR-based sensors
have been designed for the detection of CK7 biomarkers with high
sensitivity (0.4 nM)

[181]

SPR-based sensor
on the chip

CK19 cells For the identification of CK19 LC cells in plasma, a graphene oxide-based
SPR sensor-on-chip has been designed. It has shown a detection limit of
0.001–100 pg/mL, which makes it extremely sensitive. Selectivity,
specificity, precision, and repeatability are all desirable properties of
this new sensor

[182]

QDs-based sensors miRNA A fluorescent strip biosensor based on quantum dots has been
developed to detect miRNA with ultrasensitivity. The sensor is extremely
sensitive and will help to come up with enzyme-free detection in point-
of-care diagnostics in the future

[183]
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(8 cells/mL) was reported by Wu et al. [189]. A new apta-
sensor for early detection and monitoring of LC was devel-
oped using cyanine dye and an S6 quadruplex aptamer with
increased fluorescence. Furthermore, a recent study by Zhao
et al. [190] reported aptamer cocktails for the CTC detection
in LC by the use of microfluidic assay and the detection
process employed aptamers. Aptamers are defined as highly
specific, selective, sensitive, and precise techniques for LC
monitoring with a scope for expansion in the field of future
sensing.With the rapid application of biosensors in diagnos-
tics and monitoring systems, IONPs/SPION- based biosen-
sors are under investigation for their prospective in LC diag-
nostics. On the same lines, Kumar et al. [191] reported an
electrochemical paper-based sensor using IONPs, and Yu
et al. [192,193] designed an aptamer conjugated with ther-
mally cross-linked SPIONs showing promising leads in terms
of LC detection.

4.4 Nanotheranostics

Theranostics is a new field of biomedicine and bioengi-
neering that specializes in disease diagnosis and therapy,
particularly cancer [10]. Nanoparticles based on thera-
nostics are becoming a more advanced platform for over-
coming the limits of a traditional cancer diagnosis. For
the real-time study of illnesses like cancer, theranostics
combines several diagnostic imaging techniques with ther-
anostic monomolecular agents. Multifunctional carbon
nanodots for gene delivery in the treatment and diagnosis of
LC were developed in recent research [194]. The photolumi-
nescence characteristics of these nanodots are used to
deliver siRNA in the treatment of NSCLC. These nanodots
are injected into the body and deposit at the tumor site,
emitting blue light fluorescence between 300 and 400nm,
and the siRNA contained in them induces tumor regression
by apoptosis. This new theranostics nanoagent has shown
promise in the detection and therapy of NSCLC [194].
Another intriguing study focused on the theranostic impli-
cation of boron neutron capture treatment and its effective-
ness in LC [195]. The research involves the creation of
boron/gadolinium-LDL adducts with detectable radio-
activity and efficient cytotoxicity against lung tumors
utilizing MRI. This enhancing approach may also be used
to assess tumors with a diameter of less than 0.2mm [195].
Researchers also synthesized a hyaluronic acid-based nanogel
for PTT for LC diagnosticswith continuous doxorubicin release.
pH-responsive hyaluronic acid, photoresponsive graphene,
and doxorubicin were used for the preparation of the

nanogel. Graphene accumulates in tumor cells when this
conjugate is injected into the body, and irradiation causes
doxorubicin to be released sequentially from the conjugation.
This is a very sensitive method of detecting and treating LC.

Another technique for early detection of LC involves
the functionalization of MNPs collectively with antibo-
dies and chemotherapeutic drugs [196]. Antibodies are
highly specific for a particular antigen; thus, they will
help in the targeted delivery of the drug. Photodynamic
treatment, PTT, and magnetically induced hyperthermia
have all been used with MNPs as a nanotheranostics
technique for the diagnosis of LC [8]. These methods
are used in the branch of medicine called oncology. The
combined effect, on the other hand, typically confirms
the most important diagnostic outcomes. This has been
ascribed to MNPs’ modular architecture, which allows
them to perform many functions. Figure 6(a) shows an
example of how MRI was utilized to diagnose cancer early.
Chemotherapeutic therapy combined with MRI resulted in
better results [8]. The protocol used in the synthesis pro-
cess regulates and changes the final characteristics of
MNPs. The application of an external magnetic field inhib-
ited MNPs’ clustering, and this magnetization was lost as
soon as the field was withdrawn, preventing MNPs’ aggre-
gation [8]. As discussed earlier, some MNPs have a mag-
netocaloric effect, in which the temperature of the MNPs
changes in the presence of an external magnetic field. The
magnetocaloric effect, along with MNPs’ high surface-to-
volume ratio, allowed for efficient heat exchange with the
environment. This enabled the development of the cancer
treatment method known as “hyperthermia.” Figure 6(b)
shows howMNPs’ unique features are completely subdued
in tissue labeling and targeted drug delivery locations. The
drugs were delivered to the precise target cell by placing
the magnetic field outside of the anatomical structures and
using an in vivo transportation approach [8]. MNPs absorb
heat generated by electromagnetic waves in alternating
cycles, making this magnetic material suitable for tumor
detection in general. MNPs’ small size has a significant
influence. The role of MNPs in LC diagnosis is linked to their
use as a distinguishing agent in MRI and as a heating inter-
mediary in hyperthermia (Figure 6(c)) [8]. Figure 6(d and e)
further depicts the unique functions and properties of MNPs
as a platform for antibody immobilization in the design of
biosensors. Affinity ligands such as aptamers, hEGF, lectin,
and folic acid have been associated with the surface of
MNPs in order to guide them into tumors. As demonstrated
in Figure 6(f), this promoted the accumulation of MNPs in a
specific cell or tissue site [8,86–88]. The use of these stra-
tegies in conjunction with guidedmedication administration
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and magnetic hyperthermia has resulted in a synergetic
effect in the accurate identification of LC.

Wang et al. [196] demonstrated successful coupling
of synthesized MNPs with pan cytokeratin antibody, abbre-
viated as pan-ck Ab (Figure 7), as well as two additional
types of prepared QDs conjugated with Lunx and SPC-A-1
antibodies. The simultaneous usage of QDs with double-
labeled antibodies was applied for detecting the CTCs of
NSCLC patients assembled by MNPs combined with pan-
ck (MNP-pan-ck). MNPs and QDs were used to successfully
construct a unique and creative approach for evaluating
micrometastases of LC in peripheral blood. With its separa-
tion and visibility, the coupling of MNPswith QDs allows for
the simple identification of specific cancer cells. Excess
fluorescence multilabeling in combination with functiona-
lized MNPs might be used to produce images with multi-
color fluorescent molecules and magnetic variations. The
conjugation of specific CTCs or CTCs [197] occurs when the
anti-epithelial cell adhesion molecule antibody (EpCAM Abs)
is immobilized. It depicts a schematic of micrometastasis

detection in LC using the combined influence of MNPs and
QDs [196]. It was found that QDs with double-labeled anti-
bodies successfully identified LC cells A549 and SPC-A-1. As a
result, a total of 32 cases of NSCLC were discovered. Twenty-
six patients had improved CTCs, and 21 patients were effec-
tively identified by QDs. As a result, a novel approach was
developed in which CTCs were collected using MNP-pan-ck,
and CTCs from NSCLC patients were identified using QDs
with double-labeled antibodies.

4.5 AI

Many aspects of the healthcare industry have been pro-
foundly affected by AI and ML [14]. Technology advance-
ments have paved the path for cost- and time-effective
analysis of large datasets. AI is proving to be beneficial in
clinical oncology and research [198]. NGS systems were
introduced to meet these needs and they have changed
the future of precision oncology [199]. NGS has numerous

Figure 6: Schematic presentation of various applications of MNPs: (a)MRI, (b) drug delivery, (c) magnetic hyperthermia, (d) as biosensors,
(e) bioseparation, and (f) tissue engineering in biomedicine. Reprinted from ref. [8] by Creative Commons License.
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clinical uses, including risk prediction, early disease
detection, diagnosis by sequencing and medical imaging,
accurate prognosis, biomarker identification, and thera-
peutic target identification for new drug development.
NGS creates enormous datasets, which necessitate the
use of specialist bioinformatics tools to evaluate the data
that is therapeutically useful. Cancer diagnosis and prog-
nosis prediction are improved using NGS and high-resolu-
tion medical imaging, thanks to these AI applications.

Regardless of technological advancements, AI’s pattern
recognition and sophisticated algorithm skills may be
used to get important clinical information, reducing diag-
nostic and treatment mistakes [200]. In cancer, ML is a
useful technology with many applications in precision
medicine. Complex neural networks can predict disease
and treatment results by generating diagnostic pictures
and genetic analysis data [200,201]. Deep learning algo-
rithms are employed in the healthcare sector for the cura-
tion of vast amounts of data and the creation of improved
data-driven diagnostics. Biomarkers are found in medical
imaging and can be used to screen patients for cancer.
Image analysis entails identifying the image of interest
as well as significant sections of the image. Data from
datasets and the results of patient screening can be uti-
lized to detect malignant tumors automatically. Using AI
algorithms, we can thus customize our treatment options
in the event of a cancer diagnosis [14,198]. Deep learning
is the most often used AI technique in radiomics, a field
of computers that extract diagnostic images to discover
malignant tumors that are not visible to the naked eye.
The combined efforts of radiomics and deep learning will
improve diagnostic picture analysis accuracy [201]. When
AI and ML are used in healthcare, they have the potential
to transform illness management and deliver effective
medical care. AI research has progressed to the point
where it can make decisions in a human-like fashion
(Figure 8). AI can improve the sensitivity, repeatability,
and accuracy of tumor detection not just through auto-
mated segmentation but also through the rapid increase
in computing speed and by enhancing AI algorithms. It is
conceivable that a separate segmentation analysis of sus-
picious images will become obsolete. Consequently, AI
systems can evaluate image data from the whole body.

Figure 7: Schematic presentation of recognition and separation of
tumor cells using MNP-coupled pan cytokeratin antibody and QDs
with double-labeled antibody [196] (PBMC: peripheral blood
mononuclear cells). Reprinted ref. [196] under Creative Common
License.

Figure 8: Application of AI in cancer imaging to create better data-driven diagnoses using deep learning algorithms.

564  Ayushi Rastogi et al.



In this sense, a full-body approach will allow a more
detailed study of the organs’ properties that can be mod-
ified by pathological processes but are invisible to human
sight. This means that these algorithms could be used in
various aspects of early LC diagnosis, such as information
from serological studies and tissue biomarkers.

In the search for surrogate markers of LC, researchers
have looked at biomarkers derived from body fluids and
tissues such as whole blood, plasma, bronchial lavage,
urine, sputum, and biopsy specimens. Studies have shown
that CTCs, AAbs, miRNAs, EB biomarkers, and blood pro-
teomic profiling are promising molecular candidates for the
early detection of LC [69–71]. Finally, high-throughput tech-
nologies such as epigenomics, transcriptomics, and meta-
bolomics are also being explored as potential indicators of
early LC [202]. The combination of numerous “omics” with
data from medical imaging can give useful information for
understanding human disease, including LC (Figure 9).

ML and deep learning algorithms have been effectively
employed inmany research contexts to combinediverse omics,

imaging, and clinical data [203,204]. Using deep learning
models to combine imaging andomics datamight aid in early
LC diagnosis. Using “radiogenomics,” researchers have dis-
covered that high-dimensional features gained fromCT scans
areconnected to theexistenceofparticularmutations in tumor
tissues [205]. For example, specificCT scan imagingcharacter-
istics, suchasanaplastic lymphomakinase (ALK), EGFR, c-ros
oncogene 1 (ROS1), KRAS, and rearranged during transfec-
tionproto-oncogene (rearrangedduring transfection), have
been linked to the presence of tumor driving mutations in
LC [205–208]. As a result, the extraction, integration, and
interpretation of the large volume of data generated by
AI-based technologies will be supplemented in a cancer
screening program to help its early diagnosis.

4.6 Wearable devices

Wearable materials and devices are one of the specialized
areas of therapy and diagnostics that are progressing.

Figure 9: AI algorithms have the ability to enhance the early detection of LC by combining numerous data sources [13].
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In terms of point-of-care diagnostics, smartphone-linked
applications and sensors, the advent of mobile health
have the potential to alter the current healthcare land-
scape. With more than 95% of the population having
access to mobile networks [207], telehealth and mobile
health are gaining popularity among academics, and the
WHO has formally defined them. A unique self-renewing
sensor for detecting VOCs through breath and skin was
created in a recent study. This new gold nanoparticle-
based sensor has the ability to self-heal injured tissue
caused by abrasion [209]. Despite the enormous hurdles
that this sector of wearable sensors in oncology faces in
terms of development, a large range of smartphone-based
applications is accessible [210]. In addition, Cancer Research

UK, in partnershipwith the British Thoracic Society, released
“The Pulmonary Nodule Risk App,” a smartphone-based
tool developed for clinical oncologists to be used for LC
evaluation and monitoring [211]. In the realm of LC diag-
nosis, this area of wearable equipment is underutilized.

The integration of the IoT with cloud computing, big
data analytics, and their potentialities in healthcare has
resulted in the development of smart health monitoring
systems, which have the potential to advance almost
every domain of science and technology, and their fusion
with nanotechnology is considered the next evolutionary
step of the 21st century [15]. For early detection of LC,
several real-time-based nano-enabled sensors employ bio-
markers found in breath, blood, saliva, and perspiration.

Figure 10: The operational process of the smartphone-associated voltammetry system. Modification of screen-printed electrodes to employ
it as the sensor for detection of various samples [15,212]. (Redrawn with permission from Ji et al.[212].).
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Cloud connectivity is used in these smart healthcare mon-
itoring systems because it provides processing, storage,
and data analysis, which aids in informing medical autho-
rities at the right moment. Google has announced the Cloud
Healthcare Application Programming Interface, with the
goal of making the process of collecting, storing, and acces-
sing healthcare-related data easier for health organizations
[15]. Google recently inked a big cloud computing contract
with Flex, a publicly traded electronics company thatmakes
medical device components all around the world. Various
sensors have been embedded in watches, tattoos, wrist-
bands, cellphones, belts, and soft lenses to gather, monitor,
and transmit bodily motions, SPO2 levels, glucose levels,
pulse rate, and blood pressure to authorized individuals
such as physicians, health businesses, and consultants.
Furthermore, by integrating differential pulse voltammetry
and cyclic voltammetry, a smartphone-based integrated vol-
tammetry system was created to detect uric acid, ascorbic
acid, and dopamine in the body, as shown in Figure 10 [212].
rGO and gold nanoparticles were used to modify the elec-
trodes. The detector turned the analog impulses into digital
signals and sent themover Bluetooth to the smartphone. The
findings demonstrated that the smartphone-based system
could efficiently detect several biomolecules at the same
time and that it has promise in point-of-care testing.

5 Conclusion

• In this strategic review, we discussed the conventional
methods for LC diagnosis, the recent advancement of
MNP-based detection and monitoring systems for pro-
spective LC diagnosis tools, different types of potential
MNPs, their synthesis, and the pros and cons for bio-
medical applications.

• The desirable salient features of MNP-based detection
systems along with advanced MNP-based diagnostic
tools like biomarkers, microfluidic chips, AI, wearable
devices, etc., have been summarized.

• Nanoparticles conjugated with targeted agents, biomole-
cules, antibodies, and other immunomodulatory ligands
to increase tumor targeting and develop sustainable sys-
tems with low cytotoxicity have been discussed.

• Improvements in the diagnostic systems based on MNPs
that will provide early, fast, and better diagnosis of LC
cancer have been summarized in detail.

• Moreover, a large number of biomarkers that are in the
research pipeline that will add to the specificity of detec-
tion systems has been discussed, which will emerge in
the field of MNP-based LC detection.

• Further, we discussed how integrating sampling tech-
niques with more advanced technology like 3D-printing
and AI will provide fast, efficient, and early-stage diag-
nosis of LC.

• Integration of conventional and advanced diagnostic
tools will overcome the challenges involved in the early
detection of LC.

6 Future prospective

In the future, the contribution of the combined effect of
clinical trials and biomedicine,materials science, and nano-
technology will certainly overcome the existing challenges
in the early diagnosis of LC. Another set of impediments for
MNP clinical translation is regulatory and industrial con-
straints. To overcome these obstacles, a multidisciplinary
scheme must be established in conjunction with regulatory
authorities to ensure the evaluation and efficacy of nanotech-
nology. In addition to recent developments in enhancing
regulated and sustained drug release, active targeting, and
synergistic multimodal methods, MRI monitoring utilizing
MNPs has emerged as a possible feature of MNP-based sys-
tems. An increase in appropriate preclinical research is
predicted to be required to accelerate the development of
magnetic nanoplatforms for early, rapid, and efficacious
diagnostics. The trend of research institutes building multi-
disciplinary nanotechnology centers and regulatory bodies
adopting standards relevant to nanoparticle platforms will
make this achievable. The interconnections and networking
of smart objects with IoT solutions, which cover various
communication technologies such as Bluetooth, Wi-Fi,
Zigbee, radio frequency identification, and others, to build
realistic and functioning IoT applications, is the main
challenge faced during the development of low-cost tech-
nology-enabled care.
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