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Abstract: This article reports a simple, cost-effective, and
eco-friendly biosynthesis of ZnO/Fe3O4 nanocomposites
using Callistemon viminalis leaves’ water extract. For the
first time, we used a green synthetic route via C. viminalis
leaves’ extract to prepare ZnO/Fe3O4 nanocomposites
(NCs) using zinc acetate and ferric chloride as precursor
materials. Fourier transform infrared (FTIR) spectroscopic
results revealed polyphenolic compounds mainly phenolic
acids present in the plant extract acted as both reducing
and stabilizing agents to synthesize ZnO/Fe3O4 NCs.
Outcomes of XRD and X-ray photoelectron spectroscopy
confirmed the formation of ZnO–Fe3O4 heterojunction in
ZnO/Fe3O4 NCs, with crystallite sizes of 45, 35, and 60 nm,
respectively, according to Debye–Scherrer’s formula. EDX
confirmed Zn, Fe, and O in the ZnO/Fe3O4 nanocomposite.
Scanning electron microscopy and transmission electron
microscopy (TEM) analyses revealed the existence of both

ZnO and Fe3O4 in the NCs with some agglomeration.
The thermal stability of NCs was evaluated using thermo-
gravimetric analysis (TGA) and differential thermal analysis
(DTA) in a nitrogen atmosphere. In addition, as-prepared
ZnO/Fe3O4 NCs along with biosynthesized ZnO and Fe3O4

(prepared by C. viminalis extract) nanoparticles were exam-
ined for photodegradation of methylene blue under visible
light irradiation for 150min. The result reveals that the
photodegradation efficiency of ZnO/Fe3O4 NCs (99.09%)
was higher compared to that of monometallic ZnO (84.7%)
and Fe3O4 (37.1%) nanoparticles.

Keywords: ZnO/Fe3O4 nanocomposites, Callistemon vimi-
nalis, XPS, photodegradation, methylene blue

1 Introduction

Industrialization and urbanization have increased water
pollution to a great extent because of the direct disposal
of organic and industrial waste into water bodies [1].
Among all, dying industries produce an enormous amount
of wastewater containing unused dye along with other
chemicals [2]. It reported that the majority of dyes are toxic
and nonbiodegradable [3]. Hence, the dye effluent con-
taminates surface and underground water, which brings
out adverse effects on flora and fauna [4,5]. Methylene
blue (MB) is the most popular thiazine dye used in textile
industries. The prolonged exposure to MB results in harmful
effects, such as cyanosis, skin irritation, and gastrointest-
inal irritation, in living beings [6]. To solve this challenge,
many physical and chemical techniques including floccula-
tion–coagulation, surface adsorption, ion-exchange, che-
mical precipitation, and photocatalytic degradation have
been used to remove the dye from waste water [7,8].
Because of the simple experimental procedure and decom-
position of organic dye molecules into nontoxic simple
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products in the presence of semiconductors under proper
light irradiation, the photodegradation process proves its
superiority over other methods [9,10]. For semiconductor-
assisted photocatalytic process, various materials, such as
ZnO, CuO, TiO2, andmore, have been widely used as photo-
catalysts previously [11–13]. Among different semiconductor
materials, ZnO is a nontoxic, easily available, and cost-
effective material with a bandgap of 3.2 and 60MeV exciton
binding energy [14]. That is why ZnO became the priority to
many researchers working in the photocatalytic degrada-
tion of dyes using semiconductors. But ZnO semiconductor
has a rapid tendency of recombination of photo-induced
electron–hole pairs, which makes it difficult to gain the
practical demand [15]. To overcome this problem, many
metallic or nonmetallic materials, such as CdS, Ag2O, CuO,
and g-C3N4, have doped with ZnO and showed improved
efficiency toward photodegradation process [16–19].

However, the removal of nanocomposites (NCs) from
the treated solution is very tedious and expensive, which
is still a challenge. In this concern, magnetite nanoparti-
cles (Fe3O4 NPs) play an effective role as they are easily
separable from the solution by applying an external mag-
netic field [20]. Apart from this, doping of metallic NPs
with magnetite NPs improves their functionality and
recyclability and in turn cost effectiveness of the process
[21,22]. Inspired by this, many researchers have synthe-
sized and investigated the results of magnetite NCs [23].
After reviewing the literature, we observed that various
approaches, such as sol–gel, hydrothermal synthesis,
precipitation, and microemulsion, have been adopted
for preparing magnetite composites [24–27]. But many of
these methods have certain demerits, such as the use of
expensive and hazardous chemicals and the formation
of toxic byproducts, which makes it difficult to achieve
the requirement of green synthesis. In recent decades,
the use of bioproducts (including biomolecules, bacteria,
fungi, or plant extracts) for the synthesis of NPs has
attracted researchers as well [28]. Metals and metal oxide
nanoparticles have also been used as homogeneous or
heterogeneous nanocatalysts in various organic synth-
eses due to the large surface-to-volume ratio of nanopar-
ticles compared to bulk materials [29,30]. This strategy
provides a simple, cost-effective, and eco-friendly route
for the fabrication of nanomaterials [31]. Although synth-
esis of ZnO/Fe3O4 NCs by different routes has been
reported [32,33], a few reports on a green synthesis of
ZnO/Fe3O4 NCs are available [34,35]. In our present study,
we have synthesized ZnO/Fe3O4 NCs using Callistemon
viminalis leaves’ extract as a green reducing and stabilizing
agent. C. viminalis is a small tree that belongs to the family
Myrtaceae with a characteristic brushlike flowers. It is a
traditional medicine to treat hemorrhoids, gastroenteritis,
diarrhea, and skin infection [36–38]. The phytochemical

study reported that C. viminalis is rich in biomolecules,
including viminadiones, quercetin, and betulinic acid,
and can act as a green reducing and capping agent during
the fabrication of nanomaterials.

After reviewing the literature, we understand that
C. viminalis leaves’ extract-mediated biomimetic synth-
esis of ZnO/Fe3O4 has not been reported till date. In
this study, we have attempted to understand the role of
biomolecules present in leaves’ extract as a reducing and
stabilizing agent for the fabrication of ZnO/Fe3O4 NCs.
The novelty of this study is to show the efficacy of bio-
synthesized ZnO/Fe3O4 NCs as a photocatalyst in contrast
to ZnO or Fe3O4 NPs for the degradation of MB solution
under visible light irradiation.

2 Experimental methodology

2.1 Chemicals

All chemicals applied in this research study, including
zinc acetate dihydrate (Thermo Fisher Scientific India Pvt.
Ltd.), ferricchloride (ThermoFisherScientific IndiaPvt. Ltd.),
sodiumhydroxide (MerckLife Science India Pvt. Ltd.), and
methylene blue (Merck Life Science India Pvt. Ltd.), were
of analytical grade and used as received commercially
without further purification. Deionised water was used
throughout the experiment wherever required.

2.2 Preparation of C. viminalis leaves’
extract

Leaves of C. viminalis were collected from Jaipur National
University campus, India. The collected leaves were thor-
oughly washed under tap water and finally washed using
deionised water. After drying in shade, the leaves were
powdered in an electrical grinder. About 25 g of the pow-
dered leaves in 100mL deionised water was refluxed in a
Soxhlet apparatus (Sigma-Aldrich, India) for 2 h at 80°C
on a magnetic stirrer. On cooling, the suspension was fil-
tered throughWhatmann’s filter paper, and the filtrate was
collected as leaves’ extract and stored in a refrigerator at
2°C for further studies.

2.3 Biosynthesis of ZnO/Fe3O4 NCs

The ZnO/Fe3O4 NCs were prepared through an eco-friendly
green route, and the synthesis procedure is briefly illustrated
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as follows: 30mL of C. viminalis leaves’ extract was added
slowly in a round-bottom flask containing 30mL of zinc
acetate solution (0.01 M) under stirring. After 10min,
0.16 g of ferric chloride in 10mL deionised water was intro-
duced dropwise into the flask and heated to 60°C, followed
by the addition of NaOH (0.1M) to maintain pH 10. The color
of the solution changes from black to blackish brown after
1 h stirring, which indicated the formation of ZnO/Fe3O4

NCs. Afterward, the solution was cooled to room tempera-
ture, centrifuged, collected in a China dish, washed several
times with ethanol to remove unused extract and NaOH,
dried in an oven at 80°C, and finally calcined at 300°C before
storing for further studies. For comparison, monometallic
nanoparticles (ZnO and Fe3O4) had also been synthesized
using C. viminalis leaves’ extract. A schematic of aforemen-
tioned green synthesis is shown in Figure 1.

2.4 Characterization

FTIR spectral analysis in the range of 4,000–400 cm−1 was
carried out to investigate the role of C. viminalis leaf extract
in the fabrication of ZnO, Fe3O4, and ZnO/Fe3O4 nanopro-
ducts using a PerkinElmer spectrophotometer (MNIT,

Jaipur). A powder X-ray diffraction technique was per-
formed to determine the crystallinity and particle size of
biosynthesized product by PAN analytical (XPART PRO)
diffractometer in the scattering range (2θ) of 20–80° using
Cu Kα radiation (λ = 1.5406 Å). The surface morphology of
green synthesized samples was determined by scanning
electron microscopy (SEM) using Nova Nano SEM 450
(MNIT, Jaipur) and transmission electron microscopy
(TEM) at IIT Roorkee. The elemental composition was
investigated using EDX analysis. Chemical states of ele-
ments present in ZnO/Fe3O4 NCs were analyzed by X-ray
photoelectron spectroscopic technique (XPS, PHI 5000
Versa Probe III, IIT Roorkee). The thermal stability of
ZnO/Fe3O4 sample was recorded in a nitrogen atmosphere
at a heating rate of 5°Cmin−1 by TGA/DTA analyzer (EXSTAR
TG/DTA 6300, IIT Roorkee).

2.5 Designing of the photocatalytic activity
experiment

The photocatalytic efficiency of biosynthesized ZnO, Fe3O4,
and ZnO/Fe3O4 nanomaterials for the degradation of MB
dye was evaluated under visible light at pH 7. For the

Figure 1: Schematic of green synthesis of ZnO NPs, Fe3O4 (NPs), and ZnO/Fe3O4 NCs.
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photodegradation study, three experimental sets were pre-
pared. Each set comprised seven beakers (100mL) with
25mL solution of MB (32mg L−1) in each. The dose of bio-
synthesized ZnO, Fe3O4, or ZnO/Fe3O4 nanoproducts taken
was 0.004 g in each beaker. After certain intervals of time
(15, 30, 45, 60, 75, 90, and 150min), one beaker from each
set was removed from irradiation, and dye solutions were
centrifuged at 8,000 rpm followed by filtration to remove
the photocatalyst. MB degradation was examined by mea-
suring the absorbance of the dye solution at λmax = 665 nm
using a UV-Vis spectrophotometer. The percentage of MB
degradation was determined by the following equation:

= − / ×η A A A 100.t0 0 (1)

In equation (1), η is the degradation percentage and A0

and At are the absorbances of MB dye solution at t = 0 and
after time t, respectively.

3 Results and discussion

3.1 FTIR analysis

The involvement of biomolecules present in C. viminalis
leaves’ extract, for the fabrication of nanomaterials, was
screened by FTIR spectroscopic analysis. Figure 2 depicts

the FTIR spectra of C. viminalis leaves’ extract as well as
biosynthesized ZnO, Fe3O4, and ZnO/Fe3O4 nanomater-
ials. The FTIR spectrum of C. viminalis leaves’ extract
(Figure 2a) showed some major absorption bands at
3,419, 2921.76, 1718.16, 1451.86, 1368.87, and 1180.95 cm−1

were assigned to O–H stretching of phenolic acids and
phenols, C–H stretching in CH3 and CH2, C]O groups in
phenolic acids and flavonoids, C]C stretching of the aro-
matic ring, and C–Hdeformation in CH3 and C–OH stretching
in phenolic acids, respectively, as reported in various litera-
ture [39–41].

However, after the reduction of metal precursors into
their respective metal nanoparticles, a remarkable differ-
ence in intensity, position, and shape of absorption peaks
had been observed, which showed the participation of
biomolecules (present in leaves’ extract) in the reduction
and capping of nanomaterials. The additional peaks in
the spectra of monometallic NPs at 466.53 cm−1 (Figure 2(b))
and 612 cm−1 (Figure 2(c))were allocated to Zn–O and Fe–O
stretching vibrations, respectively, confirming the forma-
tion of ZnO and Fe3O4 NPs [42]. Moreover, shifting in
absorption peak values of Zn–O (452.93 cm−1) and Fe–O
(591.63 cm−1) towards lower wave numbers in ZnO/Fe3O4

(Figure 2(d)) indicated the formation of bimetallic nano-
composite. Furthermore, shrinkage/shifting of peaks cor-
responding to C]O, C]C, and C–OH groups (1718.16,
1451.86, and 1180.95 cm−1) in the spectra of nanoproducts

Figure 2: FTIR spectra of (a) C. viminalis leaf extract, (b) ZnO, (c) Fe3O4, and (d) ZnO/Fe3O4 NCs.
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suggests that polyphenolic compounds mainly phenolic
acids are responsible for the bioreduction of metal ions
and capping of as-prepared nanoproducts.

3.1.1 Mechanism of biosynthesis

On the basis of FTIR results, a possible mechanism for the
C. viminalis leaves’ extract-mediated synthesis of ZnO,
Fe3O4, and ZnO/Fe3O4 has been proposed.

In short, betulinic acid present in leaves’ extract under-
goes oxidation according to the free radical mechanism,
that is, betulinic acid to dehydro betulinic acid (Scheme 1).

Zn+2/Fe+3 ions (present in solution) form complex with
dehydro betulinic acid via transfer of electrons from anionic
dehydro betulinic acid to metal ions. On calcination, the
resulting complex is converted into respective metal oxide
nanoparticles because of the capping effect of biomole-
cules [43].

3.2 XRD analysis

The phase and crystal structure of biosynthesized ZnO,
Fe3O4, and ZnO/Fe3O4 nanomaterials were examined by
powder X-ray diffraction analysis. Figure 3 depicts the

Scheme 1: Proposed mechanism for the biosynthesis of ZnO, Fe3O4, and ZnO/Fe3O4 NCs.

Figure 3: Powder XRD pattern of biosynthesized NPs: (a) ZnO, (b) Fe3O4, and (c) ZnO/Fe3O4 NCs.
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X-ray patterns of ZnO (a), Fe3O4 (b), and ZnO/Fe3O4 (c).
In Figure 3(a), XRD peaks at 2θ values = 32.03°, 34.73°,
36.66°, 48.03°, 57.05°, 68.32°, and 69.49° were indexed to
the respective (100), (002), (101), (102), (110), (112), and (201)

crystallineplanesofhexagonalwurtzitephaseofZnO (JCPDS
Card No. 36-1451), whereas in Figure 3(b), diffraction peaks
at 2θ values = 30.16°, 35.29°, 43.12°, 56.83°, and 62.59° cor-
respond to the miller indices (220), (311), (400), (511), and

Figure 4: SEM images: (a): ZnO, (b) Fe3O4, and (c) ZnO/Fe3O4 NCs. TEM images: (d) ZnO, (e) Fe3O4, (f) ZnO/Fe3O4 NCs, and (g) SAED pattern
of ZnO/Fe3O4 NCs.
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(440), respectively (JCPDS Card No. 19-0629), which con-
firm the face-centered cubic structure of Fe3O4 [44]. For
ZnO/Fe3O4 NCs (Figure 3c), peaks at 32.56°, 34.87°, 36.07°,
57.28°, 68.92°, and 69.58° corresponding to (100), (002),
(101), (110), (112), and (201) planes infer the presence
of ZnO in hexagonal wurtzite phase, whereas peaks at
2θ = 30.10°, 35.65°, 43.15°, and 62.86° represent (220),
(311), (400), and (440) planes of face-centered cubic struc-
ture of iron. The identification of a dual phase with shifting
of the respective peak values in the XRD pattern of NCs
indicates the formation of Zn–Fe heterojunction.Moreover,
the crystallite size (D) of as-prepared nanoproducts is cal-
culated using Debye–Scherrer’s formula (D = kλ/β cos θ)
and at maximum intense peaks, the size of ZnO, Fe3O4, and
ZnO/Fe3O4 is found to be 45, 35, and 60 nm, respectively.

3.3 SEM and TEM analysis

Morphology and nanoscale of the biosynthesized sam-
ples were analyzed using SEM and TEM. An overview of
SEM images of Zn, Fe3O4, and ZnO/Fe3O4 samples is

shown in Figure 4(a–c). As observed from images, the
morphology of ZnO/Fe3O4 differs from ZnO or Fe3O4,
which suggested the formation of ZnO/Fe3O4 NCs. Further-
more, in the SEM image of ZnO/Fe3O4, rod-shaped particles
of ZnO and cubic-shaped structures of Fe3O4 are clearly
visible, which interprets the interaction of Fe3O4 with ZnO.
Morphological differences among as-prepared samples were
also identified by TEM micrographs (Figure 4(d–f)). The
spherical shape of ZnO NPs with a particle size of ∼45nm
can be seen in Figure 4(d), whereas Fe3O4 NPs have an irre-
gular shape (Figure 4(e)) with a particle size of ∼35 nm. The
coexistence of ZnO and Fe3O4 can be clearly identified in the
TEM micrograph of NCs (Figure 4(f)), wherein Fe3O4 can
identify as dark particles with some agglomeration because
of its highly magnetic nature and ZnO as bright particles
surrounding Fe3O4. Moreover, selected area electron diffrac-
tion (SAED) image of ZnO/Fe3O4 NCs (Figure 4(g)) also inter-
prets the incorporation of Fe3O4 in the crystalline lattice of
ZnO NPs, which resulted in a comparatively less crystalline
and large-sized ZnO/Fe3O4 NCs. Thus, the results obtained
from SEM and TEM analyses were in close agreement with
XRD results.

Figure 5: EDX spectrum of (a) ZnO, (b) Fe3O4, and (c) ZnO/Fe3O4 NCs.

1918  Poonam Dwivedi et al.



3.4 EDX analysis

To determine the chemical composition of ZnO, Fe3O4,
and ZnO/Fe3O4 nanoproducts, EDX analysis was carried
out and results are displayed in Figure 5(a–c). It can be
seen in Figure 5(a) that the EDX spectrum consists of
strong peaks for Zn and O, whereas Figure 5(b) shows
Fe and O elemental peaks. In case of ZnO/Fe3O4 NCs
(Figure 5(c)), strong signals for Zn, Fe, and O elements
were well recognized, which further confirmed the coex-
istence of ZnO and Fe3O4. The appearance of carbon in all
three spectra may be due to biomolecular capping on the
surface of nanoproducts [45]. Based on EDX outcomes,
the weight percentage of elements in ZnO/Fe3O4 NCs was
32.56, 38.67, and 28.77% for Zn, Fe, and O, respectively.

3.5 XPS analysis

XPS analysis was carried out to demonstrate the chemical
nature of the surface of biosynthesized ZnO/Fe3O4 NCs.

Figure 6(a) depicts the full scan spectrum of ZnO/Fe3O4

and the appearance of major peaks at binding energies of
1,021 eV (Zn2p), 725 eV (Fe2p), 530 eV (O1s), and 284 eV
(C1s) confirms the fabrication of ZnO/Fe3O4 NCs. High-
resolution XPS spectra of Fe2p, Zn2p, O1s, and C1s are
shown in Figure 6(b–e). In Figure 6(b), a doublet for Fe2p
at 711.94 and 726.93 eV was assigned to respective binding
energies of Fe2p3/2 and Fe2p1/2 of Fe3O4 [46,47]. In the Zn2p
spectra (Figure 6(c)), the spin-orbit doublet Zn2p3/2 and
Zn2p1/2 peaks were centered at binding energies of 1021.7
and 1044.65 eV, respectively [48]. It is evident from the
literature that Zn2p3/2 and Zn2p1/2 peaks are separated by
23 eV in pure ZnO. From the XPS results, peaks of Zn2p in
NCs were separated by 21 eV, which strongly manifests the
synergistic effect between ZnO and Fe3O4 NPs, contri-
buting to the enhancement in photocatalytic activity of
NCs [49]. XPS spectrum of C1s (Figure 6(d)), consists of
three peaks at 283 eV (C–C) [50], 284 eV (C]C) [46,51],
and 285 eV (C]O) [52], attributed to the polyphenolic
compounds of leaves’ extract acting as a stabilizing agent
for ZnO/Fe3O4 NCs [53]. In the O1s spectrum shown in

Figure 6: XPS spectra of ZnO/Fe3O4 NCs: (a) survey spectrum, (b) Fe2p, (c) Zn2p, (d) C1s, and (e) O1s.
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Figure 6(e), the peak position at 529.89 eV was assigned to
oxygen in Fe–O of ZnO/Fe3O4, corresponding to ferro–
ferric oxide. The deconvolution of O1s signals revealed
the presence of Zn–O of ZnO at a binding energy of
530.89 eV. The peak at 531.89 eV may be due to the
hydroxyl group of biomolecular capping and oxygen che-
misorbed onto the surface of ZnO/Fe3O4 NCs [54]. Under
visible light irradiation, these active oxygen species on the
surface of NCs may contribute to MB degradation via
oxygen ions, such as O−1 and O−2, which in turn improves
the photocatalytic activity of ZnO/Fe3O4 NCs [55].

3.6 Thermal analysis

Thermal characteristics of ZnO/Fe3O4 NCs were deter-
mined simultaneously in a single run by using TGA and
DTA (Figure 7). TGA results showed that the thermal
decomposition of ZnO/Fe3O4 NCs occurred in four steps.
Initially, up to 100°C, the weight loss of 5.2% was due to
the loss of adsorbed water on the surface of NCs. The
weight loss observed in the second step (200–400°C)
was 17.3%, which might be due to the dismissal of

biomolecules capped on the surface of NCs. The loss in
weight observed in between 400 and 600°C (third step)
was assigned to the adsorbed oxygen species [56]. In the
last step, a loss of 7.5% in weight was observed up to
800°C. DTA thermogram (Figure 7) displayed energy
changes irrespective of change in weight. The peaks
observed at 328 and 599°C were associated with the
release of bioactive molecules and adsorbed oxygen,

Figure 7: Thermograms of ZnO/Fe3O4 NCs.

Table 1: Comparative analysis on the photoremediation of MB in the
presence of biosynthesized ZnO, Fe3O4, and ZnO/Fe3O4 NCs for a
period of 150min

Sr. no. Time (min) ZnO
(Emax)

Fe3O4

(Emax)
ZnO/
Fe3O4 (Emax)

1 Initially 1.32 1.32 1.32
2 15 1.239 1.29 0.956
3 30 0.987 1.19 0.854
4 45 0.914 1.12 0.806
5 60 0.865 1.023 0.772
6 75 0.722 0.992 0.578
7 90 0.682 0.93 0.485
8 150 0.202 0.829 0.012
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respectively. A peak at 927°C in DTA thermogram prob-
ably infers a crystalline transition of ZnO/Fe3O4 NCs.

3.7 Assessment of the photocatalytic
activity

The photodegradation of MB in the presence of as-prepared
nanoproducts was examined under visible light, and the
extent of degradation was measured in terms of absorbance
of MB solution using a UV-Vis spectrophotometer after cer-
tain intervals of time for 150min. The results of degradation
studies are showcased in Figures 8 and 9, and Table 1,
which revealed that the degradation of MB increases with
an increasing irradiation time. From the absorbance spectra
of MB (Figure 8 and Table 1), it can be seen clearly that
initially, 15min of exposure to sunlight, MB solution was
degraded by 6.14, 2.27, and 28.03% and after 90min, MB
solution was degraded by 48.3, 29.94, and 63.25% in the
presence of biosynthesized ZnO, Fe3O4, and ZnO/Fe3O4

samples, respectively.
As shown in Figure 8, MB dye was almost completely

degraded (99.09%) by ZnO/Fe3O4 NCs in 150min, whereas
ZnO and Fe3O4 NPs degraded it by 84.7 and 37.1%, respec-
tively. These outcomes of MB absorbance spectra revealed
that the degradation efficiency of ZnO NPs was increased
in the presence of Fe3O4 NPs. The enhancement in MB
removal by ZnO/Fe3O4 NCs compared to ZnO NPs indicated
the synergistic effect between ZnO and Fe3O4, assigning to
the degradation of MB.

Moreover, the degradation efficiency of ZnO/Fe3O4

NCs was examined for three consecutive runs, and the
results are shown in Figure 10.

From the results, it is clear that the composites were
active up to three cycles. Although in the third cycle,
the degradation efficiency was decreased (90.1%). This
decrement may be due to the adsorbance of some MB
on the surface of photocatalyst, which perhaps blocks
some active sites of NCs and can also be due to some
loss of NCs during the recovery process.

The possible mechanism for the photodegradation of
MB dye over biosynthesized ZnO/Fe3O4 NCs under visible
light is shown in Figure 11.

The phenomenon of photodegradation of MB takes
place when visible light is irradiated on the photocatalyst
(ZnO, Fe3O4, or ZnO/Fe3O4), which leads to the genera-
tion of electron–hole pairs in conduction/valence bands
(VBs) simultaneously on the surface of the photocatalyst

Figure 8: UV-Vis absorbance spectra of MB solution during the photocatalytic process with biosynthesized: (a) ZnO, (b) Fe3O4, and (c) ZnO/
Fe3O4 NCs.

Figure 9: Graphical portrayal of percentage removal of MB at 15,
90, and 150min in the presence of as-prepared ZnO, Fe3O4, and
ZnO/Fe3O4.
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(equation (2)). In the conduction band (CB), oxygen
on the surface of the photocatalyst combines with the
excited electron and forms ˙ −O2 (superoxide radical; equa-
tion (3)). This radical checks the recombination of e−/h+

pairs by converting into ˙OH radicals through hydroper-
oxyl radicals (HOO˙) and H2O2 intermediates (equation
(4)). Simultaneously, holes produced in VB react with
the surface water to produce hydroxyl radicals (˙OH;
equation (5)). The hydroxyl radicals produced in CB
and VB, on the surface of photocatalyst, act as a strong
oxidizing agent, which in turn degrade MB molecules
into simple inorganic molecules, such as water, carbon
dioxide, and inorganic ions (equation (6)). The survey of

the previous literature also reveals that ˙ −O2 (superoxide)
radicals and hydroxyl radicals (˙OH) are the leading reac-
tive species for the photodegradation of MB dye [57].

As shown in Figure 8 and Table 1, the absorption
intensity of dye gradually decreases with an increas-
ing irradiation time and finally diminished in case of
ZnO/Fe3O4. This is because of a breakdown of the hetero-
cyclic conjugated structure of MB molecule into simple
molecules, such as water, carbon dioxide, and inorganic
ions. Apart from this, the photocatalytic efficiency of
ZnO/Fe3O4 NCs was greater compared to ZnO NPs, and
this can be summarized as follows: Fe3O4 NPs possess a
narrow bandgap, and hence, e−/h+ pairs produced in it
under irradiation recombines fastly, as a result charge
carriers could not survive for a long time for the photo-
catalysis process [58]. In ZnO/Fe3O4 NCs, the energy level
of CB and VB of ZnO differs from that of Fe3O4. During
irradiation, some photogenerated electrons from ZnO
are captured by Fe3O4 NPs at the composite’s interface,
where they react with the surface oxygen to form super-
oxide radicals. However, some holes transfer to VB of
Fe3O4 from ZnO and react with the surface water to
produce hydroxyl radicals (˙OH). This phenomenon at
the interface restricts an electron–hole recombination
in ZnO. As a resultant, the generation of reactive species
increases at the junction of ZnO–Fe3O4, which accelerates
the degradation of dye molecules [59]. Hence, the effi-
cient charge transfer separation at heterojunction of two
different semiconductor materials attributes to an enhanced
photo-catalytic activity of ZnO/Fe3O4 NCs to degrade MB

Figure 10: Reutilizing performance of ZnO/Fe3O4 up to three cycles.

Figure 11: Possible mechanism of photocatalytic degradation of MB in the presence of C. viminalis leaves’ extract-mediated biosynthesized
ZnO/Fe3O4 NCs.
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solution. However, a comparison data for photodegradation
of MB dye solution by ZnO/Fe3O4 NCs synthesized by dif-
ferent routes are displayed in Table 2. The results show
considerable proficiency for the current study of MB degra-
dation by C. viminalis-synthesized ZnO/Fe3O4 NCs.

+ →  +

− +hνPhotocatalyst surface e h ,CB VB (2)

+ →

− ⋅2e 2O 2 O ,CB 2 2 (3)

( )

+ → →

→

⋅ − + ⋅

⋅

2 O 2H 2HOO H O
2 OH oxidizing agent ,

2 2 2 (4)

( )+ → +

+ +
⋅h H O H OH oxidizing agent ,VB 2 (5)

(

)

+ → +

+

⋅OH MB Degradation products CO H O
Simple inorganic ions .

2 2 (6)

4 Conclusion

In this study, ZnO/Fe3O4 NCs as well as ZnO and Fe3O4

NPs were successfully synthesized via eco-friendly route
using C. viminalis leaves’ extract without using any toxic
additives. FTIR study indicated that the leaves’ extract
played a key role in the reduction and stabilization of
ZnO/Fe3O4 NCs, ZnO NPs, and Fe3O4 NPs, through the
interaction of O–H, C]O, and C]C groups of phyto-
chemicals present in C. viminalis leaves’ extract. Nanosize
and the presence of pure phase in the crystal structure
of biosynthesized products without major impurities, were
confirmed by XRD analysis. XRD results were supported by
XPS outcomes and revealed the formation of Zn–Fe hetero-
junction in ZnO/Fe3O4 NCs. Evidence of SEM, TEM, and EDX
analyses also confirms the existence of Zn and Fe in com-
posite nanoparticles. In addition, the photodegradation of
MB under visible light irradiation was carried out using
synthesized ZnO, Fe3O4, and ZnO/Fe3O4 as a photocatalyst.
The results obtained in this study demonstrate that com-
pared to monometallic (ZnO and Fe3O4) NPs, bimetallic NCs
of Zn and Fe (ZnO/Fe3O4) accelerated the degradation of
MB. The enhanced photocatalytic activity was attributed
to the synergistic effect between ZnO and Fe3O4 nanoparti-
cles in ZnO/Fe3O4 NCs. Moreover, ZnO/Fe3O4 NCs can be

reused for three successive runs. Therefore, these findings
suggest that ZnO/Fe3O4 NCs synthesized via C. viminalis
leaves’ extract have a potential as an efficient photocatalyst
for water purification.
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