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Abstract: The recent past witnessed rapid strides in the
development of lithium-based rechargeable batteries. Here,
some key technological developments in intercalation, con-
version, and alloy-type anode and cathode materials are
reviewed. Beyond the active electrode materials, we also
discuss strategies for improving electrolytes and current
collectors. An outlook with remarks on easily misleading
battery characteristics reported in the literature, impending
challenges, and future directions in lithium-based recharge-
able batteries is provided. Lastly, the authors also empha-
size the need for lab-based research at the pouch cell level
with practical energy densities, in addition to discussing
scalability and economic viability of different battery mate-
rials and their architectures.

Keywords: rechargeable lithium-ion batteries, active mate-
rials, CO2 emission

1 Introduction

Alternative vehicle technologies, such as battery electric
vehicles (BEVs), are being developed to reduce our depen-
dence on oil for transportation and mitigate CO2 emissions
[1–4]. Unlike low-efficiency gasoline or diesel-based internal
combustion engines that powermost present-day vehicles, a
BEV is fully powered by the energy stored in a large onboard
battery pack with projected efficiencies up to 70%. The per-
formance of a BEV ultimately hinges on the power and

energy capacity of its battery pack. An automotive battery
pack typically consists of a large number of cells (few hun-
dreds to thousands) to meet the required energy and power
needs of a BEV. The wide deployment of BEVs for maxi-
mizing the electrification of the road transportation system
demands drastic improvements in the performance of
today’s battery packs. Specifically, the U.S. Advanced Bat-
tery Consortium developed a set of goals for BEV battery
packs, which require that the specific energy be increased
beyond 235Wh/kg at the pack level (with a concomitant
volumetric energy density of 500Wh/L) at power densities
as high as 2,000W/kg while reducing the cost to <$125 per
kWh [5].

The automotive and electronic industries have embraced
rechargeable lithium-ion battery (LIB; Figure 1a) as “the com-
ponent” for battery packs because it provides the highest
energy density of all commercially available battery chemis-
tries [1,6,7]. Although presently used 85 kWh LIB-based
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packs allow up to ∼250 miles driving range on a single
charge, their cost is twice the price of a standard economy
car. The high cost and limited mileage of present LIB-pow-
ered cars are due to the intrinsically limited capacities of the
Li-ion insertion cathodes, which are nearing their practical
limits. While much progress is being made to improve LIBs,
other battery chemistries such as lithium–sulfur batteries
(LSBs), Al-ion, Na-ion, and K-ion are also being explored
[8–14]. In this short review, recent progress in improving
the electrochemical performance and cycle life of lithium
batteries is presented.

Given that lithium batteries can deliver higher energy
and power densities, they were the obvious choice for
portable electrochemical energy storage. In the recent
past, much research has been devoted to realizing LIB
electrodes with higher rate capability and charge capac-
ity. For LIB cathodes, achieving sufficiently high voltage
can drastically improve their energy and power densities
and make them smaller and cheaper. Figure 1b shows the
general range of different intercalation and conversion/
alloying-type cathodes and anodes for LIBs. This review
discusses efforts to improve lithium battery electrodes at

Figure 1: (a) A schematic showing the components of Li-ion batteries. Novel strategies to improve LIB performance by optimizing different
components of LIB (red text) will be discussed in this review. (b) Approximate behavior of theoretical discharge curves for selected cathode
(inset-anode)materials. The inner inset shows the approximate ranges for average discharge potentials and specific/gravimetric capacities
for intercalation and conversion/alloy type electrodes. Some widely used or promising electrode materials that are highlighted in this
review are also shown (Li4Ti5O12 (LTO): Li4Ti5O12; LiFePO4 (LFP): LiFePO4; LiCoO2 (LCO): LiCoO2; nickel manganese cobalt oxide (NMC):
LiNi0.33Co0.33Mn0.33O2; NCA: LiNi0.8Co0.15Al0.05O2).
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various levels via: (1) the identification of the optimal
chemical composition of active materials (AMs), (2) tai-
loring physical properties of AMs such as size and sur-
face, and (3) integrating AMs with binders, conductive
additives, and current collectors. More importantly, this
review will also discuss how different interfaces such
as the solid electrolyte interface (SEI) and current col-
lector active material interface (CCAMI) impact the LIB
performance and highlight strategies to overcome adverse
interfacial effects.

2 Intercalation cathodes

The LIB intercalation cathodes can be categorized into
four different crystal structures, viz., layered, spinel,
olivine, and tavorite [15,16]. Although many materials
can be used as intercalation cathodes, much attention
has been paid to transition metal oxide and polyanion
compounds because of their higher operating voltages
[17]. These oxide cathodes can deliver specific capacities
∼150–200mA h/g at the cathode level. To increase the
specific capacity and cycling stability, much research
has been devoted to identifying the optimal chemical
composition for achieving high specific capacity in inter-
calating AMs.

2.1 Layered intercalation cathodes

The first intercalation cathode (LiTiS2) was developed by
Whittingham and Gamble in 1975 [18], but due to a lower
voltage (∼2 V), these cathodes were replaced by layered
intercalation metal oxide cathodes (LiMO2, M is either
bulk transition metal or a mixture of different transi-
tion metals) [18]. These cathodes have high operating
voltage (3.0–4.8 V) and high theoretical specific capacity
(∼250–280mA h/g). Goodenough, the 2019 Nobel Laureate
in Chemistry, introduced LCO as an alternative cathode
that was eventually commercialized by SONY [19]. Although
it exhibited high capacity (∼275mAh/g), the cost of Co is
high. Also, at higher voltages, LCO suffers from a fast capa-
city fade due to the structural changes within the material
[20–22]. Additionally, its thermal instability limits its use in
EVs [17,23]. The use of other isostructural oxides has also
been explored, for example, LiNiO2 (LNO) is a cheaper alter-
native to LCOwith a comparable theoretical specific capacity.
However, LNO is difficult to synthesize [24,25] and is ther-
mally unstable [26]. Another cheaper and environmentally

friendly alternative to both LCO and LNO is LiMnO2 (specific
capacity ∼285mAh/g), which too is difficult to synthesize
and suffers from high capacity fading due to a change in
its crystal structure from layered to spinel (LiMn2O4) with
cycling [17,27–33]. Subsequent studies found that the pre-
sence of dopants in LiMnO2 helped reduce the thermal run-
away and enhance structural stability and cycling stability
at higher voltages [34–38]. Consequently, ternary materials
such as LiNixCoyMnzO2 (often referred to as NCMor NMC) and
LiNi0.8Co0.15Al0.05O2 (NCA) were developed, which proved
attractive for commercial use. For example, NMC proved
as a cheaper alternative compared to LCO as it contained
a minimal amount of Co and exhibited a relatively superior
thermal stability and a similar or higher specific capacity
compared to LCO at the same operating voltage [39].
LiNi0.33Co0.33Mn0.33O2 (also known as NMC 111) is the
common form of NMC that is widely used in today’s battery
market. Beyond the NMC 111 composition, higher specific
capacities were achieved in Ni-rich NMC cathode mate-
rials; however, they suffered from poor thermal stability
and cycle life [40,41]. Similar to NMC, NCA is another
cathode AM in which Ni is substituted with small amounts
of Co and Al, and Al is known to improve the thermal
stability of NCA [42]. The theoretical capacity of NCA is
∼280mA h/g [42], and both Panasonic and Tesla have
embraced NCA over LCO as the cathode material for their
LIBs. Lastly, a small amount of ion doping (Cl, Mg, Na, F,
etc.) has also been shown to improve the thermal stability
of NCA [24,36–60].

Recently, another family of Li-rich layered oxide
composite has been synthesized by structurally incorpo-
rating a Li2MnO3 stabilizer into an electrochemically active
LiXO2 host (X = Mn, Ni, Co). The excess lithium in such
Li-rich oxide composites boosts the specific capacity of the
cell up to ∼460mAh/g (for Li2MnO3) by activating Li2MnO3

at >4.5 V [68]. Such activation releases Li2O initially and
facilitates better Li diffusion by acting as a Li reservoir.
LiXO2 are cost effective and environmentally friendly [69],
and although they exhibit a relatively higher capacity they
are considered to be electrochemically inactive (Table 1).
Accordingly, much effort has been devoted to increase their
electrochemical performance through ion doping (Ni, Mg,
Ru, Cr, Mo etc.) [63–75,17].

2.2 Spinel intercalation cathodes

In 1983, Thackeray et al. proposed that LiMn2O4 (LMO)
[88] (specific capacity ∼150 mA h/g) could be used as an
intercalating cathode. LMO exhibits a cubic “spinel”
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structure in which Li is present at tetrahedral sites and
Mn at the octahedral sites. LMO is relatively cheaper and
environmentally friendly; however, its cycling stability is
poor because Mn tends to dissolve in electrolytes such as
LiPF6 [89,90] and LiAsF6 [89,90]. Surface coating [91–96],
tuning morphology and size [97–99], and doping [100–104]
have been found to increase the cycling stability of
LMO. Particularly, Ni-substituted (LiMn2−xNixO4) and
(Lix(MnNi)1−xO4) spinels have emerged as promising
cathode materials (Table 2) as they exhibit excellent
cycling stability even at a high potential (∼4.8–5.0 V)
[105–107].

2.3 Olivine intercalation cathodes

Olivine phosphates (LiMPO4) [109] and olivine silicates
(Li2MSiO4) [110], where M = Fe, Mn, Mg, and Co, have
also been evaluated as cathode materials [42,111]. Unlike
the layered LCO and LNO cathodes, olivine electrodes are
significantly more stable and exhibit better power capa-
bility [17]. Although LFP has been used in commercial
LIBs, it exhibits a relatively low open circuit potential
(3.5 V) and low electrical/ionic conductivity [111]. As
such, surface coatings and dopants have been used to

increase the conductivity of the LFP [112–115]. Notably,
as discussed later in Section 2.6, a new approach invol-
ving Al current collector with vertically aligned carbon
nanotubes (VACNTs) could resolve the CCAMI issue and
improve conductivity across the interface between LFP
and the Al current collector [116]. Other olivine-like mate-
rials such as LiNiPO4, LiMnPO4, LiMgPO4, and LiCoPO4

also have a higher potential (4.1–4.8 V) but they exhibit a
high intrinsic resistance which results in lower electro-
chemical activity and capacity [117–119]. Similar CCAMI
approaches as in the case of LFP were used to improve
the electrochemical activity and capacity [117,120,121].
Olivine silicates are more thermally stable than phos-
phates as all four oxygen atoms of tetrahedron SiO4 con-
tribute to connect the structural framework, whereas in
phosphate only three oxygen atoms contribute [122].
Also, the theoretical capacity of silicates is almost double
(∼330mA h/g) that of LFP [123–125]; however, the prac-
tical cycling performance of these silicates is not comparable
to that of LFP because of its structural instability/phase
change during charging [126–128]. Excess lithium was found
to improve structural stability [129], specifically LixMSiO4

(where x = 2), which was modified using approaches similar
to those used for LFP to increase the overall electrochemical
performance (Table 3) [122,130–132].

Table 2: Representative spinel intercalation cathode materials along with their operating voltage, cycle capacity, and C rate

Material/condition Operating voltage (V) Initial/final capacity (mA h/g) Cycle/C rate Year/Ref.

LiMn2O4/pure 3.0–4.5 96.00/85.15 100/1C 2019 [97]
LiMn2O4/LaF3 coated 0–1.1 109.5/107.9 100/10C 2016 [108]
LiMn2O4 nanorods/Li4Ti5O12 coated 3.2–4.2 98.4/80.9 500/1C 2019 [98]
LiMn2O4/mesoporous 3.0–4.5 100.51/96.42 100/1C 2019 [97]
LiMn2O4/Al doped 3.2–4.2 100.7/94.6 400/0.5C 2020 [104]
LiMn1.5Ni0.5O4 3.5–5.0 111.4/102.3 50/5C 2010 [106]
Li1.2Mn0.6Ni0.2O2 2.0–4.8 >200/200 50/NA 2016 [107]

Table 1: Representative layered intercalation cathode materials along with their operating voltage, cycle capacity, and C rate

Material Operating voltage (V) Initial/final capacity (mA h/g) Cycle/C rate Year/Ref.

LCO 2.7–4.3 145/140 20/1C 2003 [83]
NMC 111 3.0–4.3 150/150 10/0.5C 2013 [84]
NCA 3.0–4.3 184.5/172.3 110/1C 2018 [85]
NMC 622 3.0–4.2 155.4/147.3 400/0.1C 2017 [86]
NMC 811 3.0–4.2 172.5/114.7 400/0.1C 2017 [86]
LiNi0.8(1−x)Co0.1Mn0.1Ca0.8xO2 2.5–4.5 195/130 100/0.2C 2017 [64]
Li(Ni0.5Co0.2Mn0.3)1−xZrxO2 3.0–4.6 190/166 100/1C 2016 [54]
Li2MnO3 2.0–4.8 180/NA NA 2013 [87]
Li1.98Mg0.01MnO3 2.0–4.6 307.5/259.8 30/0.1C 2016 [79]
Li1.23Fe0.15Ni0.15Mn0.46O2 1.5–4.5 255/211 50/NA 2017 [78]
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2.4 Tavorite intercalation cathodes

Considering their exceptional thermal stability and ionic
conductivity, tavorite intercalation cathodes (LiMPO4F)
are a suitable replacement for olivine cathodes. Tavorite
cathodes allow 3D ion transport unlike 1D transport in
olivine cathodes [12,133]. Materials with an open struc-
ture, such as LiFeSO4F/LiVPO4F/LiVPO4O (specific capa-
city ∼150mAh/g) have been considered as promising
cathodes as they exhibit an open circuit potential (>4 V)
in addition to a stable structure that supports fast Li-ion
diffusion (Table 4) [52,133–137]. Although the stability is
better, the synthesis of these materials in their pure form
remains challenging [135,138].

2.5 Nanostructured intercalating AMs for
cathodes

The recent progress in lithium batteries has largely bene-
fited from the development of nanostructured electrodes
in comparison to conventional electrodes because of their
unique morphology, significantly enhanced kinetics, and
large surface area (Table 5) [3,6,17,140–151]. Nanostruc-
tured electrodes shorten the diffusion length and facilitate
a higher contact area between the electrolyte and AMs
leading to more exposed redox sites, which deliver higher
power and energy densities [144,152–154]. Fick’s correla-
tion between the diffusion length L and its diffusion

coefficient D can be expressed as τ = L2/D [144], where τ
is the diffusion time.

Based on the Li-ion diffusion coefficient D = 2.5 ×
10−12 cm2/s, a complete discharge occurs within ∼40 s
when the particle size is L = 100 nm while it takes ∼1 h
for L = 2 µm. Many physicochemical characteristics such
as crystallinity, phase purity, particle morphology, grain
size, and surface area depend largely on the AM synthesis
methods. Thus, different fabrication methods such as
grinding, ball milling, and sol–gel method have been
used to synthesize nanostructured intercalating AMs. A
detailed review on the synthesis methods can be found in
ref. [155].

Okubo et al. [156] demonstrated excellent high-rate
capability for nanosized LCO (average particle size ∼17 nm),
that is, 65% of the 1C-rate capability retention. However,
they also found that extreme reductions in the crystallite
size below 15 nm drastically decreased the overall capacity
plausibly due to defects. In the case of LFP, the capacity
increased linearly with decreasing particle size [152]. In
the case of LMO, though the initial capacity was higher,
increased capacity fading was observed due to the dissolu-
tion of Mn into electrolyte via disproportionation reaction
on the larger surface area nanostructured LMO [157–160].
Although nanostructuring can reduce Li+ diffusion length
ensuring an improved rate capability, it increases the oxida-
tion of nanoparticles (NPs) leading to a thicker SEI layer on
the surface of the electrode and results in capacity fading
[153,154]. As discussed in the previous section, both size
and structure of AM play a critical role in improving the

Table 3: Representative olivine intercalation cathode materials along with their operating voltage, cycle capacity, and C rate

Material/condition Operating voltage (V) Initial/final capacity (mA h/g) Cycle/C rate Year/Ref.

LiFePO4 2.0–4.0 117/113 50/0.1C 2019 [115]
LiFePO4/GdPO4 and C coating 2.0–4.0 158/157 50/0.1C 2019 [115]
LiFePO4/Ti doped 2.3–4.2 155/150 500/1C 2020 [112]
LiMnPO4/C 2.5–4.5 105/100 50/0.05C 2017 [120]
LiMn0.99Y0.01PO4/C 2.5–4.5 153.6/148.1 50/0.05C 2017 [120]
Li2FeSiO4/C 1.5/4.5 134/155 190/0.2C 2010 [129]
Li2MnSiO4/C 1.5–4.8 280/120 16/NA 2020 [130]

Table 4: Representative tavorite intercalation cathode materials along with their operating voltage, cycle capacity, and C rate

Material/condition Operating voltage (V) Initial/final capacity (mA h/g) Cycle/C rate Year/Ref.

LiFePO4F 1.5–4.0 110.2/91.5 300/0.5C 2018 [138]
LiFePO4F/Ag decorated 1.5–4.0 120.3/115.5 300/0.5C 2018 [138]
LiFePO4F nanospheres 1.5–4.0 110/104 200/0.5C 2018 [12]
LiVPO4F/C 2.5–4.6 126.6/116.7 125/1C 2018 [139]
Li0.99K0.01VPO4F/C 2.5–4.6 131.9/126.8 125/1C 2018 [139]
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electrode performance. Recent efforts have focused on 1D
morphologies suchasnanorods [161–167], nanowires [168–174],
and nanotubes [175–178] as they can effectively accommodate
volume changes during lithiation/delithiation in addition to
promoting diffusion and structural stability [152,174].

Two-dimensional cathode materials with high spe-
cific areas are of interest because they provide open 2D
channels for Li-ion transport and show better stability
than that of the 0D and 1D particles. Although most of
the research on 2D electrodes has focused on anode mate-
rials, a few reports focused on LMPO4 [117,179–183] 2D
cathodes, mostly plausibly due to the unavailability of
simple and cost-effective ways of synthesizing 2D cathode
materials [181]. Zhao et al. [183] prepared flower-like
LiNi0.5Mn1.5O4 nanosheets, which delivered a capacity of
142mAh/g at 1-C-rate after 100 cycles at 55°C. The LMO
microsheets synthesized using a simple carbon gel-com-
bustion synthesis method delivered 91mA h/g after 300
cycles at 10C [184]. Many challenges such as high prepara-
tion cost, low packing density, and inevitable particle
aggregation have hampered the use of nanomaterials.
Novel 3D hierarchical micro/nanoarchitectures have also
been used to improve cell performance [184–193]. Such

structures are micron-scale assemblies comprising nano-
scale building blocks that enable better electrochemical
performance and structural stability [185]. A detailed review
of such architectures could be found elsewhere [152].

2.6 Integrating AMs with conductive
additives

Most AMs used in LIB electrodes (both anodes and cath-
odes) are poor electrical conductors and are often mixed
with conductive additives (e.g., conductive carbon black
often referred to as Super P) [142,198]. In a typical LIB
cathode (/anode) manufacturing line, the Al (/Cu) cur-
rent collector is coated with a slurry containing AM and
conductive additives and a binder such as polyvinylidene
fluoride or PVDF in N-methyl-2-pyrrolidone (NMP) [199].
Although carbon black (e.g., Super P) is widely used as a
conductive additive, other carbon nanomaterials such as
graphene, CNTs, and reduced graphene oxide (rGO) have
shown great promise in improving the specific capacity
(Table 6) [200–216]. When carbon-based additives are

Table 5: Representative performance of nanostructured AMs

Material Operating
voltage (V)

Initial/final capacity
(mA h/g)

Cycle/C rate Particle size or
morphology

Year/Ref.

LiFePO4 2.5–4.0 163/163 1/1C 30 nm 2006 [194]
LiFePO4 2.8–4.2 130/130 1/1C 150 nm 2006 [195]
LiFePO4 2.0–4.5 115/115 1/1C 500 nm 2003 [196]
LiFePO4 2.1–4.5 82/82 1/1C 800 nm 2006 [197]
Li1.2Mn0.54Ni0.13Co0.13O2 2.0–4.8 153.9/136.7 300/3C Nanotubes 2016 [177]
LiMnPO4/C 2.5–4.5 123/120 100/1C Nanorods 2018 [163]
Li1.2Mn0.54Ni0.13Co0.13O2 2.0–4.8 138/121 100/10C Nanowires 2019 [171]
LiCoPO4 2.5–4.8 180/147 300/0.1C Nanoplates 2016 [179]
LiNi0.5Mn1.5O4 3.5–4.8 136/126 100/1C Nanosheets 2019 [183]
Li1.2Mn0.6Ni0.2O2 2.0–4.8 197.3/174.6 200/1C 3D micro/nano 2019 [185]
Li1.16Mn0.6Ni0.12Co0.12O2 2.0–4.8 227/213 50/5C 3D micro/nano 2017 [187]

Table 6: Representative electrochemical performance of intercalating AM cathodes made by integrating conductive additives

Material Conductive carbon additive Operating voltage (V) Initial/final capacity (mA h/g) Cycle/C rate Year/Ref.

LiFePO4 Carbon 2.5–4.2 144/138 100/0.5C 2017 [207]
LiFePO4 N-carbon and rGO 2.0–4.2 116/112 700/10C 2017 [219]
LiFePO4 3D graphene 2.4–4.2 141.1/139.8 600/10C 2018 [220]
NCA Carbon nanotubes 2.8–4.5 187/181 60/0.25C 2017 [200]
Li2MnO3 rGO 2.0–4.6 290/250 45/0.1C 2017 [221]
LiMn2O4 Carbon and carbon nanofibers 3.0–4.3 120/92 1,000/1C 2020 [222]
NMC Graphene 2.7–4.2 140/103 500/1C 2017 [223]
LiMn0.8Fe0.2PO4 Carbon/N-rGO 2.0–4.6 156.9/145.5 100/0.2C 2019 [224]

1998  Shailendra Chiluwal et al.



used, one should be aware of the fact that such additives
could reduce the tap density and affect Li-ion transport.
Thus, the use of the minimum amount of additives is
suggested [217,218].

2.7 Modifying/replacing traditional Al
current collectors for cathodes

Although Al foils are widely used as the cathode current
collector, there are several drawbacks such as localized
corrosion due to electrolyte, weak adhesion to AMs, and
limited contact area [225,226], which adversely affect the
electrochemical performance of cells. To improve AM
adhesion to Al-foils, the surface is often treated chemi-
cally or modified [227–231]. As shown in Figure 2, the
total internal resistance of LIBs arises due to the exis-
tence of the interfaces between AM, binder, conductive
additives, and the current collector. An increase in the
internal resistance could decrease the overall electro-
chemical activity [232]. As described in Sections 2.1–2.5,
the present LIB literature is replete with different proce-
dures for improving the interfaces within the active mate-
rials using nano/micro-structuring or adding novel con-
ductive additives such as carbon black, graphene, and
rGO [2,233]. While conductive carbon additives decrease
the resistance of interfaces within the cathode/anode
active material, they are ineffective in decreasing the cur-
rent collector active material interface or CCAMI resis-
tance (see Figure 2) – a key driving factor for increasing
energy and power densities that has largely been ignored
in LIBs [234].

Ventrapragada et al. [116] extensively investigated
the role of CCAMI resistance by using VACNTs, either

directly grown or spray coated on Al foils. The CCAMI
resistance of traditional LFP and NMC electrodes coated
on Al/VACNT current collector was reduced by a factor of
3 in comparison to bare Al foil. Moreover, the capillary
channels provided by the VACNTs grown on the Al foil
promotes the wettability of aqueous slurry due to an
increase in surface roughness, thus alleviating the need
for toxic organic solvents (e.g., NMP) to prepare the AM
slurry. CNT-coated electrodes displayed energy densities
as high as follows: ∼500Wh/kg at 170W/kg for LFP and
∼760W h/kg at ∼570W/kg for NMC. The CCAMI engi-
neered LIBs exhibited an initial capacity of ∼103mA h/g
with a capacity retention of ∼80% at 4C after 500 cycles,
unlike the commercial electrodes that could not with-
stand such a high C-rate. By using the carbon black
and graphene-modified Al-foil (CG-Al) for the LFP elec-
trode, Wang et al. [228] also demonstrated superior
performance over the bare Al-foil (B–Al). The capacity
retention at 1C-rate after 500 cycles of CG–Al–LFP battery
was ∼94% with initial capacity ∼154 mA h/g, whereas, for
B-Al-LFP, the capacity retention was ∼90% with initial
capacity ∼120 mA h/g. Interestingly, Loghavi et al. treated
the Al surface with a combination of three acids and
observed an increase in capacity over the untreated Al
foil [229].

There has been a growing interest in displacing rela-
tively heavy metallic current collectors in LIBs with light-
weight, low cost, and highly conductive materials that
can satisfy the robustness as well as high utility require-
ment of LIBs (Table 7) [226]. Lightweight and flexible
carbon-based current collectors have been researched
because of their wide electrochemical window. Using
graphene foil as a current collector for NMC523 cathode,
Xu et al. [226] reported a ∼45% increase in gravimetric
capacity at the electrode level compared to bare Al foil

Figure 2: Various resistances in a cathode/anode electrode (left – traditional electrode, right – CCAMI engineered electrode). An interfacial
layer of carbon, CNTs, and VACNTs enables better electrical contact between the AM and the current collector (CC), which improves the
electrochemical performance of the electrode.
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current collector at 0.5C after 200 cycles. The energy den-
sity of graphene foil was ∼350W h/kg after 200 cycles at
0.5C higher than the bare Al foil that showed ∼240W h/
kg. The use of carbon paper [235], carbon fiber [236], and
carbon cloth [237] in place of the Al foil have resulted in
higher gravimetric and higher energy density. Another
alternative for Al-based cathodes is paper/cellulose-based
current collectors. Low cost of raw materials, ease of avail-
ability, and biodegradability of cellulose-based current
collectors have attracted much attention. However, unlike
Al foil, these current collectors are not highly conducting.
In this regard, many researchers have endeavored to make
cellulose fiber-based conducting composites or coat papers
with different conducting materials (e.g., activated carbon)
using additives, which affects the gravimetric capacity as
the amount of inactive material is increased [238–245].
Ventrapragada et al. [246] prepared additive-free paper-
CNT current collectors by spray coating CNTs on cellulose
paper. Cells assembled using this current collector with
LFP coating showed a high energy density of 460Wh/kg
at a power density of 250W/kg. These batteries were able
to withstand a high current rate (4C) and showed cycling
stability up to 450 cycles at 1C-rate. Wang et al. [237] devel-
oped a carbon cloth-based Li1.2Mn0.6Ni0.2O2 electrode, which
performed better than commercial Al-foil at a high C-rate (5C).

3 Conversion-type cathodes

Since SONY’s launch of the first commercial LIBs in 1991,
researchers have endeavored to improve the performance
of LIBs [6,247–250]. As the gravimetric energy densities
of the state-of-the-art LIBs based on intercalating AMs
(such as LFP [251], NCA [252], and NMC [86]) reached
their practical limits, alternative conversion-type AMs
have attracted much attention. Among all the existing
conversion-type AMs, sulfur is one of the most promising
candidates for the next-generation portable electronic
devices owing to its high theoretical gravimetric capacity

(1,675mAh/g) and gravimetric energy density of 2,500Wh/kg
(practical energy densities of 400–600Wh/kg at the cell level
for lithium-sulfur batteries, or LSBs) in addition to low cost
and abundance of sulfur [253]. However, there are many chal-
lenges impeding the practical applications of LSBs such as the
following: (1) insulating nature of sulfur (S8) and its discharge
product (Li2S), (2) polysulfide intermediates resulting in a loss
of active material, (3) dendrite formation and unstable SEI
leading to the consumption of electrolyte and lithium, (4)
low areal capacity of the LSBs due to low sulfur-loadings;
and (5) usage of binder, carbon additives and heavy current
collector leading to low gravimetric capacity. To overcome
these challenges, many efforts have been made as evident
from the number of published review articles. From Google
scholar search of keyword “lithium-sulfur review” and
adjusting the timeline to “since 2019,” we were able to
find at least 20 review articles on LSBs, which address
challenges presented earlier individually or collectively
[254–274].

Although sulfur has a high theoretical capacity, its
low electric conductivity ∼5 × 10−30 S/cm (at 25°C) leads
to its low utilization as an AM. In the past two decades,
carbon-based conductive frameworks have been used for
increasing the electrical conductivity of elemental sulfur-
based cathodes. These hosts include materials such as
carbon black [275–277] carbon fibers [278,279], carbon/
graphene sheets [280–282], carbon nanotubes [281,283,284],
and hollow porous carbon materials [285–289] The highly
soluble polysulfide intermediates (LiSx, 4 ≤ x ≤ 8) generated
during the reversible redox reaction between sulfur and its
discharge product Li2S (the so-called shuttle effect) lead to
the continuous loss of the cathode AMs and degradation of
the Li metal anode (Figure 3). Consequently, such elemental
sulfur-based cathodes exhibit poor cycling stability and low
Coulombic efficiency. These challenges have been addressed
in two ways: (i) designing better carbon frameworks and (ii)
replacing elemental sulfur with a sulfur-based polymer.
Indeed, different carbon framework designs aimed toward
suppressing the diffusion of polysulfide intermediates have
been developed. Such designs include 1D permeable hollow

Table 7: Representative electrochemical performance of cathodes depending on current collector

Material Current collector Operating voltage (V) Initial/final capacity (mA h/g) Cycle/C rate Year/Ref.

LiMnO4 Bare Al 3.0–4.4 101/76 360/0.5C 2017 [231]
LiMn2O4 Graphene/Al 3.0–4.4 100/91 360/0.5C 2017 [231]
LFP CNT/Al 2.0–4.2 103/79 500/4C 2018 [116]
NCA Acid treated Al 2.8–4.2 187/170 80/0.5C 2019 [229]
NMC523 Graphene foil 2.8–4.5 112.4/42.0 200/5C 2020 [226]
Li1.2Mn0.6Ni0.2O2 Carbon cloth 2.0–4.8 78/78 100/5C 2017 [237]
LFP CNT/printing paper 2.0–4.2 135/90 450/1C 2019 [246]
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porous carbon shell cathode [290–296] and 2D conductive
polymers or reduced graphene oxide nanosheets wrapped
cathode [281,297–301]. Although physically confining sulfur
could effectively reduce the outward diffusion of the poly-
sulfides, the weak interaction between the nonpolar carbon
and polar polysulfides prohibits the complete immobiliza-
tion of polysulfides. Zhong et al. [275] prepared the pop-
corn-inspired macrocelluar carbon interconnected porous
network that exhibited high electrical conductivity and was
capable of blocking the polysulfide formation. N-doped
carbon nanoflakes/carbon nanotubes can also decrease
the polysulfide formation by decreasing the active sites for
Li2Sdecomposition [297,302,303]. Also,metal-organic frame-
works in combination with carbon can increase the
electrical conductivity and enable polysulfide immobi-
lization [292,302,304–308].

Alternatively, polysulfide formation can be eliminated
by using sulfurized polymers. Polyacrylonitrile (PAN) has
been widely used as a carbon precursor for synthesizing
porous carbon materials mainly due to its ease of dehy-
drogenation and cyclization into conjugated carbon back-
bones. The one-pot reaction of PAN with elemental sulfur
provides a facile approach for the preparation of sulfurized
PAN or SPAN. SPAN is a conductive sulfur-containing
compound in which S atoms are covalently bonded to
the polymer carbon matrix through a pyrolytic process.
During sulfurization, sulfur acts as a mild oxidant to dehy-
drogenate PAN [309]. The structure and S content in SPAN
depend on the pyrolysis temperature and duration. Based
on extensive spectroscopic and theoretical studies, a few
possible structures have been proposed as shown in Figure 4
[309]. Clearly, all possible SPAN structures do not exhibit
the octagonal S8 structure. Indeed, based on thermo-
gravimetric analysis-mass spectrometry data, Zhang [309]
proposed that Figure 4a is the most likely structure for SPAN
obtained through pyrolysis at relatively lower temperatures

(<600°C). In such structures, the lithiation of SPAN is
expected to occur without the formation of any higher-order
polysulfides, as shown in Figure 4d.

SPAN-based LSBs were first reported by Wang et al.
[310], which was followed by He et al. [311,312] Beyond
the one-pot reaction, Lai et al. [313] synthesized SPAN
using a two-step technique by first pyrolyzing PAN and
then reacting it with elemental sulfur. Their Li/SPAN cell
with a 1 M LiPF6 electrolyte showed a single discharge
voltage plateau and a stable capacity of 770mA h/g for
110 cycles at 40mA/g. Similarly, Guo et al. [314] first
pyrolyzed PAN into disordered amorphous carbon nano-
tubes and subsequently reacted them with sulfur at 500°C
for 3 h. Their resulting SPAN tubes contained 40wt%
sulfur and were thermally stable up to 700°C suggesting
that sulfur was covalently bonded to carbon as shown in
Figure 4a–c. Moreover, their Li/SPAN cell showed stable
capacities of nearly 700mA h/g for 100 cycles at 10mA/g.
Ahn et al. and Ming et al. [315,316] also reported that the
polysulfide intermediates could be eliminated by using
SPAN as the cathode material. Although SPAN provides
a stable conversion-type sulfur cathode, its use is limited
by its poor ionic and electronic conductivities, which can
be improved using carbon-based additives [317–322].

To increase the cycling stability with Li metal anode
in LSBs, an electrolyte that is capable of forming a stable
SEI layer is needed. The SEI layer forms on the electrode
from the decomposition of electrolytes and solutes. A
stable SEI layer passivates the electrode and mitigates
dendrite formation, which could short-circuit the battery.
Fan et al. [323] developed novel mixed electrolytes for
LSB that enable the simultaneous formation of SEIs on
both electrodes. Their SPAN-based LSBs with mixed elec-
trolytes showed a high utilization of sulfur (over 80% at
0.15C), superior rate performance, excellent coulombic
efficiency (≈100%), and long cycling life (1,000 cycles

Figure 3: A schematic of a typical LSB battery is shown in middle. The red text corresponds to the challenges that are commonly reported in
LSBs. The common solutions are shown in green boxes.
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at 1C and 2,400 cycles at 7.5 C with capacity retention of
86.6 and 82.3%, respectively). Indeed, they were able to
achieve high mass loadings and capacities as high as
∼1,250mA h/g at 0.75 C with no capacity fade up to 200
cycles. Liu et al. developed a gel polymer electrolyte,
which showed stable performance even at high tempera-
tures (55°C) compared to traditional liquid electrolytes
[324]. A recently published mini-review about electrolyte
regulation in lithiummetal–SPAN battery can be found in
ref. [325].

According to statistical analysis in ref. [253], 57% of
>100 publications (in 2015–2016) reported areal sulfur
loadings below 2mg/cm and 49% corresponding areal
capacities below 2mA h/cm. Such electrodes are reason-
able to use in reaction mechanism studies but unsuitable
for practical application despite their high specific capac-
ities (normalized by the amount of sulfur) because they
deliver much lower gravimetric energy densities than
commercial lithium-ion batteries [326]. An areal capacity
of at least 6 mA h/cm is needed for LSBs to displace com-
mercial LIBs because of the low operating voltage of LSBs
(∼2.1 V) [253]. Although there have been advances in the
LSBs research, the commercialization is still lagging. This
could be due to the fact that there is a vast difference on
how research is conducted in academia and industry
[327]. For example, usually coin cell is used in academia
whereas pouch cell is generally used in industry. The
advanced structures of the C/S that are used in academia
are hard to produce in larger quantities [327]. Recently

published article from Bhargav et al. have outlined some
critical metrics, viz., “Five 5s” (S-loading >5 mg/cm2, C-
content <5%, E/S ratio <5 µL/mg, N/P ratio <5, E/C ratio
<5 µL/(mAh)) to achieve high energy density, which
could be helpful to translate to industry [328]. Although
“Five 5s” seems attractive, there are several issues that need
to be addressed first. While increasing the loading might
increase the energy density, it will adversely increase the
electrochemical polarization, decrease the utilization and
increase thermal instability [327,329,330].

Lastly, most studies report the gravimetric capacities
of cathodes calculated based on the mass of sulfur. Unfor-
tunately, although the sulfur content of some reported
cathode materials can reach up to 70wt%, the use of
polymer binder (usually 10% of the slurry) and carbon
black (usually ∼10–20% of the slurry) in the slurry coating
procedure (especially coating on the widely used alu-
minum foil current collector) results in a low-rate capacity
on the electrode level in addition to a low gravimetric
energy density [253]. High sulfur loading cathodes with
high sulfur utilization and lightweight current collectors
are essential for realizing high-energy-density LSBs. Recently,
more efforts have been focused on self-supporting cathode
electrodes [331–337]. Manthiram et al. [338] developed
graphene-wrapped double-shelled hollow carbon sphere
cathode with sulfur loading of 3.9mg/cm2, which exhib-
ited a stable areal capacity of ∼2mA h/cm2 at a current
density of 3.3mA/cm2. Zheng et al. [339] fabricated a
two-dimensional carbon yolk-shell nanosheets cathode

Figure 4: (a–c) Proposed chemical structures for SPAN based on pyrolysis temperature and duration [310]. (d) Lithiation of SPAN with the
chemical structure shown in (a) does not result in the formation of higher-order polysulfides.
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with sulfur loading of 10mg/cm2 that delivered an areal
capacity of ∼11.4mA h/cm2 after 50 cycles at a current
density of 1.68mA/cm2. Lou et al. [300] designed a free-
standing pie-like cathode by sulfurizing the electrospun
PAN/polystyrene paper and wrapping the carbon–sulfur
composite film with a thin layer of functionalized rGO. The
pie-like cathode with a sulfur loading of 10.8mg/cm2

showed an areal capacity of ∼10.7mAh/cm2 at a current
density of 1.2 mA/cm2. Liu et al. [335] developed a contin-
uous core-shell structure of boron-doped carbon–sulfur
aerogel (S-loading ∼13.5mg/cm2) and achieved an areal
capacity of 12.3 mAh/cm2. Zhang et al. [332] showed dense
monolithic metal-organic framework (MOF) and CNT
can be used for sulfur electrode, which exhibited high
areal (10.7 mA h/cm2) and volumetric (676 mA h/mL)
capacity. Sulfur can be infiltrated inside the VACNTs to
get high areal capacity LSBs [331,340]. In this regard, we
fabricated LSB cathodes by vacuum filtrating aqueous
SPAN slurry through chemical vapor deposition grown free-
standing graphene foam. More importantly, porous 3D gra-
phene foams allowed S loadings as high as ∼26mg/cm2

without any delamination or increased electrical resis-
tance unlike Al foils that could only support a maximum
S loading of 0.2–0.4mg/cm2 (Al–SPAN)without the binders

(Figure 5). The graphene foam–SPAN (GF–SPAN) cathodes
outperformed conventional Al–SPAN cathodes at the elec-
trode level with areal capacity ∼20mAh/cm2 at the current
density of 3mA/cm2 (Table 8) [341].

4 Anodes

4.1 Li metal

Li metal is the ideal anode for LIBs due to its low density
(0.59 g/cm3) and negative electrochemical potential (−3.04V)
and high theoretical gravimetric capacity (3,860mAh/g)
[344,345]. Li-metal anodes are prone to dendrite formation,
which can cause short circuits, thermal runaway reactions on
the cathode, and could also cause the battery to catch fire.
Indeed, in 1976, Exxon tried to commercialize Li metal bat-
teries (anode Li metal, cathode TiS2); however, the task was
unsuccessful due to safety concerns that resulted from short
circuiting [6,346]. Furthermore, Li-metal anodes also suffer
from poor cycle life due to volume changes and subsequent
formation of unstable SEI during cycling [345,347–353].

Figure 5: Top panel: A schematic showing the fabrication steps of a GF/SPAN cathode: GF is grown on a 3D-Ni mesh using the chemical vapor
deposition technique. The GF/SPAN cathode electrode was prepared by vacuum filtrating a slurry of SPAN, carboxymethyl cellulose, and
carbon black (mass ratio of 70:15:15) onto the GF current collector (with Ni mesh). The as-prepared cathode electrode was air-dried
overnight followed by drying in an oven ∼130°C for 12 h. Next, 5 wt% poly(methyl methacrylate) thin layer was coated on the cathode before
it was submerged in a 6M HCl solution for 6 h at 70°C to completely remove the nickel. The resulted cathode electrode was cleaned in KOH
solution and washed in DI H2O and dried [341]. Bottom panel: Weight comparison of different components inside the electrode for same
S-loadings [341].
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In the past 7 years, many research groups have been trying to
revive the Li metal as a stable anode using different strategies
such as optimization of solid/liquid electrolytes and additives
[354–359], protective surface coatings (/artificial SEI layer)
[353,360–363], modified separator [364,365], and the design
of 3D conductive Li host [351,366–373]. Although such strat-
egies improve the lifespan of the Li-metal anode, commer-
cial applications of such batteries are still far away as they
still have many disadvantages. Although surface coatings
and solid electrolyte combination can increase the ionic
concentration, it inevitably increases internal interfacial
impedance that adversely affects the cycling stability
[358,362,374]. Nanostructures such as MOFs [375], carbon
materials [376,377], and 3D current collectors [375,378,379],
which have pre-stored lithium, along with artificial SEI
layer are promising alternatives [375]. This kind of structure
can simultaneously address the volume change and unstable
SEI formation. In this review, anodes beyond Li are dis-
cussed. A detailed review focused on Li-metal batteries can
be found in refs [345,358]. Lastly, it should be noted that
lithium-air batteries (specific energy ∼5,200Wh/kg)wherein
air is used as a cathode, have also been researched exten-
sively in an effort to enhance the specific energy of the bat-
tery [380,381]. However, the practical application of such
batteries is still far fetched due to the side reaction with
electrolytes, poor cycling stability, and elimination of water
and CO2 [382]. The recent efforts that are focused on devel-
oping the electrolytes and porous cathode materials can be
found in the review articles [380–383].

4.2 Intercalating anodes

Graphitic anodes (theoretical capacity ∼372 mA h/g) ini-
tially enabled LIBs to become commercially viable and are
still used widely due to their low cost and excellent stabi-
lity [6]. In graphitic anodes, Li ions intercalate between
the graphene planes, which offers good 2D mechanical
stability, electrical conductivity, and Li+ transport. Dif-
ferent forms of carbon such as graphite, CNTs, carbon
fibers, exfoliated graphene, and rGO have been used as
anodes [151]. The demand for new anode materials with
higher capacity has increased as the theoretical limit of
graphitic anodes has already been achieved commercially
[384].

Titanium-based oxides (e.g., LTO) also have received
much attention despite having low intrinsic conductivity
and low theoretical capacity (175 mA h/g) because they
show low volume change (2–3%) upon Li insertion/
de-insertion. Additionally, they also exhibit excellent
cycling life [385–388]. LTO is relatively safer due to its
high open-circuit voltage (∼1.55 V), which prevents dendrite
formation [384,389–392]. To improve the low intrinsic con-
ductivity, similar approaches as in the case of the spinel
layered cathodes have been suggested. For example,
many strategies such as doping [393–396], change in
size and morphology [397–399], and combining/coating
with conducting carbon additives [392,400–403] either
individually or in combination have been used (Table 9)
[393,404–407].

Table 8: Representative electrochemical performance of sulfur cathodes

Material Operating voltage (V) Initial/final capacity
(mA h/g)

Cycle/C rate Year/Ref.

Puffed rice derived carbon/Ni/S 1.7–2.8 1,257/821 500/0.2C 2018 [275]
Macro porous carbon nanotubes/S 1.5–2.8 1,544/901 100/0.5C 2018 [283]
Porous carbon fibers/vanadium nitride/S 1.7–2.8 1310.8/1052.5 250/0.1C 2018 [278]
N, O, and P-doped carbon/S 1.7–3.0 921/489 300/0.2C 2019 [287]
rGO–carbon composite–S paper 1.8–2.6 997/670 400/0.2C 2019 [298]
S/superP@SPAN 1.0–3.0 1,500/1,251 100/0.1C 2019 [322]
Porous SPAN fiber 1.0–3.0 903/903 150/1C 2019 [320]
Carbon–cotton/S 1.5–3.0 1,173/788 100/0.1C 2016 [301]
SPAN–carbon fiber current collector 1.0–3.5 1,640/1,250 100/NA 2017 [319]
Boron-doped carbon/S aerogel 1.8–3.0 1,120/836 500/1C 2019 [335]
Functionalized super aligned CNT/S 1.6–2.8 1,079/741 400/1C 2019 [334]
Dense monolithic MOF and CNT/S 1.5–3.0 580/470 300/1C 2019 [332]
Sulfur sandwiched between CeO2–CNT@C
membrane

1.7–2.8 1,300/847 100/0.2C 2020 [342]

S@LiAlO2 on aluminum foil 1.8–2.6 989/842 100/0.2C 2020 [343]
Sulfur infused porous carbon 1.7–2.8 1,143/950 200/0.2C 2020 [336]
Graphene foam–SPAN 1.0–3.0 800/728 500/1C 2021 [341]
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5 Alloying-type AMs for anodes

Based on their high specific capacity, low delithiation
potential, low cost, and safety, alloying type materials
such Sn, Ge, and Si have garnered much attention as pro-
mising candidates for anode [409,410]. Although gravi-
metric capacity (Sn: 994mA h/g, Ge: 1,625mA h/g, Si:
4,200mA h/g) of these materials is different, their volu-
metric capacity (Sn: 7,216mAh/cm3, Ge: 8,645mAh/cm3,
Si: 9,786mAh/cm3) is almost the same. These anode mate-
rials suffer from a volume change during cycling and most
of the approaches to mitigate volume change are similar to
those used for Si. In this review, wewill focus on Si as recent
reviews on Sn and Ge can be found in refs. [52,411],
respectively.

Si has both the highest gravimetric capacity (4,200mAh/g,
Li22Si5) and volumetric capacity (9,786mAh/cm3) among the
anode material candidates (see Figure 1b). The practical
application of Si anodes is, however, impeded by its lower
conductivity, large volume expansion upon lithiation
(∼400%) during first discharge, pulverization during sub-
sequent cycling, delamination from current collector, and
unstable SEI layer [52,409,412–414]. Companies such as
Sila Nanotechnology, Advano, and NanoGraf are leading
the commercialization efforts for Si anodes, but none of
them penetrated the market with their Si anode-based
batteries yet.

Several strategies have been suggested to overcome
the challenges mentioned above (Figure 6). These include
change in size/morphology of Si (nanotube, nanorods,
nanowires, and porous particles) [52,415–420], coating/
mixing with carbon/carbon composite [412,421–426], 3D
Si host/conductive framework [427–432], and optimization
of electrolyte, binders, and additives [433]. These strate-
gies have also been combined with one another to get

better electrochemical performance [422,423,434]. A detailed
review of the design/optimization of electrolytes and binders
can be found in ref. [433]. Also, limiting the discharge volt-
age and avoiding the re-crystallization voltage (>80mV) can
mitigate the pulverization issue to some extent [428].

The particle’s ability to resist mechanical degrada-
tion increases with tailoring its size from the bulk to the
nanometer scale. Many studies have suggested that
the stress generation and subsequent cracking/fracture
of the particle is size dependent [415–420]. Above 150 nm,
Si particles are susceptible to fracture [419]. Although
nanostructuring reduces pulverization issues, it also increases
side reaction with electrolyte, internal resistance of the elec-
trode, and agglomeration of NPs [433]. Also, the volumetric
capacity of the NPs is often lower because of the low density.

Table 9: Representative electrochemical performance of Li metal anode and intercalating anode

Material Operating voltage (V) Initial/final capacity
(mA h/g)

Cycle/C rate Year/Ref.

LiF and Li–Al alloy protected layer–Li metal/LFP 0.01–4.2 120.4/94.2 300/3C 2020 [354]
Organophosphate-derived dual-layered Li metal/
sulfur

1.7–2.7 800/735 100/1C 2020 [353]

Polyacrylic acid-coated Li/Cu matrix//LCO 3.0–4.2 127/103 1,000/2C 2020 [375]
Pure LTO 1.0–2.5 55.6/39.5 500/10C 2019 [402]
N-doped LTO/carbon 1.0–2.5 121.8/117.1 500/10C 2019 [402]
Mesoporous carbon/LTO nanoflakes 0.01–3.0 1,000/300 100/1C 2019 [403]
LTO microspheres@C 1.0–2.5 212/201 500/1C 2018 [392]
Al3+ and Mn4+ co-doped LTO/CNT 1.0–3.0 286.2/259.5 100/0.1C 2020 [393]
Necklace-type LTO/VACNT nanocomposites 1.0–2.5 170/165 500/10C 2016 [401]
Nanostructured LTO/crystallite size-7 nm 1.0–2.5 143/129 800/10C 2018 [408]

Figure 6: Schematic showing the challenges and strategies com-
monly found in the literature for Si anodes.
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Nanostructures such as nanorods and nanowires were
regarded as better alternatives; however, large capacity fading
was observed in such structures due to an unstable SEI and
delamination from the current collector [435,436]. Similar
problems were observed with thin-film Si anodes with
increasing thickness of the films [436]. Porous particles
such as porous nanotubes and porous spheres can mini-
mize the mechanical stress by providing the internal space
for volumetric expansion and can shorten the Li-diffusion
pathways [436,437]. Based on these findings, the develop-
ment of innovative Si structures has gained momentum in
recent years (Table 10) [438]. But, problems such as side
reaction at the surface and growth of SEI still exist [437].

Carbon-based materials such as activated carbon,
graphene, CNTs, and graphene oxide have been used to
improve the conductivity of the electrode aswell as the overall
electrochemical activity of Si/C composite [409,439–442]. The
electrochemical performance of such composite depends
mostly upon the types of carbon matrix used. Pyrolytic
carbon-coated Si NPs provide void space for volume change
ensuing in excellent performance. Carbon coating can also
reduce side reactions of electrolytes with Si and also prevent
the growth of SEI [443–448]. Liu et al. [449] first showed the
Si/C (yolk/shell) structure can be used. Subsequently, such C
shells were replaced by other stable/porous metal/metal
oxide as C cannot accommodate the volume change during
long cycling [446,450]. 2D carbon forms such as graphene
were also used to wrap SiNPs [422–425,439]. Luo et al. [421]
showed that crumpled graphene/Si NPs have better cycle
performance than bare Si NPs. Si/CNT have also shown

promising performance [451,452]. Using CNTs alone may
not be enough to mitigate volume change, and therefore
CNTs are often used in conjunction with C [437,452]. A
detailed review on surface coatings can be found in ref. [453].

Although several efforts have been made to accom-
modate volume changes by focusing on the AM alone, a
key factor for the better electrode performance, that is,
the current collector has been overlooked. Mostly, planar
current collectors such as Cu-foils have been used in most
studies. However, such Cu foil current collectors do not
accommodate volume changes in the AM. However, 3D
current collectors that can (i) provide better electrical con-
nection between AM and CC reduce the CCAMI resistance,
(ii) accommodate the volume change, and (iii) decrease
the diffusion time are needed [428,434,454–456]. As an
alternative approach to mixing Si NPs with other nanoma-
terials, we sandwiched SiNPs between freestanding CNT
Bucky papers. This method alleviates the need for the tra-
ditional Cu current collector due to the high electrically
conductive CNTs. Based on exhaustive electrochemical
impedance spectroscopy studies, we found that the diffu-
sion time constant for the sandwiched structures is ∼150
times smaller than that of Cu foil [457].

6 CO2 emissions

Although BEVs are touted as cleaner cars based on a
comparison of their CO2 emissions with respect to that

Table 10: Representative electrochemical performance of Si anode (1C = 4.2 A/g)

Material Operating voltage (V) Initial/final capacity (mA h/g) Cycle/C rate Year/Ref.

Micro-sized Si particle 0.001–1.5 2,100/275 20/0.25C 2019 [458]
Micro-sized branched Si particle 0.001–1.5 1,600/1,133 100/0.25C 2019 [458]
Si (<100 nm) NPs 0.01–1.2 193.2/68.5 100/0.05C 2019 [459]
Si (<100 nm)@mesoporous carbon 0.01–1.2 1,340/1,330 100/0.05C 2019 [459]
Si/CNT 0.001–2.0 1,537/246 100/0.25C 2018 [452]
Si/CNT/C microsphere 0.001–2.0 1,989/1,392 100/0.25C 2018 [452]
Double core-shell porous Si–Ag/C 0.01–1.5 1566.7/1,000 100/0.5C 2018 [450]
3D graphdiyne–Si 0.01–2.0 1,770/1,250 100/0.25C 2018 [430]
Si@N-doped carbon 0.01–2.0 2,385/2,003 500/0.2C 2020 [460]
Si@graphene 0.01–1.5 3,578/1,909 100/0.05C 2019 [461]
Hollow Si@void@C microspheres 0.01–1.5 3,000/1,040 500/0.5C 2019 [447]
Si@MOF derived C 0.005–3.0 2,709/1,978 350/0.25C 2020 [462]
MXene–Si–CNT 0.01–1.5 1,050/841 200/0.5C 2019 [463]
Si@CNT/C-microscroll 0.01–2.0 2,710/2,056 300/0.05C 2020 [464]
Amorphous Si@SiOx thin film 0.01–1.0 2,173/2,116 100/0.5C 2019 [465]
Si – carbon coaxial nanotube as CC 0.05–1.0 2,750/2,200 50/0.2C 2011 [428]
Si – 3D Cu foil/Cu nanowires/CNT as CC 0.01–2.0 2,168/1,845 180/0.8C 2019 [434]
Bucky paper/Si/Bucky paper sandwich 0.01–1.0 2,900/1,635 100/0.1C 2020 [457]
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of gasoline-powered vehicles, there are several factors
ranging from mining/manufacturing to driving to dis-
posal or recycling which might have a larger effect on
the CO2 emission from BEVs. Despite their low operation
(driving) emissions, the CO2 emission from the BEV man-
ufacturing is more because of the added emissions during
battery manufacturing, which is negligible during the
manufacturing of gasoline-powered vehicles (pink bars
in Figure 7a). Overall, present analyses suggest that
mid-size BEVs will have a 51% reduction in CO2 emission
during operation compared to gasoline-powered vehicles
(Figure 7a) [466]. In reality, this percent reduction is
highly dependent on how the electricity used during
manufacturing was produced. If the electricity grids were
not cleaner and used non-renewable sources like coal,
then the overall manufacturing CO2 emissions are higher.
Therefore, in our analysis of the overall emissions, a key
factor that has been overlooked (gray bars in Figure 7a)
andmust be considered is whether or not clean energywas
used during manufacturing. In addition, the battery chem-
istry also contributes to the CO2 emission (Figure 7b). For
mid-size BEV with LCO (hydrothermal process), the CO2

emission is increased by ∼45%, whereas for the LCO (solid-
state process) the emission is increased by only ∼9% [466].
If instead LMO is used, then the CO2 emission will be
decreased by ∼18% and ∼43% for mid-size and full-size
BEVs, respectively (Table 11) [466,467].

In general, the total emissions (Te) from an automobile
could be expressed as a sum of emissions from manufac-
turing (Em), operation (Eo), and disposal/recycling (Ed).

( ) ( )= + +T t E E t E .e m o d (1)

In equation (1), Te and Eo are time dependent as ∼65%
emissions of an automobile come from its operation over
a period of time [466]. In the case of a BEV, the total

manufacturing and disposal emissions contribute up to
30–35% of lifetime global warming emissions [466]. Thus,
for BEVs, Em could be decoupled intomanufacturing emis-
sions from batteries (Ebm) and emissions from other car
parts and assembly (Ecm).

= +E E E .m bm cm (2)

In a typical mid- or full-size BEVs, Ebm contributes ∼15–35%
(for present-day LIBs) to Em while Ecm contributes ∼65–85%.

The offset in total emissions by using BEVs ΔTe(t) in
place of gasoline vehicles would be

( ) ( ) ( )

( ) ( )

= −

= − + + +

t T T

E E E E t E

ΔT

Δ Δ Δ .
e e BEV e gasoline

bm gasoline cm o d
(3)

In equation (3), (Ebm − Egasoline) is the difference between
emissions for battery manufacturing and well-to-tank
emissions for gasoline or diesel production. The total
Ebm for LIBs ranges from 123 to 1,090 lbs of CO2 per
kW h [468] while Egasoline is 0.16 lbs per kW h of gasoline
[469]. Given that well-to-tank emissions of gasoline are at
least several magnitudes lower than battery emissions,
we approximate Ebm − Egasoline ≅ Ebm. From the available
data on BEV and gasoline car manufacturing [466], ΔEcm
could be neglected due to its minimal contribution

Figure 7: (a) Comparison of CO2 emission from mid-size gasoline and BEV [466]. (b) Comparison between energy required during the
assembly of battery when NMP is used as the solvent [467].

Table 11: Representative battery chemistry and global warming
emission change. This table is obtained from ref. [466]

Battery Process Mid-size BEV (%) Full-size BEV (%)

LCO Solid state 9 −25
LFP Solid state −14 −41
LCO Hydrothermal 45 NA
LFP Hydrothermal −7 −36
LMO NA −18 −43
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(i.e., no significant difference in emissions from the car
body parts such as tires and metal frame; see Figure 7a).
The difference in emissions from battery disposal (ΔEd) is
significantly low (<5% of Em for present-day LIBs). Thus,
following the earlier approximations, we may express

( ) ( )≅ +T t E E tΔ Δe bm o (4)

It is important to note that the term ΔEo(t) is a highly
dependent electricity grid mix representative of where
BEVs are used. By explicitly including gasoline efficiency
(egas in miles per gallon or mpg), BEV efficiency (eBEV in
miles per kW h), and electricity mix (Cem, lbs of CO2

emitted per kW h of electricity produced), one obtains

⎜ ⎟( ) ( ) ( ) ⎛

⎝

( ) ⎞

⎠

= − = −E t E E C t
e e

M tΔ 20
yo o BEV o gasoline

em

BEV gas
(5)

In equation (5), My stands for average annual miles per
car (∼13,500 miles per year in the United States) and t is
expressed in years. Factor 20 comes from the fact that one
gallon of gasoline results in ∼20 lbs of CO2 emissions. We
used lbs of CO2 emission instead of traditional metric tons
as ΔTe(t) and ΔEo(t) pertain to a single BEV/gasoline car.
Here, we assumed constant automobile efficiency during
the lifetime of a car. Using equation (5) and converting all
time-dependence into miles driven (Md), the total offset
in emissions becomes

⎜ ⎟( ) ⎛

⎝

⎞

⎠

= + −T E C
e e

MΔ miles 20 .e bm
em

BEV gas
d (6)

In equation (6), Ebm depends upon the size of the car. For
example, for a mid-size 84-mile-range BEV (/full-size
265-mile-range BEV), manufacturing emissions are approxi-
mately 15% (/68%), or 1 ton or 2,000 lbs (/6 tons or
12,000 lbs) of CO2 higher than those of a comparable con-
ventional gasoline vehicle. Accordingly, considering that

Ebm > 0, ΔTe is offset (i.e., ΔTe = 0) only after BEV is driven
for Moffset miles, which is given by

⎜ ⎟( )⎛

⎝

⎞

⎠

= −

−

M E
e

C
e

20 .offset bm
gas

em

BEV

1

(7)

Clearly,Moffset directly depends upon emissions from bat-
tery manufacturing Ebm in addition to Cem and egas. As
shown in Figure 8a, Cem and egas have changed signifi-
cantly over the past three decades. Based on these esti-
mates, it is expected that egas will reach 45mpg by 2025
and 55 mpg by 2030 [470–472]. Similarly, the use of
renewable energy resources decreased Cem significantly
in the last decade (Figure 8b) [470–472]. A BEV using a
40 kWh battery has embedded emissions of ∼5,000 lbs of
CO2 from battery manufacturing (at an industry average
122 lbs of CO2 per kW h of battery [473] that are equivalent
to the CO2 emissions caused by driving a diesel car with
45mpg for ∼11,300 miles before the electric car even has
driven one meter.

Building on the data from Figure 8, Figure 9a shows
different ΔTe for different scenarios of Ebm and egas for
mid-size vehicles used in the United States. It can be
noticed that different lines (corresponding to different
Ebm and egas combinations) intersect the x-axis (corre-
sponding to ΔTe = 0) at different points (i.e., each line
has a different Moffset). In Figure 9b, differences in Moffset

for various scenarios with different Ebm and egas are
shown. It is evident that the increase in Moffset is signifi-
cantly impacted by increases in emissions from battery
manufacturing. A 50% increase in battery manufacturing
emissions (from the present estimate 2,000 lbs of CO2 to
3,000 lbs) increases Moffset from ∼5,000 to 7,500 miles
while a 100% increase leads to a higher Moffset of 10,000
miles. In other words, as the emission from battery man-
ufacturing increases, it takes longer BEV driving time to

Figure 8: (a) Emissions per kW h of electricity produced in the United States and (b) increases in miles per gallon efficiency in internal
combustion engine. For these calculations, the original data were taken from [470–472].
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offset the emissions (which is the primary goal of BEVs).
More importantly, as seen from Figure 8b, egas increased
non-linearly in the last two decades. Further expected
increase in egas to 45 and 55mpg for passenger vehicles
(see Figure 9a and b) increases Moffset to ∼11,250 and
20,650 miles, respectively. Lastly, in the developing world,
Cem is much higher than the United States/Europe. For
example, India (Cem = 1.63 lbs of CO2 per kWh) and China
(Cem = 1.35 lbs of CO2 per kWh) have Cem, which is ∼100%
greater compared to the United States (∼0.8 lbs of CO2 per
kWh) with lower average miles per year. In India, the
average annual miles for a passenger car is ∼7,500 miles
much lower than the US value of ∼13,500 miles. With
combined effects of higher Cem and lower miles driven
per year, a typical mid-size BEVs will take ∼2 years (/3–4
years) to offset emissions that would have come from a
gasoline car in the United States (/India). Given that Cem
is dependent on geographical location, batteries produced
in the developing world with higher Cem produce more Ebm
per kWh [468].

The primary goal of road electrification is to offset
CO2 emissions from gasoline cars. While increasing power
and energy density are necessary for ensuring that BEVs
provide the same level of comfort as a gasoline car, newer
battery chemistries should not significantly increase Ebm,
Ebd, and Moffset. Concerted efforts have been focused on
discovering new materials, novel architectures, and better
chemistries (e.g., Li–S batteries, Na–S batteries) with little
or no attention paid to % increase in battery manufac-
turing emissions for new chemistries. Life cycle analyses
(LCA) of present LIB-based BEV batteries suggest that
significant emissions result from battery manufacturing.
These emissions have been identified to directly depend

upon the choice of cathode and anode materials in addi-
tion to other components [474–477]. For example, cathode
material lithium NMC and anode material graphite together
contribute 74% of the total carbon footprint of rawmaterials
needed to make NCM LIBs [477]. Dunn et al. published
a series of articles through Argonne National Labs with
detailed LCA analysis for five LIB cathode materials
[474–476]. Based on their analysis, for at-capacity battery
assembly plants, battery materials dominate the carbon
footprint of emissions, with cathode materials repre-
senting 10–50% of that energy, depending on cathode
type. Similarly, based on the LIB LCA analysis from var-
ious publications presented in ref. [468], studies indicate
that battery production is associated with significant emis-
sions of up to 125 to 1,000 lbs of CO2 per kWh for BEVs. In
other words, a 24 kWh battery pack in Nissan Leaf results
in Ebm = 2,480 lbs of CO2 while a 100 kWh pack in Tesla
Model S Long Range Plus leads to Ebm = 12,500 lbs of CO2.
As described in the mathematical framework earlier (cf.
Figure 9), such high emissions imply that a higher Moffset

(i.e., significantly more miles need to be driven) is needed
to offset ΔTe.

Considering that the CO2 emissions are dependent on
materials chemistry (Table 11), current collectors, and
manufacturing methods, we recommend that researchers
use simple LCA based on existing battery chemistries (e.g.,
GREET™model from Argonne National Labs) to estimate%
change in CO2 emissions for any new active materials, com-
posites, and electrode configurations (including changes in
current collector or changes in manufacturing/assembly
methods). For example, replacing traditional Al foil current
collector with a nano-carbon matrix (e.g., graphene foam,
Bucky paper) could possibly lead to a significant increase in

Figure 9: (a) The difference in total emissions (ΔTe) between mid-size BEV and gasoline vehicles for different scenarios of battery manu-
facturing emissions (Ebm) and mileage (egas). Different scenarios require a different number of miles to be driven (Moffset) before total
emissions could be offset (ΔTe = 0). (b) The values ofMoffse for scenarios shown in (a). It should be noted that a conversion factor of 2,000 is
used to convert lbs of CO2 into tons.
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CO2 emissions in battery production based on the method
used for graphene production (e.g., chemical vapor deposi-
tion of graphene from CH4 at 1,000°C produces significantly
more emissions than exfoliation). In addition to complete
electrochemical characterization, it is important for battery
researchers to report % changes in CO2 emissions per kWh
that would be caused by their battery chemistry and
assembly processes. Ignoring a net increase in CO2 emis-
sions for new materials or manufacturing processes while
focusing exclusively on better electrochemical perfor-
mance will eventually delay our efforts to mitigate the
effects of climate change. Furthermore, one should also
consider the recyclability of cell components, which ulti-
mately could reduce the net CO2 emissions at the materials
production level.

7 Outlook and conclusions

Although AM chemical compositions and physical char-
acteristics have been optimized, many studies are still
focused on improving the gravimetric capacity of AMs
and largely ignore the need to enhance areal capacity
and volumetric capacity beyond existing commercial elec-
trodes. Beyond these incremental studies, future research
should also focus on improving the mass loading and tap
density of the electrodes while maintaining a high areal
capacity. It should be mentioned that there are important
issues with how battery parameters are reported or com-
pared in the literature. For example, (i) it is important to
report gravimetric capacities at the electrode level and not
just the AM level. Inactive binders and additives increase
the total weight of the electrode and must be included
in normalizing the total capacity to assess the practical
usability of the electrodes and (ii) the C rate was developed
to compare and evaluate similar electrodes that have
similar cross-sectional area [478]. As a result, based on
high gravimetric C rates obtained at the coin-cell level
(with a small electrode area), it would be incorrect to claim
that batteries in BEVs (with relatively higher electrode
area) can be charged at a very high C rate within a few
minutes. It is easy to maintain a high current density (a
high C rate) in coin cells with a very small capacity per unit
area for a short time. In larger cells, it may not be possible
to maintain such high current densities for longer times
because the Li+ ion transport is limited by the diffusivity
and the available cross-sectional area of the electrode.
Furthermore, gravimetric C rates (calculated per gram of
AM) should be converted to appropriate areal C rates (per
cm2 of the electrode) while assessing practical applications.

Although a lot of research has been focusing on alter-
native paper or carbon-based 2D/3D porous or nonporous
electrodes, scaling up these techniques using current
commercializedmanufacturing systems is tricky. For example,
to scale up from coin cells level to pouch cells, additional
challenges such as gas evolution, placing tabs, or coating
the slurry in a cost-effective manner must be addressed. A
detailed discussion on gas evolution can be found in ref.
[479]. While nano-structuring of AM has shown better results,
most of the synthesis approaches reported in the literature are
not cost effective because of the low product yield. For
example, graphite is still used as the anode even though
silicon has been known as an attractive alternative, and com-
mercial silicon batteries remain implausible at this time. Sev-
eral reports have appeared in the literature in which modified
silicon (NPs, porous, core/shell)was used to obtain capacity as
close as to its theoretical gravimetric capacity of 4,200mAh/g.
While such studies advance our understanding of battery
chemistry, they fall short of commercializing the silicon
battery technology. Replacing thermally and structurally
stable layered oxides cathodes with sulfur-based cathodes
pose a lot of challenges, mainly because of the lower open-
circuit voltage (∼2.1 V) in the latter that yields a lower
energy density. Therefore, the areal capacity must be
increased to 6mAh/cm2 by overcoming the insulating
nature of sulfur and the polysulfide shuttle.

While this review is based on the experimental work
reported in the literature, we also acknowledge the fact
that extensive modeling of the electrochemical processes
has helped advance LIBs [480,481]. Many approaches have
been used to understand the electro-chemo mechanics
[482], SEI formation [483], development of different compo-
nents of the battery and its aging [484] as well as the safety
[485,486]. Tools such as density functional theory (DFT)
and molecular dynamics are used for computation and
simulations for Li-ion batteries [323,480,487]. For example,
Fan et al. [323] used DFT calculations to investigate themerit
of using either ether-based or carbonate-based electrolyte
solvents or a mixture of them in their LSBs. Specifically,
they demonstrated that 1M LiTFSI in EC0.5DME0.25DOL0.25
yielded the best battery performance as themixed electrolyte
could promote the formation of a bilateral SEI. In this regard,
machine learning is used extensively to identify optimal
electrode materials, battery degradation patterns, state of
charge, etc. [488–493]. As machine learning requires a sig-
nificant amount of verified data as input, either experi-
mental or computational data on hand or a combination
of both is expected to accelerate new materials discovery
for advanced LIBs. Additionally, in-depth knowledge of
electrode materials and their electrochemical properties
deduced from advanced in situ/operando tools constitutes
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an important set of inputs for machine learning [494–496].
As such, in situ/operando characterization tools such as
imaging (SEM, TEM, AFM), optical (Raman, UV/Vis, FTIR),
X-ray, and neutron scattering have been extensively used in
recent years. A detailed review on these techniques can be
found in ref. [497]. Lastly, more importancemust be given to
explore environmentally friendly and facile routes that can
displace the use of toxic solvents in nanomaterials synthesis
and lithium battery manufacturing.
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