
Review Article

M. G. Eloffy*, Dina M. El-Sherif*, Mohamed Abouzid, Mohamed Abd Elkodous,
Hamada S. El-nakhas, Rawia F. Sadek, Mohamed A. Ghorab, Abdulaziz Al-Anazi, and
Gharieb S. El-Sayyad*

Proposed approaches for coronaviruses
elimination from wastewater: Membrane
techniques and nanotechnology solutions

https://doi.org/10.1515/ntrev-2022-0001
received September 13, 2021; accepted October 29, 2021

Abstract: Since the beginning of the third Millennium,
specifically during the last 18 years, three outbreaks of
diseases have been recorded caused by coronaviruses (CoVs).
The latest outbreak of these diseases was Coronavirus Disease

2019 (COVID-19), which has been declared by theWorldHealth
Organization (WHO) as a pandemic. For this reason, current
efforts of the environmental, epidemiology scientists, engi-
neers, and water sector professionals are ongoing to detect
CoV in environmental components, especially water, and
assess the relative risk of exposure to these systems
and any measures needed to protect the public health,
workers, and public, in general. This review presents a
brief overview of CoV in water, wastewater, and surface
water based on a literature search providing different solu-
tions to keep water protected from CoV. Membrane tech-
niques are very attractive solutions for virus elimination in
water. In addition, another essential solution is nanotech-
nology and its applications in the detection and protection
of human and water systems.
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4PY 1-methyl-4-pyridone-5-carboxamide
8-iso-PGF2α 8-iso-prostaglandin F2α
8-OHdG 8-hydroxydeoxyguanosine
AdV adenovirus
AiV aichi virus
AOPs advanced oxidation processes
AstV astrovirus
CNTs carbon nanotubes
CLV-BR circo-like virus-Brazil
CAS conventional activated sludge
COVID-19 coronavirus disease 2019
CoVs coronaviruses
DO dissolved oxygen concentration
EtV enterovirus
EV ebola virus
(F/M) ratio food to microorganisms
G genotype
Gc gene copies
HAdV human adenovirus
HAstV human astrovirus
HAV hepatitis A virus
HAV GIB HAV subgenotype IB
HBoV human bocavirus
HBoV-1 human bocavirus-1
HBoV-2 human bocavirus-2
HBoV-3 human bocavirus-3
HCoSV human cosavirus
HE haemagglutinin esterase dimer
HEV hepatitis E viruses
HEV GI hepatitis E genotype I
HEV GIII hepatitis E genotype III
HEV GIV hepatitis E genotype IV
HIV human immunodeficiency virus
HF hollow fibre membranes
hPBV human picobirnaviruses
HPeV human parechovirus
HPyV human polyomavirus
HRT hydraulic retention time
H2O2 hydrogen peroxide
IDTM infectious disease transmission modelling
JCPyV polyomavirus JC
LRV log reduction value
MBRs membrane bioreactors
MERS middle East respiratory syndrome
MF microfiltration
MLSS mixed liquor suspended solids
MWCO molecular weight cut-off
MW molecular weight
NPs nanoparticles
NF dissolved matter by nanofiltration
NoV norovirus
NoV GI norovirus genogroup I

NoV GII norovirus genogroup II
NoV GIV norovirus genogroup IV
OLR organic loading rate
Pt platinum
PMMoV pepper mild mottle virus
PES polyethersulfone
PVDF polyvinylidene difluoride
PV poliovirus
QMRA quantitative microbial risk assessment
OH˙ radical group
Rep replication initiator protein
RNA ribonucleic acid
RO reverse osmosis
RT-PCR reverse transcription-polymerase chain

reaction
RV rotavirus
RV G1 rotavirus genotypes I
RV G2 rotavirus genotypes II
RV G3 rotavirus genotypes III
RV G8 rotavirus genotypes VIII
RVA rotavirus A
RVC rotavirus C
SAFV saffold virus
SalV salivirus
SARS severe acute respiratory syndrome
SARS-CoV severe acute respiratory syndrome

coronavirus
SARS-CoV-2 novel severe acute respiratory syndrome

coronavirus-2
SaV sapovirus
SRT sludge retention time
TiO2 titanium dioxide
TMP transmembrane pressure
TTV torque teno virus
UF ultrafiltration
UV ultraviolet
VP viral protein
WBE wastewater-based epidemiology
WHO world Health Organization
WWTP wastewater treatment plants
ZIKAV zika virus
αCEHC α-carboxyethyl hydrochroman

1 Introduction

In Wuhan, China, 2019, a new species of Coronaviruses
(CoV)was discovered and named Severe Acute Respiratory
Syndrome Coronavirus SARS-CoV-2 (comprises a genome
size of 26e–32 kb in length). SARS-CoV-2 caused a zoonotic
disease that became a pandemic after a few months [1].
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CoVs are a well-known class of viruses that caused many
diseases starting with SARS (severe acute respiratory syn-
drome) in 2003; then, MERS (Middle East Respiratory Syn-
drome) in 2015, and the last one is SARS-CoV-2 (novel
Severe Acute Respiratory Syndrome Coronavirus-2), which
caused Coronavirus Disease 2019 (COVID-19) pandemic,
reported in 2019. The novel SARS-CoV-2 has been confirmed
to be 75–80% similar to SARS-CoV. That is why it was
officially designated as SARS-CoV-2 after being temporarily
designated as Coronavirus Disease 2019 (2019-nCoV) [2].
According to the World Health Organization (WHO), the
spread of this infection has reached a tremendous level;
158,651,638 cases and 3,299,764 deaths were reported glob-
ally on 10 May 2021. Figure 1 shows the spread of corona-
virus and other infectious diseases globally.

Removal of hazardous materials present in waste-
water is now a complicated issue and a global challenge.
Various materials can be detected in wastewater, including
dissolved and nondissolved chemicals, dyes, heavy metals,
phenols, and other miscellaneous substances [3]. In addi-
tion, many pathogenic microorganisms, such as bacteria
and fungi, cause millions of deaths every year due to dis-
eases like cholera, hepatitis A virus HAV, typhoid fever,
and diarrhoea [4,5]. SARS-CoV-2 spread was postulated to
happen primarily through individual contact rather than via
the faecal–oral route. However, a more profound under-
standing of SARS-CoV-2 in faeces andwastewater is necessary
to control its spread. Many reports confirmed the presence of
SARS and MERS in the wastewater, and SARS-CoV-2 is not
an exception. Several studies have observed SARS-CoV-2 RNA
in stool samples from patients [6–17]. This indicates that
SARS-CoV-2 may be excreted through faeces and other

body secretions (saliva and urine). Thus, it can easily reach
the wastewater [18,19]. Recently, Sherchan et al. detected
SARS-CoV-2 RNA in wastewater in Louisiana, USA, using
the ultrafiltration (UF) method [19]. Other studies reported
the detection of SARS-CoV-2 RNA in the wastewater of many
other countries, including Spain [20], Australia [21], Japan
[2], Italy [22], and the Netherlands [23]. As a result, finding
effective solutions for the disinfection of SARS-CoV-2 RNA in
wastewater is of immense importance for public health.

SARS-CoV-2 spread around the world has influenced
people’s lifestyles [24] and caused the death of millions
[25]. Therefore, it is imperative to know all possible ways of
its transmission. One way to do that is through environ-
mental monitoring, such as monitoring the presence of the
virus in the wastewater. The majority of faecal–oral trans-
mitted viruses are extremely resistant to water. Despite the
common decontamination processes for drinking water and
sewage treatment, they can persist at high levels [26]. For
these reasons, it is crucial to keep an eye on wastewater to
control many viruses, including SARS-CoV-2. In this review,
SARS-CoV-2 surveillance in the sewage and available mem-
brane technology for treating SARS-CoV-2-infected waste-
water will be extensively explained.

2 Structure and morphology of
SARS-CoV-2

The virion size of SARS-CoV-2 ranges from 70 to 90 nm.
RNA and N protein are responsible for the formation of the
new virion. SARS-CoV-2 has three types of glycoproteins

Figure 1: The death rate of coronavirus and other infectious diseases globally.
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(spike, membrane, and envelope surface) embedded in the
host membrane-derived lipid bilayer encapsulating the
helical nucleocapsid comprising viral RNA. Spike glyco-
protein is essential for binding and facilitating the entry
of the virus into the host cell. Besides, M protein is deter-
mined to be a central organizer of the virus assembly, and
it defines the shape of the envelope. It also interacts with E
protein to form the viral envelope. Moreover, haemagglu-
tinin esterase dimer (HE) protein facilitates S-assisted cell
entry and spreads the virus throughout the mucosa [27].
Figure 2 shows the structure of the SARS-CoV-2 virus.

3 Wastewater-based epidemiology

3.1 SARS-CoV-2 surveillance in sewage:
lessons learned from the strategy of
controlled substances

Environmental scientists have continued to develop a
plan of monitoring and developing epidemiological tech-
niques to measure the combined, collective, or health
status of entire populations over the last 20 years. This
strategy is close to traditional mass urinalysis diagnosis
but addresses sewage instead [28,29]. Besides, wastewater
surveillance has been widely used to classify illegal sub-
stance hotspots [30]. The latest studies in wastewater virus
surveillance have focused on the existence of human
enteric viruses in wastewater and wastewater-infected
environments. These studies showed a good correlation
between local viral outbreaks and high levels of norovirus
(NoV) [31], Hepatitis A and E viruses, HAV, and HEV,
respectively [32,33], and enterovirus D68 [32,34] in

sewage. Wastewater-based epidemiology (WBE) may be
useful for identifying emerging and re-emerging patho-
gens in the community and may serve as an early warning
system that would be useful for public health mitigation
[29,35]. Table 1 explains the presence of various viruses in
sewage water samples.

While global clinical monitoring for COVID-19 has
been developed, there is a range of instances of asymptom-
atic patients and those with very mild symptoms may not
have been detected, and connections that were not the-
oretically missed estimated at 80% of real transmission.
Therefore, SARS-CoV-2 tracking of wastewater is ideally
suited to identify the spatial and temporal changes in the
occurrence of diseases [36]. Sewage can be an important
monitoring point for WBE because SARS-CoV-2 virions
are excreted in the faeces of COVID-19 patients. Several
researchers have already documented traces of SARS-CoV-2
in wastewater, especially in Australia, the Netherlands,
Sweden, and the USA [37,38].

Experts from the Dutch National Institute for Public
Health and the Environment studied wastewater samples
from Amsterdam Schiphol Airport over many weeks and
found that they could detect SARS-CoV-2 using reverse
transcription-polymerase chain reaction (RT-PCR) within
4 days of confirmation of cases in the country [39]. Hence,
the usage of WBE to warn SARS-CoV-2 responses could
have a comparable potential value [40].

3.2 WBE as a tool for monitoring population
food consumption and stress
biomarkers

Urine has been researched in order to treat multiple med-
ical disorders since ancient times [68]. Urinalysis is still
used today to identify and track multiple pathophysiolo-
gies or behaviours. Diverse nutrients, proteins, hormones,
molecules, and small substances in urine represent organ-
isms’well-being and interaction with the environment and
can be obtained quicker and less invasively than serum
samples [69,70]. Urine is being used as a diagnostic instru-
ment in clinical environments, for example, to detect cancer
early or to assess the degree of oxidative stress at the surface of
the cell or tissue [71]. Metabolomics experiments have identi-
fied various biomarkers for the intake of specific foods, such as
whole grains or citrus, which have been proposed as instru-
ments for quantitative measurement of dietary regimen con-
formity in clinical and metabolic trials [72–74].

Law enforcement agencies have implemented urina-
lysis procedures for analysing metabolites in narcotics.Figure 2: The structure of SARS-CoV-2 virus.
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Table 1: The presence of the virus in sewage water samples

Virus Location Outcomes Ref.

SARS-CoV-2 Amsterdam, Den Haag,
Utrecht, Apeldoorn,
Amersfoort, Tilburg, and
Schiphol, Netherlands

3 weeks before the first case reported of the presence of SARS-CoV-2
in the Netherlands, samples taken on 6 February 2020 show negative
results. During the first week of the epidemic, on 4 and 5 March, there
were positive results for samples taken from Utrecht at 14–30 GC/mL.
On 4 March, lower concentrations have been detected in Den Haag at
12–22 GC/mL. However, the result went negative on 5 March.
Amersfoort and Schiphol show positive results on the 15 and 16 March,
and the former was positive for N3 (6.6 GC/mL) while the latter was
positive for N1 and N3 (2.6–12 GC/mL). On 25 March, all cities showed
positive results for SARS-CoV-2 at 26–1800 GC/mL

[23]

SARS-CoV-2 Milano, Italy Out of 18 samples collected from 3 WWTPs (4 raws and 2 treated),
SARS-CoV-2 RNA was detected in 6 raw samples. None of the treated
samples shows positive SARS-CoV-2 RNA. The isolated virus genome
belongs to the strain most spread in Europe. The presence of SARS-
CoV-2 RNA was decreased after 8 days, indicating the natural decay of
viral pathogenicity

[41]

SAFV Karaj, Iran Out of 28 samples, SAFV was detected in 10 samples. Concentrations
of SAFV RNA ranged from 2 × 106 to 6.4 × 106 copies per L

[42]

ZIKV RNA Atlanta, Georgia Analysed sewage samples show positive ZIKV RNA. The isolated virus
was stable at 4°C. Other conditions show 90% decay in RNA levels, at
25°C after 21 days and 35°C after 8.5 days

[43]

SalV Karaj, Iran SalV RNA was detected in both untreated and treated sewage samples.
Concerning untreated samples, SalV RNA was detected in 3 out of 10
untreated sewage samples. Concerning the treated samples, SalV RNA
was detected in 5 out of 12 treated sewage samples. The maximum
viral load was evident in September, while the lowest was in December
with values of 4.8 × 106 and 4 × 105 copies per L, respectively

[44]

HEV GIII Campania region, Italy Out of 29 samples collected from sewage discharge points, HEV was
detected in 5 samples. All isolated strains were related to GIII, and a
high degree of sequence identity was observed

[45]

adV Kansai, Japan Out of 12 sewage samples (1 sample/month), RVA, HBoV, and both NoV
GI and GII were detected in all the samples. In 11 months, HAstV, SaV,
and AiV were detected, while HAdV, EtV, SalV, and HPeV were detected
in 8months. The lowest detection rate was for SAFV, 2 months.
Concerning RV genotypes, G1, G2, G3, and G8 were detected. One
strain of G2 was similar to clinical strains detected in the epidemic
season of 2014/2015, and 5 G2 strains separated from the reference
strains detected in the epidemic season of 2015/2016

[46]
AiV
AstV
EtV
HBoV
HPeV
NoV GI
NoV GII
RV G1
RV G2
RV G3
RV G8
RVA
RVC
SAFV
SalV
SaV
HBoV-1 Greater Cairo, Egypt Sewage samples were collected from three dissimilar WWTPs. In raw

samples, HBoV median concentrations were 8.5 × 103 , 3.0 × 104 , and
2.5 × 104 GC/l for HBoV-1, HBoV-2, and HBoV-3, respectively. There
was a reduction in the concentration in treated samples. However, the
complete removal was not observed. It was reduced but not completely
removed in the treated samples. Besides, in the outlet samples, HBoV
median concentrations were 2.9 × 103 , 4.1 × 103 , and 2.1 × 103 GC/l for
HBoV-1, HBoV-2, and HBoV-3, respectively. HBoVs show no
seasonality patterns

[47]
HBoV-2
HBoV-3

(Continued)
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Table 1: Continued

Virus Location Outcomes Ref.

HEV GIV Shen Zhen, China. Out of 152 samples from WWTP, only 2 were HEV GIV positive.
According to blast analysis, the isolated virus was similar to that
detected from a swine in Guangdong province, China

[48]

CLV-BR São Paulo, Brazil A total of 177 treated reclaimed water samples were grouped into 5
pools that were tested, and the CLV-BR gene was found in 2 of them
with a percentage of 28% and 51%, p6, and p9, respectively, in
addition to 76% of the Rep gene. The genomes detected were most
likely related to CLV-BR hs1

[49]

HEV Coastal island, France A total of 32 samples (were collected from four WWTP A, B, C, and D, 18
raw, and 14 treated. HEV was detected in four raw samples (3 WWTP B
and 1 WWTP C). In December, HEV levels detected from WWTP B raw
samples were 2-logs higher than that from WWTP C. In January, only
the WWTP B raw samples were positive. All raw samples were below
the limit of detection (2.2 log RNAc per L). HEV was negative in all
treated samples

[33]

HEV GIII Edinburgh, Scotland, UK Out of 15 sewage samples, HEV sequences were detected in 14
samples. According to phylogenetic analysis, there was an observed
pattern of HEV GIII with a local cohort of HEV‐infected hepatitis
patients. Although the presence of HEV GI in English and Scottish
hepatitis patients with an estimated percentage of 30% and 11%,
respectively, HEV GI was not detected in the sewage samples

[50]

Mimivirus
Bombay

Mumbai, India The size of the isolated virus was around 1,182,200-bp and 435 nm
genome. According to phylogeny-based DNA polymerase, the
Mimivirus Bombay is the Mimiviridae family lineage A member

[51]

Mimiviridae family members with similar genome sizes were recorded
previously to be detected in different environmental niches

HAV West-central (Sidi Bouzid,
Kasserine and Sbeitla)
and East-central (Msaken,
Ouerdanine and El Jem),
Tunis

Out of 325 wastewater samples, 129 were HAV RNA positive. The
samples were collected from 6 WWTP between December 2009 and
December 2010. While comparing HAV in raw and treated samples of
WWTPs, raw samples show a higher percentage of viral contamination,
56.8% and 22.7%, respectively. Cities in west-central Tunisia showed
a higher average percentage of positive HAV samples in raw
wastewater than east-central Tunisia, 62.96% and 50.62, respectively

[52]

EV Pennsylvania, USA The untreated wastewater was collected from WWTP. To determine the
persistence of EV in the wastewater matrix, EV was spiked at two
different concentrations for 8 days. No viable Ebola virus was
recovered from samples spiked with 102 Ebola virus TCID50 mL–1 after
the initial time zero sampling. Despite the rapid deduction of EV
concentration by 99% on the first day, viable EV persisted for all 8 days
of the test with a constant limit of detection of 0.75 log10 TCID50 mL−1

[53]

RV Naples, Bari, Palermo,
and Sassari, Italy

Out of 285 sewage samples, RV was detected in 172 samples. In 26
samples, 198 RV G (VP7 gene) genotypes were detected. 32 samples
contained multiple P (VP4 gene) genotypes, yielding 204P types in 172
samples. G1, G2, G9, G4, G6, G3, and G26 are accounted for RV types,
65.6%, 20.2%, 7.6%, 4.6%, 1.0%, 0.5%, and 0.5% respectively.
Paediatrics patients in the same geographical area also had similar
genotypes, particularly G2, G9, and p

[54]

AdV Ryaverket and
Gothenburg, Sweden

During the weeks when no positive patient samples were detected, it
was still possible to detect NoV, SaV, RVA, AstV, AiV, and AdV in all
sewage samples. Negative results have been recorded for
parechovirus since it was not found in any sewage sample. The highest
concentration of detectable viral genomes was for NoV followed by
AstV, AdV, AiV, HEV, and HAV, respectively. For all weeks of sewage
samples, low levels of HEV were detected (400–2,000). However, in
the 9th week, the amount was unknown

[26]
AstV
HAV
NoV
RVA
SaV

(Continued)
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Table 1: Continued

Virus Location Outcomes Ref.

Klassevirus Seoul, South Korea Of 14 sewage samples, klasse virus and PMMoV were detected in
eight. They also were frequently detected in winter. NoV GII was
detected in five samples, and NoV GIV in three samples. The latter was
detected in December 2010 and January and March 2011. NoV GIV in
Seoul belongs to the G-IV1 lineage according to phylogenetic analysis

[55]
PMMoV
NoV GII
NoV GIV

HEV Córdoba city, Argentina Out of 48 wastewater samples, HEV was detected in 3 samples.
According to nucleotide sequencing, all isolates belonged to GIII,
subtypes a, b, and c. IgG anti-HEV prevalence was 4.4% (based on 433
serum samples). Anti-HEV and socioeconomic levels did not show
statistical relation despite the prevalence being higher in the low-
income population

[56]

AiV Netherlands Fifteen samples were taken from each period from 1987 to 2000 and
2009 to 2012. Overall, AiV RNA was detected in 93% and 83% of water
samples. Also, 16 sewage samples show positive AiV RNA. Out of 14
surface water samples, 12 samples and 9 samples show positive AiV
RNA from each sampling period, respectively. AiV RNA was determined
by targeting the 3C and VP1 regions

[57]

HAdV Rio de Janeiro, Brazil The detection level of HAdV and JCPyV was higher than NoV and HAstV
(p < 0.05, chi-squared test). The HAdV detection level was significantly
higher than JCPyV (p = 0.02, Fisher exact test). The levels of NoV Gil
and HAstV show no difference (p = 0.08, Fisher exact test). The average
concentration of HAdV in raw samples was 2.97 × 106 GC L−1 compared
with an average of 2.55 × l04 GC L−1 for the treated samples. The
average concentration of JCPyV in raw samples was 5.98 × 105 GC L−1,
while JCPyV DNA average was 3.31 × 103 GC L−1

[58]
HAstV
JCPyV
NoV GII
NoV Gil

AiV Teramo, Italy Out of 48 sewage samples, AiV RNA was detected using the kobuvirus
universal primer set and primer set Ai6261/Ai6779. However, the
former was able to detect only 2 samples compared with 6 samples
detected by the latter. The six AiV-like strains were distributed over the
four WWTPs tested

[59]

HAV GIB Cairo, Egypt Out of 76 sewage samples, HAV-genotype IB was detected in 11
samples based on VP3–VP1 capsid protein partial sequencing.
HAB – genotype IB positive samples were positive as well for EtV (p <
0.0001, Fisher’s exact test). There was no significant reduction in the
viral load between the inlet and the outlet for both WWTPs. All sewage
samples were negative for HEV virus by conventional and real-time
RT-PCR

[60]
HEV

HAdV North Rhine Westphalia
region, Germany

A total of 24 (12 raw and 12 treated) sewage water samples were
collected, and it was possible to detect HAdV, HPyV, and PMMoV in all
samples. TTV and hPBV were detected in 6 raw samples and 3 treated
samples. PMMoV is shown to be specific to human-derived faecal
waste based on 20 samples collected from humans

[61]
hPBV
HPyV
PMMoV
TTV
HEV GI Campania, Umbria,

Piedmont, Giulia,
Basilicata, Lombardy,
Tuscany, Emilia Romagna,
Veneto, Friuli-Venezia,
Latium, and Sardinia,
Italy

A total of 118 sewage samples were examined: 19 samples were HEV
RNA positive in 9 regions out of 11 (18 HEV GI and 1 HEV GIII). No
detectable PCR inhibitors in the negative samples. 0.7% was the
average pairwise distance between GI sequences. Most of the positive
samples were collected in winter or spring

[62]
HEV GIII

RVA Rio de Janeiro, Brazil Using the multiplex qPCR assay, it was possible to detect 30 RVA and
10 PP7 genomes per reaction. The cycle threshold values were 34.82
and 37.51

[63]

AiV Monastir, Tunisia Of 250 sewage samples, it was possible to detect AiV only in 6% of the
samples. Also, 15 strains of AiV were detected via phylogenetic
analysis of a partial genomic region, 468 bp

[64]

(Continued)
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The same idea is applicable at a population level in WBE,
which is primarily concerned with assessing opioid usage
in populations. Numerous urinary biomarkers of food
and oxidative stress have been proposed in recent years
to correctly monitor the food consumed and oxidative
stress experienced by citizens in wastewater. Excluding
the vulnerability to deterioration in sewage reactors,
vitamin B2, vitamin B3, and fibre consumption biomar-
kers, as well as a portion to citrus, had loads per capita
in line with the reported literature values. The usage of
biomarkers of red meat, fish, fruit, some vitamins, and
stress biomarkers per capita was incompatible with litera-
ture findings and/or rapidly degraded in sewer reactors,
meaning they are not ideal for use as WBE biomarkers in
the traditional quantitative sense [75].

Population stress urinary biomarkers such as 8-iso-pros-
taglandin F2α (8-iso-PGF2α), well-being such as insulin-like
growth factor 1, and dietary aspects such as isoflavonoids
have been proposed in numerous studies asWBE biomarkers
[40,76–79].

The oxidative stress biomarker 8-iso-PGF2αwas tested
in wastewater [80,81], and assessed its stability under
sewage conditions [82]. The enterodiol and enterolactone
fibre biomarkers, as well as the 4-pyridoxic acid vitamin
biomarkers, 1-methyl-2-pyridone-5-carboxamide (2PY),
1-methyl-4-pyridone-5-carboxamide (4PY), and α-carbox-
yethyl hydrochroman (αCEHC) were tested in Australian
wastewater. Measurements of plant phytoestrogens enter-
olactone, daidzein, and genistein in American wastewater

were reported in one book chapter [83]. British research
outlined amethod for calculating the 8-iso-PGF2α, 8-nitro-
guanine, and 8-hydroxydeoxyguanosine (8-OHdG) stress
markers in wastewater [84].

Since the infection with SARS-CoV-2 is primarily
known to be by droplets or contact with virus-containing
aerosols [1], possible viral contamination in water, bio-
aerosols, and food should be considered. In fact, SARS-
CoV faecal presence has been verified [85,86]. Besides,
the virus’s ribonucleic acid (RNA) was also detected in
stools of individuals infected with MERS and SARS [1,17].
Similarly, the novel SARS-CoV-2 has shown a spread
through the faecal-oral transmission with stools [17].

As SARS-CoV-2 is similar to SARS-CoV in the genetic
material more than the MERS virus, it was suggested that
the latter could be transmitted through toilets and bio-
aerosols [87] as reported in 2003–2004 for SARS-CoV
[88]. In addition, because of the longevity of humans
and animals, plants infected with SARS-CoV-2 through
infected water can lead to more transmission of the virus.

3.3 The early warning of localised SARS-
CoV-2 outbreaks via wastewater
analysis challenges

Although the wastewater survey may provide a snapshot
of the overall concentration of drugs, the method is obliv-
ious to the dynamic social systems responsible for opioid

Table 1: Continued

Virus Location Outcomes Ref.

HEV Messina, Italy Out of 46 sewage samples, HEV was detected in three samples, one
was from raw sewage in September, and two were from untreated
sewage of WWTP in May and June. It was not possible to detect HEV in
any of the samples

[65]

NoV Rio de Janeiro, Brazil A total of 144 samples were collected equally from 3 WWTPs. NoV was
detected in 49 samples. The average removal ratio for the activated
sludge process was 0.6 log 10 and 0.32 log 10 for NoV GI and NoV GII,
respectively. The peak concentrations for NoV were detected in the
coldest months, with 53,300 GC L−1. Phylogenetic analysis and
nucleotide sequencing show that 5 strains clustered with GI strains
and 6 with GII strains. Despite the sewage treatment, NoV could spread
to the environment and remains a source of waterborne outbreaks of
acute gastroenteritis

[66]

PV Jinan, China One sewage sample was collected from WWPS. After concentrating on
the sample, it was possible to separate strain P3/Jinan/1/09 using the
L20B cell line. The neutralization test shows the isolated strain related
to PV type III. VP1 region Full-length amplification and sequencing
exposed a Sabin type III/type II recombinant with a crossover site at
the 3′-end of VP1 region

[67]
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harm and the transmission of viruses such as hepatitis C
and human immunodeficiency virus (HIV). Wastewater
analysis may deliver early notice of localised outbreaks
of SARS-CoV-2, but it cannot account for complex popu-
lation dynamics or unique social and behavioural activ-
ities that trigger outbreaks. This awareness is essential for
the implementation of successful actions. We know from
the previous outbreak of Ebola that treatments will cause
adverse results, also precipitating resistance to virus reg-
ulation by the population. Without research that con-
siders the social and cultural nature of the dissemination
of viruses and how populations react to treatments, suc-
cessful solutions are not feasible. The examination of
wastewater is a minimal instrument for advising inter-
vention. It might inform us where is the SARS-CoV-2 is
but not how best to interfere [89].

While SARS-CoV-2 wastewater surveillance offers a
valuable method for evaluating the prevalence at a popu-
lation level of disease, it is evident that it still needs to be
incorporated with other public health programs, clinical
case recording, and mobile notifies tracking [90]. There-
fore, it is necessary to examine how best to reconcile
public safety with civil liberties ethically with lawfully
when treating this information [91]. Nonetheless, one of
the advantages of wastewater is that it has minimal socio-
logical prejudice for little if any ethics concerns [92]. It is
highly challenging, if not unlikely, to convert the viral
titres of wastewater into the actual number of cases
inside a population. This form of an estimate is focused
on certain hypotheses that remain loosely quantified (e.g.
the volume and nature of viral faeces shedding, viral
longevity in the sewage system, and the difference in
the distribution of wastewater linked to the environment,
etc.). In comparison, although tailored to broad metropo-
litan areas (i.e. populations >10,000), the method is less
economically and logistically adapted to diverse rural
neighbourhoods that could have hundreds of limited
water treatment establishments [92].

4 Membrane solution for
coronavirus removal from
wastewater

The viruses are present in raw wastewater, treated waste-
water, sludge, and consequently, in the receiving water
bodies and other environments. Thus, it is required to
determine the pathways of virus transmission to limit the
risk of the disease. This information can be determined
accurately through the Infectious Disease Transmission

Modelling (IDTM) and Quantitative Microbial Risk
Assessment (QMRA) [63]. The pattern of infection in the
human population indicates the presence and diversity of
pathogenic viruses in wastewater, and the detection of
viruses in different water matrices and different sampling
points defines the suitable pre-treatment methods of was-
tewater [93].

Membranes have achieved an important place in che-
mical technology and are applied in a wide range of appli-
cations. The considered primary concept is the capability
of amembrane to control the passage or the permeation rate
of a chemical species through the membrane. Separation
application is the common one of membrane applications.
The goal is to select one component of a mixture to pass
or permeate the membrane freely while preventing the
permeation of other components. This mass transport is
divided into three stages: through phase 1 (feed), across
the membrane, and through phase 2 (permeate). The
mechanism of permeation depends on the driving force,
which can be generated as a result of the concentration
gradient across the membrane (ΔC), the hydrostatic pres-
sure difference across the membrane (Δp), the temperature
difference across the membrane (ΔT), and the electrical
potential difference across the membrane (ΔE).

A membrane technique is commonly known as an
operation for separation processes such as filtration,
extraction, and distillation that cover a broad range of
problems from particles to molecules. The applications
of membrane technology are manifold. In fact, mem-
branes are not only used for separation processes but
can also be applied for gas storage in biogas plants or act
as catalysts in syntheses [94]. They range from removing
the particulate matter by microfiltration (MF) and UF, and
dissolved matter by nanofiltration (NF) and reverse osmosis
(RO) (Figure 3).

The effect of membrane materials is essential because
of the interaction between viruses and membrane mate-
rials. It can be challenging to select the right membrane
type and material for a special process, and some given
data about the process environment must be available to
make a suitable selection. The first step is to determine
the preferred process (NF, RO, UF, or MF). Based on the
process environment, the best-suited membrane material
can then be the second step. The chemical and thermal
resistance of several membrane materials may be helpful
in membrane performance.

Adsorption, which is primarily driven by hydrophobic
and electrostatic interactions between viruses and mem-
brane surfaces, can eliminate viruses. Furthermore, elec-
trostatic repulsion aids virus elimination when viruses and
membrane surfaces have the same charge (Figure 4).
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In this issue, various membrane applications are
mentioned but we will focus on removing viruses from
distinct types of wastewaters. We aim to illustrate and
display the current and promising membrane technolo-
gies for monitoring, quantifying, and treating viruses in
wastewater. Virus removal is one of the vitally important
applications of membrane technologies, especially when
water reuse becomes widespread. Currently, membranes
are considered suitable methods in disinfection and ideal
separation processes for various effluents. The chart below
is a schematic representation of the types of particles that
can be removed from the water using membrane filtration
processes according to the pore size of the membrane. RO,
NF, and UF membranes should be able to remove SARS-
CoV-2 considering that its size is 100 µm [95] (Figure 5).

4.1 UF membrane system for virus removal
from domestic water

The presence and diversity of pathogenic viruses in domestic
wastewater reflect the trend of infection in people. Domestic
wastewater is a common source of various pathogens, which
maybe not be sufficiently treated. In this case, the viruses
move to the receiving water bodies and cause many water-
transmitted diseases. The UF membrane separation tech-
nique is considered one of the most suitable ways to
remove viruses in the water-related microbial world. It is

characterised by the larger pore size; consequently, lower
pressure and lower cost are needed. The pore size of UF
ranges from 10−3 to 10−1 µm, and the molecular weight
(MW) varies from 103 to 105. This pore size range allows
the salts, some of the organic substances, and small pep-
tides to pass through. At the same time, fats, proteins,
bacteria, and viruses are not permitted to pass, and they
are rejected. UF is very useful for eliminating physical
properties of domestic effluents such as odour and colour.
Besides, UF guarantees the complete removal of turbidity.
For viruses and bacteria, UF can remove more than 99% of
them. No dead bacteria or ultra-pure water are produced.
Transmembrane pressure (TMP) ranges from 5 to 35 psig.
Fouling is the main problem of the UF membrane.
Decreasing the filtration capacity acts like a decline in flux
or a dramatic increase in TMP indicating fouling. The effi-
ciency of fouling control depends on backwash and che-
mical cleaning processes from time to time. Figure 6 presents
a process design for the UF system for a stream of domestic
wastewater. Maintenance of membrane or cleaning does not
require more than a fewminutes. Viruses in domestic waste-
water are affected by physical and chemical factors control-
ling the survival of enteric bacterial and viral pathogens in
domestic wastewater, temperature, sunlight, and humidity.
In COVID-19, it is evident that there are challenges to dom-
inate techno-scientific applications in the large microbial
world. Still, virus filtration of wastewater is an ideal key to
keeping water safe from emerging viruses like CoVs.

Figure 3: Classification of membrane processes according to pore size and criteria of removal.
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4.2 Hybrid multimedia filter/UF membrane
for treating industrial wastewater

One of the most difficult challenges facing the industrial
wastewater treatment process is controlling microbial
load and the detection method during the different stages
of the remediation process. Disinfectants may be used but
they are not effective when the virus is smaller than bac-
teria. At this point, the role of meta-genomics or series of

analyses comes to monitor wastewater treatment units to
predict outbreaks and connect with public health surveil-
lance. Re-evaluation of the regulations related to the
pathogenic viruses in wastewater is a vital issue. Pre-
treatment of industrial wastewater to eliminate different
types of bacteria and viruses is required. Therefore, using
a multimedia filter as a pre-treatment process for waste-
water is remarkably effective to minimise the microbial
load on the UF membrane units. Generally, the utilisation

Figure 4: A schematic diagram for membrane mechanisms for removing viruses from water.
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of hybrid media-filter-UF membrane for industrial water
treatment containing viruses is an ideal low-cost system
alternative to RO technology. Figure 7 illustrates steps
and the components of a hybrid multimedia filter-UF
membrane system for treating industrial wastewater,
including viruses.

4.3 Hybrid UF/RO membrane system for
treating domestic water

COVID-19 is characterised by unexpected nature, that is,
it may infect healthy persons for a long time without any
symptoms. Therefore, risk mitigation procedures against
entering viruses into remediation process streams are
becoming more important than ever [96]. RO membranes
have a pore size <10−3 µm. They are very effective to
remove all organic substances, bacteria, and viruses.
Bacteria such as E. coli, Shigella, and Salmonella can be

rejected; their size ranges from about 0.2 to 4 µm, which
means that they are too large compared with the pore size
of the ROmembrane. ROmembrane technology can remove
protozoa (e.g., giardia and cryptosporidium) and viruses
(e.g., rotavirus, enteric, HAV, and NoV). Also, they are cable
of removing minerals that may be present in wastewater.
They remove monovalent ions; therefore, they can be used
to produce deionised water. As clean water resources are
becoming increasingly scarce in many areas of the world,
these membrane techniques are increasingly important. RO
membrane technologies are facing challenges. One of the
major serious issues is the cost of the treatment process due
to the high operating pressure needed. Also, fouling is
another challenge of RO because of the small pore size
and applying high operating pressure. The three basic cate-
gories of RO membrane fouling are biofouling, organic, and
inorganic substances. Typically occurring problems of mem-
brane fouling and possible optimisations of the described
membrane processes have been considered through the

Figure 5: Coronaviruses related size.

Figure 6: The use of ultrafiltration membrane system for virus removal from domestic water.
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proposed hybrid UF/RO system for treating domestic water
in Figure 8. In this design, we use an integrated system of
UF/RO for treating water to improve the performance of the
RO unit and decrease the fouling phenomena, and hence
increasing the long life and efficient operation of RO. Briefly,
the presence of the UF membrane unit as a pre-treatment
process for the RO membrane process minimises the load of

suspended solids and the microbial content. As this feature
occurred, the performance of the ROmembrane to eliminate
any viruses fromwastewater streams has completely occurred.
Besides, the required energy is reduced and decreases the
produced sludge or chemical disposal for chemical cleaning.
Generally, the techno-environmental and economical solution
achieves its objectives.

Figure 7: Hybrid multi-media filter ultrafiltration membrane system for industrial wastewater treatment.

Figure 8: Hybrid ultrafiltration-reverse osmosis membrane system for virus removal from domestic water.
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4.4 Virus removal from wastewater using
membrane bioreactors (MBRs)

Bacteriophages were used to study the removal of viruses
using the MBR treatment process as culturable samples of
human-related viruses. MBR processes are defined as an
integrated system of the UF or MF membrane and biolog-
ical treatment unit [97]. It is an advanced version of the
conventional activated sludge (CAS) [98]. The membrane
may be immersed in the system or separated depending
on design considerations. It is a commercial membrane; 50%
of the membranes used in UF or MF membranes are hollow
fibre membranes made from the modified polyvinylidene
difluoride (PVDF). Polyethersulfone (PES) membranes came
in the secondmost-usedmaterial of membranes. The suitable
membrane configuration is submerged (immersed) design
with (outside in) influent. In MF, the most challenge is the
fouling problem, which has been investigated in several stu-
dies. The majority of these studies are linked with the micro-
bial community as a main reason for fouling [99,100]. In
other studies, the microbial community structure is the
reason for fouling problem, regardless of the bio-degradable
wastewater that needs to be treated. In another study, factors
affecting the biofouling mechanism were reviewed [101].
Biofouling increases as the mixed liquor suspended solids
(MLSS), food to microorganisms (F/M) ratio, and organic
loading rate (OLR) are high, and the hydraulic retention
time (HRT), sludge retention time (SRT) and dissolved
oxygen concentration (DO) are low [102]. High tempera-
ture and salinity also decrease membrane permeability
and increase the soluble microbial products. One study
on viruses’ removal investigated using hollow fibre (HF)
membranes, one hydrophilic and two hydrophobic mem-
branes. Hydrophobic membranes fouled faster than the
hydrophilic membrane because hydrophilic compounds
are capable of forming a gel layer on their surface [103].

The mechanism of virus elimination from the waste-
water treatment process begins with the adsorption of

viruses on the surface of aggregated particles that are sepa-
rated by sedimentation. The MBR treatment process is a
very convenient method for the removal of different viruses
when compared withmembrane technology. Table 2 shows
examples of membrane bioreactor systems for virus
removal and their log reduction values (LRVs) (2015 to
2020). In membrane technology, different factors can influ-
ence membrane performance in elimination; the mem-
brane’s pore size is the dominant factor for the virus
removal process, especially when the diameter size of the
virus particle is smaller than the pore size of the membrane.
However, in MBRs, viruses’ adsorption on the surface of
aggregated particles besides design and operating condi-
tions such as pH, dissolved oxygen, hydraulic retention
time (HRT), and dimensions of units used [104]. Figure 9
represents a schematic design for immersed hollow fibre
membrane bioreactor used to treat wastewater, including
virus removal. It also displays the accumulation of aggre-
gated particles on the surface and inside of the hollow fibre
membrane. Backwash and chemical cleaning are important
to maintain the flux remains in optimum values and recover
the effectiveness of the treatment process.

4.5 The MF-UV process with a photocatalytic
membrane for virus removal

This is an overview of an integrated (hybrid) system of
the MF membrane and photocatalytic process depending
on the presence of ultraviolet (UV) used for virus inacti-
vation and removal [109]. The photocatalytic process is
an oxidation process and is classified as advanced oxida-
tion processes (AOPs) that can destroy the particles in the
range of 10−3 µm (1 nm). Because of this ability, photo-
catalysis has been used to remove and inactive viruses in
wastewater. Since a few decades, specifically, in 1985,
platinum (Pt)-loaded titanium dioxide (TiO2) was used

Table 2: Examples of membrane bioreactor systems for virus removal and their LRVs: 2015–2020

MBR type Virus type Log reduction value (LRV) Ref.

Pilot-scale MBR Adenovirus 0.2–6.3 [105]
Full-scale MBR Rotavirus >2.0 [97]
Full-scale MBR Sapovirus >3.0 [97]
Pilot-scale MBR Norovirus GI 1.82 [106]
Pilot-scale MBR Norovirus GII 3.02 [106]
Pilot-scale MBR Adenovirus 1.94 [106]
Full-scale MBR Norovirus GI/GII 2.3 [107]
Full-scale MBR Adenovirus 4.4 [107]
Pilot-scale MBR Enterovirus 0.3–3.2 [108]
Pilot-scale MBR Norovirus GII 0.2–3.4 [108]

Log reduction value (LRV) = −log (permeate virus concentration/feed virus concentration).
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as a catalyst for inactive viruses and eliminate three types
of bacteria [110]; from this period, the application of
photocatalysis to disinfect water has been growing [111].
AOPs are promising processes for remediation of waste-
water, including difficulty in removing organic substances,
especially, chlorinated-organic compounds. In addition, it
has been proved that photocatalysis can trigger degrada-
tion in the case of simple compounds (e.g. protein and
DNA), an inhibitory effect in case of viruses and bacteria
[112–114], and an anti-cancer effect in the case of complex
cells (e.g. pollen and spores). Using oxidants such as
hydrogen peroxide (H2O2) alone is not effective for oxida-
tion of elevated levels of contamination, but in the pre-
sence of UV or ozone, it can activate the hydrogen per-
oxide to form hydroxyl free radical group (OH˙) acting as a
very strong oxidant. Using a hybrid MF membrane-UV
photocatalytic process can be highly effective in eradi-
cating viruses. TiO2 is a semiconductor material with the
highest band, commonly named the valence band, and
has another lowest band called the conductance band.
Between these bands, there is a region called a bandgap.
As the bandgap energy of semiconductors is decreased, it is
easier to produce electron-hole pairs, h+e, which can react
with the absorbed materials on the surface [115,116]. TiO2

semiconductor photocatalysis can be used as a powder dis-
persion form, phot-catalytic fixed bed reactor supplied with
UV source and used as a thin film (Ag+–TiO2 thin film,
Au–TiO2 thin film, Pt–TiO2 thin film, and Fe3+–TiO2 thin
film). For the enhancement of TiO2 photocatalysis, we can

use carbonaceous nanomaterials as additives. In addition,
nanoparticles (NPs) can be used as an additive (Ag–TiO2,
Ag–AgBr–TiO2, Ag–TiO2 nanotubes, and Au–TiO2) (Figure 10).
Generally, these processes have highly either operating or
capital costs [117].

5 The use of nanotechnology in the
detection and elimination of CoVs
in wastewater

One of the most important applications of nanomaterials
is the prediction and treatment of viruses in wastewater.
Nanomaterials have unique properties, which charac-
terise them as excellent materials to be applied in the
manufacturing of sensors, spectrum devices, and techni-
ques used in detecting, treating, and eliminating viruses
from wastewater [118]. In this section, we present a brief
about some of these applications (Figure 11).

5.1 CoV detection in water using
nanosensors

Early and rapid detection of coronaviruses in water helps
to contain the infection more easily. Different engineered
nanostructured materials have been known for their appli-
cations in sensors for the detection of various compounds.

Figure 9: Membrane bioreactor (MBR) for virus removal.
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Nanosensors have been applied in several fields, involving
doping analysis, laboratory medicine, food safety, and
water examinations [119]. An example of these materials
is silver NPs that can be used as flow-through Raman
scattering sensors for water quality detection and moni-
toring. In addition, carbon nanotubes (CNTs) are consid-
ered good materials for this purpose; specific properties of
CNTs make them very attractive and preferred for the fab-
rication of nanoscale chemical sensors, especially for elec-
trochemical applications [120].

Moitra et al. [121] developed a plasmonic gold NP-
based biosensor for the detection of COVID-19 within
10min. The developed test is very simple and depends
on the color change (from purple to blue) of gold NPs
upon combining with the virus’s gene sequence [121].
Besides nanosensors, membranes can be applied for the
sensing process. As a result, the study emphasises the
importance of optimised covering membranes as a func-
tional aspect in sensors, one that necessitates coordi-
nated efforts from membrane scientists.

5.2 Removal of CoV from wastewater using
nano-adsorbents

Various techniques have been usually applied to elimi-
nate organic and bio-pollutants in water, such as conven-Figure 10: Photocatalytic effects and living cells.

Figure 11: Nanotechnology-based approaches for COVID-19 in water (detection/ treatment).
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tion processes (adsorption, distillation, and filtration),
biological processes (activated sludge, membrane bioreac-
tors), chemical processes (chlorination and ozonation),
and photocatalytic process [122]. Generally, the capability
to adsorb organic pollutants is extremely related to the
high surface area of the adsorbent. Therefore, the absorp-
tion capacity can be enhanced by developing nanometre
adsorbents, characterised by high specific surface area,
small particle size, and low internal diffusion resistance.
It has been verified that magnetic NPs had superior
adsorption efficiency over bacteria or viruses. Magnetic
NPs are usually modified with bioprotein, antibody, and
carbohydrate materials, which target bacteria, viruses,
and microorganisms (Figure 12) [123].

Park et al. [124] have created an innovative magnetic
hybrid colloid decorated with various sizes of Ag nano-
particles. It was made as a cluster of superparamagnetic
Fe3O4 covered with a silica shell. They found that the
magnetic hybrid colloid decorated with the Ag nanopar-
ticle of 30 nm size (Ag30@MHC) demonstrated the best
antiviral efficacy for bacteriophage MS2 (2–3 log reduc-
tion). Another study reported the synthesis of amine-
functionalised magnetite Fe3O4–SiO2–NH2 NPs to remove
viruses from water. These new types of magnetic NPs
are characterised by firm structures and good magnetic

properties due to the presence of the amine group. It is a
crucial element in attracting several types of pathogens
like bacteriophage f2 and poliovirus-1 with capture efficien-
cies of 76.73% and 81.53%, respectively [125]. Recently,
Ramos-Mandujano et al. [126] have developed magnetic-
nanoparticle-aided viral RNA isolation from the contagious
sample (MAVRICS) open-source method that was able to
extract SARS-CoV-2 RNA in wastewater with 88% recovery
of the tested viral RNA.

5.3 Degradation of CoV in wastewater by
photocatalysis

TiO2 in the presence of UV light has a strong oxidation
effect. Therefore, it can be used as a disinfectant based
on the photocatalytic process. Photocatalytically TiO2 is
usually applied as a self-cleaning and disinfecting mate-
rial for many purposes [127]. CoV affected the view of
wastewater plans; a team of nanotechnology from Rice
University was investigating the ability to reconstruct
their wastewater treatment technologies to deactivate
SARS-CoV-2. Their studies found that photocatalysis could
be used to inactivate CoVs by the usual photocatalytical

Figure 12: Nano-adsorbents for virus removal from water.
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materials. In the future, the teamwill modify their research
to target SARS-CoV-2 and other CoVs by imprinting mole-
cules, including virus attachment onto the graphitic carbon
nitride photocatalysts [128].

Low pathogenic CoV will be used to determine the
kinetics of the adsorption process and study the selec-
tivity of the molecularly imprinted graphitic carbon nitride.
To define the inactivation efficiency of the photocatalysis
process, the residual viable virus concentrations will be
quantified (Figure 13).

5.4 Nanotechnology for membrane
performance enhancement in virus
removal

Nanotechnology has a vital role to improve membrane
performance in virus removal. Membranes have been
modified by combining virucidal nanomaterials with the
membrane during the manufacturing step, virucidal func-
tionality was added to the membrane [129]. Virucidal nano-
particles have been incorporated into membrane matrices,
commonly referred to as mixed-matrix (MM)membranes, to
create antiviral membrane filters [130].

Antiviral MM membranes for water treatment have
been made using a variety of biocidal nanomaterials (for
example, silver nanoparticles and copper nanoparticles).

Antiviral MMmembranes have been the subject of research
articles published in the recent few years. Despite the
surge in interest in antiviral materials research, there are
only a few review publications covering antiviral MM
membranes among these studies [131].

Antiviral nanomaterials which can be used and
applied are summarised in Table 3.

5.5 Reaction mechanism of different
nanomaterials against CoV

There are different reaction mechanisms involved in CoV
inhibition and removal from the environment. Between
them, virus-like NPs and polymeric NPs can prevent CoV
from spreading by blocking the vital viral receptors and
as a result its entry to the host cell (Figure 14) [141,142].
The other mechanisms involved with the activity of lipo-
somes and nano-emulsions have the capacity to interfere
with the virion envelope composition or mask the CoV
building, which finally prevents CoV adsorption and
invasion into the host cells [143], and dissolves the viral
lipid bilayer (Figure 14) [144,145]. Finally, some nanoma-
terials such as mesoporous andmetallic NPs (like Ag NPs,
and Au NPs) can initiate extracellular reactive-oxygen
species (ROS) [146–148], which effectively kill and destroy
the biological structure of CoV [144], as shown in Figure 14.

Figure 13: Degradation of CoV in wastewater by photocatalysis.
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6 Conclusion and future aspects

SARS-CoV-2 is a virus that first appeared in China at the
end of 2019 and quickly spread to the rest of the world,
causing a COVID-19 pandemic. It was first believed to
affect only the respiratory system but it was quickly

discovered to affect the gastrointestinal system. The envir-
onmental impact is that SARS-CoV-2 is shed into the
sewage system and thereby enters Wastewater Treatment
Plants or, more broadly, the aquatic environment where it
is present. The use of membrane systems in virus removal
in wastewater has been considered to be necessary.

Table 3: Membrane antiviral nanomaterial additives

Antiviral nanomaterials Virus Ref.

Silver nanomaterials (Ag NMs) • Bovine herpesvirus-1 (BoHV-1), [132]
• MS2 bacteriophage,
• Tacaribe virus (TCRV),
• Hepatitis B virus (HBV),
• Porcine epidemic diarrhea virus (PEDV)

Gold nanomaterials (Au NMs) • Measles virus (MeV), [133,134]
• Respiratory syncytial virus (RSV)

Copper nanomaterials (Cu NMs) • Herpes simplex virus-1 (HSV-1), [135]
• Hepatitis C virus (HCV)

Zinc oxide nanomaterials (ZnO NMs) • Human influenza A virus (H1N1), [136]
• HSV-1

Titanium oxide nanomaterials (TiO2 NMs) • Newcastle disease virus (NDV) [137]
Silica nanomaterials (SiO2 NMs) • RSV, [138]

• HIV
Tin oxide nanomaterials (SnO2 NMs) • HSV-1 [139]
Carbon nanomaterials • Human immunodeficiency virus (HIV-1), [140]

• HSV-1,2, coxsackievirus (Cox B3),
• cytomegalovirus, grass carp reovirus

Figure 14: Nanomaterials as powerful disinfectants for CoV removal (different reaction mechanisms).
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Viruses should be retained entirely by UF or NF mem-
branes based on the MWCO (molecular weight cut-off).
Although the UF/MFmembranes used withMBR treatment
systems cannot be expected to be an effective media for
virus-sized particles based on the membrane nominal pore
size, under the optimal operating conditions, MBR systems
are also capable of removing various viruses and phages.
Using MBR treatment for viruses’ removal is not a novel
subject; however, selecting the right membrane type in a
long-term operation is important for maintenance, opera-
tion costs, and investment. Tertiary treatment of this type
of wastewater for reuse will be recommended with dif-
ferent NF and RO membranes. It is essential to highlight
that MBR water treatment systems need cleaning and
chemical backwashing of the membrane periodically to
prevent blockages of the pores and excessive biofilm for-
mation. Disinfection by chlorination, ozone, or UV could
sufficiently inactivate viruses to control them from passing
to the environment with the streams, and we can say that
ozone and UV seem to be more effective than chlorine.
Wastewater treatment plants may be a solution for early
disease identification in each area if a Wastewater Based
Epidemiology strategy is developed. It may also be used as
a lockdown decision helper. Due to the risk of SARS-CoV-2
spreading through the aquatic environment from inade-
quately treated wastewater, the SARS-CoV-2 pandemic
could raise global concerns that allow for upgrading
wastewater management, even in developed countries,
must be considered. On a global scale, increased efforts
to strengthenwastewater treatment, especially eliminating
or inactivating viral contaminants, should be a primary
concern. COVID-19 virus in wastewater sludge must be
taken into consideration for future studies. COVID-19 virus
may be present in primary, secondary, and tertiary treat-
ments and in chemically treated sludge. In fact, there are
no current publications on the occurrence of SAR-CoV-2
in the residual sludge. A few studies have looked at the
survival of coronavirus in wastewater in laboratory-scale
studies either using pasteurised wastewater or viral surro-
gates. Membrane-based sensors are a new promising area
with different applications and can be future prospective
in the removal and sensing of viruses in water. Recently,
many investigations employed different types of nanoma-
terials as either antimicrobial agents or effective drug
delivery systems to increase the efficacy of the newly
developed drugs for COVID-19. Therefore, more studies
on the role of drug-loaded nanomaterial-based delivery
systems should be considered. In addition, reaction
mechanisms by which nanomaterials can act as pro-
mising nanovaccines or nanodrugs for patients with
COVID-19 should be understood.
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