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Abstract: The synthesis, characterization, and applica-
tions of iron oxide nanorods have received attention in
recent years. Even though there are several studies on
the biological applications of iron oxide nanoparticles,
recent studies have shown that rod-shaped iron oxides
are effective in magnetic hyperthermia (MHT) as thera-
peutic technique to treat cancer. This review focused on
the synthesis and encapsulation of magnetic iron oxide
nanorods (MIONRs) and their use in (MHT) and photo-
thermal therapy (PTT) for cancer cells. Among the syn-
thetic methods that have been used to prepare MIONRs,
some could be used to precisely control the particle size
of the as-prepared magnetic iron oxide nanoparticles
(MIONs), while others could be used to prepare monodis-
perse particles with uniform size distributions. Some of
the results presented in this review showed that magnetic
oxide nanorods are more potent in MHT than polyhedral-
shaped MIONs. The review shows that mixtures of poly-
hedral- and rod-shaped MIONs resulted in 59 and 77%
cell death, while monodisperse MIONRs resulted in 95%
cell death. It could thus be concluded that, for magnetic
iron oxide to be effective in MHT and PTT, it is important
to prepare monodisperse magnetic oxide nanorods.

Keywords: encapsulation, iron oxide nanorods, magnetic
hyperthermia, photothermal therapy

1 Introduction

The synthesis of any magnetic nanoparticles may be car-
ried out either using physical or chemical synthetic tech-
niques [1]. However, several factors such as toxicity and
safety associated with administration and accumulation
of the materials in body tissues could influence their
potential for clinical use [2]. In order to adhere to the
safety requirements, a limited concentration of the mate-
rials may be used. Magnetic nanoparticles must possess
several properties that make them suitable for biomedical
applications, these include monodispersity, stability in
an aqueous environment, narrow size distributions, and
controllable particle size [3]. It is of the utmost impor-
tance to ensure the activation of the magnetic nano-
particles, which must be delivered to great depth inside
tissues or organs, by means of an external magnet. This
can be achieved by the use of frequency and magnetic
field strength conditions that are harmless to human
body [4]. Metals such as Fe, Co, and Ti can form magnetic
oxides and nanocomposites [5]. Studies on magnetic iron
oxide nanoparticles (MIONs) focused on their adjustable
magnetic properties, low toxicity, and their potential as
efficient diagnostic and therapeutic agents [6,7].

Hyperthermia is an experimental treatment for cancer
in which heat is induced to elevate the temperature of any
part of the body to produce a therapeutic effect [8]. The use
of this type of therapeutic technique is receiving attention
because cancerous cells are more sensitive to it than
normal cells due to the disorder in the vascular structure,
which hinders heat transfer [9]. Magnetic hyperthermia
(MHT) is a type of hyperthermia that uses magnetic nano-
particles, such as iron oxide nanoparticles, that are
administered into the patient’s body after which it is
subjected to alternating magnetic field [10]. In the case
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of photothermal therapy (PTT) near-infrared radiation is
used as the initiating energy [11].

1.1 MHT

In MHT, the applied magnetic field enhances the local-
ization/accumulation of the magnetic nanoparticles in
the malignant tissues and enhances the selectivity. The
alternating magnetic field causes oscillation of the nano-
particles and generates heat that could rise to about
40–43°C in order to kill the malignant tissues [12]. This
approach was first reported in 1957 by Gilchrist et al. [13],
who injected MIONs into lymphatic channels and sub-
jected them to an alternating magnetic field to generate
heat for the destruction of cancer cells. This was pro-
posed after an experiment in which Fe2O3 nanoparticles
were delivered to lymph nodes to kill lymphatic meta-
stases, followed by the introduction of an alternating
magnetic field, resulting in a 14°C increase in tempera-
ture. Jordan et al. [14] revisited the use of nanoparticles to
acts as therapeutic agents on tumor cells by injecting the
nanoparticles directly to the tumor tissue, and applying
an alternating magnetic field to generate heat.

The heat to be absorbed by tissues is generated
mainly by the dissipative oscillations of the magnetic
moments of the nanoparticles induced by the external
oscillating magnetic field [15]. For this reason, factors
that affect the amount of heat generated and thus sup-
plied to the tissues include the magnetic nanoparticle
size, shape and chemical composition, the dipolar and
surface interactions of the nanoparticles as well as the
amplitude and frequency of the external magnetic field
[16]. A successful MHT treatment is characterized by
higher concentration of nanoparticles in the tumor tissue
than in the surrounding healthy tissue (selective accumu-
lation) and a high specific absorption rate (SAR) or spe-
cific loss power of the particles [17].

Materials that are being used in MHT must be mag-
netic in nature to be able to respond to external magnetic
field, which is introduced in the process. Iron oxide nano-
particles, particularly maghemite (ɤ-Fe2O3) and magne-
tite (Fe3O4) crystalline phases may be used and they
constitute MIONs [18,19]. The difference in valency of
the ions present in the MION crystal structure gives rise
to the inherentmagnetic properties. Magnetite, for example,
comprises two trivalent ions of iron and a divalent iron ion.
The unpaired electron in the iron gives rise to antiparallel
magnetic moments that do not cancel each other out, which
then produce spontaneous magnetism [20]. In comparison

with other shapes of nanoparticles,Mohapatra et al. observed
that nanospheres and nanorods had higher magnetic proper-
ties and hyperthermic efficiency [21]. They further reported
that rod-shaped superparamagnetic nanoparticles exhibited
higher magnetization than their spherical counterparts for
the same material type and volume.

In addition to their magnetic properties, magnetic
nanoparticles, such as iron oxide, can be used in humans
without posing any serious dangers due to their biode-
gradability. Iron ions in solution can undergo assimila-
tion in the body through a physiological process [22]. The
advantages of this technique include non-invasiveness,
remote controllability, unlimited penetration depth into
the body, molecular level specificity, and nanoscale spa-
tial resolution [23]. The limitations of this technique
include the relatively low specific heating power, which
raises the need to prepare and use a large amount of
nanoparticles [24].

1.2 PTT

PTT is a therapeutic technique in which malignant tissues
are loaded with nanoparticles, followed by irradiation
with a near-infrared laser to generate heat for the destruc-
tion of the malignant tissues [25]. This technology is quite
promising [26,27] and has a number of advantages, including
minimal invasiveness, high specificity, and precise spatial-
temporal selectivity [28]. Furthermore, it does not require
oxygen and can be carried out with light of longer wave-
length (700–1,000nm), which has less energy and is, there-
fore, less harmful to the non-malignant surrounding cells.
Like MHT, PTT may be carried out using materials in the
nanoscale range, at which particles can permeate more and
are retained more by the tumor tissues [29,30]. The require-
ments of a good photothermal agent include good biocom-
patibility, ability to absorb near-infrared radiation, and a
high absorption cross section, which could maximize the
conversion of light into heat [31].

Among materials being explored in PTT, gold nano-
particles (AuNPs) have been explored more than nanorods
[32–34]. The properties of AuNPs are dependent on the
particle shapes and sizes. Gold nanorods (AuNRs) have
exhibited extreme sensitivity to changes in their length,
width, and aspect ratio. Magnetic nanoparticles with the
ability to react to a magnetic field and absorb near-infrared
radiation are also good photothermal agents. The inherent
magnetic properties also promote the selectivity by the
provision of an additional mechanism (magnetic) to accu-
mulate the particles in the tumor cells [35]. Iron oxide
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nanoparticles can be used in this technique and other
biomedical techniques due to their relatively high biocom-
patibility, biodegradability, and ease of synthesis and
functionalization [36]. MIONs of different shapes such as
hexagonal, spherical, and wire-like have been used suc-
cessfully in the study carried out by Chu et al. [37] which
are found to be effective in PTT upon using a red and near-
infrared laser. In addition, highly crystallized iron oxide
nanoparticles are effective in anticancer PTT [38]. Like
gold, iron oxide nanorods have a good photothermal con-
version efficiency. Furthermore, they have higher photo-
thermal stability and magnetization value [39].

2 Methods of synthesis of iron
oxide nanoparticles

The challenge in the synthesis of iron oxide nanoparticles
is the precise control of the particle size and shape, por-
osity, crystallinity, and morphology [40]. These charac-
teristics of the as-prepared magnetic oxide nanoparticles
depend on the synthetic reaction parameters that may be
adjusted to suit the anticipated outcome for a specific
application, such as nanorods for application in MHT. It
is important to ensure that the method of synthesis is
simple, inexpensive, reproducible, and environmentally
friendly [41]. All chemical methods are based on the gen-
eral concept in which the precursor (iron source) is
decomposed in a solvent, often in the presence of a
ligand. The ligand is responsible for the enhancement
of the nanorod suspension, thus preventing aggregation
that may be a result of dipolar and van der Waal’s inter-
actions [42]. Several methods may be employed for the
synthesis of iron oxide nanoparticles, including nanorods,
and the most common of these are coprecipitation, sol–gel,
microemulsion, and thermal decomposition.

2.1 Coprecipitation method

This method entails the mixing of aqueous solutions of
iron(II) and iron(III) salts in 1:2 mole ratio followed by
the addition of a base such as ammonium hydroxide to
precipitate the iron ions as hydroxides (equation (1)) [43]
at an elevated temperature in an inert atmosphere to
get a black magnetic precipitate in the magnetite form.
At room temperature, magnetite easily reacts with atmo-
spheric oxygen to form maghemite, as illustrated in
equation (2) [44].

+ + → +
+ + −Fe 2Fe 8OH Fe O H O,2 3

3 4 2 (1)

+ →2Fe O 0.5O 3Fe O .3 4 2 2 3 (2)

The coprecipitation method is the most cost-effective
and convenient method to prepare magnetic iron oxide
nanorods (MIONRs) and provides relatively high yields
[45]. The desired shape and dimensions of a nanoparticle
may be obtained by controlling several reaction para-
meters, such as pH, temperature, stirring rate, and con-
centrations of solute and surfactant [46]. The advantages
of the coprecipitation method include ease of operation,
low equipment requirements, time-effectiveness, and rela-
tively high yield [47].

2.2 Sol–gel

This method entails the formation of a colloidal solution
(sol) of the precursor and its conversion into a gel inside
reverse micelles, followed by heating by calcination or
reflux treatments as illustrated in Figure 1. First, a sol
of the metal (iron) precursor may be converted to a wet
gel by using a proton scavenger within the reverse micelle.
The gel is then washed with a polar solvent for the removal
of impurities that include excess surfactants and dried in
air. Crystallization (2) may be induced by high-tempera-
ture treatment of the gel powder in a high boiling point
reducing solvent [48].

2.3 Microemulsion

This method involves the use of two immiscible liquids
with a layer of surfactants at the interface, thus forming
an emulsion of high thermal stability. When two identical
emulsions that contain the precursors of the desired

Figure 1: Schematic presentation of the formation of nanorods in the
sol–gel method [48].
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nanoparticles are mixed, the collision takes place con-
tinuously, and so does coalescence and breaking of
micro-droplets [49]. This results in precipitation of micelles.
The nanoparticles that exist in the micelles may be recov-
ered by addition of solvents. As illustrated in Figure 2, in
this technique, a microemulsion containing the salt of the
metal is usually mixed with another microemulsion con-
taining a reducing agent (A) or the reducing agent may be
added directly in a solid (B) or a gaseous state (C) [50].
Schulman et al. [51] used thismethod of nanoparticle synthe-
sis in 1959 to prepare nanomaterials in a homogenous, stable
solution of water, benzene, hexanol, and k-oleate.

2.4 Thermal decomposition

The thermal decomposition method of synthesis involves
the decomposition of organometallic or metal salt pre-
cursors at high temperature (up to about 400°C). The
particle size may be controlled by variation in the decom-
position temperature, reaction time, and the concentra-
tion of the precursor [52]. In the case of iron oxide

nanoparticles, the commonly known precursors include
iron(III) oleate (Fe(C18H33O2)3), iron oxyhydroxide (FeOOH),
iron pentacarbonyl (Fe(CO)5), and iron(III) acetyl acetonate
(Fe(acac)/Fe(C5H7O2)3) [53,54]. These precursors are used
with organic solvents, such as benzyl ether and ethylene
diamine, and surfactants [55]. Some examples of work car-
ried out through the techniques discussed above are sum-
marized in Table 1.

3 Synthesis of iron oxide nanorods

3.1 Low aspect ratio nanorods

Nath et al. [66] reported the synthesis of MIONRs by using
acidic solutions of iron(II) chloride tetrahydrate and iron
(III) chloride hexahydrate and ammonium hydroxide to
adjust the pH. While the aspect ratio was as low as 2.3,
the as-prepared nanorods were very long (310 ± 10 nm)
and wide (135 ± 5 nm). de Montferrand et al. [67] reported
the microwave-assisted preparation of magnetite nanorods

Figure 2: A schematic presentation of preparation of nanoparticles by microemulsion methods [50].
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by reduction of iron(III) oxyhydroxide nanorods prepared by
hydrolysis of iron(III) chloride in the presence of polyethy-
lenimine (PEI), at different concentrations, using hydrazine
as the reducing agent. The average length of the nanorods
was 38 nm, and the width was 12 nm. Kumar et al. [68]
fabricated magnetite nanorods by ultrasound irradiation
of iron(II) acetate in the presence of β-cyclodextrin, which
served as a size-stabilizing agent. This method, however,
yielded nanorods of low aspect ratio (3.4), each with a
length of 48 nm and a width of 14 nm, with very little
agglomeration.

Woo et al. [59] fabricated hematite nanorods through
this method by use of iron(III) chloride precursor, with
oleic acid as the surfactant. The mole ratio of water to oleic
acid was varied, and the aspect ratios varied between 3.2
and 3.6. Khan et al. [69] used iron(III) oxyhydroxide to
synthesize magnetic oxide nanospheres by coprecipita-
tion, followed by their calcination to produce Fe2O3

nanorods. The nanorods with length and width ranges of
110–120 and 25–40 nm, respectively, were obtained. In a
different approach, Geng et al. [70] synthesized magnetite
nanorods by the synthesis of β-FeOOH nanorods followed
by their reduction. The magnetite nanorods of length
45 nm and width 10 nm (aspect ratio = 4.5) exhibited a
high SAR of 1,072W/g at 33 kA/m at a concentration of
5mg/mL in water.

3.2 Medium aspect ratio nanorods

Xu et al. [71] reported precise size-controlled synthesis
of MIONRs. The method involved the preparation of
β-FeOOH nanorods and their treatment with oleic acid
and oleylamine. The as-prepared nanorods’ lengths ranged
from 25 to 85 nm with aspect ratios between 5 and 6. The
MIONRs exhibited a relatively high cell uptake than spheri-
cally shaped particles. A time- and cost-effective method for

the synthesis of hematite nanorods was reported by Ram-
zannezhad and Bahari [72] in which the iron(III) chloride
precursor was used with sodium hydroxide and cetyltri-
methylammonium bromide (CTAB) as a surfactant. In this
method, the CTAB concentration was observed to be inver-
sely proportional to the nanorod length, with average
length ranging between 25 and 32 nm. Orza et al. [73]
used a simple one-step procedure in an inert atmosphere
(N2 or argon) with a standard Schlenk line setup. They
used mixtures of iron(III) acetylacetonate with PEI in the
presence of oleylamine and phenyl ether. The synthesis
yielded nanorods of lengths about 25 and 50 nm with dia-
meters of 5 and 8 nm and aspect ratios of about 5 and 6.3,
respectively. Another one-step method was reported by Xu
and Zhang [74], in which α-Fe2O3 nanorods were synthe-
sized through hydrothermal treatment of iron(III) chloride
in aqueous formamide solution. While a 24 h treatment
yielded octahedral-shaped particles, a 12 h treatment yielded
nanorods with lengths in the range of 50–100nm that are
10–30 nm wide, with aspect ratios of 4–8.

Mohapatra et al. [21] used the same method as de
Montferrand et al. [67] although they did not use a micro-
wave oven. Iron(III) oxyhydroxide nanorods were pre-
pared by hydrolysis of iron(III) chloride in the presence
of PEI at different concentrations. These nanorods were
reduced by the use of oleylamine to yield magnetite
nanorods of lengths 25–70 nm with diameters of 3–12 nm.
Si et al. [75] reported a facile solvothermal method to
synthesize single-crystal magnetite nanorods with lengths
in the range of 58–250 nm and widths in the range of
8–64 nm. Sayed and Polshettiwar [76] devised a method
in which iron(II) sulfate was used as a precursor, taking the
goethite route. The as-synthesized nanorods had average
length of 270–315 and 30–35 nm in width. Chaudhari et al.
[77] reported a simple synthetic route in which β-FeOOH
nanorods were first fabricated by hydrolysis of iron(III)
chloride hexahydrate in the presence of caffeine. The use

Table 1: Methods of iron oxide prepared using some of these methods and the morphology and phase properties of the nanoparticles

Method of synthesis Morphology of the product Phase of iron oxide References

Coprecipitation Spherical Maghemite Hui and Salimi [56]
Rod-shaped and cubic Magnetite Khalil [57]
Spherical and octahedral Magnetite Roth et al. [58]

Sol–gel Rod-shaped Maghemite Woo et al. [59]
Spherical Magnetite, maghemite, and hematite Cui et al. [60]

Microemulsion Hexagonal Hematite Wongwailikhit and Horwongsakul [61]
Spherical Magnetite Koutzarova et al. [62]

Thermal decomposition Spherical Maghemite Jović Orsini et al. [63]
Prismatic Maghemite Sharma and Jeevanandam [64]
Spherical Magnetite Belaid et al. [65]
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of ethanol as a co-solvent yielded β-FeOOH nanorod with
aspect ratios up to 10. The β-FeOOH nanorods were then
calcined slowly to form Fe2O3 nanorods, while the mor-
phology was not affected significantly.

3.3 High aspect ratio nanorods

A thermal decomposition method was used by Wang and
Yang [78] to prepare magnetic iron oxide nanorods using
iron pentacarbonyl as a precursor in an imidazolium
ionic liquid. The nanorods showed uniformity in terms
of size, with aspect ratio of 10 ± 1. Marins et al. [79] synthe-
sized iron oxide nanorods of uniform size, with aspect
ratios of 10 and 5.2. In a two-step synthetic procedure,
akaganeite was synthesized and reduced with hydrazine
in a microwave reactor to yield the MIONRs. In a different
approach, Kloust et al. [80] devised a simple method for
the synthesis of maghemite nanorods in which iron oleate
dotswere used. The average length of the resultant nanorods
was 24 nm while the width was 2.5 nm, with an aspect ratio
of about 10. The width of the nanorods was observed to be
directly proportional to the reaction temperature and time.

Dixit and Jeevanandam [81] carried out thermal decom-
position of iron(III) acetylacetonate (Fe(acac)3) in diphenyl
ether in the presence of oleic acid anddifferent concentrations

of oleyl amine. Sphere-like particles were obtained with lower
concentrations of oleyl amine, while higher concentrations of
oleyl amine yielded rod-like structures of about 500nm in
length, up to the micro-scale with 50–150nm diameters and
aspect ratios up to 10. They suggested that oleyl amine con-
centration controls the morphology of the particles in this
method. Sun et al. [82] synthesized magnetite nanorods by
addition of hexadecylamine and oleic acid to n-octanol at
50°C and addition of Fe(CO)5 to the resultant solution after
cooling. The size and aspect ratio were improved as transmis-
sion electron microscopy (TEM) images showed nanorods of
length 63 ± 5nmwith a diameter of 6.5 ± 2 nm. An increase in
the mass of hexadecylamine yielded nanorods of a greater
size and aspect ratio (11.7), with 140nm length and 12 nm
diameter.

The procedure devised by Sun et al. [82]was followed
by Das et al. [83], as shown in Figure 3, with a few modi-
fications. The amounts were doubled, except for hexa-
decylamine, which was added in different amounts. The
nanorods had lengths of 41, 65, and 56 nmwith diameters
of 7, 5.7, and 10 nm, respectively, and aspect ratios up to
11. Nanorods with 11 aspect ratios exhibited a high SAR of
862W/g in water, while the SAR increased to about
1.3 kW/g when the nanorods were aligned.

Park et al. [84] synthesized iron oxide nanorods of
length 11 nm and a 2 nm width using spherical iron nano-
particles by thermal decomposition of Fe(CO)5 in the

Figure 3: Scheme for the synthesis of magnetite nanorods with tunable aspect ratios. Nanorods are monodispersed in A in the absence of a
magnet, while B shows the same nanorods with an external magnet [83].
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presence of trioctylphosphine oxide at 340°C. The use of
didodecyldimethylammonium in pyridine increased the
length of the nanorods to 22 and 27 nm while the width
did not change, thus giving aspect ratios as high as 13.5.
Duong et al. [85] reported the synthesis of high aspect
ratio (15) nanorods by centrifugal deposition. They used
iron(III) nitrate nonahydrate as the precursor and centri-
fugation was used to settle the precipitated nanorods.
The length of the nanorods was about 150 nm, while
the diameter ranged from 10 to 20 nm. Upon testing the
nanorods for magnetic hyperthermic efficiency, a great
temperature increase was observed in about 2 s after
applying the external magnetic field to generate heat of
1.93W/mm2. Bao et al. [86] also reported a facile method
of preparation of single-crystalline γ-Fe2O3 nanorods by
using inexpensive precursors that are non-toxic such as
iron oleate. The nanorod width varied directly with the
reaction temperature. When reaction was carried out at
temperature of 200–240°C, the length remained in the
same range of 30–40 nm with width ranging between 2
and 5 nm, with aspect ratios of up to 20. However, a
higher reaction temperature yielded nanorods of length
50 nm and width 10 nm. For the same aspect ratio, Lian
et al. [87] synthesized magnetite nanorods through hydro-
lysis of iron(III) chloride and iron(II) sulfate solutions con-
taining urea at 90–95°C. The nanorods were up to 1 µm
long and had diameters ranging between 40 and 50 nm.

4 Encapsulation of MIONRs

Like other nanoparticles, MIONRs possess large surface
area to volume ratio. The large ratio causes dipole–dipole
magnetic interactions which give rise to agglomeration in
order to minimize the surface energies [88]. Agglomera-
tion of the particles causes significant reduction in the
intrinsic superparamagnetic properties. A suspension of
iron oxide nanorods without surface modification is sus-
ceptible to surface oxidation, resulting in the loss of mag-
netism. Magnetite is mostly affected because it could be
easily oxidized than other iron oxides.

With appropriate surface properties, superparamag-
netic iron oxide nanorods possess many properties that
make them useful in biomedical applications, including
magnetic resonance imaging, hyperthermia, and drug
delivery [89]. The encapsulation of nanorods, or gener-
ally, the modification of nanoparticles aids in improving
the stability and dispersion of the magnetic nanorods,
their physicochemical and mechanical properties, their
surface activity, and their biocompatibility [90,91]. In
addition, the encapsulation of nanorods increases the

possibility of further functionalization with other mate-
rials that are suitable for the intended applications [92]. The
materials that may be used for encapsulation of magnetic
iron includes small organic molecules, polymers, biomole-
cules, and inorganic materials such as silica, elementary
metals or non-metals, metal oxides, and sulfides [93].

Many polymers have been used for the encapsulation
of nanorods [94–96], but among them, poly(ethylene-
glycol) is the most commonly used polymer in drug
delivery systems [97,98] due to its properties: (a) easy
renal excretion; (b) low interfacial free energy water; (c)
excluded volume effect; (d) non-immunogenic proper-
ties, and (e) non-antigenic properties [99]. Moreover,
poly(ethylene glycol) (PEG)-coated nanorods have the
ability to interact with cell membranes without causing
harm to the active proteins and cells, thus enhancing the
cellular response. Other polymers that have been used
widely for the encapsulation of MIONRs are dextran
[100], chitosan, poly acid polyetherimide, PEI, polydopa-
mine, polyvinyl alcohol, and alginate. Dextran has exhib-
ited great biocompatibility and solubility in water and
reduction of saturation magnetization of MIONs [101].

The methods of encapsulation are generally classi-
fied into two groups, namely dry and wet methods. Dry
methods include physical vapor deposition, plasma treat-
ment, pyrolysis of organic materials (polymeric or mono-
meric organic materials) for in situ precipitation, and
chemical vapor deposition [102]. The commonly used
wet coating methods are sol–gel processes, emulsifica-
tion, and solvent evaporation. The latter involves the
emulsification of the polymer in aqueous phase and the
use of a volatile organic solvent for the purpose of disper-
sion [103]. The solvent may then be evaporated by means of
heating, continuous stirring, or vacuum. When the solvent
evaporates, the polymer precipitates onto the surfaces of the
nanoparticles, thereby forming a shell [104].

Nath et al. [66] carried out the facile encapsulation
of freshly prepared iron oxide nanorods by the addition
of an aqueous solution of dextran. The dextran-coated
nanorods exhibited superparamagnetic properties and
improved water spin-spin relaxation. Orza et al. [73] car-
ried out the encapsulation of MIONs with poly(ethylene
glycol)with terminal amine groups (PEG-NH2) as proposed
by Fang et al. [105]. As-prepared MIONRs were salinized,
washed with hexane, and treated with a solution of
PEG-NH2 in tetrahydrofuran followed by sonication. A
different approach referred to as layer-by-layer technique,
involving adsorption of cationic and anionic polymers in
an alternating manner, was followed by Reyes-Ortega et al.;
first, a layer of PEI by pH adjustment is formed followed
by sonication in the presence of a PEI solution [106]. The
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PEI-coated nanorods were mixed with an aqueous solution
of poly(sodium 4-styrenesulphonate) (PSS), and sonicated.
Characterization with fourier-transform infrared spec-
troscopy (FTIR) confirmed the presence of two layers
of PEI and PSS. The coated nanorods were stable and
generally effective in hyperthermia. Ahmad et al. [107]
functionalized magnetite nanorods with a semi-essen-
tial amino acid, L-arginine, at room temperature, by
sonication. FTIR and XPS analyses proved the success
of functionalization.

Encapsulation of iron oxide nanorods with pluronic
F127 poly(ethylene oxide)–poly(propylene oxide)–poly
(ethylene oxide) block copolymer was reported by Dehvari
et al. [108]. The copolymer was ultrasonicated with MIONRs
in methanol and emulsification was carried out in PBS.
Nguyen et al. [109] reported the encapsulation of MIONRs
with a copolymer of methyl methacrylate and n-butyl acry-
late, by ultrasonication, using the water-soluble initiator,
4,4′-azobis(4-cyanopentanoic acid). The nanorods main-
tained their magnetic properties after encapsulation.

The coating of MIONRs with oleic acid was carried
out by Sharma et al. [110]. To a suspension of magnetite
nanorods, a solution of oleic acid was added dropwise up
to a ratio of 1:1 with the suspension of nanorods. TEM
images indicated successful coating with good dispersion.
Yu et al. [111] coated MIONRs of high porosity with NH2-
PEG-FA to produce folic acid-conjugated iron oxide
nanorods (FA-PEG-MIONR). Doxorubicin was loaded on
to these coated nanorods and tests performed in vitro indi-
cated cytotoxicity to HeLa cells.

Although limited research has been carried out on
MIONRs, many methods of encapsulation have been
reported onMIONs of other forms, especially nanospheres.
Hypothetically, the methods have a high probability of
being successful on MIONRs. Feuser et al. [112] used poly
(methyl methacrylate) to encapsulate MIONs coated in
oleic acid, by miniemulsion polymerization in the pre-
sence of lecithin, miglyol, and azobisisobutyronitrile. The
encapsulation was efficient and superparamagnetic pro-
perties were observed and the as-prepared MIONRs show
improvement in their biocompatibility. In vitro experi-
ments in which AC magnetic field was introduced in the
presence of the encapsulated MIONs resulted in a signifi-
cant decrease in the viability of U87MG cells.

Predescu et al. [113] carried out encapsulation by the
use of dextran, a polysaccharide polymer. Aqueous solu-
tions of dextran of different concentrations were mixed
with magnetite nanoparticles and stirred at an elevated
temperature. Successful encapsulation was confirmed by
Scanning electron microscopy (SEM) and FTIR techniques.
Sadhasivam et al. [114] reported surface modification of

carbon-encapsulated iron oxide nanoparticles with a layer
of poly(ethylene glycol) conjugated to folic acid (PEG-FA).
Khoee and Kavand [115] modified MIONs, although sphe-
rical with mPEG end-capped with acrylate groups. The pre-
viously prepared acrylatedmPEGwas dissolved in anhydrous
dimethylformamide together with 3-aminopropyl triethoxy-
silane and the solution was stored for 3 days at room
temperature.

Encapsulation of MIONs, by hydrophobic interaction,
with polyaspartamide was reported by Nguyen et al. [116].
The encapsulated nanoparticles exhibited good biocom-
patibility and good hyperthermic efficiency against 4T1
cancer cells in vitro and in vivo. Xu et al. [117] carried out
the encapsulation with polyacrylamide. A suspension of
MIONswasmixedwith acrylamide and N,N′-methylene bis
(acrylamide) followed by ultrasonication of the mixture.
The polyacrylamide-encapsulated nanoparticles were recom-
mended for biological applications, owing to their dispersity
in water and superparamagnetic behavior. Patsula et al. [118]
reported the PEGylation of MIONs by use of a PEG-containing
bisphosphonate anchoring group. Upon characterization, the
PEG layerwas observed as a brush-like shell that successfully
prevented aggregation of the MIONs. MIONs capped with
oleic acid were encapsulated by Xue et al., [119] using phos-
phorylatedmPEG in chloroform. These PEG-MIONs exhibited
excellent biocompatibility.

Nemec et al. [120] encapsulated citric acid-stabilized
MIONs in silica shells with a thickness range of 3–5 nm.
This was carried out by hydrolysis of tetraethoxysilane
followed by condensation of silica precursors on the
nanoparticles’ surfaces. In comparison, the heating capa-
city, in PTT, of the encapsulated MIONs was higher than
the bare MIONs, giving respective temperatures of 45.7
and 43.5°C. In MHT, MION and MION-SIL did not exhibit
any significant difference in heating efficiency. Lee et al.
carried out the encapsulation with poly(D,L-lactide-co-gly-
colide) (PLGA), by an emulsification-diffusion method, in
which an aqueous solution of PLGA was emulsified in
ethyl acetate and the organic solvent was extracted into
the aqueous phase [121]. The smaller nanoparticles exhib-
ited higher magnetic susceptibility.

5 Characterization of as-prepared
and encapsulated iron oxide
nanorods

Characterization is an important step that follows every
step of synthesis in order to assess the success in the
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formation of the desired product as well as its properties.
It is equally important to characterize the products after
encapsulation to evaluate the success and the extent of
coating of the nanorods with the polymer of preference.
SEM and TEM are techniques used to determine the mor-
phology, size and size distributions of nanoparticles as
well as the dispersion [122–124]. The lengths and width/
diameter of a nanorod may be determined by means of
these techniques and from these the aspect ratio may be
calculated. TEM is capable of characterizing at a higher
resolution than SEM [125,126]. Figure 4 shows a set of
TEM images of AuNRs with different dimensions, with
clearly visible morphology. Images A and C have the
smallest nanorods and were magnified twice as much
as the other specimens to be visible.

A vibrating sample magnetometer (VSM) may be used
for the determination of the magnetic properties of MIONRs
[128,129]. In the VSM, a sample is exposed to a uniform
magnetic field and subjected to a vibration perpendicular
to the magnetic field [130]. The magnetization or magnetic
moment per mass of nanoparticles may be measured for a
well quantified magnetic field and from this a magnetiza-
tion curve may be plotted to study the behavior of the
MIONRs [131]. FTIR may be used for the characterization
of the as-prepared nanorods and the encapsulated ones
[132]. The differences in the spectra, particularly in the
wavenumber of the characteristic peaks, may be used to
determine whether the encapsulation is successful.

Figure 5 shows FTIR spectra of magnetite nanoparti-
cles (a), PEG (e), and magnetite encapsulated with dif-
ferent amounts of PEG: 1 g (b), 2 g (c), and 3 g (d) [133].
Increasing the amount of PEG used resulted in the shifting
of the C]O absorption bands from 1,617 to 1,624/cm, thus
suggesting coordination through the carbonyl group in
the PEG.

6 Application of encapsulated iron
oxide nanorods in PTT and MHT

MIONs of different morphologies have been used for in vitro
and in vivo experiments with great success, exhibiting poten-
tial to kill cancer cells in vitro and to reduce the size of the
tumor significantly in vivo [134–136]. However, there is a
growing interest in rod-shaped iron oxide nanoparticles,
although not much work has been reported on their appli-
cation in MHT and PTT. Recent studies have explored the
potential of iron oxide nanoparticles in PTT, where it
shows obvious advantages over AuNPs [137,138]. Due to
their magnetic properties, iron oxide nanoparticles have
also been used for MHT, but rod-shaped nanoparticles was
found to be effective in PTT with dual plasmonic reso-
nance [139,140] which enhances the heat generation.

Nikitin et al. [141] carried out in vitro MHT experi-
ments using MIONRs in sorbitol on 4T1 mouse breast
cancer cells. The mixture was exposed to alternating mag-
netic field of high frequency (261–393 kHz) and strength
(20 kA/m) with 95% cell death. The use of two mixtures of
nanorods and nanopolyhedra resulted in 77 and 59% cell
death. Bilici et al. [142] used poly-acrylic acid-encapsu-
lated superparamagnetic iron oxide nanoparticles for PTT
on HeLa cells using a 795 nm laser. The cell viability was
observed to have decreased to 20.75% after the treatment.
Nemec et al. [120] carried out a series of PTT and MHT
experiments using monodispersed and clustered iron oxide

Figure 4: TEM images of AuNRs of different sizes [127].
Figure 5: FTIR spectra of (a) Fe3O4, (b) PEG(1 g)/Fe3O4, (c) PEG(2 g)/
Fe3O4, (d) PEG(3 g)/Fe3O4, and (e) PEG [133].
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nanoparticles with and without silica coatings. Fe concen-
trations in the range of 1–150mM were explored in this
study, while using an 808 nm laser with the power density
of 0.3W/cm2 for PTT and a magnetic field strength of 18mT
at a frequency of 471 kHz for MHT. The silica-coated nano-
particles exhibited the highest photothermal efficiency fol-
lowed by monodispersed nanorods and lastly by clustered
nanorods. For MHT, the highest increase in temperature
was observed for monodispersed nanoparticles, followed
by those that were coated in silica, and finally by the clus-
tered ones.

Magnetite nanoparticles dopedwith yttrium (for enhance-
ment of magnetic properties) were used by Kowalik et al.
[143] for MHT. Exposure of 4T1 cells to magnetic field
in the presence of MIONs led to reduction in cell viability
by 15% only, while the use of yttrium-doped magnetite
nanoparticles led to a reduction in cell viability by 77%.
Calatayud et al. carried out MHT using MIONs on BV2
microglial micro-tumor phantoms [144]. The sudden effect
of the MHT resulted in a drop of cell viability to 70% at
46°C. After treatment for 4.5 h, the cell viability decreased
to 25%. Salimi et al. [145] carried out in vivoMHT treatment
of breast cancer-bearing mice using MIONs functionalized
with poly amidoamine dendrimers of the fourth genera-
tion. After 27 days of treatment, the tumor volume had
decreased to 23.7% of the initial volume.

7 Conclusion

The syntheses of MIONRs have been carried out, using
different techniques, for practical applications in MHT
and PTT. These methods used to prepare the magnetic
iron oxide nanorods lead to the formation of MIONRs
with different sizes and aspect ratios in the range of
2.3–20. Some of these methods could be used to precisely
control the particle size, while others could produce
monodisperse particles with uniform size distributions.
It has been shown that the magnetic iron oxide nanorods
with high aspect ratio increases the SAR. At higher tem-
perature, particles with an aspect ratio of 15 could be
prepared and there is a direct proportionality between
aspect ratio and SAR. Studies have shown that SAR
increases by about 50% with increase in aspect ratio
from 6 to 11. Polymer-encapsulation of iron oxide nanorods
with nanoparticles of othermorphologies has been explored
much more than that of nanorods. However, there is evi-
dence that the methods used for the preparation of sphe-
rical nanoparticles could bemodified to prepare rod-shaped
nanoparticles. The review showed that magnetic oxide

nanorods are more potent in MHT than polyhedral nano-
particles. A mixture of nanorods and nano-polyhedral
resulted in 59 and 77% cell death, whereas monodisperse
nanorods resulted in 95% cell death. Research on the
synthesis and encapsulation of rod-shaped iron oxide
nanoparticles could be explored more in order to improve
the aspect ratio of the materials and their use in MHT and
PTT. The use of iron oxide nanorods for MHT and PTT has
the potential to transform the clinical applications by
further enhancement of cell death and improved selec-
tivity with minimal invasiveness. Development of these
techniques and its adoption could reduce the number of
people that require chemotherapeutic treatments.
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