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Abstract: The electrospray deposition (ESD) method was
used to deposit carbon nanotubes (CNTs) onto the surface
of glass fiber (GF). The morphology of the hybrid CNTs-
GF was analyzed using a field emission scanning electron
microscope, and the images indicated that the CNTs were
uniformly and homogenously deposited onto the GF’s
surface. Laminated composite based on GF and hybrid
CNTs-GF were then fabricated via vacuum-assisted resin
transfer molding. The mode I interlaminar fracture tough-
ness was measured using the double cantilever beam test
method. The hybrid CNTs-GF showed a 34% increase in
fracture toughness relative to the control sample. The
mechanism of interlaminar fracture toughness enhance-
ment was elucidated via fractography, where fiber brid-
ging, adhesive and cohesive failures, hackles, and coarse
matrix surface were observed along the crack pathways.

Keywords: glass fiber, carbon nanotubes, electrospray,
interlaminar fracture toughness

1 Introduction

Fiber-reinforced polymer (FRP) is fast becoming one of
the essential materials in engineering and is widely used
in aerospace applications, sporting goods, automobiles,
and civil and marine structures [1]. The FRP system is a
system where embedded fibers, such as glass or carbon,
serve as reinforcements within a polymer matrix [2]. They
are well-known for their high strength-to-weight ratio,
excellent corrosion resistance, in-plane strength-to-weight
ratio, and fatigue resistance [3,4]. Although FRP has excel-
lent in-plane strength, it has poor strength in the thickness
direction due to its lack of fiber reinforcement to support
loads in the transverse direction [5], making woven fabric-
laminated composites susceptible to delamination failure,
which substantially decreases its subsequent strength and
stiffness [6].

Delamination is a failure mode often encountered
in laminated composite systems, where the layers are
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separated from one another [7]. Poor interfacial adhesion
is a major factor causing delamination failure [8,9]. Dela-
mination in woven fabric-laminated composite causes
failures such as the bridging phenomenon, fiber failure,
fiber pull-out, matrix plastic deformation, and delamina-
tion front deflection [10]. Besides, the crack growth beha-
vior of woven laminated composite exhibits intrinsically
unstable crack growth relative to the unidirectional lami-
nated composites due to the characteristics of neigh-
boring plies (longitudinal and transversal tows) where
the crack jumps between the transverse tows. The pre-
sence of inclusions and resin-rich area in the weave
structure serves as one of the toughening mechanism in
woven fabric-laminated composite [3]. To address these
issues, previous researchers had introduced the filler
such as carbon nanotubes (CNTs) or graphene as nano-
phase reinforcement.

Enhancement of interlaminar fracture toughness of
laminated composite is influenced by factors such as
Z-pining, 3D weaving, fiber hybridization, short fiber,
and toughening of the matrix resin [11]. The introduction
of nano-phase reinforcements such as CNTs into the
interlaminar region of the laminated composites can be
regarded as a promising method toward improving interla-
minar fracture toughness due to the extraordinary proper-
ties of CNTs such as high stiffness and strength, specific
surface area, and aspect ratios [12–14]. The presence of
CNTs also provides additional tougheningmechanism against
fiber pull-out, CNT peeling, hackles formation, and stick-slim
formation [15].

The CNTs can be introduced into laminated compo-
sites by directly embedding it into the polymer matrix
[16,17], but this approach faces difficulties in achieving
homogenous dispersion of the CNTs due to the strong
Van der Walls forces, leading to agglomeration [18,19].
Also, the high viscosity of the CNTs dispersion in the
resin makes the process complicated, which leads to
poor efficiency performance in the laminated composites
[20]. To address the CNTs agglomeration problem, the
CNTs can be directly grown or deposited onto the fiber
surface.

Few methods that successfully grew or deposited
CNT onto fiber surfaces have been reported, such as
chemical vapor deposition (CVD), electrophoretic deposi-
tion (EPD), chemical grafting, traditional spray-up, and
electrospray deposition (ESD), each with its respective
advantages and limitations [21]. For example, the high
processing temperature in the CVD method compromises
the fiber properties and burns off the sizing of fiber coating
[22]. Low-temperature methods such as EPD, chemical
grafting, and traditional spray-up are viable replacements

for the high-temperature approach [23]. However, exces-
sive exposure of the fiber to chemicals and the required
oxidation treatment could structurally damage the CNTs
and fibers [24]. Traditional spray-up approach encoun-
tered difficulties in dispersing CNT homogenously due to
its large droplet size [25]. As compared to other methods,
the ESDmethod can overcome the limitation by deposition
of the CNTs on the fiber surface with the applied voltage.
ESD is a simplified method that can be conducted at room
temperature and does not require any oxidation treatment
for the fibers. It uses a high electrical field that converts the
suspension of CNTs into non-agglomerating uniform-sized
nanodroplets to be deposited onto the target. As reported
by Li et al. [26], the ESD method successfully produced a
homogeneous and well-distributed coating of CNTs into
fibers, while maintaining mechanical performance. This
is due to the use of high electrical field, which converts
the suspension of CNTs into uniformly sized nano or
microdroplets in the target. In addition to being a simpler
method, ESD provided cost effectiveness, versatility, and
large-scale production.

This study intends to address issues involving the
deposition of CNTs onto fiber surfaces using the ESD
method, while also improving the fracture toughness of
the final product. The hybrid CNT-glass fiber (GF) was
prepared, and the effectiveness of the hybrid GF inter-
layered with CNT by the ESD method was analyzed. The
surface morphology hybrid of the CNT-GF was character-
ized using a field emission scanning electron microscope
(FESEM). Then, the hybrid CNT-GF-Epoxy-laminated com-
posite was fabricated using the vacuum-assisted resin
transfer molding (VARTM) method. The interlaminar frac-
ture toughness was determined using the opening mode I
test double cantilever beam (DCB). The aim of this study is
to investigate the CNT deposited via the ESD method on
the GF surface and evaluate its fracture toughness perfor-
mance when used in a fabric-laminated composite system.
The process is shown in graphical abstract.

2 Experimental method

2.1 Materials

Woven “E” GF (CL Composites Sdn. Bhd) with a density
of 2.56 g cm−3 and area weight of 400 gm−2 were used in
this study. The multiwalled CNTs were purchased from
Skyspring Nanomaterials, Inc, Houston, TX, USA, with
purity of 95%, an external diameter of ∼20–30 nm, and
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internal diameter of ∼10–30 μm. Merck supplied the
N-methyl-2-pyrrolidone (NMP) solvent. The epoxy resin
used in this work was of the EpoxAmite® 100 part, a
variety with hardener EpoxAmite® 103 slow part B sup-
plied by Smooth-On Inc. This epoxy system was pre-
ferred due to its low viscosity and slow curing, making
it suitable for the VARTM process.

2.2 Preparation of CNTs-deposited GF

The hybrid CNTs-GF was prepared using the ESD tech-
nique. First, the dispersion of CNTs was prepared by dis-
persing 0.1 g of CNTs into 50mL of NMP. The dispersion
was sonicated for 8 h using a probe ultrasonicator at
40 kHz to prevent CNTs agglomeration. The dispersion
was then sprayed onto the both surfaces of the GF attached
to the roller using a voltage of 18 kV for 15min. The roller
was rotated at a fixed speed of ∼120 rpm and the dispersion
flow rate was of 0.02mLh−1 during the process. The entire
process is shown in Figure 1. Note that the process parameters

used in this study were the optimized conditions discov-
ered in previous work that has been previously reported
with slight modification in applied voltage and time of
sonication [21,26,27].

2.3 Preparation of hybrid CNTs-GF epoxy
laminated composite

The VARTM process was used to produce the laminate
composites consisting of eight plies of hybrid CNTs-GF with
a dimension of 210mm × 297mm, as shown in Figure 2 (a)
upper mold and (b) lower mold. The mold was designed
based on the perimeter-to-point model of the infusion
technique. Epoxy-laminated composites were prepared
using the 1:2 fiber-to-resin weight ratio. The EpoxAmite®

100 part A was mixed with the hardener EpoxAmite® 103
slow part B and then degassed at room temperature. Eight
plies of hybrid CNTs-GF were stacked with PTFE film
inserted in the middle of the plies as a crack starter, as

Figure 1: Illustration of ESD process.

Figure 2: Experimental setup for VARTM process (a) upper mold and (b) lower mold.

1768  Fatin Nur Amirah Mohd Sabri et al.



shown in Figure 3. A 13 μm-thick PTFE film with a length of
60mm was used in this study. The mixture of epoxy resin
was inserted into the mold via the resin inlet under a
vacuum pressure of 75 cmHg. The mixture flowed in the
direction across the fiber layers until it reached the vent at
the top of the mold. After infusion, all the inlet and outlet
vacuum were shut to maintain constant pressure, then left
overnight to cure at room temperature (25°C). The sample
is described in Table 1.

2.4 Characterization of hybrid GF-CNTs-
epoxy-laminated composite

The surface morphology of the CNTs deposited onto the
surface of GF and the fracture samples of the DCB test
were analyzed using the FESEM (FESEM, Zeiss Supra
35VP). The constituent volume fraction of each sample
was measured as per the ASTM D 3171 procedure G, and
the data were used in the formula below:
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where Vf is the fiber volume fraction, Mf is the mass of
fiber after digestion, Mc is the mass of the initial compo-
site, Pc is the density of the composite, Pf is the density of

the fiber,Vm is the matrix volume form, Mm is the mass of
the matrix after ignition, and Pm is the density of the
matrix.

The DCB sample was prepared as per ASTM D5528,
with loading blocks, as shown in Figure 4. The samples
were with dimensions of 150, 25, and 3.5 mm. Two alu-
minum blocks were attached at the end of the sample
with epoxy adhesive and cured overnight at room tem-
perature. The crack length scale was drawn at the side
of the sample to allow for the observation of the crack
tip during delamination. Mode I: Interlaminar fracture
toughness was investigated using the Testometric with
a load cell of 50 kN. The test setup is shown in Figure 5.
The samples were pre-cracked at a crosshead speed rate
of 5 mmmin−1 and then unloaded to the initial position.
The test was resumed at a speed of 1 mmmin−1 until
it reached a crack length of 25 mm. A minimum of five
samples of each category was tested, and the data were
collected and analyzed based on the corrected beam
theory (CBT).
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where P is the applied load, δ is the crosshead displace-
ment, a is the crack length, C is the compliance, b is the
sample’s width, h is the arm thickness, Δ is the correction
for beam rotation at the crack tip determined from the
x-axis intercept of the C1/3 against crack length plot, Ef is
the flexural modulus of the arm, and m is the gradient.

3 Results and discussions

The surface morphologies of the woven GF before and
after the deposition of CNTs are shown in Figure 6.
Figure 6a shows the FESEM image of a woven GF before
the CNTs deposition. The smooth surface of the GF is

Figure 3: Illustration of sample preparation of hybrid CNTs-GF.

Table 1: The samples description

Control sample Hybrid sample

Sample name GF-Epoxy CNTs-GF-Epoxy
Description Epoxy reinforced with 8-plies of GF Epoxy reinforced with 8-plies of deposited CNTs on GF
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evident in the image. The morphology of the hybrid
CNTs-GF after deposition is shown in Figure 6b and c.
Homogenous and uniform deposition of CNTs on the sur-
face of GF was successfully done, as per Figure 6b. Based

on the observed morphologies, it can be surmised that
the ESD method successfully deposited CNTs onto the GF
surface, at minimal agglomeration.

The constituent of volume fraction for each sample is
detailed in Table 2. The results show both samples having
fiber volume fractions of ∼29–32% and matrix volume
fractions of ∼67–70%.

The load-opening displacement curves represent-
ing Mode I from the DCB test for the control sample
(GF-Epoxy) and hybrid sample (CNTs-GF-Epoxy) are shown
in Figure 7. The fracture toughness was evaluated at the
initiation (pre-cracked) and propagation (crack propaga-
tion) stages. The curve shows the crack front progressed
25 mm from its pre-crack stage. The R-curve in Figure 7
represents the sample’s crack growth resistance. The
hybrid sample (CNTs-GF-Epoxy) exhibited a relatively
longer displacement and higher load for growing the
same crack length relative to the control sample (GF-Epoxy)
composite. The R-curve shows a relatively non-linear
behavior, displaying a combination of stable and unstable
crack growths where the load suddenly drops alongside
the crack growth [3].

In a woven composite system, the propagation of a
crack is determined by the weave’s geometry. Thus, the
fracture behavior relies on fiber architecture, resulting in

Figure 4: The sample dimension for DCB test.

Figure 5: Experimental setup for DCB test.

Figure 6: FESEM image of (a) GF, (b) and (c) hybrid CNTs-GF at 5k× and 20k× magnifications, respectively.
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less cracking of the matrix [28]. The neighboring 0°/90°
interphase and transverse tows in the woven fiber pro-
duce crack jumping, which resulted in unstable crack
growth. Each sample exhibits a sawtooth reaction, which
is a feature of the stick-slip behavior during the propagation
of cracks usually seen in woven fabric composites. The
stick-slip behavior is represented by the sudden failure of
the fiber bridging during crack propagation [29]. The fiber
bridging appears when the fibers act as crack arrestors
that resist delamination, therefore, increasing the fracture
toughness [30]. The presence of CNTs on the surface of the
fibers tends to increase the maximum load value, which

means that more energy is required for crack propagation.
The fiber bridging of the samples is shown in Figure 8.

The Mode I interlaminar fracture toughness (GIC) for
woven fabric-reinforced laminated composite was calcu-
lated using CBT. GIC of both the control sample (GF-
Epoxy) and hybrid sample (CNTs-GF-Epoxy) as a function
of crack growth are known as the R-curve. As shown in
Figure 9, the interlaminar fracture toughness of hybrid
sample demonstrated more unstable crack propagation
compared to the control sample. The R-curve of hybrid
sample tends to exhibit more stick-slip growth and higher
fiber bridging than the control sample [31]. The sudden
drop point of the R-curve during crack growth is due to
the “run-arrest” behavior from the weave structure that
forms a series of rapid propagation, followed by an arrest
period [32]. The enhancement of the interlaminar fracture
toughness was due to the presence of the CNTs deposited
on the GF’s surface improving the interlocking effect
between the GF and epoxy matrix [33], improved delami-
nation resistance of the fiber and fiber/matrix interface,
and the increment of crack propagation [34].

Table 2: The constituent of volume fraction of control and hybrid
sample

Fiber volume
fraction, Vf (%)

Matrix volume
fraction, Vm (%)

GF-Epoxy 29.93 ± 0.8 69.94 ± 0.8
CNTs-GF-Epoxy 32.35 ± 0.8 67.51 ± 0.7

Figure 7: Load versus displacement curves for control sample (GF-Epoxy) and hybrid sample (CNTs-GF-Epoxy).

Figure 8: (a) and (b) Fiber bridging at DCB sample during crack propagation.
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Figure 10 shows the crack initiation of fracture tough-
ness from the first point after a sudden decrease in the
load, as indicated by the load versus displacement curves.
The control sample GF-Epoxy has a crack initiation frac-
ture toughness of 969.4 ± 17.3 J m−2. The incorporation of
CNTs into the composites improved crack initiation frac-
ture toughness for the hybrid sample (CNTs-GF-Epoxy) by
∼31.8% at 1277.5 J m−2, which can be attributed to the
increased interactions between the fiber and the matrix.
The CNTs act as nano-bridges at the interfacial region,
which increase energy absorption during crack propaga-
tions, thus enhancing the interfacial regions [35–37].
Compared to the control sample, the hybrid sample’s
propagation toughness increased by ∼34.4% on average,
where its GIC was 1534.4 J m−2. This improvement could
be due to the fiber bridging phenomena, where fibers act
as a crack arrestor, influencing the interlaminar fracture
toughness as shown in Figure 8. Another toughening
mechanism that simultaneously influences fracture tough-
ness was crack-branching, polymer crazing, and fiber pull-
out, as shown in Figure 12.

The flexural modulus of the arms from the DCB test
were obtained using equation (7) as detailed in Section
2.4 and are tabulated in Figure 11. It was calculated as a
function of the crack length. The flexural modulus of the
hybrid sample was unaffected by the inclusion of the
CNTs coated on the GFs. The control sample GF-Epoxy has
a flexural modulus for the arm specimen of 10.60 ± 0.25 GPa,
while the flexural modulus of the arm specimen for hybrid
sample (CNT-GF-Epoxy) was 7.41 ± 0.22 GPa. The flexural
modulus is independent of crack length [38].

The fracture behavior of the DCB samples of the
GF-Epoxy and CNTs-GF-Epoxy were examined using
FESEM at high magnifications, as shown in Figure 12. A
clean fiber surface was observed at fractography of the
control sample as shown in Figure 12a–c. There was clean
separation between the fiber and matrix, which is indi-
cative of adhesive failure and poor interfacial bonding.

Detailed observation of interfacial debonding on fiber–
matrix interphase is shown in Figure 12a–c. The incor-
poration of CNTs on the GF shows delamination, as per
Figure 12d–h. The rough surface of the matrix fracture is
seen mainly on the CNTs-GF-Epoxy in Figure 12e, which
shows a more complicated fracture path, thus increasing
fracture toughness. A hackles pattern within the fiber

Figure 9: Mode I fracture toughness against crack length of control
sample (GF-Epoxy) and hybrid sample (CNTs-GF-Epoxy).

Figure 10: Comparison of the crack initiation and propagation frac-
ture toughness for control sample (GF-Epoxy) and hybrid sample
(CNTs-GF-Epoxy).

Figure 11: Comparison of flexural modulus for the arm DCB
specimens.
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side is shown in Figure 12f and g, developed at a high
degree of deformation at the matrix phase by shear stress
[39]. Additionally, Figure 12h shows the crack through
the matrix, which indicated that the crack propagated
cohesively within the matrix thus, promoting cohesive
failure in the matrix. Consequently, at the end of the
crack propagation, the hybrid sample with the presence
of CNTs show significantly different mechanisms com-
pared to the control sample (GF-Epoxy).

4 Conclusion

Hybrid CNTs-GF woven fabric material was manufactured
using the ESD at an applied voltage of 18 kV and spray
time of 30min. A homogenous and uniform coating dis-
tribution of CNTs was found on the GF’s surface using a
high applied voltage. VARTM was used to fabricate the
epoxy laminated composite. The interlaminar fracture
toughness of the hybrid CNTs-GF-Epoxy increased by

Figure 12: FESEM image of mode I fracture surface of the (a–c) control sample (GF-Epoxy); (d–h) hybrid sample (CNTs-GF-Epoxy).
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∼34% relative to its control counterpart. The presence
of CNTs on GF improved the mechanical interlocking
between the matrix and the fiber, hence increasing the
cracking pathway leading to an increase in the interla-
minar fracture toughness. This enhancement of fracture
toughness was achieved on the hybrid sample where the
CNTs were coated onto the fiber via the ESD method.
Based on fractography observation on the interface, dif-
ferent failure mechanisms were found to have contributed
to the interlaminar fracture toughness enhancement, thus
confirming the (different) interactions between fiber and
matrix due to the presence of the CNTs.
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