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Abstract: This review focuses on nano-structured delivery
devices prepared from biodegradable and biocompatible
natural and synthetic polymers, organic raw materials,
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metals, metal oxides, and their other compounds that
culminated in the preparation of various nano-entities
depending on the preparative techniques, and starting raw
materials’ utilizations. Many nanoparticles (NPs) made of
polymeric, metallic, magnetic, and non-magnetic origins,
liposomes, hydrogels, dendrimers, and other carbon-based
nano-entities have been produced. Developments in nano-
material substrate and end products’ design, structural
specifications, preparative strategies, chemo-biological
interfacing to involve the biosystems interactions, surface
functionalization, and on-site biomolecular and phy-
siology-mediated target-specific delivery concepts, exam-
ples, and applications are outlined. The inherent toxicity,
and safety of the design concepts in nanomaterial prepara-
tion, and their applications in biomedical fields, especially
to the organs, cellular and sub-cellular deliveries are delib-
erated. Bioapplications, the therapeutic delivery modules’
pharmacokinetics and medicinal values, nanopharmaceu-
tical designs, and their contributions as nano-entities in
the healthcare biotechnology of drug delivery domains
have also been discussed. The importance of site-specific
triggers in nano-scale deliveries, the inherent and induced
structural specifications of numerous nanomaterial entities
belonging to NPs, nano-scale composites, nano-conjugates,
and other nano-devices of organic and inorganic origins,
near biological systems are detailed. Modifications that
provide nano-deliveries of their intrinsic therapeutic actions,
through structural and physicochemical characteristics
modifications, and the proven success of various nano-delivery
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devices and currently available commercial nanomedicinal
and nanopharmaceutical products are also provided.

Keywords: nanomedicine, nanoparticles, hydrogels, lipo-
somes, dendrimers, carbon nanotubes, drug delivery,
biomedical applications, nano-products, toxicity

1 Introduction

1.1 Nanotechnology: concept, requirements,
concurrent modes, and models in nano-
delivery

Nanotechnology is a dynamic and functional field dealing
with the process of synthesizing and utilizing materials,
technically ranged between 1 and 100 nm in size, which
are different in shapes, chemical composition, characteri-
stics, reactivity, and functionalization potentials. The
nanotech-originated materials for uploading, encapsula-
tion, and delivery of drugs, genes, and other macromole-
cular entities are preferred to be in the size ranges of
>100 nm for their ease of loading together with their
inherent functional merits to meet the biosystem’s demands
and the biosystem’s specifications for facile delivery at the
intended site. Today, the nanotechnology-based deliveries
to different sites of the biosystems represent state of the art
in site-specific targeting of various types of cells, critical
cellular masses, tissues, organs, cell-bound and embedded
receptors, immunological, and skeletal sites, as well as drug
delivery to the physiologically malfunctioning entities, loca-
tions, and conditions in the body. The payloads intended for
delivery include small-molecule drugs, proteins, peptides,
polypeptides, enzymes, antibodies, and other bio-based,
and recombinant materials, genes, as well as macromole-
cular payloads with specific functions, and characteristics
of choice. The delivery module design and preparations cor-
respondingly utilize some of the naturally available and
synthesized entities, and chemically suitable and structurally
viable synthons, polymers, organic and inorganic originated
metals, and carbon-based materials. The delivery entities by
virtue of their structure and make-up provide desired site-
specificity, and are prone to the induction of site-specific
motifs as molecular identification tags, and on-demand
designed and developed biocompatible and biodegradable
as feasible delivery conjugates for target-specified deliveries
and dispositions. The involved delivery modalities include
nano-scale entities of various categories, including nano-
particles (NPs) of different origins, characteristics, physico-
chemical and biological potentials, lipidic nano-carriers,
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mesoporous nano-scale materials, molecular cages and
other molecular templates, the carbon-based nano-scale
entities of single and multiple dimensions (1D, 2D, and
3D), and the dendrimers of specifically designed charac-
teristics and delivery potentials. The development and use
of extremely small nano-scale entities have paved the way
for key biotechnical advances in drugs and other payload
delivery through the size, shape, and characteristics con-
trols of the products intended for applications in various
conditions in vitro and in vivo. The nano-biotechnical field
has progressed exponentially over the last few decades,
and currently, it deals with an interdisciplinary spectrum
of potentials, characteristics, and functions through the
involvement of various advancing levels of preparative
methodologies in a generational manner of developments
over the period. The preparative and delivery techniques
and the recipe for building better nano-entities, nano-
scale devices, nanovehicles, nanosystems, nanomachines,
as well as nano gears are continuously being developed.
Some of the products are in the conceptual stage, while
some are in the market for different applications in biome-
dical fields. Nonetheless, the nanodelivery segment has
assumed larger proportions in the discipline, and current
technologies used for the preparation of products for var-
ious types of delivery on a nano-scale have provided pur-
pose-built, nature-specific, end-site and characteristics
based, and goal-specific bio-systems with assured levels
of receptivity. The molecularly well guided nanoscale
products with chronological control that attenuate physio-
logical conditions are providing the needed expertise
and edge to nanodeliveries. Furthermore, with new
approaches continuously coming in, the advancements
in methodology and applications in nanomedicines, nano-
sensors, nanodeliveries, nanodiagnostics, nano-biomater-
ials, tissue engineering at nano-scale initiatives, nano-scale
implants, and stem cells, together with their intertwined
and interfacial products and techniques, have evolved
nearly up to clinical levels. The advances in techniques
have attained the potential to design and produce nano-
biomaterials for several biological uses in bones, hearts,
lungs, livers, and other organs and to repair, replace, and
regenerate the desired entities and to ameliorate undesired
effects. Nonetheless, the applications of nanobiomedical
technology in various biomedical fields, especially, in
nanomedicine, diagnostics, therapeutics, and theranos-
tics have improved the quality of healthcare [1,2]. How-
ever, the commercial products and their production are
still limited and are in an evolving stage. The field is cer-
tainly wide open for innovations. It currently derives the
thrust from the understanding of the complexities, and
challenges on a minute scale that are effective in nature
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to discover better and effective applications in therapeutic
segments, diagnostics, imaging, sensing, and other biome-
dical and clinical fields relevant to human health.

The on-demand, accurate delivery of drugs and other
payloads is of prime concern. The need for controlled
drug delivery is obvious because of concerns about toxi-
city, and adverse reactions. The dose-controls, bioavail-
ability at the site, membrane permeability of the drugs
and other deliverables, as well as solubility in different
media, proper holding of the drugs in the delivered
medium, and overall superior on-site acceptability, which
leads to the control of the delivery dynamics of the drug,
are other concerns. Drug delivery, in essence, refers to the
methods for transporting a drug into the body system
according to requirements to effect, and assist the curing
of diseases, and maintaining healthy physiology under
various pharmacokinetic controls. It involves conventional
and non-conventional drug administering routes, that is,
oral, transdermal, rectal, intravenous infusion, intramus-
cular, topical, nasal, inhalation, otic, ophthalmic, sublin-
gual, buccal, arterial, and subcutaneous [3-6]. The adopted
routing modes deliver drugs in considerable quantities to
provide, from satisfactory to the highest achievable levels of
bioavailability with a play-out on a dose together with its
needed frequency, wherein injunctions of bioavailability
levels, and drug safety aspects are interplaying at the cel-
lular and sub-cellular levels. The conventional drug routing
methods have several disadvantages. The major disadvan-
tages are pain, the likelihood of infection due to non-ster-
ilized interventions, time constraints in delivery, sluggish
absorption, as well as the variability of the doses. The first-
pass metabolic effects, faster metabolic rates of the drugs,
as well as their elimination by the liver before reaching the
intended site, and undesired transport through systemic
circulation to the unwanted locations, are also some of
the other major bottlenecks. Drug deliveries, if not specified
in design to reach the site through trigger and feedback of
different factors of physiological and biological concerns,
may further constrain and complicate delivery to the site.
Here, the role of developments in nanomedicine and nano-
scale delivery to fit the route specifications becomes impor-
tant. The delivery modes, including nano-entity-based
deliveries, also, at times, generate cellular toxicity, reti-
cular endothelial system (RES) escape, lymphatic and fat
accumulations, muscle damage, as well as blood flow var-
iations. The changes in absorption rates, elicitations of
toxic reactions, skin irritations, and variable blood flows
to the skin, skin dehydration, abrasion, and rashes form
a long list of pitfalls that may occur, although by adopt-
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ing nano-module delivery they may be at lower levels.
Moreover, among modern delivery modules, the injunc-
tions for site-specificity, molecular-recognition capability,
enzymatic interactions, chronology-based sustained and
dose-controlled deliveries befitting the responses to and
against the physiological conditions, pH-based perfor-
mance with biocompatibility, and biodegradation charac-
teristics have been at the forefront of the developments
in nanomedicine and theranostic fields. The nanoscale
delivery modules are being continuously developed, and
improvements in the various processes in animal models,
in vitro conditions, and clinical settings are intermittently
showing up.

2 Nano-structured devices:
nanomedicine, modern drug
delivery, and pharmaceutical
injunctions

The field of nanomedicine is remarkably efficient and
capable of supporting appropriate changes in the health-
care sector compared to traditional delivery formats. The
field has established newer applications and improve-
ments in applications to end-users, especially in the ther-
apeutics, and cellular, organ, gene, tissue engineering,
implants, and drug delivery segments. The field of nano-
medicine is replete with concurrent developments, and
nano-bioengineering devices are under constant devel-
opment and applications [7,8]. The current scenario in
drug delivery system availability provides metal-based
and polymeric NPs, synthetic and natural polymer-based
NPs, magnetic and inorganic NPs, lipid-based NPs, hydro-
gels, dendrimers, buckyballs, carbon nanotube (CNT)-
based materials, virus, and bacteria-based NPs. It also
includes nano-admixtures (interfacial devices) as part of
the nano-structured devices for a wide variety of drugs and
other payload entities deliveries to different sites. Reports
on delivery module efficacy, compatibility, site-specificity,
various bioapplications, and development of commercial
products are continuously coming. More developments are
expected, and an overview of nano-structured devices and
delivery modules of nano-scale structured systems are sig-
nificant enough to be taken up to evaluate the impact and
future directions in this field which has substantially
evolved from the time of its inception.
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2.1 NPs

NPs are the foremost delivery modules used in nano-scale
delivery domains, especially in the oncology segment.
The NPs have novel physico-chemical properties, as opposed
to non-nano-scale particulate materials, as well as other
entities together with materials of non-nano specifications.
The small size, alterable surface specificity, surface area to
volume ratio, enhanced solubility, and multi-functional
characters of NPs have helped in constructing new nano-
devices for biomedical uses, especially in therapeutics
delivery. The nanosystems, especially the NPs, have gained
much attention for their capabilities in detecting early-stage
diseases, together with the delivery of pharmaceutical
agents to cure ailing conditions. The NPs can target within,
and on the cells within the body, for example, cancer cells,
or other diseased cellular masses, and modify and terminate
disease progression. The active ingredient(s) delivered by
the NPs include releasing of the drug in and to a localized
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area to minimize the dose and its frequency, together with
curtailing the potential systemic side effects caused by the
use of the traditional drug therapy modalities. Oncological
chemotherapy is one such prime application area for NP-
based drugs as well as for other payloads’ deliveries [9,10],
including their site-specific targeted delivery. The NP-based
products also stimulate and improve biological processes
involving, for example, tissue engineering, infection con-
trol, and de novo synthesis of biomaterials. The developed
nano-structured devices include functionalized CNTs,
nanomachines, nano-assembly derived from transposable
DNA fragments, DNA scaffolds, self-assembling polymeric
nano-constructs, nanofibers, nano-devices of polymeric ori-
gins, protein-based nano-products, nanomembranes, nano-
sized silicon chips, nano-arrays for drugs, nucleic acid, and
peptide deliveries, as well as implants construed for nano-
scale applications [11]. Abundant reports on the advances in
preparative techniques of nanomaterials and NPs are avail-
able. Conventional techniques for NPs’ production utilize
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chemical reduction methods, as well as natural, green, and
bio-catalyst-based reduction methods to obtain high-den-
sity yields of naked and surface-capped NPs. The NP pre-
paration techniques have utilized polymers of synthetic and
natural origins, carbon sources, silica, metals, non-metals,
as well as biological materials, that is, lipids, lactic acid,
chitosan (CS), and phospholipids. A plethora of methods is
available for purpose-defined, size-specified, and surface
chemistry-controlled NP preparation. The current trends
in the preparation of pre-designed, characteristics, and phy-
sico-chemical properties defined, and appropriately, func-
tionalized NPs, owing to the advancements in synthesis,
fabrication protocols/technologies, and characterization
feasibility, have made the production of desirable NPs a
reality [12,13]. Several techniques were used to prepare var-
ious types of NPs, and their different constructs through a
set of chemical, physical, biological, and interfacial ways. A
summative diagram depicting the preparation methods is
presented in Figure 1.

2.1.1 Polymers-based NPs (PNPs)

PNPs are colloidal particles ranging from 10 to 1,000 nm
and serve as drug delivery carriers of nano- to micro-
scale ranges. PNPs offer better storage, encapsulation/
entanglements, and transfer capacity with stability, due
to the use of several types of surfactants in the formula-
tion, which is maneuvered for embedding, and entrap-
ping the drug and other payloads within its polymeric
matrix, adsorbed, or conjugated onto its surface through
its reactive functional groups, for efficient release from
the matrix [14,15].

Several reports of PNPs preventing the degradation of
sensitive drugs, and biomolecules of proteins, peptides,
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Figure 2: Physicochemical properties of PNPs.
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enzymes, antigens, antibodies, RNAs, and DNA origins
are available. Protection is available from degradations
caused by enzymatic and hydrolytic dilapidations [16],
and many other environmental damaging factors [17-19].
Compared to free drugs, the PNP-encompassed drugs pos-
sess several benefits, for example, enhanced delivery,
maximum bioavailability, optimized loading capacity,
capability for controlled release, and choices of various
administering routes. They also provide the ability to accu-
mulate the intended drug in high concentrations for
dealing with infections and inflammations through the
integration of improved permeability, outreach, and dis-
tribution. The PNPs have also shown enhanced cells and
tissue targeting when administered in conjugation with
cell-specific moieties attached to the surface of the PNPs
for specific and on-site targeting [20]. The PNPs possess
several other properties, also by design obtained through
preparation techniques, freedom of raw material choice,
surface coating, and molecular tagging. Stahility, tunable
drug release properties, size distribution, and surface charge
make them accordingly suitable and efficient drug delivery
option materials [21] (Figure 2). The PNPs can be prepared
as nanospheres and nanocapsules of different makes and
matrices specifications depending upon their preparation
methods. The nanocapsules are matrix systems with the
medication compressed in an internalized cavity, usually,
a thick polymeric-membrane wall, where the drug load is
homogeneously distributed within the capsule. The nano-
spheres have the drug load scattered throughout the nano-
entity’s matrix (Figure 3). A number of techniques are used
to prepare NPs, which include different methods like the
emulsification process, salting out, solvent diffusion, solvent
evaporation, dialysis, super-critical fluid technology, sol-gel,
laser ablation, vapor deposition, polymerization, and nano-
precipitation (Figure 4) [22-24].
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Figure 3: Types of polymeric NPs based on drug loadings.

2.1.2 Natural PNPs

The natural PNPs are prepared from biodegradable and
biocompatible polymeric materials sourced from nature
[25-28]. Among the most frequently used natural poly-
mers used in preparing the formulations of PNPs are CS,
alginate (ALG, sodium alginate), albumin (ALB), alginic
acid, and gelatin [29-32]. A list of major natural poly-
mers, together with their drug loading, delivery prefer-
ences, and characteristics inferred from the preparations,
as well as pharmaceutical applications are summarized
in Table 1.

¢ Emulsification

e Solvent Diffusion

e Salting Out

e Dialysis

e Solvent Evaporation
e Supercritical Fluid Technology (SCF)
¢ Nanoprecipitation

Polymer

Precipitation
Method

Figure 4: General methods of preparations and properties of PNPs.
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2.1.2.1 CS-based NPs

CS is a non-toxic, biodegradable, and biocompatible car-
bohydrate class natural polymer, which makes it suitable
for use in novel drug delivery systems, as they do not
produce any adverse biochemical responses, irritation,
and allergy. The CS NPs (CSNPs), colloidal in nature,
entrap small molecular weight (MW < 500 Da) bioactive
molecules through several mechanisms, that is, chemical
and ionic cross-linking, covalent bonding, sequestration,
conjugation, complexation, and physicochemical inter-
actions that lead to the 3D-networked entity resulting in
CSNPs. The CS and chemically modified-CS (mCS) are
also useful in surface attaching and encapsulating the
small MW drugs with higher encapsulation efficiency (ee).
Different larger-sized bioactive molecules, proteinaceous
products, macromolecular entities, genetic materials (all
high MW) for different pharmacological backgrounds have
been encapsulated in CS and its chemically modified (mCS)
derivatives. The CS is also suitable for providing feasible
structural and physicochemical characteristics to control
the prepared nano-entities’ capabilities to effectively trans-
port, and safely deliver the payloads under different bio-
system circumstances. CS, as a coating agent for other
nano-carriers, for example, liposome, as a transfection
agent, and as a carrier system for non-viral gene delivery
are well known [33]. Several techniques, for example, emul-
sion formulations, ionic gelation [34-36], reverse micelle,
and self-assembly [37-39] have been achieved for the pre-
paration of CS-microparticles and CSNPs, but the ionic
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Controlled
Living Radical
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(C/LRP)

Interfacial
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gelation technique and reverse micellar solubilization are
among the most frequently used methods. In the former
technique, the interactions of oppositely charged loading-
intended materials readily generate the CSNPs. The tripoly-
phosphate (TPP) is used to prepare CSNPs, because of its
non-toxicity, multivalent nature, and capacity to create
nano-entities and gelation materials through ionic interac-
tions. The concentrations of TPP and CS, through the pH of
the solution, control the interactions, whereby the PNPs
of smaller sizes are subsequently prepared with a limited
size range. The technique dissolves surfactant in an organic
solvent that forms reverse micelles. To avoid any turbidity,
under steady agitation, an aqueous solution of CS is used.
With additional water addition, the NPs of larger sizes
are produced. The lower MW polymers are widely used
for inverse micelle-based PNP preparations. Bovine serum
albumin loading in comparatively low MW polymer resulted
in producing approximately 140—-430 nm size PNPs [40,41].
Micellar fatty acid (FA)-based solid lipid NPs (SLN-FA)
have been prepared by Chirio et al. [42]. Stable polymers
of different MW have been utilized in the presence of var-
ious non-ionic surfactants, for example, myristate, palmitic,
and stearic acids. A 28% and up FA usage strongly affected
the preparation of NPs. The SLNs of 300 nm diameter were
also generated. An addition of CS-HCl (CS hydrochloride)
to NP formulation produced positively charged bioadhe-
sive NPs. The curcumin (CU) charged with FA produced
CU-FA-SLN which affected the cell viability of the HCT-
116 colon cancer cell lines. The CU-SLN-FA co-condi-
tioning method used for the NP production of <300 nm
size with the range of 28-81% use of FA on the medium
to high MW and hydrolyzable polymers have been reported.
The HCT-116 colon cancer cells treated with CU-NP colloidal
nano-carrier, and which were able to treat HCT-116 cells
with greater CU concentrations in the presence of lipid car-
riers with lowered toxicity observations are known [42]. The
formulated CS-TPP-NPs, with the capability of peptide
absorption throughout the mucosal surface, were reported
by Grenha et al. [43]. A spray-drying process with mannitol
as an excipient was used to produce the desired PNPs
and CSNPs with appropriate characteristics of size and
weight for pulmonary delivery. The phospholipid, which
was termed as lipid—CS-NP complex (L-CSNPs), was also
developed for insulin delivery. The aerodynamic properties
of these spherical PNPs were essential for lung delivery. The
structure of the phospholipid influenced the characteristics
of the L-CSNP complexes. The phospholipid ensured the
regulated release (~68%). It also effectively combined the
scheme of an encapsulated protein (insulin). The developed
microspheres with acceptable properties were offered for
deep inhalation [43]. The in vivo capacity of the thiolated-
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CS NPs (T-CSNPs) to reduce allergic asthma was also inves-
tigated. Lee et al. [44] developed improved T-CSNPs
for theophylline supply. The ovalbumin (OVA) challenged
and OVA-sensitized BALB/c mice were induced with inflam-
matory allergic disease, and theophylline, CSNPs, and
T-CSNPs were administered through the intranasal route
to evaluate their efficacy, which showed superior perfor-
mance of the T-CSNPs [44]. High-intensity ultrasonication
induced considerable damage to the CSNPs, which affected
their functioning as a drug carrier, as reported by Tang
et al., [45]. Another work analyzed the effects of acidity
on the cross-linking between sodium-TPP and CS [46].
The antibacterial activity of positive, fixed-charged NPs,
through minimum inhibitory concentration, was also reported
[47]. The CSNPs and NPs loaded with copper against multiple
microorganisms, for example, Escherichia coli, Salmonella
typhimurium, and Staphylococcus aureus were evaluated for
their antibacterial activity. Many organisms when tested
against these, CSNPs, and copper-laden NPs, fully con-
firmed their antibacterial activity. Atomic force microscopy
(AFM) showed that exposing Salmonella choleraesuis to
CSNPs broke their cell membranes, and the cytoplasm
leaked during the process [47]. Sandri et al. studied the
penetrating effects of N-trimethyl CS NPs (TMCS-NPs).
The outcome proposed that the mucoadhesive properties
were the limiting factor for these PNPs’ absorption, which
caused increased contact time with the intestinal epithelium
with compromise on an improved chance for internalization
of these NPs [48]. Hu et al. produced and characterized
CS—-poly-(acrylic acid)-complexed NPs of sizes ranging
from 50 to 400 nm by template polymerization of acrylic
acid (AA) in CS solution, which produced positive charges
on the NPs surface. The in vitro silk peptide (SP) release
showed that the NPs entrapped SP effectively released
the encapsulated material for 10 days. However, the
peptide’s release was affected by the medium’s pH [49].

2.1.2.2 Modified CS-basedNPs

Among the modified CS-derivative (mCS), the dimethyl
ethyl CS (DMEC) possesses antimicrobial, anticancer,
and antioxidant activity. Another CS-derivative, diethyl
methyl CS (DEMC, 79% quaternization), completely soluble
in an aqueous medium, possesses a higher degree of anti-
bacterial activity against E. coli than the CS, owing to its
higher charge density, which was pH dependent, and were
used for the preparation of NPs to enhance intestinal
absorption of the insulin. NPs based on thiolated DMEC
(DMEC-Cys) were also prepared for insulin delivery through
buccal films, whereby the NPs enhanced (up to 97.18%)
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insulin permeation through buccal mucosa of the rabbits,
which exceeded the CS, and its derivative, DMEC [47]
performances. The polyelectrolyte complexing technique,
spherical morphology, and soft surface structures were cre-
ated by Bayat et al. [50] by using a freshly quaternized
derivative of CS from triethyl CS (TECS), and DMEC for
insulin delivery to the colon through approximately
170-210 nm-sized, positively charged NP formulation. An
exceeding 80% insulin was loaded and the loaded protein
release was well demonstrated, both, in ex vivo and in vivo
investigations. The ex vivo studies found better transport of
insulin through the colon membrane for NPs, compared to
the in vivo studies. The in vivo studies showed enhanced
absorption of insulin in the colon using similar NPs,
compared to the free insulin in the diabetic rats [50].
The tri ethyl chitosan’s (TEC’s) roles in NP preparation,
and ex vivo condition assessed the uptake, which was
enhanced in the colon-specific drug delivery. This was
also true for the poorly absorbed drugs, as reported by
Younessi et al. [51]. Their study showed a significant
increase in the absorption of sodium fluorescein and bril-
liant blue in the presence of TEC, compared to the CS alone
NPs [51]. The CSNPs prepared from different MW polymers,
and the TMC-derived NPs for nasal immunization were
prepared and characterized by Boonyo et al. The NP
prepared from TMC-based material with a 40% degree of
quaternization was the most effective in nasal supply [52].
Avadi et al. assessed the in vivo and ex vivo effects of DMEC
polymer-based nanoformulation for use as an enhancer for
intestinal para-cellular transport. In the presence of DMEC, in
ex vivo conditions, the brilliant blue absorption concerning
the polymer was significantly increased. The DEMC interacted
with tight junctions of the colon epithelial cells with positive
charges on them, and enhanced the permeability of the bril-
liant blue through the tight spaces [53] and demonstrated its
effective application.

2.1.2.3 Alginate NPs

The ALG-NPs are sourced from ALG, which is a brown
algae-sourced linear polysaccharide, composed of 1-4
interlinked a-L-glucuronic residues (G-block), and B-p-
manuronic acid residues (M-block). The aqueous solubility,
the tendency to gelate out in better shape, biocompat-
ibility, and non-toxic nature are some of the benefits
of this natural polymer [54-56]. Their primary ability,
under mild conditions, to form a gel makes this polymer
among one of the ideal candidates for the delivery of
drugs, also at nano-scale levels. By responding to the
divalent cations, the ALGs can form a gel with calcium
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ions, Ca®*. The divalent calcium cations connected with
the cross-linked matrix provided the material for further
work on drug loading. ALG, as an anionic polymer, at
decreased pH, forms an insoluble alginic acid [57-59].
The ALG matrix upon complex formation with other
polymer changes, and with the coating of the prepared
ALG particles, a controllable release of the drug triggers
in. It also helped to avoid the drug degradation at higher
pH, in which the surface coating has an important role
to play [60]. Cedroxil® (Cefadroxil, a broad-spectrum
first-generation cephalosporin class antibiotic) in vitro
delivery, achieved through interpenetrating polymeric
networks (IPNs) of sodium ALG with gelatin, and egg
ALB, was cross-linked with glutaraldehyde [61]. Cefa-
droxil with a biological half-life of 1.2-2.0 h for a dose
containing 0.5-1.5 g of the drug, wherein the short half-
life was proposed to be enhanced through the developed
IPN. The IPN also presented the prospect of oral delivery
formulation design and its directives for the preparation
[60]. In addition, various biological molecules, for example,
heparin [62], hemoglobin [63], melatonin [64], and some
vaccines [65,66] have been effectively entrapped using
plain-beads synthesized from ALG, or as coated ALG-beads,
as well as microcapsules. Furthermore, the in vitro analysis
of the ALG microspheres coated with serum ALB showed
effective peptide release [67]. For the intestinal provision
of probiotic yeast based on pH differences, Hébrard et al.
produced microparticulate materials of ALG-whey protein
[68]. However, the coated microbubbles and microcapsules
were comparatively more efficient than the smaller vesicles,
given that the micro-entities were allowing more control
over drug release for oral delivery systems and through
ALG-matrix modifications [60]. The ALG-NPs, with anti-
tubercular combination drugs (rifampicin, isoniazid,
pyrazinamide, and ethambutol), using the controlled
cation-induced gelification technique, that was prescribed
orally to mice infected with TB H37Rv, were prepared
by Ahmad et al. [69]. The encapsulated drugs showed
high efficiency, reaching up to 70-90% entrapments.
A single oral dose of the drug persisted for 7-11 days in
the plasma, and 15 days in the organs, that is, liver,
spleen, and lungs [69]. Rajaonarivony et al. described a
250-850 nm-sized, ALG-NP formulation, based on gelifica-
tion by the calcium ions for a doxorubicin (DOX) drug-
loaded model. These results showed that the ALG-NPs
are favorable carriers due to their high drug-loading capa-
city, which could reach over 50 mg DOX/100 mg ALG [70].
The ALG-CSNPs with low toxicity and biocompatibility,
to improve transfection efficiency, were developed by
Douglas et al. The presence of ALG diminishes the strength
of the interaction between the CS and DNA, which produces
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an enhancement in the transfection efficiency, as com-
pared to the CSNPs alone [71]. An anti-sense oligonucleo-
tide carrier system based on ALG-NPs was prepared to
examine its ability to protect it from degradation in the
presence of serum [72]. A polymeric composite (ALG, CS,
and Pluronic F127) nanoformulation was prepared with
ionotropic pre-gelation technique containing CU accompa-
nied by the polycationic cross-links for cancer cell delivery.
The encapsulation efficiency of the CU-showed a significant
rise over ALG—CS non-Pluronic NPs, compared to composite
NPs. The cytotoxicity test demonstrated that the composite
NPs, when used against HeLa cells at a concentration of
500 pg/mL, were non-toxic. The green fluorescence within
HelLa cells verified the internalization of the CU-composite—
NPs. The half-maximal inhibitory concentration (ICso) values
for pure and free CU and encapsulated CU, were found to be
at 13.28 and 14.34 UM, respectively [73]. Hyaluronic acid
(HA) is another important natural and alternate polymer.
HA is an anionic glycosaminoglycan structured polymer
used in constructing delivery platforms [74,75]. The repeated
carboxylic groups in each unit produce a response to pH
changes, which were enhanced in a cross-linked hydrogel
network [76]. For the release of blood clotting enzyme,
thrombin, the study reported by Pitarresi et al. evaluated
the pH-responsiveness of the photo-cross-linked HA-hydro-
gels [75]. Another derivative of HA, available with compara-
tively more abundant carboxylic groups, was used as a
nanoformulation for delivery to the colon, and the pH-sen-
sitive delivery of a-chymotrypsin [76] was demonstrated.
The cellular pathways studied in vivo and in vitro condi-
tions showed the pH-responsiveness of the HA-NPs. These
observations were important factors for the development of
an oral delivery system for insulin [77].

2.1.2.4 Gelatin-based NPs

Gelatin is a protein material that can be used with ease
for NP production by controlled hydrolysis. It is biode-
gradable, non-toxic, easy to cross-link and modify che-
mically, thereby possessing an enormous potential to be
used as a drug delivery carrier. Several methods have
been described for formulating gelatin-based NPs, which
included desolvation [78,79], thermodynamically driven
self-assembled processing, emulsion formation [80], cross-
linking with the polyethyleneimine (PEI) [81] and glutaral-
dehyde [82], nanoprecipitation [83], coacervation [84], and
grafting of hydrophobic anhydrides to the amino groups of
the pristine gelatin to form self-assembled micelles [85].
Novel emulsion techniques for preparing insulin-packed
gelatin NPs for diabetes treatment with the help of glyceride
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as developed by Zhao et al. were found significantly effec-
tive. During the first 4 h after intratracheal stellation, the
blood glucose levels in rat models decreased showing
their fast-hypoglycemic effect and transitional stability
[80]. Hypocrellin B, an agent for photodynamic cancer
therapy, was also loaded onto modified poly-(ethylene
glycol)-gelatin NPs. Solid tumor cells treated with the NPs
resulted in significant tumor regression [86]. The cisplatin-
loaded NPs prepared by Jain et al. showed higher input into
the human breast cancer cells in comparison with the con-
trol [87]. Lu et al. described an intravesical delivery of pacli-
taxel-loaded gelatin NPs, achieved for bladder cancer. The
absorption, positive tissue/tumor bladder targeting with
1 week retained supply was reported [88].

2.1.2.5 ALB NPs

The serum protein, ALB, available in pure form, is biode-
gradable in nature, non-toxic in action, and carries chemi-
cally reactive groups, that is, thiol, amino, and carboxyls.
It is also non-immunogenic. These characteristics make it
an attractive macromolecular carrier for preparing various
nano-scale structures and devices, including the nano-
spheres and nanocapsules for various bioapplications.
Different studies have demonstrated that human serum
albumin (HSA) aggregates in solid tumors, which again
makes it a potential macromolecular carrier as HSA-NPs
for site-directed delivery of several drugs, including anti-
tumor drugs, with enhanced bioavailability [89,90].

2.1.3 Synthetic PNPs

Synthetic PNPs have proven to be extremely attractive for
biomedical applications in various roles. Synthetic poly-
mers offer a viable and efficient transport and delivery
vehicle for a wide variety of drugs, including peptides,
proteins, lipids, and nuclear acids, and it is due to their
tunable sizes, shape, surface properties, and chemical
modification capabilities. Among the available synthetic
polymers, poly-(i-lactic) acid (PLA), poly-p,L-lactic acid
(PDLLA), poly-L-glycolic acid (PGA), poly(lactide-co-
glycolic) acid (PLGA), polycaprolactone (PCL), polyanhy-
drides, polyorthoesters, polycyanoacrylates, poly-glutamic
acid, poly malic acid, poly(N-vinyl pyrrolidone), poly(methyl
methacrylate), poly(vinyl alcohol) (PVA), poly(acrylic acid),
polyacrylamide, poly(ethylene glycol) (PEG), poly
(methacrylic acid), poly trimethylene carbonate (PTMC),
and cellulose acetate phthalate (CAP) polymer [91-101]
are worth mentioning. The most frequently used and
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preferred synthetic polymers employed for drug delivery
purposes are poly-L-lactide acid (PLA), PDLLA, PLGA,
PCL, and PTMC. Another facile and successful method
for the preparation of NPs was also developed which
was based on the oxidative liquid phase polymerization
technique, and it produced spherical-shaped, and func-
tional, poly-(COOH)-poly-(carbazole) polymer from the
carbazole-containing monomers. The produced micropar-
ticles were intensively examined by scanning electron
microscopy. The microparticles were used to functionalize
many polymeric and non-polymeric surfaces, matrices,
and non-functional nanomaterials, due to the presence
of dual-functional groups on them [102,103]. Mohsen et al.
assessed the toxicity of novel fluorescent temperature/pH-
responsive particles. The poly-N-iso-propyl acrylamide
(p-NIPAM) based, p-NIPAM-co-5%-LY (p-NIPAM-co-(5%)-
luciferin-yellow) was prepared using a surfactant-free
emulsion polymerization method. The produced particles
were found to be negatively charged with a size of roughly
250 nm at 15°C, which were de-swelled by increasing the
temperature, leading to a decrease in the size of up to
100 nm. The toxicity testings were performed on two cell
lines (HeLa and Vero), and their cell viability was found to
be >80% for both the cell types with 0.3 mg/mL of the
PNIPAM-co-5%-LY, while the NIPAM monomer exhibited
cell viability at 80% at a concentration equal to or less
than 3 mg/mL. The fluorescent property of these particles
made them easily traceable, which made them suitable for
cancer cell detection and targeting [104]. Paciotti et al.
tested colloidal gold (cAu), as a cancer drug, as well as
an immunodiagnostic marker. The group prepared a cAuNP
as a vector in this experiment that aimed to deliver the
tumor necrosis factor (TNF) to a solid tumor that grew in
mice. The ideal vector, known as TP—cAu-TNF, consisted of
thiol-derivatized PEG molecules. The recombinant human
TNF, directly linked to the gold NP surface was used. The
intravenous administration of TP—-cAu-TNF was induced,
which rapidly accumulated in the MC-38 colon carcinoma
and showed little to no accumulation in other organs of the
animals, that is, liver and spleen. The tumor cells were
noticed due to modification in the color of the tumor
because of the cAu sol (red/purple). The formulation was
found to be less toxic and efficiently dropped the tumor
burden when compared to native TNF [105].

2.1.4 Magnetic NPs

Iron oxide NPs (IONPs) are magnetic materials, superpatr-
amagnetic in nature. The iron oxide superparamagnetic
NPs (SPION) consisted of Fe,0; and FesO,. The particles
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communicate with external magnetic fields, thus provide
wide-ranging possibilities through their magnetic char-
acter in nanomedicine fields where they have been used
as an magnetic resonance imaging (MRI) contrast agent
for magnetic hyperthermia-based anti-cancer therapies,
and as a delivery option [106]. The magnetic NP-based
drug delivery systems are tracked during their movement
through the body. This significant property helped clin-
icians to monitor the drug movement to its targeted site
[107]. Kafayati et al. [108] evaluated the toxicity of mag-
netic NPs with different surfactants, including oleic acid,
and glycine, on bacterial cells. These magnetic NPs tend
to accumulate at the targeted site [109]. However, it was
recommended that the design of a magnetic drug delivery
system should take into consideration the different fac-
tors, including the size and properties of the particles,
drug loading capacity, target accessibility, the strength
of the magnetic field, and the rate of the blood flow,
which affect its performance [110]. As a nano-carrier
system, Ye et al. developed biodegradable polymer-based
vesicles to serve multimodal bioimaging and to deliver
anti-cancer drugs. Several PLGA vesicles were prepared
by encapsulating inorganic imaging agents of superpar-
amagnetic nature, IONPs as PLGA-SPION, manganese-
doped zinc sulfide (Mn:ZnS) quantum dots (QDs), and
anti-cancer medication busulfan into PLGA-NPs using
an emulsion-evaporation process [111]. Adams et al. studied
formulations with PEI as PEI-alginic acid, oxidized-PEI
(oxPEI), and oxPEI-alginic acid, that was tracing-enabled
with the specific associations of the multifunctional metal
NP on their surface, for use in the MRI scanning for brain
stem cells gene delivery. It also showed that these two
formulations prepared for use in combination with the oscil-
lating magnetofection technology could be safely delivered
to neural stem cells. After transfection, the intracellular
particles were identified by histological procedures with
labeled cells displaying contrast in the MRI for real-time
cell tracking [112]. The polymeric materials, hydroxyethyl
methacrylate (HEMA)—agar, and (HEMA-gelatin were also
used to prepare the hydrogels, and their y-irradiation as a
stabilizer for magnetic NPs through radiation and co-preci-
pitation loadings were successfully achieved. The hydrogel
make-up and dispersion of the magnetic NPs in this gellish
network were found to be smaller-sized, and lesser in the
loadings that were achieved through the co-precipitation
technique, when compared with the loadings in the irradia-
tion technique alone. The HEMA-gelatin-Fe;0, also had
higher sizes than the HEMA-agar-Fe;0, particles. The
loading capacities and release patterns were dependent
on pH and were worked out with the DOX-HCI anti-cancer
drug [113].
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2.1.5 Other inorganic NPs

The inorganic NPs are non-organic, non-living sourced
material-based entities that can be prepared with different
shapes, for example, spherical, rod-like, cylindrical, wire,
triangular, prism, octahedron, and star-shaped. It also
ranges from 1 to 100 nm in size [114]. The specific physi-
cochemical characteristics of inorganic NPs made them a
suitable tool in diagnostic biosensing, drug and gene
delivery, and biomedical imaging [125]. The most com-
monly used inorganic NPs are gold, silver, iron oxide,
zinc oxide, gadolinium, silica, titanium dioxide, nickel,
cadmium, and at times, arsenic [115]. The NPs have, in
contrast to bulk materials, unique properties, that is,
high surface area, high surface-to-volume ratio, catalytic
activity, optical, electronic, and magnetic properties. They
also possess rich functionality ready to be utilized for
various purposes. These NPs are biocompatible, monodis-
perse, amphiphilic, with safe-carrier capabilities, and have
enhanced capability for targeted delivery among compar-
able various metal-based NPs. These NPs also have viable
surface structures for various capping, conjugation, and
tagging use, suitable charges for exploitation, aggregation
proneness, and the capability to interact with biomole-
cules. Some of them also show anti-microbial activity
[116-124]. The direct delivery of drugs and biomolecules,
however, faces enzymatic and other degradation chal-
lenges, within the cells and during transport. Many inor-
ganic materials, for example, calcium phosphate, gold,
coal, silicon oxide, iron oxide, and layered dual-hydroxide
have been used. Composites consisted of nickel-cobalt
nano-needles have also shown lower toxicity. Therefore,
these materials are supply alternatives to viral and cationic
transporters [126,127], and their synthesis is frequently
approached as a “top-down” or “bottom-up” strategy.
The top-down approach starts with bigger, bulkier starting
materials, and goes to downgrade/remove/reduce/diminish
the material until the required-sized structure are obtained
in a more or less controlled procedure depending on the
exact method of preparation used. Most micro-manufac-
turing methods (lithography and milling methods) for pre-
paring inorganic NP products are examples of this strategy.
The bottom-up approach begins with lower, smaller-scale
assembled ultra subunits with different control parameters
to achieve the synthesis, which also depends upon the
method used, for example synthetic techniques for poly-
merization [128]. The building up of a nanomaterial can
start at a smaller scale to build the specified and differen-
tiated nano-carrier. The preparation methods for NPs can
be approached through physical, chemical, and biological
methods.
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2.1.5.1 Gold NPs

Several reports are available dealing with the chemical
and biological synthesis of AuNPs. Beveridge et al. [129]
reported AuNP preparation by precipitation technique
in various bacteria. Synthesis of gold nanowires from
the extracted Rhodopseudomonas capsulate [130], which
offered high control over the shape of the nanogold parti-
cles through exercising different concentrations of HAuCl,
solution, was reported. Kaviya et al. [131] reported the use
of the sun-dried peel of Citrus sinensis for the synthesis of
silver and AuNPs in an aqueous medium, which achieved
the production of spherical NPs with a size range between
14 and 20nm. Moreover, the terpenoid functionalized
alcohol, ketone, aldehyde, and amines were suggested
to be the cause of NPs’ stability. Several workers have
reported multiple methods of different NPs, including
AuNPs, syntheses with various sizes, shapes, and morphol-
ogies (nano-triangles, nano-prism, and octahedron). AuNPs
using plant parts, for example, leaf extract of tamarind
[132], Pelargonium graveolens (geranium) [133], neem (Aza-
dirachta indica) [134], Hibiscus rosa-sinensis [135], coriander
[136], Magnolia kobus, and Dyopiros kaki [137] have been
reported. They have also been prepared from Emblica offi-
cinalis fruit extracts [138], using phyllanthin and apiin com-
pounds [139,140], Aloe vera [141], mushroom extract [142],
and honey [143]. AuNPs from the cell extract of endophytic
fungus and Colletotrichum sp. [133] are also reported. The
AuNPs present special characters like biocompatibility,
large surface area to volume ratio, small size, high reac-
tivity, and temperature stability, together with their ability
to cross the cell membrane [144]. The 5-fluorouracil (5-FU)
bound AuNPs were found to be more effective against
fungal and bacterial organisms, compared to 5-FU alone
[145]. In addition, the AuNPs can effectively conjugate
with several antibiotics and can work more effectively
against both types of bacteria, that is Gram-positive and
Gram-negative, compared to the free antibiotic, 5-FU.
These observations also suggested that the AuNPs could
be utilized as an effective drug delivery system [146,147].
The AuNPs also proved to be effective in killing protozoa
and bacteria [148]. Gu et al. [149] synthesized the vanco-
mycin-coated, stable AuNPs, which showed enhanced
anti-microbial activity compared to free vancomycin.
In another publication, Ahangari et al. found that the
gentamicin conjugated with AuNPs showed more anti-
bacterial effects against S. aureus in comparison to the
gentamicin alone [150]. In addition, the AuNPs have
shown low cytotoxicity, and therefore served as a good
scaffold for drug delivery, and they were utilized in med-
ical imaging [151,152].



DE GRUYTER

2.1.5.2 Silver NPs

The silver NPs (AgNPs) have various applications, espe-
cially in the fields of biomedical applications, which
include anti-bacterial and anti-cancer engagements. They
were also used as part of skin creams and ointments. The
AgNPs can be prepared through chemical and physical
methods, including electrochemical reduction, and solution
irradiation [153]. AgNPs have been reported as being effec-
tive against infections of burns and wounds [154]. The most
widely used AgNPs are silver oxide NPs, followed by zinc
oxide NPs, and they have shown effective control against
microorganisms, for example, bacteria, viruses, and small
eukaryotes [155,156]. The mode of inhibiting the growth of
these organisms is reported to be the inactivation of repro-
duction and protein synthesis and blockage of the electron
transport chain reaction, which ultimately kills the bacteria
[157]. The effectiveness of the anti-microbial activity
depends upon the size of the AgNPs. The smaller the
size, the greater the effect [157]. Several research groups
have shown that the use of AgNPs in combination with
antibiotics resulted in improved anti-microbial activity
against both kinds of bacteria, that is, Gram-negative
and Gram-positive [158-160]. The AgNPs also exert adverse
effects on the host cells and initiate the production of reac-
tive oxygen species (ROS) [161,162]. The AgNPs obtained
from a bacterium, Pseudomonas stutzeri AG 259, were pro-
duced by the bio-reduction method. When the bacterium
was challenged with the silver nitrate solution, well-defined
AgNPs within the periplasmic area of the bacterium were
produced [163]. The AgNPs were also produced in higher
yields from the silver-tolerant yeast strains, MKY3 [164]. The
fungi have also served as an efficient biocatalyst for the
synthesis of metals and metal-sulfide NPs. The use of Tri-
choderma harzianum, Colleotrichum sp., Rhizopus stolonifer,
Trichoderma viride, Isaria fumosorosea, Guignardia mangi-
fera, Duddingtonia flagrans, Trichoderma longibrachiatum,
Epicoccum nigrum, Penicillium oxalicum, Arthroderma fulvum,
Sclerotinia sclerotiorum MTCC 8785, and Rhizoctonia solani is
reported to produce AgNPs [165]. The fungus, Fusarium
oxysporum, Aspergillus flavus, Aspergillus niger, Aspergillus
fumigates, Phanerochaete chrysosporium (white-rot fungus),
as well as Rhizopus oryzae, have also been found to produce
stable AgNPs [165,166]. AgNPs were also obtained from
Pleurotus sajor-caju/Lentinus sajor-caju (Oyster mushroom),
which exhibited anti-microbial activity. The bacteria, for
example, Klebsiella pneumonia, Bacillus subtitles, E. coli,
Bacillus licheniformis, and Pseudomonas aeruginosa, were
also successfully utilized for the preparation of AgNPs
[167-169]. Another efficient bio-catalyzed synthesis used
n-butanol extract of fresh Buchanania axillaris leaves’
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yielding high-density AgNPs [170]. Also, the synthesis of
peptide-capped AgNPs, in the range of 10-25 nm sizes, uti-
lized a-NADPH-dependent nitrate reductase and phytoche-
latin strategy, which were sourced from fungi, bacteria,
nematodes, and plants [171].

2.1.5.3 Carbon-based nanomaterials (CBNs)

CBNs are materials-of-choice for targeted delivery owing
to their structural properties, functionalization feasibility
to attach different motifs for diversified delivery goals,
and with minimal, or no toxicity to the biosystem. The
graphenes, and their chemically transformed reduced,
and oxidized graphenes, morphed graphenes, carbon
dots, nano-diamonds, fullerenes, and CNTs of single
and multiple-walled, forms the extended CBN family.
Reports on carbon dots as nano-therapeutics, HA-func-
tionalized carbon-dot-DOX-loaded NPs for targeted
delivery to CD44, the nano-diamond-based pH-respon-
sive delivery system through functionalization and
DOX-loading, PEGylated nano-diamonds for gemcitabine
delivery are some of the recent examples of CBNs’ appli-
cations in nano-scale deliveries [172-176]. Graphene, gra-
phene oxide (GO), reduced graphene, graphene sheets,
and graphitic carbons have shown the ability to attach
drug molecules, biomaterials, and implant motifs. The
entities of hydrophobic nature, after proper functionali-
zation, showed aqueous solubility and compatibility to
the aqueous environment in the biological system, and
CBNs have demonstrated this. The capability to interact
with lipids in cell membranes, together with the nano-
material-based characteristics of high surface-area-to-
volume ratio of these materials have facilitated their par-
ticipation as part of the desired nanovehicle for different
types of payload deliveries, including small molecule
drugs. The polyaromatic structure, and the ease with
which various graphene-forms are functionalized (oxi-
dized, reduced), composite-made, and conjugate-pre-
pared, have offered the graphitic materials’ another level
of capability, and flexibility to upload different types of
payload packings, transport, subsequent targeting, and
delivery to cells, tissues, and organs with least observed
toxicity. Graphene-based drugs and gene deliveries,
delivery systems for tissue engineering, graphene-based
electro-responsive implant materials, GO-based multi-
functional platform for intracellular delivery, GO-based
tumor-response release for DOX, and graphene—nano-
ribbon-based DNA delivery are some of the graphene
applications in nano-delivery. Several recent reviews have
covered the topic in detail [177-181].
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Table 2: Preparation of different non-polymeric nanosystems from various bio-sources
Serial Nanosystem Biological sources Part/medium Ref.
1. Gold Rhodopseudomonas capsulate Cell-free extract [130]
Citrus sinensis Sun-dried peels [131]
Tamarindus indica Leaf extract [132-137]
Pelargonium graveolens
Azadirachta indica
Hibiscus rosa sinensis
Coriandrum sativum
Magnolia kobus, Dyopiros kaki
Pelargonium graveolens Cell extract [133]
Emblica officinalis Fruit extract [138]
Phyllanthium Plant extract [139-141]
Aloe vera
Volvariella volvacea Mushroom extract [142]
Honey Honey [143]
Epicoccum nigrum Isolated fungus [144]
2. Silver Rhizopus oryzae Fungal cell filtrate [165-171]
Pseudomonas aeruginosa Culture supernatant
Pseudomonas stutzeri Microbial culture
Yeast strains MKY3 Culture extract
Fusarium oxysporum
Lentinus/Pleurotus sajor-caju
Bacillus licheniformis
Aspergillus fumigatus
Klebsiella pneumoniae Culture supernatant
Bacillus subtilis
Escherichia coli
Aspergillus niger Mushroom substrate
Aspergillus flavus Cell-free filtrate
Buchanania axillaris Leaf extract
3. Silica Cylindrotheca fusiformis Diatom [187]

2.1.5.4 Silica NPs

Among different nanoparticulate materials, silica-made
NPs (SiNPs) are an attractive choice as a carrier for cells
and drugs. Their use in drug delivery and distribution,
imaging, and controlled release, owing to their meso-
porous nature, were found suitable for drug and gene
encapsulations with a preference for loading of biomacro-
molecules with biocompatibility, retention flexibility, non-
toxicity, and in larger quantities with low preparation
costs. The SiNPs are among the most widely used nano-
entities for several biomedical applications [182,183].
Nano-porous silica materials possessed several large pores
with high surface areas, which made them capable of
absorbing large quantities of drugs and allowed their
accumulations in adequate concentrations at the site,
thus enhancing localized delivery with the clear purpose
of treatment, and other remediation. Furthermore, the
silanol groups present on the SiNP surface allowed easy
modifications of these NPs, which allowed proper control

of the drug release, together with increased loading capa-
city [184]. Several researchers have reported the anti-bacterial
activity of silicon nanoparticles (SiNPs) against Staphylococcus
[185,186]. Well-organized, SiNPs of sizes varying between 50
and 100 nm from diatom species, Cylindrotheca fusiformis [187]
were synthesized within a few hours at room temperature by
Buckle et al. Thus, diatoms shells, after treating with magne-
sium vapors at elevated temperature, formed the Mg-Si oxide
layer. The procedure was applied to prepare other metal-based
NPs and disclosed the importance of the applications of dia-
toms in the synthesis of NPs [187]. Diverse ranges of bio-based
materials have been utilized in the preparation of various non-
polymeric, inorganic NPs (Table 2).

2.1.6 Lipid-based NPs
2.1.6.1 Liposomes

Liposomes are lipid-based vesicles, and the breakthrough pre-
paration of liposomes was provided by Bangham et al. [188].
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The liposomes have consisted of single and multiple con-
centric spheres of lipid bilayers, which are separated by
compartments produced from natural and synthetic phos-
pholipids. The liposomes have important properties of
lessened toxicity, unique physical characteristics, com-
paratively better drug-loading capacity, and sustained
drug release potential. These properties have made them
the most desirable carrier for drug delivery purposes
[189-192], and the majority of commercial nano-scale
delivery modules are of liposomal origins. The liposomes
are also more desirable in comparison to the SLN [193]. The
compositional and preparative methods alterations for lipo-
somes are diligently followed by a change in their surface
charge and size. The liposomes are prepared as single or
multiple bilayer vesicles, which are capable of conducting
improved gene targeting, and efficient drug delivery [194].
Because of their rapid infusible lipid bilayer with the cell
membranes, the liposomes have shown improved activity in
anti-cancer and anti-microbial testings, which also pro-
vided enhanced drug delivery, drug stability, and drug
outreach [195,196]. These characteristics have allowed the
controlled accumulation of drug concentrations at the injec-
tion site (most common delivery mode for liposomal formu-
lations) and their targeted localization with reduced toxicity
[197]. Several researchers have reported liposome-encapsu-
lated antibiotics for significantly improved elimination of
intracellular bacterial infections [198,199]. Liposomes have
specifically delivered drugs against lung tuberculosis [200],
which were prepared by Deol and Khuller. Several ligands
were prepared to lead liposomes to the target tumors that
included antibodies [201-211], and small ligands, for
example, folate [212-221]. Currently, the commercially
available therapeutics (monoclonal) antibodies (mAbs)
include Herceptin for breast cancer and epratuzumab

Advantages

¢ Controlled drug release and drug targeting,

* No biotoxicity of the carrier

e Increased drug stability

* Avoidance of organic solvents

¢ High drug payload

* Easy large-scale production and sterilization
 Incorporation of lipophilic and hydrophilic drugs
 Increased Bioavailability

Figure 5: Advantages and disadvantages of SLNs.
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for B-cell lymphoma. These mAbs have the advantages
of stability with a high binding capacity [222-224],
together with reduced immunogenicity in the subjects
[225]. The liposomal insertion, scFvHER2 (human epi-
dermal growth factor receptor 2-single-chain variable
fragment), as anti-HER?2 for anti-cancer DOX drug delivery
[226,227], and anti-TfR scFv-lipoplexes (TfR is transferrin
receptor) as a gene delivery platform have been reported
[228,229].

2.1.6.2 Solid lipid NPs

The SLNs, a spherical, colloid entity, were discovered as a
lipid-based carrier for controlled drug delivery, as well as
gene carrier systems to replace emulsions, liposomes,
and polymeric NPs [230]. The SLNs have a size ranging
from 50 nm to 1um and are composed of physiological
lipids dispersed in an aqueous surfactant solution, or
aqueous media [231]. The SLNs were constituted as solid
lipid matrix at 37°C or room temperature, and the drug
loads inflated their size range up to 1pm [232]. Since
the SLN matrix was formed from physiological lipids, it
reduced the hazard of acute and chronic toxicity [233].
The high-pressure homogenization or micro-emulsifica-
tion processes mainly were used to prepare the SLNs. The
SLNs prepared by any concurrent reported methods exist
in dispersion form, which on long-term storage results in
their instability, essentially due to the hydrolytic reac-
tions, which severely affect their stability. The SLNs can
also be altered into solid dry reconstitutable powder through
lyophilization of the prepared formulation [234,235]. The
advantages of the SLN outweigh its demerits and disadvan-
tages (Figure 5).

Disadvantages

* Particle growth
¢ Unpredictable gelation tendency,

¢ Unexpected dynamics of polymeric
transitions

* Sometimes burst release
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SLNs have been recognized as an efficient carrier of
drugs, especially lipophilic character drugs and for deliv-
eries of other payloads of low and medium MW ranges
[236]. To increase drug bioavailability, particularly in
topical ocular delivery [237,238], and in anti-tubercular
drug delivery to the lungs’ alveolar tissue [239], as well as
delivery to the lymphatic system with decreased side
effects, the SLNs have been approached well [240].

2.2 Hydrogels

The first mention of the term “hydrogel” in the literature
was made in 1894 [241]. A hydrogel is defined as a net-
work of polymer-based hydrophilic chains, which exist as
a colloidal gel in water, which is also the dispersion
medium. The hydrogels are absorbent materials that
can retain high water contents of up to over 90% of their
weight [242]. The first synthetic hydrogel was prepared by
Wichterle et al. using the copolymerization of ethylene
methacrylate and 2-HEMA [243]. From its inception, the
hydrogels have been used for biomedical purposes, for
example, for contact lens fabrication, coatings on sur-
gical gloves, in urinary catheters, for surgical drainage
systems, in wound dressings, and as part of tissue engi-
neering scaffolds material [244]. The drugs loaded inside
the constituent polymer matrix of the hydrogel are dif-
fused through the network with controlled-release pat-
terns [245]. Hydrogels being extremely capable of
retaining the loaded materials are viewed as efficient
drug delivery systems due to their higher biocompatibility.
The hydrogels’ hydrophilic networks have been synthe-
sized from synthetic as well as natural polymeric materials
[246]. Their classification is based on their characteristics,

Hydrogel
Method of

prepatation Physical structure

Co-polymer Amorphous
H-bonded

Supramolecular

Homo-polymer

™ Semicrystalline
‘ Hydrocollodial

B =

Figure 6: Classification of hydrogels based on their characteristics.
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including mechanical and structural (affine and phantom)
characteristics, nature of the constituent polymers’ side
groups (neutral and ionic), physical forms of existence
(amorphous, semi-crystalline, hydrogen-bonded, supra-
molecular, and hydrocolloid), methods of preparations
(homo and co-polymerization based), and responsiveness
to the physiologic and environmental stimuli (pH, ionic
strength, temperature, and electromagnetic radiation)
[247-250]. The classification is depicted in Figure 6.
The hydrogel/glass composite, nitric oxide-releasing
NPs (NO-NPs) have been shown to have a high degree
of effectiveness against methicillin-resistant S. aureus
(MRSA) infection in various mouse models. In a previous
study, Martinez et al. reported that the topical application
of hydrogel/glass composite NO-NPs to skin wounds
infected with MRSA significantly reduced bacterial infec-
tion compared to the control [251]. The limitations of the
hydrogels, for example, low elasticity, and low load-
bearing capacity results in the unwanted flow of drugs
from the targeted site, but Peng et al. reported that the
limitations would not affect the efficacy of the entrapped
drug if it was injected subcutaneously [252]. The hydro-
gels possessed permeability for oxygen, nutrients, and
water-soluble metabolites, and thus, were used in tissue
engineering as bio-scaffolds [253]. The biopolymers, for
example, collagen, fibrin, and matrigel-derived hydro-
gels had weak mechanical strength, and the potential
for immunological reactions and a likelihood of animal
virus contamination were observed [254]. The problem
was tackled by developing synthetic polymer-based
hydrogels [255]. The unique characteristics of the hydro-
gels, including their biocompatibility, available range of
polymeric materials for their preparation, utilization of
different synthetic protocols, and design achieved desir-
able physical characteristics, have made the hydrogels
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find immense applications in different biomedical fields.
Stout and McKessor [256] prepared a cost-effective, anti-
bacterial/fungal glycerin-based hydrogel formulation,
which had a gel layer that absorbed the exudate from
the wound, and simultaneously released the loaded mate-
rial from the gel for wound healing. The hydrogel wound
care products do not dry or make the wound dressing get
bound to the wound and surrounding tissues. Addition-
ally, the non-adhesive nature of the hydrogels does not
cause any damage during the dressing removal process.
This kind of hydrogel has provided a significant cushion
and padding support over, around, and to the wound
[257-259]. Elasto-Gel™ was FDA approved for all types
of injuries, namely pressure ulcer, acute, and chronic
injury, diabetic, and traumatic injury, and for use in other
dermatological conditions, including first-grade burns
as well as in cancers. The glycerin in Elasto-Gel™ acted
as a skin-filler that tends to reduce the sore [260]. Another
type of hydrogel, Aqua-form hydrogel, absorbed more
fluid under conditions that simulated moist wounds and
thereby indicated a more suitable clinical use for treating
sluggish and necrotic wounds [261-265]. The electrocon-
ductive hydrogels were synthesized using semi-IPNs con-
taining the novel electro-active polymer, PEI, and 1-vinyl
imidazole(vi) polymer blend. The semi-IPNs are also sys-
tems constituted of PVA and polyacrylic acid. These sys-
tems reported successful electro-responsive drug release
and suggested that the method is appropriate to be used
for the development of safe and effective electro-respon-
sive drug delivery systems. More than 2.6 and 0.7 mL of PEI
and VI-based hydrogel products were found to be effective
for the ideal therapeutic electro-responsive drug release
(0.8 mg) system, wherein indomethacin was the experi-
mental drug [266].

2.3 Dendrimers

Tomalia and co-workers discovered dendrimers in the
late 1980s. The dendrimers are highly ordered, hyper-
branched polymeric molecules that get an almost rounded
shape as they increase in size and attain deliverable
nanoscale sizes. Other names for dendrimers are arborols
and cascade molecules. Dendrimers were prepared by
a divergent synthesis approach. Dendrimers are shaped
symmetrical, 3D rounded, and monodispersed entities
that contain a single chemical group at their central,
originating core. The dendrimers are also classified by
their developmental generation wherein the number of
repeated branching cycles on the core is counted, and
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each repeating cycle (generation) adds nearly double the
MW of the previous cycle. The last cycle has comparatively
more exposed functional groups. The starting core, which
includes frequently used ammonia, ethylenediamine,
polydiamine, and benzene tricarboxylic acid chloride has
been reported, with more cores being continuously discov-
ered, and established for drugs and other payload delivery
purposes. The well-defined composition, shape, monodis-
persity, availability of abundant functional groups, and
stability are among the main characteristics of dendrimers
that render them appealing for drug loading and subse-
quent facile delivery. There is control of the number of
functional groups available for attachment for drugs, ima-
ging agents, and other moieties to the dendrimer, thus
controlling the loading quantity in a more precise manner.
Examples of dendritic loadings of drugs have been synthe-
sized using different biocompatible materials that include
PEI, polyethylene oxide (PEO), PEG, polyamidoamine
(PAMAM), and polypropylene imine (PPI) [267-269] with
several drugs fitted with the couplings on the dendritic
end-groups. As a functional group, the PAMAM has pri-
mary amine, which allowed penetration of the cellular
membrane and delivery of the anti-microbial drugs with
high efficiency. Sulfamethoxazole (SMZ, sulfonamide) has
low solubility and bioavailability, but when administered
with PAMAM dendrimers in the in vitro condition, the
SMZ-encapsulating PAMAM dendrimers caused the facile
release of the drug and showed 4—-8x folds increased anti-
bacterial activity against E. coli, as compared to free SMZ.
The gene transfection, attachments of non-steroidal anti-
inflammatory drugs, anticancer agents, quinolones, and
several other pharmaceuticals to various kinds of dendri-
mers have been reported [270-272]. The usefulness of den-
dritic systems and the auto-assembly of readily available
amphiphilic Janus dendrimers achieved a varied frame-
work. The amphiphilic Janus dendrimers, structurally com-
posed of two dendrimeric wedges with the termination of
two different functional groups, were self-assembled into a
standardized onion-like layout with consistent size, varied
shape, and known number of layers. Dendrimersomes
and other complex structural architectures have also been
reported. The Janus dendrimers have also been used for
stabilizing drug suspensions [273,274]. It would be pertinent
to mention along with dendrimers, the micelles, spongo-
somes, cubosomes, lipid—polymer hybrid nanostructures,
discs, curved vesicles, and helical bands that have made
drug and other payload deliveries including biomedical
applications as the emerging alternatives [275,276] in par-
allel to other nano-entities and the dendrimers. A recent
review on the preparation and bioapplications of dendri-
mers in nanomedicinal fields is available [277].
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2.4 Buckyballs

Fullerenes are carbon materials that have formed in
different caged-shaped structures. The lower volume,
spherical structure, and void core have created a useful
platform for drug delivery in the shape of buckyballs
[278]. With 60 carbons, buckminsterfullerene [C60] is
the most common example. The hydrophobic cleft of
the protease enzyme from the human immunodeficiency
virus (HIV)-1 could host a C60 molecule [279], as was
reported by Friedman et al. Furthermore, many studies
have approved the photodynamic inactivation of bacteria
by C60 products. The hydrophobic split of the HIV-1 was
also differentiated with the fullerene materials [280-285].

2.5 Virus-derived and bacteria-based NPs

The virus-derived NPs were among the latest entry into
the nano-scale delivery modules. The viral NPs were
derived from plant viruses, bacteriophages, and mamma-
lian viruses. The development and applications of virus-
derived NPs, and their genome-free versions, termed
virus-like particles (VLPs) have been chemically conjugated
to various ligands for specific deliveries. Fermentation and
molecular farming have produced these VLPs. The particles
are biodegradable and biocompatible in nature. The VLPs
are used in cancer and immunological therapies, vaccines,
gene transfers, and imaging, as well as for antimicrobial,
cardiovascular agents’ deliveries, and theranostics. The
VLPs have shown both in vitro and in vivo applications,
together with their functions as enzymatic nano-reactors.
The ease of production in the system of choice owing to
the superior capability to adapt and infect a wide range of
organisms, and ability to customize for required modifica-
tion, through chemical as well as genetic ways, have made
the virus-based NPs an attractive choice for various types
of deliveries of a wide range of materials like genes, drugs,
and chemotherapeutic agents [286]. The (u-glutamic acid)-
based NPs were found to be good carriers of tumor vaccines
for the proteins that have been used to provide antigenic
proteins for the cells. These were used to develop potent
immune responses as reported by Yoshikawa et al. who also
proposed that the B-PGA poly-(y-glutamic acid)-NP plat-
form is sufficient to provide protein-dependent tumor vac-
cines reached out intracellularly [287]. Robertson et al.
reported the T4 phage capsid developed-NPs without Hoc
and Soc proteins (T4AHocASocNPs). They also documented
the high efficiency of cell uptake in tumor cells of the
T4-free Hoc-free Soc-NPs [288]. The West Nile Virus (WNV)
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was detected by a model paramagnetic NP (MNP)-based
test for the detection of DNA oligonucleotides. Complemental
oligonucleotide samples connected covalently to the manu-
factured MNPs, and Raman reporter tag-conjugated AuNPs
for surface-enhanced Raman scattering sensing, with sub-
sequent removal from the solution by the externally applied
magnetic-origin of AuUNP-WNV target sequence-MNP
hybridization complexes, was also reported [289]. The
nanomaterial induced viral infection in living cells using
HIV-1 pseudo-type lentiviral particles. Cells were even-
tually exposed to different NPs and then the lentiviral
infections were observed. The efficiency of transfection
was shown to be improved by AuNPs, while the silver-
based NPs decreased it, with a small or no impact on the
infection rates of the virus [290]. Through molecular self-
assembly, the viruses can form ordered structures, and the
plants’ virus systems are particularly advanced and have
been utilized as bioinspired-engineered nanomaterials,
and nano-vectors for future use. The plant virus-con-
structed NPs were physically uniform, biocompatible, bio-
degradable in nature, and facile to fabricate. They were
also easily functionalized by alteration of the external sur-
face, and loading of the cargo molecules into their internal
cavity. Thus, these viruses can be utilized as targeted drug
delivery systems [291]. Moreover, the multifunctional NPs
holding promise as imaging and therapeutic delivery
agents for the next generation of sensing development
are being continuously verified for this purpose, especially
incorporating the plant viral capsids. In this context, a
previous study showed that the red clover necrotic mosaic
virus could be loaded with high amounts of therapeutic
molecules with MW of 600 Da and higher. Furthermore, it
was also possible to conjugate the targeted peptides with
less than 16 amino acids to the capsid using sulfosuccini-
midyl-4-(N-maleimide-methyl)-cyclohexane-1-carboxylate
as the chemical linker [292]. Moreover, subunit vaccine
formulations based on isolated pathogens components
(proteins and peptides) allowed the activation of highly
specific and protective immune responses. Some researchers
have tried to enhance the immunology and stability of the
subunits by using genetically modified NPs of a plant virus
as the carrier for transmission [293-295]. The in vitro and
in vivo studies conducted to test unmodified potato virus X
(PVX) toxicity, and the teratogenicity potential of tomato
bushy stunt virus [296] was performed by Blandino et al.
Various other groups investigated the biodiversity of PVX
particles combined with different fluorescent dyes and
PEGs of varying chain lengths. This masking eliminated
the cell-like interactions with the NPs in plant viruses
[297-299]. An A647 (AlexaFluor 647, dye)-labeled PVX-NP
conjugated with a 12-amino acid peptide sequence with
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correspondence to the epidermal growth factor receptor
(EGFR) was effectively detected, and imaging was performed
for the carcinoma cell lines.
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3 Nano-structured delivery device
pharmacokinetics

The success rate of a drug delivery carrier depends on
important parameters defined by pharmacokinetics. The
pharmacokinetics estimates the fate of the drug, active
ingredient concentrations, and delivery status at the
system, together with the underlying effects of hormones,
nutrients, and toxins, thereby affecting the overall status
of the drug in the body. Pharmacodynamics takes control
over the biophysiological fate of the drug administered
to the body. Current nano-drug delivery systems are
employed to supply both the small molecules and various
biomacromolecular entities, including peptides, proteins,
DNA plasmids, and artificial oligonucleotides. To modify
the release Kinetics, it is desirable to configure the nano-
scale drug delivery systems to monitor the distribution
and thereby reduce the adverse side effects toward con-
tributing to improving the therapeutic index, as some of
the nanomaterials to be delivered have limited active-
targeting, low bioavailability, and probable cytotoxicity,

accumulation, cationic amine-surface NPs showed lowered circulation,

shielded amine surface SiNPs showed an increased clearance
Data showed the effects of particle diameter on targeting the
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mesangium of the kidney

during in vivo NP destabilization
Liposomes AUC after a dose of 50 mg/mL was 300x greater than that

Most prolonged circulation time and the highest tumor accumulation
with free drug
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Monotonous reduction in systemic availability with liver and spleen
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that the optimum size range is between 10 and 100 nm.
The superior, controllable, actionable, and achievable prop-
erties of solubility, bioavailability, biodegradability, biocom-
patibility, encapsulation, retention, and release have made
nano-structured devices and entities an ideal candidate for
various delivery applications. However, a delivery model,
best in all aspects may not be introduced, and the need
for hybrid systems with case-by-case customizations may
need to be developed for global and local deliveries [309].

3.1 Different NPs

Nano-structured delivery systems, and devices, for example,
NPs, nanocapsules, nanotubes, nano-gels, efc., possess spe-
cified release patterns, peculiar release kinetics based on
their constitution, pay-loads, and their corresponding char-
acteristics as nanosystem, which are, for most of the parts,
efficient, optimized, and specified in targeting behaviors
[310,311]. The polyelectrolyte shells, produced by deposition
through layer-by-layer structuring, have numerous advan-
tages, including membrane thickness, the possibility to
regulate surface property, and modulation of the release
kinetics [312]. As both the inner and outer interfaces can
be easily engineered, the shells are used in designated and
permissible conditions of temperature and pH for easy load-
ings and releases [313]. Examples for that include drugs,
enzymes, nucleic acids, dyes, etc. [314,315]. For certain
typical applications, the nanotubes, similar to a micro-
scopic-scale drinking straw, offer advantages over spherical
NPs [316,317], according to their distinctive interior and
exterior surfaces, in which the drug molecules are encapsu-
lated within the vesicle, and thus the payloads are prevented
from producing immunogenic reactions [317]. Additionally,
the one-end open mouth structure of the nanotubes simpli-
fies their mountings. The hydrogels or “nano jelly” offers
simpler synthetic methods with relatively high potential
for drug loading, which was also well applicable for topical
delivery [318]. These hydrophilic polymer nets are cross-
linked 3D networks and are swellable in an aqueous envir-
onment [319]. These nano-entities also react in response
to several physiological stimuli, including ionic strength,
pH, and temperature. Hybrid polymerizable nano-gels
have been synthesized, which includes physically and
chemically interconnectional motifs [320]. The nano-gel
combines the features of gels, and the colloid properties,
a large surface-to-volume ratio, a knitted microstructure,
low-sizes, and heterogeneity. The architectonic design
for the dendrimers is well regulated, thereby providing
well-defined shapes, dimensions, and branch length, with
predictable density and known surface functionality [321].
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The medicinal loads were entangled physically in the den-
drimer, or it was found to be chemically bound to the
periphery through available functional groups. A number
of drugs, that is, cisplatin [322], methotrexate [323], and
5-FU [324], allowed slower release for the higher buildup of
solid tumors, with lowered toxicity than the corresponding
free drugs to the normal tissue, and these steps were easily
achieved particularly with PEGylated dendrimers [325].
The transverse cell membranes with PAMAM dendrimer
were found to be combined with para-cellular transporta-
tion and adsorbent endocytosis [326]. The solubility of the
dendrimers increased with length. The ester group-termi-
nated dendrimers were comparatively more bioavailable
for a given number of surface groups than their amino-
end analogs. Among other nano-entities, the smaller-sized
mesoporous SiNPs have shown better cellular uptake, cell
membrane penetration, and drug retention for cancer cells
[326-328]. The mesoporous SiNPs’ bio-interaction proper-
ties predicted through mathematical modeling and observed
through single-photon emission computerized tomography
(SPECT)/computerized tomography (CAT) integrated ima-
ging approaches for the effects of their size, surface chem-
istry, route of administration, linked biodistribution, and
clearance in rat models were achieved. The increased par-
ticle sizes, from approximately 32 to 142nm range incre-
ments provided lesser systemic bioavailability with lesser
accumulation in the liver and spleen. The cationic meso-
porous SiNPs with surface amine on them provided reduced
circulation with enhanced clearance [329] (Table 3).

The pharmacokinetics, specificity of the PAMAM-
and PLGA-based nanoformulations, showed sustained
delivery with intraocular pressure reduced to 18% and
up in eye deliveries [329]. Another brimonidine-loaded
CSNP formulation provided longer-lasting effects than
conventional eye drops [330]. The CS and HA-based
NPs produced a considerable reduction in the intraocular
pressure level in the eye when compared to the plain, free
drug solution [331]. For the SPION, the NPs surrounding
the tumor were checked through a histological test in
CD31 expressed animal models [332], while the DOX-
loaded lanthanide nano-scrolls inhibited tumor growth
with insignificant cellular toxicity in both in vitro and
in vivo conditions [333]. The application of gadolinium
oxide NPs in magnetic theranostics [334] and the use of
AuNP conjugates that showed 10x improved selectivity
to the brain tumor with improved biocompatibility were also
developed [335]. The PLGA and Mn-doped NPs increased
delivery to the pancreatic cancer cells with reduced sys-
temic toxicity [336-338]. Kidney mesangium targeting,
ultra-small SPION for assessing the lymph nodes as an
intravenous contrast agent with reduced signal intensity
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for the normal but not the metastatic nodes, and tracking
of transplanted bone marrow, and embryonic stem cells in
rat brain and spinal cord by IONPs are known [339-341].
An efficient oral delivered nanoformulation consisting
of Q10 coenzyme in PLGA was also developed [342]. For
transdermal delivery, the PLGA nanovesicles exerted
scalp-pore permeability from 2.0 to 2.5x higher than the
control, while the CSNPs showed reduced irritation and
toxicity [342-345]. NPs incorporating water-insoluble
drugs, with the use of sodium dodecyl sulfate (SDS),
were loaded into the NP framework without the need for
post-synthetic modifications for their pharmacokinetics
improvements [346]. The CS—-TPP with acyclovir provided
enhanced stability for sustained skin delivery of the drug,
while the PEG-based NPs were found to have slipped through
the human mucus barrier (Table 4) [347-349].

3.2 Liposomes

The liposomes are highly recommended drug delivery
candidates due to their improved therapeutic index and better
absorption rates. Compared to other drug-encapsulated liquid
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counterparts, they also prolonged the biological half-life, and
reduced cytotoxicity to normal cells. Liposomal Doxil® and
ALB-NP-based abraxane are available commercially. Their
accuracy in the chemotherapy of prostate and breast cancers
is documented [350]. Doxil, a DOX-liposomal drug, is RES
resistant due to its PEGylated formulation. The pharmacoki-
netics profile characterized its prolonged blood circulation
time with reduced distribution volumes, which thereby
encouraged the absorption of the drug to the tumor with
a removal half-life of 20-30 h. Its focus at the target site is
at least 60-fold higher than free DOX [351].

The PEGylated-liposomal formulations of DOX [351],
ciprofloxacin [352], and levofloxacin for contact-lenses
anti-bacterial proposition [353], gene transfection [354],
immunoliposomes based brain delivery [355], virosome-
based immunization targets [356], double-liposome for
peptic ulcer [357], active targeting to cancer [358], and
toward transdermal diclofenac delivery [359] have been
reported. The use of liposome-specific ligands directed
against cancer cells’ surface receptors is immensely impor-
tant because their presence in cellular absorption processes
tends to improve the therapeutic response at multiple times.
The association by the internalization of liposomes with

Table 4: NPs’ carriers targeting of body organs and their pharmacokinetics specificity

Site Composition Pharmacokinetics Ref.
Eyes PAMAM, PLGA Developed NP formulation resulted in a sustained and effective intraocular [326]
pressure reduction (18% or higher) in 4 days
Brimonidine tartrate and CS  In vivo tests revealed that brimonidine tartrate and CS-based NPs have a long- [330]
lasting effect than standard eye drops
HA-mCS CS and HA-based NPs resulted in a considerable reduction in intraocular pressure  [331]
levels in comparison to plain drug solution
Brain SPION NPs revealed iron-tagged cells surrounding the tumor margin in animals [332]
expressing CD31, confirmed through histology
Ultrathin lanthanide nano- Developed NPs efficiently loaded (DOX, 80%) and significantly inhibited tumor [333]
scrolls growth with negligible cellular and tissue toxicity both in vitro and in vivo
AuNPs conjugate Showed 10-fold improved selectivity to the brain tumor by AuNP conjugates [335]
Surface plasmon resonance bands and biocompatibility improved with surface [336]
area to mass ratio
Pancreas Mn-doped QDs NPs showed para-magnetism and remained maintained with high [337]
photoluminescence
PLGA-poloxamer Developed NPs reduced the systemic toxicity of model anti-cancer drugs [338]
Kidneys SPION Intravenously administered NPs reduce the signal intensity of normal but not [340]
metastatic nodes and was confirmed by magnetic resonance imaging of an animal
model of nodal metastases
PLGA Histological examination indicated the existence of bromo-deoxy-uridine-positive  [341]
cells as well as NP-labeled cells
Therapeutic potential of a newly designed nanoparticulate formulation was tested  [343]
(Gold Blatt 2K1C model) in renal hypertensive mice
Trans-dermal PLGA Encapsulated PLGA nanospheres exerted a scalp-pore permeability 2.0 to 2.5x [344]
higher than the control
Polyacrylate, SDS Observed that incorporated water-insoluble drugs with the use of SDS were [346]

directly loaded into the NP framework without the need for post-synthetic

modifications
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vascular cells also increased the concentration of the drug
extracellularly and increased the amount of the drug that
was distributed to the target cells. Receptor-specific ligands
or anti-corps were the most common strategy for targeting
surface cell receptors that were excessively expressed in
cancer cells. The targeting by cell surface receptors had
been widely studied in cancer as the upregulation of
tumor-specific receptors in many types of cancer cells
was previously demonstrated. For example, in response
to growing metabolic demand, the TfRs and folate recep-
tors were overexpressed by many types of tumor cells
[359-362]. The obstacle to the delivery of liposomes by
any tumor was overcome by direct targeting of the tumor
cells through tumor vasculature/microenvironment. A
system for selecting peptides that were specifically asso-
ciated with the human tumor vasculature of xenografts of
cancer [363] was developed by Chang et al. Connecting
these peptides with a DOX-loaded liposome increased
the drug’s efficacy against several forms of severe com-
bined immunodeficiency conditions. The peptides, IVO-8
(SNPFSKPYGLTV), and IVO-24 (YPHYSLPGSSTL) targeting
tumors in neovasculature-specific phages, in general, con-
nected the xenograft tumor vessels in animal models, and
the six kinds of human solid tumor blood vessels, all of
which were specifically delivered, were detected through
dye tagging. The coupled IVO peptides in stealth lipo-
somes with the PEG ends were shown to have increased
therapeutic efficacy, enhanced cancer cell apoptosis, and
decreased tumor angiogenesis in mice, consequently
leading to decreased tumor growth.
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A listing of liposome-based nano-carriers for dif-
ferent therapeutic purposes directed to various organs
is summarized in Table 5.

4 Nano-delivery: bio-barriers,
delivery modes, and devices

4.1 Delivery across the blood-brain barrier

Pharmacologically, central nervous system disorders are
tough to treat, and one of the reasons for this is that the
entry of drugs into the brain is restricted by the blood-
brain barrier (BBB). It is a highly selectively permeable
barrier consisting of brain endothelial cells, which are
further interconnected by tight junctions (zonula occludens)
with an electrical resistivity of approximately 0.1 mQ [364].
The endothelial cells are biochemically assisted by star-
shaped glial cells called astrocyte cell projections [365].
The BBB has a highly effective neuroprotective role, due
to which almost 100% of macromolecular drugs and
approximately 98% of small-molecule drugs are unable
to pass through. Hence, only small lipophilic molecules
(<500 Da) including amino acids, gases like CO,, O,, and
glucose are known to be allowed to cross the barrier to the
brain. For other substrates, the transport follows through
carriers and receptor-mediated processes. Because of this,
the transport of many diagnostics, and therapeutic agents

Table 5: Liposomal drug carriers’ organ targetings and their major pharmacokinetic characteristics

Organ Bioactive drug Pharmacokinetics Ref
Eyes PEGylated-DOX Reduced uptake by the RES, extended circulation time, and higher uptake [351]
at the site
Ciprofloxacin Positively charged liposomes showed superior entrapment efficiency [352]
(82.01 + 0.52) over the negatively charged and neutral liposomes
Levofloxacin The liposome-coated lenses inhibited bacteria growth against [353]
Staphylococcus aureus
Plasmid DNA cationic liposome Plasmid DNA cationic liposomes showed the highest transfection [354]
complexes efficiency in eye tissues
Brain Immunoliposomes (antibody-directed Immunoliposomes revealed that immunoliposomes accumulate in brain ~ [355]
liposomes) tissue over 24 h
B-Amyloid Virosomes triggered a dramatic decrease in both soluble B-amyloid (p = [356]
0.01) and soluble B-amyloid (p = 0.03) in a double transgenic mouse
model of Alzheimer’s disease
Stomach Ranitidine bismuth citrate, and Dual loaded liposomes showed higher percent growth suppression [357]
amoxicillin against Helicobacter pylori than in the control sample
DOX Developed liposomes encapsulated with DOX improved stability and [358]
enhanced circulation time
Transdermal Sodium diclofenac An increased amount of liposome in-adhesive patch system enhanced [359]

the rate of skin permeation of the drug
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of potential significance are prevented from reaching the
brain. Mechanisms for drug delivery into the brain involve
going “over,” or “hind” the BBB [366]. The brain, which
has a large surface area of about 20 m?, allows successful
administration of drugs through the trans-endothelial
route. Improvements in drug delivery systems through
transcytosis by targeting the local receptors existing on
the surface of the BBB also provide a promising proposi-
tion. This target has been achieved by using nano-carriers
that mimic the biosystem’s structural, and functional spe-
cifications to permit the BBB-barred, restricted materials to
cross over the BBB. The drugs cross the BBB disguised in
these nano-scale carriers. The drugs, and other desirable
materials loaded-NPs, and liposomes have gained access
through the BBB. The resistance to degradative enzymes
and coupling of certain antibodies that bind to the recep-
tors on the surface membrane of the BBB have facilitated
the task. However, another obstacle hindering the NP
movement is the coverage of the NPs by opsonins, which
allows the macrophages to recognize, phagocytose the
NPs, leading to the elimination of the drug delivery device
before it reaches the brain target, and cause therapeutic
effects. The opsonization is avoided by using cell-specific
ligands, and the coatings of the carrier by the hydrophilic
polymers, for example, PEG. The mechanisms for deli-
vering certain drugs to the brain include going either
“through” or “behind” the BBB. This incorporates invasive
and noninvasive procedures for drug delivery through var-
ious transport methods. One of the most important key
players facilitating the successful targeting of the drug to
the target site is the selection of the route of administra-
tion. A non-invasive drug administration to the brain sec-
tion would be an ideal choice if it were uncomplicated,
painless, and safe. The most common practices in medical
and research studies are the intravenous application of
drugs followed by the oral route, intranasal, and inhalation.
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Figure 7: Ommaya reservoir.

Nano-delivery devices, applications, and toxicity = 1515

The invasive interstitial and conventional techniques are for
example, intrathecal/intraventricular, convection-enhanced
diffusion, and intracerebral drug delivery systems. In inva-
sive drug application, the delivery needs mechanical breakage
of the BBB. In the following section, some of the examples of
different invasive and non-invasive administration routes are
described [367-369].

4.2 Invasive routes
4.2.1 Interstitial drug delivery

Several devices and techniques, for example, injections,
catheters, and micro-pumps have been utilized for drug
delivery purposes. The interstitial delivery provided minimum
toxicity with the least systemic contacts. The delivery modules
were subcutaneously implanted, and refilling of the drug took
injections, also assisted by computation-aided functional
supports. Through a skull-implanted reservoir, high con-
centrations of the drug were delivered for use in treating
neurodegenerative disorders and brain tumors. Several
examples of direct drug delivery to the brain intersti-
tium-Ommaya reservoir (Figure 7), through aid-pump
infusion generated by compressed Freon® to constantly
deliver the drug, are available. The Medtronic Syn-
chroMed® system used a peristaltic mechanism, and the
MiniMed® PIMS (Programmable Implantable Medication
System) utilized a solenoid pumping mechanism for the
purpose.

Ommaya reservoirs have been used in numerous
other clinical trials for constant and desired levels of
drug delivery to treat patients with brain tumors by
directly transporting the chemotherapeutic agents. BCNU
(Carmustine), and its analogs, together with Adriamycin,
bleomycin, methotrexate, cisplatin, interleukin-2 (IL-2),
and fluorodeoxyuridine, which have also been character-
ized by a high intratumoral drug concentration, and mild-
side effects, are reported to be delivered. However, this
invasive technique presented different kinds of drawbacks
when the catheter was clogged by tissue debris, thereby
resulting in inadequate drug distribution in the tumor.
In this context, the use of functionalized nano delivery
entities has assumed much importance, and liposomal
modules of drug delivery were sought in. The epidural
delivery of multivesicular liposome (commercially avail-
able DepoFoam® technology) drug delivery system was
applied. The morphine supply in dogs was activated
through the system, which produced prolonged analgesia
without any pathological effects after repeated administra-
tion of a 10 mg/mL dose to the animal [370].
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4.2.2 Intracerebral delivery

The cerebrospinal fluids (CSFs) were demonstrated to
play a definitive and major role in drug delivery. The
CSF is in direct contact with the interstitial fluid of
the brain. Therefore, drugs were sought to be delivered
directly into the cerebral ventricles by avoiding the BBB.
The intracerebral ventricular delivery has its particular
advantages, and the drug half-life was manipulated,
resulting in reduced systemic toxicity, as there are minimal
or no proteins available for binding. Despite such an
advantage, the drug generally drained into the systemic
circulation, and efficacy level reached the same levels as
that of an intravenously administered drug [370]. It hap-
pened because, in comparison to CSF, the clearance rate
was slow. The rate of the drug’s parenchymal diffusion
from CSF, which produces intracranial pressure when
the drug was infused into small ventricular volumes,
was decreased. Therefore, the outcomes were marred by
the high clinical prevalence of hemorrhage, CSF leaks,
neurotoxicity, and central nervous system (CNS) infec-
tions. The nano delivery concept kicked in and liposomes
laden with clodronate were tried [371]. Another strategy to
bypass the BBB was to bring the drug directly into the
parenchyma of the brain tissue, and this was achievable
either through direct injection of the drug-using controlled
discharge matrices, or by intrathecal catheteric device
[372,373], or also through the intermediacy of the recom-
binant cells [374]. However, the only drawback observed
was the slow movement of the drug from the initial injec-
tion site, which decreased exponentially, and the approach
was not at all found feasible in acute brain injury, which
provides a relatively short period for employing an effective
therapy [375,376]. Use of the recombinant adeno-associated
virus (rAAV, recombinant adeno-associated viral, adeno-
associated virus serotype 2-neurturin, CERE-120) for expres-
sion of neurotrophic factors, for example, glial cell line-derived
neurotrophic factor, brain-derived neurotrophic factor,
and the nurturin injected directly into the brain parenchyma
for the treatment of Parkinson’s disease, and atrophy of
spinal neurons have been reported [377-379]. The limita-
tions of the rAAV-mediated delivery which includes the
host’s stimulated immune responses, restricted brain trans-
duction, low packaging capacity and rate-determining steps
of transgene expression were controlled. The controlled
rAAV delivery modules provide functional approaches to
overcome these drawbacks. Coated nano-carriers have
been proposed for this purpose. Nano-secondary ion
mass spectroscopy analysis of iodine in intracerebral
delivery of 5-iodo-2’-deoxyuridine for therapy of the F98
glioma has also been reported [380].
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4.2.3 Convection-enhanced delivery (CED)

The CED included inserting a small-caliber catheter device
into the micro-pump and infusing the drug into the brain
parenchyma cells, penetrating through the interstitial
spaces. The method allowed continuous infusion of the
drug for several days. It showed a better response in
drug diffusion and distribution than simple diffusion pro-
cedures. It was also observed for the drug with high MW.
In a previous experiment, Bobo et al. used the CED tech-
nique to deliver proteins with high MW characteristics and
found, after 2 h of continuous infusion, that the diffusion
reached 2cm from the injection site in the brain par-
enchyma cells. Thus, precise placement of catheters in
the brain parenchyma and properly transmitted drug delivery
are the important factors for successful drug reach using this
method [381]. Convection-enhanced brain delivery, biofeed-
back pump for leptomeningeal carcinomatosis, and identifi-
cation of hypothalamic neuron-derived neurotrophic factor
have also been reported [382-384]. Liposome encapsulated
DOX to brain delivery by CED is an example in point
[385,386].

4.2.4 Intra-vascular delivery

Due to tight endothelial junctions, the BBB limits the
passage of hydrophilic substances. Otherwise, as per rou-
tine the passing of only lipophilic drugs is allowed. For a
transient opening of the tight junctions, different hyper-
osmolar substances including arabinose and mannitol
have been injected into the cerebral circulation. The
injections of pharmaceutical substances for facilitating
the treatment of brain tumors were reported [387,388].
The strategy allowed uptake of the drug when the trans-
port system was manipulated. The BBB surface receptor-
mediated, carrier-mediated transports were the way out
[389]. However, this strategy presented limitations after
traversing the BBB. The drug encountered the basal lamina,
which trapped opsonized particles and proteins, making
the BBB opening less efficient, and nearly dysfunctional
[390]. Leads into the intravascular nano delivery have
been reviewed [391].

4.3 Non-invasive techniques
4.3.1 Olfactory pathway

The nasal pathway (Figure 8) also facilitates drug delivery
to the CNS circumventing the BBB [392]. Nasal delivery is
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Figure 8: Drug delivery to CNS by olfactory pathway.

not typical for systemic administration; it may either be
used intraneuronally or as extraneuronal. It was usually
employed for the administration of drug molecules that
functioned locally. The intranasal pathway is highly suc-
cessful in administrating a large number of therapeutics
and experimental molecules, including small lipophilic
molecules, for example, cocaine, morphine, and proteins,
for example, insulin (5.8 kD), leptin (16 kD), nerve growth
factors (27.5kD), selective oligonucleotides, and plasmid
DNA [393-399]. Out of the four proposed pathways for trans-
porting molecules by the intranasal cavity to CNS, the major
pathway recommended is the olfactory nerve pathway. The
olfactory nerves are connected with the trigeminal nervous
system between the brain, and the exterior environment,
and thereby provide the shortest pathway to delivery and
transport of the drug to the brain, and the drug is trans-
ported to the CNS within minutes. The trigeminal nerve
pathway innervates respiratory and olfactory epithelia, and
helped in drug distribution to the brain, that is, brainstem
and cerebellum areas [401,402]. The vascular pathway is
the third route for delivering small and lipophilic drugs,
while the fourth pathway for the intranasal CNS delivery is
through CSF [400-402]. The intranasal delivery of glucagon-
like peptide-1 antagonist, Exendin (9-39), brain uptake,
quantitative analysis of olfactory-route delivered drug to
the brain, and intrathecal delivery of pain medication to
the brain has been achieved [403]. Nano formulations and
other nanoparticulate systems for delivery through the intra-
nasal route have been reported [404-407].

4.3.2 Focused ultrasound (FUS)

The FUS provided reversible BBB disruption with enhanced
permeability by concentrating the acoustic energy to a focal
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spot, which could be used to target the brain. Various kinds
of gas microbubbles were announced as cavitation nuclei to
increase the BBB disturbance and minimize impairments to
the surrounding normal brain cells. These focused micro-
bubbles convert acoustic energy into mechanical power. In
this way, the MRI analysis was used in combination with FUS
to direct the FUS energy and to raise the local temperature, as
well as to provide an opening for drug delivery [408-410].

4.4 Kidney-targeted drug delivery systems

Renal diseases are difficult to tackle due to their need for
long-term medication and expensive dialysis including
kidney transplants. In addition, the long-term medica-
tion/therapy is accompanied by serious side effects, which
fails the clinical safety issues. Therefore, effective kidney-
oriented nanosystem development represents promising
advancements in treating renal disorders through
improved drug delivery, enhanced therapeutic efficacy,
and achieved safety. Such renal targeting systems provide
powerful contributions in controlling pharmacokinetics
and improvement in the efficacy increments of the drug.
Attempts at achieving optimized renal supply through
high MW CS, comparatively small MW proteins, poly(vinyl
pyrrolidone-co-dimethyl maleic acid), and galectin-3-car-
bohydrate recognition domain (G3-C12) were pressed into
action. Systems for proximal tubular cell delivery were
designed. In multiple cases, mega line-mediated endocy-
tosis due to the specific intake of the drug carriers by renal
tubular proximal cells has been observed. In addition, the
carrier’s overall charge appears to be a major factor in the
provision of kidney-specific drug delivery. On the other
hand, mesangial cells are particularly appropriate for
NPs and liposomal formulations considering their sizes
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[411]. The delivery to the kidney through nano-structured
devices and techniques, and involvement of modified
nano-structures are commendable (Figure 9).

4.4.1 Macromolecular carriers

The low MW carriers improved water solubility, aug-
mented oral absorption, and enhanced the bioavailability
of the conjugated drugs. They also tend to provide sus-
tained release of the drug and reduced extra-renal toxi-
city. These low MW glomerular proteins (LMWGPs) were
also selectively accumulated in the kidneys. The LMWGP
is part of the enzymes, immuno-proteins, peptide hor-
mones, including lysozyme and insulin. From the glo-
meruli, low MW protein was shown to be transferred into
renal tubules and reabsorbed. Due to their non-immuno-
genic property, some of these proteins were also used as a
drug. A macromolecular drug—carrier conjugate also tends
to be quickly removed, thereby maintaining drug levels
within safe limits. This prevents extra-renal load and sub-
sequent kidney damage [412,413].

4.4.2 Lysozyme conjugates

The low MW endogenous proteins (<20 kD) are among
the most studied LMWGP. This includes lysozyme, which
gets associated with drugs by forming peptide linkage with
naproxen, ester linkage in triptolide-lysozyme [414-416],
and disulfide bonding with captopril [417,418]. These lin-
kages increased the performance by several folds when
the uptake by renal proximal tubular cells occurred, that
is, when compared to the free drugs, thereby significantly
improving renal targeting. For example, naproxen-lysozyme
was converted into naproxen-lysine to inhibit cyclooxy-
genase, and when naproxen was released from the conjugate
its concentration increased to 70x higher than the naproxen
itself. Similarly, anti-inflammatory and immunosuppressive
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Figure 9: Kidney-targeted drug delivery systems.
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triptolide, when conjugated with lysozyme, its renal concen-
tration increased 20-folds in comparison to the equivalent
dose of the free drug, as observed after 30 min of intravenous
delivery. The renal targeting efficiency of the conjugate was
enhanced from 11.7 to 95.5%. In addition, when free triptolide
was administered, toxic effects were observed in the diges-
tive, urogenital, circulatory, and reproductive systems. A
lysozyme-conjugated triptolide showed a 22% lessened hepa-
totoxicity with no adverse effects on the immune system. The
renal concentration of the conjugate of the ACE inhibitor,
captopril with lysozyme was increased 6-folds in male Wistar
rats, compared to the free drug. The drug conjugate was also
found useful in reducing proteinuria with no systemic effects
on blood pressure. Several other drugs have also been linked
to lysozyme in various ways, for example, sunitinib analog
17864 through the platinum-based linker [419], sulfamethox-
azole and DOX through cis-aconitic anhydride, and SB202190
through the platinum-[II]-based universal linkage system®
(ULS) [420]. Advances in nano-module drug delivery to the
kidney have been reviewed recently [421,422].

4.4.3 CS conjugates

The delivery of CS-prednisolone conjugate attached
through succinic acid spacer increased the mean residence
time of the conjugated drug, and the presence of 19 kD
protein conjugate was 13-fold higher in the kidney, while
10% of the 31kD protein—drug conjugate was retained in
the kidney after 120 min of administration, compared to
the free prednisolone. The conjugates were non-toxic to
L1929 and NRK-52E cell lines. The conjugates had a safer
pharmacokinetics profile due to their faster uptake, and
filtration from the kidney than the lysosome and its con-
jugate. The low MW polymeric conjugates, that is, CS and
HECS (hydroxyethyl CS) with N-acetylation, have been
used for safe and targeted transport, with polymers of
different degrees of acetylation [423]. Rhein oral delivery
for renal conditions and GLY-CS (glycol CS)-based site-
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specific renal delivery of biopolymeric Nano micelles as
immunosuppressant have been recently reported [424,425].

4.4.4 Synthetic polymer-based conjugates

Poly(vinylpyrrolidone-co-dimethyl maleic acid), anionized
PVP, and other polymeric-conjugates targeted the renal
cells while specific uptake was mediated by megalin-based
endocytosis. The mesangial cells were a suitable destina-
tion for particulate delivery modules. The polymer—drug
conjugate delivery is affected by the carrier’s MW and
charges wherein the best renal targeting of ~80% of the
administered dose being delivered to the kidney was pre-
ferred over polymeric MW averaging between 6 and 8 kDa
with positive charge annotations [426—428].

4.4.5 Peptide conjugates

Galectin-3 (G3-C12), e-poly-L-lysine derivatives, kidney-
targeting peptide-derivatized elastin-like polypeptides,
and carrier peptide (KKEEE)sK conjugates have been
reported mainly for kidney-specific deliveries providing
better pharmacokinetics, biodistribution, longer plasma
half-life, and kidney accumulation, which was compara-
tively multi-folds higher than the free drugs in compar-
ison with their accumulation in other organs. The peptide
specific to the galectin-3 carbohydrate recognition domain
[G3-C12] [ANTPCG-PVTHDCPVKR], identified using a com-
binatorial display technique, was shown to be specifically
accumulated in (mouse) kidneys after intravenous
delivery. Fluorescein isothiocyanate)-labeled G3-C12 pep-
tide was reabsorbed in proximal renal tubular cells. When
the sequence G3-C12 was conjugated to captopril, its renal
concentration was increased by 2.7x folds as compared to
the free drug [427-431].

4.4.6 Prodrugs

The chemically modified derivatives of parent drugs that
are in vivo subjected to enzymatic, and other biochem-
ical-based transformation to release the active drug, are
termed prodrugs. The prodrugs exert desired pharmaco-
logical effects, improve the therapeutic efficacy, and reduce
toxicity. Suzuki et al. [432] proposed glycoconjugates, a
dual function entity, as a prodrug, and as a potential vector
for renal targeting. The arginine—vasopressin glycosylated
conjugates were introduced, and it was found that the struc-
ture of alkyl glucoside (Glc-S—C8-) was required to target
the kidney. The effect was dependent on the chemical
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nature of the sugar that significantly altered targeting effi-
ciency. The alky chain length, peptide structure, and type
of chemical bondings, primarily ester, amide, and ether,
together with the molecular size played the parts. Thera-
peutic substrates’ conjugates with positive charged and low
MW entities were developed [433,434].

The cytotoxicity and absorption tests in HK-2 and
MDCK cell lines exhibited decreased cytotoxicity, together
with 2.2x-multiplied intake by the cells compared to free
prednisolone. The kidney concentration of the drug was
increased 4.9-folds in comparison to the free prednisolone,
as found in the in vivo tissue distribution tests. The authors
concluded that 2-glucosamine could be the likely carrier
for renal targeting [435,436]. Zidovudine-CS oligomeric
conjugates were also prepared and tested for in vivo
release of zidovudine in the mouse model through intra-
venous administration in a pharmacokinetics test proce-
dure conducted by Liang et al. [437]. The results showed
that the conjugate’s residence time was 2.5x times higher
than free zidovudine in the kidney. In addition, the uptake
and distribution of prednisolone and its 2-deoxy-2-amino
di-glucose conjugate demonstrated overall better perfor-
mance. Atorvastatin delivery to the kidneys through ceria
NPs for acute injury targeting the mitochondria with ROS
responsiveness was also delivered [438].

4.4.6.1 Amino acid-modified prodrugs

Mice tissue distribution patterns of y-glutamyl-dopamine
(GGDA) were synthesized and analyzed by Wilk et al
[439]. The dopamine concentration in GGDA-treated kid-
neys was higher than the equivalent dose of dopamine,
which suggested degradation of GGDA by renal enzymes.
In the kidneys, the application of dopamine increased
blood flow significantly without any significant effect
on blood pressure and heartbeats. The concentration of
free dopamine in plasma after oral administration of
GGDA was very low, whereas the concentration in urine
was relatively higher [440,441]. Such findings indicated
that GGDA was a candidate for delivering dopamine to
the kidneys. An N-acetyl-glutamyl prednisone prodrug
material, prepared by Su et al. [442], and investigated
for its in vivo distribution; together with its effects on
bone density in rats was conducted to evaluate its adverse
effects. The bone mineral densities (BMD) of the Wistar
rats were assayed, and compared to the parent drug, pre-
dnisolone, the ACEP prodrug derivative showed improved
kidney-targeting with lowered toxicity. The targeted renal
prodrug exhibited increased drug concentration, and osteo-
porosis incidences induced by prednisolone were reduced.
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4.4.6.2 Folate-modified prodrugs

The kidneys have important roles in the reduction of
folate losses. The production of folate in the body starts
with 5-methylenetetrahydrofolate. Thereafter, it is pro-
cessed by the folate-binding protein, which is present on
the proximal tubular epithelium, and it is reabsorbed
during vascular circulation. Folic acid was coupled to
diethylenetriaminepentaacetic acid (DTPA), using a spacer
arm, ethylenediamine. This allowed a quick excretion of
DTPA-folate conjugate. In the thymic tumor-bearing mice,
after intravenous delivery of DTPA-folate, the conjugate
was taken up by the tumor and transported to the kidneys.
The fast deletion from FR-negative tissue of the DTPA—folate
conjugate illustrated the critical role of the folate receptors in
the absorption of conjugates [443]. The use of folate bindings
has been limited, and the physicochemical properties of
the conjugate are open to play a role in targeted and
random deliveries since folate receptors were also
expressed elsewhere.

4.4.7 NPs

The potential of NPs as drug delivery carriers to kidneys
was emphasized as crucial since accumulation and toxi-
city are major concerns for renal tubules. An accumula-
tion in the glomerular mesangial cells of high concentra-
tions of actinomycin-D (AD)-loaded isobutyl acrylate NPs
(ADNPs) were reported [444] in, both, in vitro and in vivo
experiments. After the applications of *H-AD, or >H-ADNP
into rats with experimental glomerulonephritis, the uptake
ratios of [PH-ADNP/’H-AD] were, respectively, 6.9-folds
increased after 30 min, and 4.0x levels increased after
120 min, compared to normal-conditioned rats. The in vitro
experiments found out that the intakes by epithelial cells
were 6-folds lower than the mesangial glomerular cells.
The targeting of the glomerular mesangium is especially
useful to treat glomerular inflammation with anti-inflamma-
tory medications, for example, cortisone. The mesangium
kidney could be targeted by NPs of sizes ~75 + 25 nm in dia-
meter. Thus the design criteria for NP-based treatments for
renal diseases were established [445].

4.4.8 Liposomes

Small unilamellar vesicles (SUVs) linked to a mAb, Dal
K29, entrapping methotrexate (MTX-SUVs) were more
effective than the free drug, mAb (an IgGl mAb), and
normal mouse IgGs, or the non-specific mouse IgGl in
renal cancer [446]. Dal K29-linked-(MTX-SUVs) showed,
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respectively, 6- and 8-folds increased binding than the
unspecific (MTX-SUVs) and the unlinked (MTX-SUVs),
following incubation with human kidney CaKi-1 cancer
cells lines in 2 h duration. A colony inhibition experiment
also found out that the Dal K29-related MTX-SUVs are
5- and 40-folds higher than that of the Dal K29-MTX,
respectively, allowing the MTX to inhibit the growth of
CakKi-1 cells. OX7 (OX7-mAb F(ab’)2 fragments)-coupled
immuno-liposomes (OX7-IL) coupled liposomes attached
with Fab fragments of OX7 mAb directed against the
Thyl.1 antigen were prepared by Tuffin et al. [447]. The
average diameters were 130 and 170 nm for the lipo-
somes, and immuno-liposomes were generated. As the
glomerular endothelium is corrugated, and as any base
membrane does not divide the glomerular capillary, the
mesangial cellulose was particularly a good choice for
OX7-IL-based drug delivery. The OX7-IL was found to
specifically target the mesangial cells following intrave-
nous administering in rats, but the formulation was
blocked in the case of the free OX7F(ab’)2 fragment.
The low-dose DOX injected rats had glomerular damage
while the other kidney sections and body parts were
spared, and most likely, it was thought to be caused by
the conjugated OX7 antibody.

4.5 Drug delivery to pancreas

Among all the cancers, pancreatic cancer is the most
deadly with the lowest survival rates statistics displayed
so far. Pancreatic cancer is the third prominent reason for
cancer deaths in the world. Lack of effective drug delivery
has made it challenging because the pancreatic cells
cluster in a nest of scar-like tissue with high resistance
to chemo and radiation therapies. For the drugs to get to
the pancreas, which is situated deep within the
abdomen, specifically targeted delivery modules were
deemed necessary. Recent advances in drug delivery sys-
tems provided higher prospects for improving the situa-
tion with respect to pancreatic cancer treatments. Drug
delivery systems, for example, NPs, liposomes, CNTs, sui-
cidal gene, siRNA, oncolytic virus, antibody, and small-
molecule inhibitors, are worth-mentioning drug carriers.

4.5.1 NP- and QD-mediated delivery

Due to their unique structure and characteristics, NPs
have been considered ideal carriers for therapeutic deliv-
eries for the treatment of pancreatic cancer. Among many
NPs-drug formulations, the PNPs encapsulating
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rapamycin for oral nano-scale drug delivery with favor-
able pharmacokinetics had better therapeutic effects in
inhibiting the growth of pancreatic cancer cells [448].
A drug delivery system for improving the treatment for
MIA PaCa-2 (human pancreatic carcinoma) pancreatic
cancer by encapsulating PHT-427 in single and double
emulsions PLGA-NPs (SE-PLGA-427) and (DE-PLGA-427)
were developed by Kobes et al. [449]. When studied in a
mouse model, compared to SE-PLGA-427, the DE-PLGA-
427 showed delayed drug release with a longer retention
time in pancreatic cells. The MRI showed a significant
decrease in cellularity with both forms of drug-loaded
NPs during therapy. The tumor size decreased by 6- and
4-folds compared to untreated tumors. The primary pan-
creatic tumor was reduced by 68%. The AuNPs (~5nm
size) that were targeted in vitro and in vivo conditions of
pancreas cancer were successful in delivering the intended
drug [450]. The AuNP-based system delivered Cetuximab
and a pro-epidermal growth factor (pro-EGF) antibody. It
was well established that tyrosine kinase (TK), epidermal
growth factor receptor (EGFR) (ErbB-1), which is overex-
pressed in pancreatic cancer, suggested a fair strategy for
diagnosis and treating pancreatic cancer [451,452].

The mesoporous SiNPs, due to their robustness and
biocompatibility, have demonstrated high potential as a
drug delivery vehicle against pancreatic cancer. It is also
well suited for use as a nano-theranostic agent for bioi-
maging and treatments. For the targeted delivery of gem-
citabine using SiNPs, a previous study in vitro tested the
therapeutic efficacy of the nanoformulation against Panc-1
cancer cells. The pancreatic cancer cells showed high
levels of CD44 receptors on their surface, which made
them insensitive toward chemotherapy and thus were
considered responsible for cancer recurrence [453]. The
application of another delivery system based on HA-con-
jugated NPs played an important role. The naturally
available polysaccharide, HA, is also the ligand for CD44.
The receptor is highly expressed on different cancer cells
and has an important role in developing cancer, for driving
the interactions between the extracellular matrix, the
cancer cells, and cancer metastasis. HA with negative
charge prohibits self-agglomeration and inhibits non-spe-
cific interactions, as well as binding to the cell surface. The
other advantages of HA-sourced NP formulations are
their multi-functionality because of HA, and their ability
to target and accumulate in cancer cells due to improved
endocytosis. The specificity of the endocytosis becomes pos-
sible only due to the interaction between HA and CD44
receptors. It resulted in decreased cytotoxicity compared to
the free gemcitabine and un-functionalized NPs. Besides
the specificity, the mesoporous SiNP nanoformulations
also improved drug efficacy through their sustained
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release and protection against external stimulations. The
progression was controlled through neural-drug-loaded
ferritin NPs. The drug-loaded ferritin-NPs were targeted
by the passive method. The NPs regulated the microenvir-
onment to control the growth of pancreatic cancer cells.
The ferritin-based NPs thus represented an effective and
safe delivery route for pancreatic anti-cancer therapy
[454]. Besides, the NPs were also recommended for cancer
diagnosis as an imaging agent.

The QDs were also found promising in pancreatic
cancer diagnosis. The manganese-doped QDs were stable,
distributed into an aqueous environment, and quickly
mixed with the targeting molecules. The multimodal QDs
were identified as diagnostic agents for early pancreatic
cancer detection through imaging, thereby suggesting
the vital potential of QD as an efficient, safe, and novel
imaging system for the early detection and diagnosis of
pancreatic and several other cancers [455-457].

4.5.2 Liposomes

The photo-actable multi-inhibitor liposome (PMIL)
doped in carrying cabozantinib and a photo-actable
chromophore (benzo-porphyrin derivative) were pre-
pared. The antagonist multikinase was used to exhibit
light-induced cytotoxicity associated with the photo-
initiated continuous release of the drug, and it was
employed to inhibit tumor growth and arrest treatment-
escaped signaling pathways. The photodynamic disrup-
tion to tumor cells and microvessels was found to be
triggered by intravenous PMIL administration. The sub-
sequent release of XL184 (cabozantinib, a kinase inhi-
bitor) inside the tumor was initiated, and a single PMIL
treatment achieved prolonged tumor reduction in mouse
models which also suppressed metastasis in an ortho-
tropic pancreatic tumor model [458]. For improving
second-line treatment for metastatic pancreatic cancer,
a liposome called MM-398 consisting of around 80,000
irinotecan molecules was used to disrupt the proper
functioning of the DNA in cancer cells [459]. A global,
randomized, and open-labelled, phase-III clinical trial
consisting of nano-liposomal irinotecan with fluorouracil
and folinic acid in metastatic pancreatic cancer, after
previous gemcitabine-based therapy (NAPOLI-1), was con-
ducted. This delivery system improved the pharmacody-
namic and pharmacokinetic features of the drug. However,
besides that, 5-FU leucovorin (folinic acid) alone increased
the overall survivability dramatically than a mixture of M-
398 + 5-FU. A “smart” injectable nano-therapeutics entity
scheduled to selectively deliver pharmaceutical products
was shown to improve the effectiveness of the drug by
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200-fold increments. It was based on their ability, both to
resist oxidation and to focus at key target locations, that is,
to pancreatic regions comprising the cells that produce
insulin. The dramatic increase in effectiveness allowed
the use of smaller quantities of drugs, significantly redu-
cing toxic side effects and lowering treatment costs. Due to
poor delivery, and systemic toxicity many cytotoxic drugs,
that is, folinic acid (leucovorin) (folfirinox), FU, irinotecan,
and oxaliplatin, have only limited usefulness in treating
pancreatic cancer. The localized delivery of chemothera-
peutic agents using iontophoretic instruments inserted
directly into the pancreas has become feasible. The ionto-
phoretic therapy-based use of folfirinox for the diagnosis
of pancreatic cancer in an orthotropic patient-derived
xenograft model was described [460]. The growth suppres-
sion of mouse-tumor with controls for 7 weeks with folfir-
inox iontophoretic delivery in contrast to intravenous
delivery was significantly greater. Another device for loca-
lized, targeted, time and release-controlled drug delivery
systems was found to be 12x more effective than the free
drug delivered intravenously. The delivery was also com-
pared with two groups of mice carrying transplanted
human pancreatic tumors. The device helped in slowing
down the tumor progression, and the tumor size effectively
shrank. The thin, flexible film made up of PLGA polymer
was easy to implant to the site with a minimally invasive
surgical procedure. Being flexible, it took a near-spherical
shape. Drugs like paclitaxel were embedded into the film,
which was released over a pre-programmed interval. The
delivery minimized the side effects. Such a film was also
used to open the blocked bile duct, be used as a coating for
a stent, and was found to help prevent cancer cells from
spreading in the duct, and blocking the duct again [460].

4.6 Drug delivery across the placenta

The human placenta is a complex disc-shaped organ,
which acts as a connection between the fetus and mother.
It is responsible for performing functions like transferring
gasses (0, and CO,), supply of nutrients (glucose, amino
acids, FAs, electrolytes, vitamins, and water), and waste
removal from the fetus and maternal plasma. As the pla-
centa is an endocrine organ, it produces different steroid
hormones like the human chorionic gonadotropin, human
placental lactogenic peptides, human growth hormone
variant, estrogens, and progesterone. Immunoglobulins
also cross from the mother to the fetus by pinocytosis to
provide passive immunity in the first months of life.
Nearly all the drugs cross the placenta to reach the fetus
[461]. However, some drugs had higher concentrations in
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the fetal blood, compared to maternal blood. Succinylcho-
line has an incomplete transfer to the placenta resulting
in a higher concentration in maternal versus fetal blood.
The drugs transferred from the mother to the fetal blood
are carried into the intervillous space and pass through
the syncytiotrophoblast, fetal connective tissue, and the
endothelium of fetal capillaries. Multiple factors regulate
the drug transport through the placenta, that is, thickness,
surface area, the presence of drug carriers, metabolism,
uteroplacental blood flow, pH gradient of the fetal and
maternal blood across the placenta, MW of the drug, and
its lipid solubility. Nonetheless, major transport effects were
observed for the polar drugs, and their elimination was
accelerated. In contrast, the elimination of lipophilic drugs
was slowed, and the effect on the structures of amphiphilic
drugs was variable. The polar drugs were found to cross the
placenta slowly, gets accumulated in the amniotic fluid,
where they were found accumulated in the fetal gut lumen.
Lipophilic drugs crossed the placenta rapidly, and their
trans-placental distributions were dependent on their affi-
nity to the maternal and fetal affinity, which was mainly
dependent upon the drug—protein binding on either side of
the placenta. The fetus and neonate disposed of all drugs
slowly than adults. The most efficient elimination processes
involved the drugs’ biotransformations as sulfate conjugate,
together with active renal excretion [461,462].

4.6.1 Placental drug transfer mechanism

The transfer of drugs to the placenta takes place both
through active and passive transporting mechanisms.
The drugs, for example, midazolam and paracetamol,
were diffused through passive moving, following Fick’s
law of diffusion. This makes the rate of diffusion/time
directly proportional to the surface area of the placenta
and the concentration level across it, and vice versa,
which is proportional to the membrane’s thickness.
According to the formula, the rate of diffusion Q is,
Q =k x SA x (C1 - C2)/d. Here, k is the diffusion constant,
Q is the rate of drug diffusion through the placenta/time,
SA is the surface area of the placental membrane, C1 is the
maternal drug concentration, C2 is the concentration of
free drug in the fetus, and d is the thickness of the pla-
cental membrane. Small MW drugs readily diffuse if the
drug is also lipophilic in nature. This opens the way for
SLNs, and other lipid-coated vesicles, and carrier systems
for facilitated delivery across the placenta. The size of
the nanoparticulate material also plays a role. NPs and
nanomaterials of size up to 500 nm have been shown to
cross the placental barrier in mouse while for the human
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placenta the size limit was observed only up to 240 nm
[463,464]. The diffusion was also influenced by the pH
and pKa of the maternal blood, which further influences
the degree of the drug’s ionization. Only the non-ionized
part of a partially ionized drug passes through the placenta
membrane. Most anesthetic medications are improperly
ionized in the blood, and thus, easily, unwittingly spread
across the placenta. The exception is the strongly ionized
neuromuscular blocks, which are also marginal in trans-
mission. An increase in the rate of drug ionization was
observed when the pH of the maternal blood varies. The
protein-bound drugs do not spread to the placenta. The
cell membranes were crossed free and by unbound drugs
in a facilitated diffusion transfer, for example, the cepha-
losporins and glucocorticoids transferred through facili-
tated diffusion. Transfer of molecules, for example, nore-
pinephrine and dopamine require some energy input like
ATP, as it takes place against a concentration gradient. On
both sides of the placental membrane, active drug carriers
were found which allowed the transport of drugs from
mother to fetus and inversely. The distribution and expres-
sion of the active drug carriers within the placenta could
vary according to gestation. Early studies discovered dif-
ferent active carriers on the placenta including the multi-
drug resistance proteins 1-3 (for the transport of drugs like
HIV protease inhibitors and MTX), and p-glycoprotein
(involved in the transport of drugs, e.g., dexamethasone,
digoxin, cyclosporin-A, and chemotherapeutic substrates
like vinblastine and vincristine). Another strategy for drug
transport between fetus and mother is termed pinocytosis
in which drugs were completely enveloped into a mem-
brane and were then removed to the other side of the cells
[465,466]. Nanodeliveries across the placenta have pro-
vided outreach to the fetus with safe drug delivery options
during pregnancy through control of placental interaction
with the drugs [467].

5 Smart nanodevices: combination
of functional variability and site
specificity

5.1 Smart drug delivery systems

Smart drug delivery systems (SDDSs) adjust and match
the biological environment-driven responses, and func-
tion in the body as well as the systems they interact
with. These systems also overcome biological barriers
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for uninterrupted delivery. The SDDS increases the solu-
bility and stability of controlled payload delivery and
facilitates on-site release in a desired, chronological pat-
tern. The systems build and maintain adequate drug con-
centration at the required site along with the reduction
in localized and systemic cytotoxicity. New generation
transport systems use smart substrates, that is, shape
memory polymers with glass transition temperature called
switching temperature (T), which needs to be close to body
temperature together with the shape-changing capability
intact and actionable at desired conditions. Self-folding
polymers, which were buildup from multilayers with hinges,
or different thermal expansion coefficients, allowed folding
upon being triggered in the delivery situations designed for
the purpose. The environment-responsive polymers were
used for the preparation of delivery polymers with pre-
defined functions and properties to match any single
polymer or every polymer in the blend adjusts indepen-
dently. Different criteria, that is, aqueous environment,
drug loading capacity, release kinetics, and degradation
influence the suitability of the polymer through its shape-
memory polymeric action and other inherent characteris-
tics. The systems are optimized for being minimally invasive
upon implanting through the incision and are designed
to release the drug payload based on self-anchoring.
Shape memory polymers were developed for use as poten-
tial drug-eluting stents, for example, double-layer systems
made of r-lactide, glycolide, and tri-methylene carbonate
loaded with anti-cancer, paclitaxel, the biodegradable poly-
meric cross-linked poly-(e-caprolactone), and poly(sebacic
anhydride) polymer-based delivery platforms. The oligo-
(caprolactone-co-glycolide)-methacrylate combined with
the drug, and the delivery started at a temperature range
between 28 and 42°C as part of the temperature stimulus
device. Wischke et al. [468] observed that the diffusion-con-
trolled drug releases separately than the polymer degrada-
tions. SDDS has gained ground as a platform of choice for
drug delivery to specific sites. The approaches of targeted
drug delivery systems including active, passive, inverse,
double, dual, combination, and physical targetings are
being used very often in therapy, together with tempera-
ture, shape, pH, enzyme, physiological conditions respon-
siveness, and Janus nanosystems and devices, as part of
SDDS [469-472].

5.1.1 Passive targetings
For passive targeting, the nano-carrier needs to be anti-

phagocytic to enable the drug-loaded nanosystems to
stay in circulation for a longer period. Normally NPs of
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size range 10-100 nm layered with PEG were used as
a carrier. The passive targeting additionally integrates
targeted preparation delivery to the malignant bed area
throughout several invasive modalities. The polymer NPs
have shown signs of improved retention and permeability
upon targeted release in tumor cells. Moreover, the leaky
vasculature, in many ways, improves the delivery of anti-
cancer drugs, and the loaded nanosystems. The lym-
phatic drainage, which was missed in the tumor bed
results in drug buildup, thereby supporting the tumor-
targeting strategies to enable the nanosystem-loaded drug
to accumulate from 10 to 100x in additional concentra-
tions than the free drug. However, locally administered
drugs led to increased concentrations at the targeted
tumor site with reduced toxicity to normal cells. The
E1B-55kDa gene was expanded by attenuating onyx-0115
of type 2/5 adenovirus [473]. It is a complex, and the p53
gene was inhibited by other protein connections. The med-
ication was administered in various ways directly to the
malignant cells. The Onyx-0115 has undergone clinical
trials through intra-tumoral administration for head and
neck cancers [474], by intra-tumoral delivery through
endoscopic ultrasound for pancreatic cancer [475], by
hepatic artery to metastatic colorectal cancer [476],
through intraperitoneal administration to ovarian cancer
[477], and by intra-tumoral administration under radio-
graphic leads for advanced sarcomas [478]. Direct delivery
has surpassed other modes and has provided benefits in
cancer management. The passive targeting (enhanced per-
meability and retention [EPR] effect) has provided the
nano-scale carrier facilitated route to the tumor wherein
NPs, liposomes, and SLNs have been employed [479-481].

5.1.2 Active targetings

The active targeting provided precise ligand-receptor
interaction for intracellular localizations following the
transport and extravasation [482-486]. The active tar-
geting of tumors was achieved through several means.
It was targeted through capillary action, specifically to
certain tissues and organs, thereby delivering the drug
to the specific malignant cell types, tissues, and organs
sans the normal healthy cells. Delivering (nano) medica-
tion to Kupffer cells is one such example. The approach
controls the NPs for targeted delivery to specific sites.
The carbohydrate-holding sites required specific receptor
antigens. In carbohydrate targeting, an interaction between
the tumor cells’ hinding glycoproteins, selectins, and the
cell surface of carbohydrate were used for delivery purposes
[487]. NPs holding carbohydrates motifs on their surface
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interact with the cancer cells mediated through selectins,
and in the process, the normal healthy cells were spared.
The NPs uptake through endocytosis, and receptors,
and antigens overexpression allowed specific target-
ings. The surface functionalization by interaction-by-
design approach provided the desired targeting. The
ligand-receptor enhanced the delivery kinetics. The
drug-coated NPs were internalized by the cells through
cytosolic action and were procured in the cells through
lysosomal enzymes [488]. The antigens or receptors
were also re-processed to the cells’ surface after delivery
has been complete. The targeted drug delivery system
included key biomolecules of antigenic nature, surface
proteins, receptors, and other biomolecular motifs. Che-
motherapeutic drugs and traditional as well as other/
herbal drugs had been targeted through the active tar-
geting approach [489]. Figure 10 represents the major
drug targeting strategies.

5.2 Stimuli responsive nano-carriers

The premature release of drugs, and other payloads from
the loaded, and tagged nanosystems have been pre-
vented through targeted release controls. The nanosys-
tems incorporating the characteristics to release their
load upon the stimuli were designed for the de-loading
process to start and function. NPs and other nano delivery
platforms responding to endogenous or exogenic stimuli
have been designed on a large scale and tested. The
identified endogenous triggers were pH change, charge
reversal, enzyme level alterations, and small organic mole-
cules, for example, glucose presence, as well as changes in
redox gradient situations, and exposure to the targeted
receptor and other biomolecules present at the intended
physiological condition sites that are linked to the patho-
logical characteristics of the disease. Opioid peptide-based
releases were also observed to activate and intensify in the
diseased areas by the exogenous stimuli, for example,
temperature, presence of magnetic field, ultrasonication,
photo-illuminance, energy pulsation, and high power radia-
tions [490-492]. A number of stimuli-responsive drug
delivery techniques are presented in Figure 11.

5.2.1 pH-responsive nano deliveries
The pH is the most frequently used trigger for drug delivery.

Different organs have different pH values, and designed
carriers are capable of sensitively differentiating between



DE GRUYTER

Nano-delivery devices, applications, and toxicity = 1525

Leaky Vasculature

Passive Targetings

Tumor Microenvironment

Direct Local Application

Active Targetings

Drug Targetings

Stimuli-responsive
targetings

Figure 10: Different types of drug targetings.

delicate pH changes at specific sites, for example, inflam-
matory, ischemic, and tumor tissue sites. Polymeric micellar
delivery platforms were pH-sensitive and were used to
improve the effectiveness of cancer chemotherapy. The pH
trigger caused the release of the drug after accumulation
at the site in response to a slight change in the observed
acidic pH of the extracellular tissue fluids. Ternary grafted
copolymers, for example, polystyrene, poly(ethylene glycol)
methyl ether, and poly-(acrylic acid) were specifically
synthesized, and at pH 7.4, stabilized the DOX-containing
benzyl benzoate nanoemulsion in water constituting the
compact polymeric layer to inhibit any early DOX release.
At lower pH 5, the hydrophilic and hydrophobic balance
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Figure 11: Stimuli responsive/triggered drug release systems.
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was disturbed to release DOX from its platform [493].
Acetal-containing pH-responsive polymer-based nano-drug
delivery systems have also been developed [494]. High-sta-
bility polymers with pH-responsive mechanisms for nano-
drug delivery were also reported [495].

5.2.2 Redox-responsive nano-carriers

The redox potential of various tissues in microenviron-
ments is multivariate in nature and was used to model
redox-reactive drug delivery systems. Glutathione (GSH)-
based deliveries were an outstanding approach to opti-
mize the delivery of drugs utilizing the NPs. Such redox
signals had been commonly used in the intracellular
drug delivery system. A well-known redox mechanism
reported for cancer cells is GSH reduction. In contrast,
the blood levels of GSH and the usual extracellular
matrices redox vary from 2-20 pM to 100- to 500-folds
greater than the typical GSH rates inside the cell cancer
cells at the same time. A number of approaches including
multi-functional nano-carrier, stimuli, and enzyme respon-
sive triggered, and passive and active tumor targetings of
nano-carriers to exploit the tumor microenvironment and
the on-site redox had been proposed and developed [496].
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5.2.3 Temperature and enzyme-triggered nano-carriers

Certain enzymes, for example, glycosidase, lipase, phos-
pholipase, and proteases were manipulated to trigger the
biocatalytic function in cancer and inflammatory condi-
tions. The major challenge in an enzymatic drug delivery
system was to accurately control the system’s initial
response time. Another challenge was the higher tem-
perature of the pathophysiological disorders site and bio-
system than the normal tissue temperatures, which were
utilized as a useful and effective variable to monitor the
drug release. Temperature-sensitive nano-platforms of
NPs of metallic and polymeric origins, nano-emulsion,
and other nano-entities capable of temperature trigger
were designed and are reported. The temperature response
between 40 and 45°C was also utilized for cancer
hyperthermia-related drug delivery through external sti-
muli of a magnetic field, and ultrasonication energy
supply for the trigger release of the drug [497-499]. Addi-
tionally, the photosensitive carriers trigger drug release at
a single, or repeated light irradiation, as it “opens” and
“closes” the nano-platform under programmable com-
mand through exposures to the external magnetic field.
The spatial regulation with non-invasive stimuli paved
the way for targeted, site-specific, time-defined, tempera-
ture-sensitive, and payload release control [500-502]
delivery options. The regulated release of drugs provided
better penetration, bioavailability, biochemical and che-
mical stability, and increased and adequate drug concen-
tration at the target site on demand through the stimuli
adjustments by different types of nano-carriers [503-512].

Based on specific triggers, biocompatible and biode-
gradable polymers released the entrapped drugs at the
designated site according to the pre-fixed delivery cycle
and frequency. The phenomenon was maneuvered by the
biosystem’s specifications for responding to the triggered
changes at the site. In this context, the frequently used
polymers in developing controlled-release NPs were
aliphatic polyesters, for example, PGA, PLA, and PLGA.
In addition, the CS and its derivatives were also found
suitable for the purpose. CSNPs and mCSNPs, which
directed the delivery through tagging of antibodies, and
the magnetically driven nanostructures and aptamers,
were also used for the purpose. Mesoporous SiNPs also
responded as stimuli-responsive nanomaterials to produce
smart delivery systems. The biomolecular capping of
the NPs pores provided extra reactivity for the biosystem.
The intracellular and internal stimuli were used for the
removal of the capping to respond to the release of drugs,
and other payloads, at the site. The deliveries were met in
response to the built-in functional demands from the NPs.
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In addition, the optical contrast and magnetic imaging
agents were also used to drive the multipurpose drug
delivery systems as well as performing the diagnosis
through the NP applications [513,514].

The micellar nanostructures, SLNs, and conjugated
delivery of anti-cancer agents, that is, DOX, paclitaxel,
and MTX, as part of the enhanced performance nano-
carriers were reported [515-522]. The immunoliposomal
delivery, functionalized PLGA, PLA, and PLGA-PEG NPs
for bone delivery were recorded. Lipid-coated, TNF func-
tionalized NPs, prostate cancer-targeted nanosystems,
deliveries to the brain, and delivery of antigens, use of
dendritic cells, siRNA therapy with sterically stabilized
NPs, galactose-carrying polystyrene coated PLGA-NPs
for receptor-mediated trans-retinoic acid delivery to the
hepatocyte, and poly(hydroxyethyl aspartamide) (PHEAC)-
based micellar formulations for ocular drug delivery were
some of the smart nano-carriers developed for the precise
and controlled drug delivery [523-535] options. A list of
different drugs delivered through smart nano-carriers is
summarized in Table 6.

6 Site-specific organ delivery

6.1 Organ targeting

Targeted delivery dealing with drugs to target-specific
organs required a pre-work-out plan on preparation. It
also needed to take into consideration the characteristic
properties for the site-specificity design of the nano-
structured entity, to specifically reach the intended organ’s
site, and de-load the loaded mass according to the set
parameters, and in association with the internal or
external stimuli. The feat is considered an additional
advantage. The selective drug delivery to specific body
sites required exclusively prepared nanosystems after con-
sideration of the selected route. Each body organ has its
specific characteristics, requirements, functioning, and
biology to deal with the nano-scale drugs and other pay-
load deliveries, as and when that happened.

6.1.1 Eyes

The conventional methods of topical and systemic admin-
istration of drugs to the eye are primitive, and the need
for controlled and continuous release, particularly for
conditions that influence the ocular posterior segment,
has profound importance. Different non-implanted and
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Table 6: Smart drug delivery nano-carriers used for the treatment of cancers

Drug/active moiety NP carrier Cancer/tumor site Ref.
Adriamycin Novel pH-sensitive polymeric mixed micelles, PLA, and PEG Solid tumor [515]
DOX Polymer-lipid hybrid NPs Murine solid tumor [516]
model
Poly(N-E-(3-diethylamino)propyl-isothiocyanato-L-lysine)-B-poly(ethylene- Solid tumor [518]
glycol)-B-poly(L-lactide)
MTX HSA Solid tumor [517]
Paclitaxel Trimyristin, phosphatidylcholine, and PEGylated phospholipid Ovarian and breast [519]
cancer
PEG-distearoyl phosphoethanolamine conjugate (PEG-PE), solid triglyceride Ovarian carcinoma [520]
(ST), and cationic lipofectin lipids
Daunorubicin Biotinylated immunoliposomes, non-covalent (biotin-streptavidin) Brain tumor [521]
Ellipticine Methoxy(polyethylene glycol)-b-poly(5-benzyloxy-trimethylene carbonate Solid tumor [523]
MTX, tritium Non-targeted polymer, folate-conjugated Epidermoid carcinoma [524]
Alendronate PLGA and PEG Solid tumor [525]
Docetaxel Carboxy-terminated PLGA-PEG Prostate cancer [526]
Paclitaxel PLA-PEG Xenograft tumor model [527]
Rhodamine-dextran PLA-PEG Prostate cancer [529]
Antigens PLGA Bone cancer [531]

implantable materials and devices have been developed
where medications are equipped to deal with specific
pre-corneal, fluidic, and other barriers for ocular tissue
release of the drug. New, effective, and patient-oriented
products and technologies to overcome such barriers and
sustain the required levels of drug release to the eyes
have been developed. In this context, many nano-carriers
were formed, for example, nano-suspensions, NPs, nanomi-
celles, liposomes, and dendrimers. Nano-micelles for ocular
anterior segment drug delivery as dexamethasone-loaded
nanomicelles made up of copolymers of PHEAC, and
PEGylated—PHEAC were introduced [536]. The copolymer
of poly[ethylene oxide]-poly(propylene oxide)—poly(ethy-
lene oxide) (PEO—PPO-PEO) as a micellar delivery for trans-
ferring plasmid DNA with LacZ gene in rabbit and mice
ocular tissues were designed and developed [537]. For pos-
terior ocular drug delivery, cyclosporin-loaded nano
micelles for delivery to the rabbit eye were also prepared.
Owing to their size, NPs were sought in for the purpose
and present an important nano-entity. The use of biocom-
patible polymeric NPs led to low irritation, allergy, and
sustainable drug release avoiding repeated administra-
tions. However, the NPs were quickly cleared from the
pre-corneal sacks, and to avoid premature cleaning, the
mucoadhesive NPs were introduced to increase the pre-
corneal stopover time [538]. HA, CS, and PEGNPs were
commonly used as they provided better pre-corneal habi-
tation times. The quaternized CS, positively charged
polymer, has an affinity to bind negatively charged corneal
surface, thereby improving the pre-corneal retention time

with increased availability of the drug. In the rabbit
eye, Musumeci et al. [539] showed that melatonin-loaded
PLGA-PEG-NPs had a significant intraocular pressure-
lowering effect, and the NPs were more effective as
compared to the aqueous solution of an equivalent con-
centration of melatonin-loaded PLGA-NPs. In a study
using Sprague-Dawley rats, 20 nm of particles were
rapidly removed from periocular tissues shortly after
the application. The fast clearance was considered to
be caused by the removal of episcular, conjunctival,
and/or other circulatory periodic systems. On the con-
trary, the particles with a size range between 200 and
2,000 nm were maintained for 2 months after the admin-
istration. Hence, NPs with small size were not recom-
mended to be used for delivery, and also for the extended
trans-scleral drug delivery to the back of the eye [540,541].
Glucocorticoids, that is, dexamethasone prednisolone and
hydrocortisone, widely used for treating eye inflammation
were formulated as nanosuspension for better bioavail-
ability [542]. The hydrocortisone (Hc) nanosuspension
was prepared (300 nm) by the precipitation and milling
process which provided better AUC (0-9h) values of
28.06 + 4.08 and 30.95 + 2.2, respectively, significantly
(P < 0.05) higher than that of the HC solution (15.86 + 2.7).
Prolonged drug action, observed through changes in
intraocular pressure, was maintained for 9 h as compared
to the 5h action of the drug’s solution. The milled formu-
lation was stable for 2 months and showed no change in
size whereas the precipitated formulation yielded 440 nm
particle size [543]. Nonetheless, the liposomes provided
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near-perfect nano delivery for the ophthalmic application
because of their excellent bioavailability, lipidic structure,
and capacity to accept both hydrophilic and hydrophobic
drugs. The liposomes showed better efficacy for both the
frontal and posterior parts of the eye. In the rabbit eye, a
single subconjunctival injection of latanoprost-liposomal
combination produced a sustained intraocular pressure-
lowering effect over a period of 50 days compared to the
use of the conventional dye drop formulation. The cationic
liposomes were more active than the negatively charged
liposomes due to the binding of the corneal layer with the
later type of liposomes [544]. In an alternate study, in the
rabbit eye, liposomes loaded with coenzyme Q10 (CoQ10)
and coated with mucoadhesive TMCS, resulted in 4.8-fold
improvement in the pre-corneal residence time for tests
on delaying selenite-induced cataract, which was observed
to be delayed with the coated liposomes [545]. Also, the
posterior segment delivery showed liposomes’ decreased
cleaning from the vitreous humor and prolonged drug
release from the liposome-bound cyclosporine [546]. Tacro-
limus (FK506) and infliximab liposomal formulation
showed improved effectiveness in the suppression of uveor-
etinitis compared to the medication alone and reduced
sensitivity in internal retinal cells [547,548]. Different pre-
parations of liposomal NPs have been investigated for ocular
drug delivery, and some are now commercially available,
while others are in clinical and pre-clinical trials. PAMAM
dendrimers are also widely used as ocular drug transport
platforms for the transport of tropicamide and pilocarpine
nitrate for miotic and mydriatic activity in albino rabbits
[549]. Ocular gene delivery through liposomes [550], the
role of viscosity, and particle size of ophthalmic suspension
have also been investigated [551]. A recent review summar-
izing the formulation approaches, and state-of-the-art on
patents is also available [552]. Figure 12 presents the different
nano-structures involved in ocular drug delivery.

6.1.2 Dental area

Polymer and microparticulate hydrogels have so far been
used. Their physicochemical characteristics and the prop-
erties gained as constituents of the formulation, influence
the drug’s distribution, availability, and release profile.
Compared to microspheres, microparticles, and emulsion-
based drug delivery systems, the NPs provide several ben-
efits, including strong aqueous dispersibility, availability,
absorption, controlled release profile, and greater stability.
NPs penetrate inaccessible dense periodontal pits due to
their size and reduce the drug administration frequency.
PNPs synthesized using micellar polymerization resulted
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in a nanoparticulate powder suitable for dental applications
[553]. NPs penetrate inaccessible dense periodontal pits due
to their size and reduce the drug administration frequency.
Another dental delivery nanosystem using emulsification—-
diffusion preparation method providing triclosan-loaded
polymeric PLGA, PLA, and cellulose acetate phthalate NPs
were developed, which crossed the junctional epithelium
for use in periodontal defects in dogs. Triclosan delivery
was achieved for a longer period. The site-directed and
site-specific deliveries using micro/NP solutions to the
root canal cavity and periodontal pocket allowed the
reduction of therapy sessions for clinicians and acted
as an adjuvant for surgical events for teeth protection
[554-556].

6.1.3 Heart

For treating cardiovascular diseases, the endothelium is
considered a vital target for drug delivery. Several phar-
macological interventions for endothelium treatment are
available, which also include nano-scale interventions.
There are many heart-targeted nano-scale drug delivery
systems, for example, dendrimers, liposomes, and NPs
made from materials like TiO,, cerium, polymeric, and
SiNPs. Polymeric drug conjugates, microbubbles, nano-
coated stents, and micelles have also been used [557-563].
Cardiac-targeted ligands when conjugated on dendrimers’
surface resulted in therapeutic entities, for example,
poly-amidoamine dendrimer-based polymeric material in
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conjugation with chemically functionalized nucleosides,
which were found to enhance cardioprotective potency
by the activation of the A3 adenosine receptor (A3AR)
that exists on the cardiomyocyte surface [564]. S-Nitroso-
N-acetyl penicillamine-modified polyamide amine fourth-
generation dendrimers (G4-SNAP) were prepared to
decrease I/R (ischemia/reperfusion) injury in rat hearts.
It was found that GSH increased the production of NO
resulting in the protection of the heart tissue from radical
oxidation [565]. The dendrimer complexes were also con-
jugated to the DNA using the electroporation technique to
increase the transfection efficiency in mouse cardiac grafts
[566]. The development of liposomal carriers for heat treat-
ment, upon preparation, yielded liposomes loaded with
ATP and intended for anti-myosin antibodies. In rat hearts
before global ischemia-reperfusion, the formulation
delivery resulted in improvement of contractile recovery
[567]. Treatment with immuno-liposomes containing vas-
cular endothelial growth factor and conjugated with anti-
P-selectin resulted in significant improvement of cardiac
functions and vascularization due to the overexpression of
P-selection in the damaged myocardium [568-570]. The
liposomes were also modified to target angiotensin II
type-1. The results showed that after systematic adminis-
tration in vivo, the NPs were able to transport the active
substrate to the affected heart tissue [571]. The functiona-
lized SiNPs were used to target drugs to the heart [572].
Stable magnetic NPs and adenoviral vectors were deliv-
ered into the infarcted heart for treating acute myocardial
infarction. Nanomaterials using cerium oxide, CeO,, NPs
for protection of the heart against inflammatory and oxi-
dative injury caused by monocyte chemotactic protein-1
were prepared and tested [573]. The atherosclerotic burden
related to exposure to standard diesel fuel was treated with
Ce0, NPs [574]. The biodegradable polymer-based stents
were engineered to prevent re-stenosis before implanta-
tion, and stents were in situ degraded after the repair
has been performed [575,576]. The PLA stents provided
reduced inflammation and long-lasting results in a porcine
model [577]. However, the polymer-based stents have poor
structural strength, and to remedy this shortcoming, the
bio-resorbable stents are now preferably synthesized from
metallic and plastic alloy (plastic bends) materials. The
magnesium stent was accepted and adopted within the
first 3 weeks of implantation [578]. The ceramic nano-
porous aluminum oxide coating and its suitability as a
carrier for immunosuppressive drug tacrolimus delivery
were established. The spongy aluminum oxide-coated stents
encapsulating the drug inhibited neo-intimal growth [579].
Moreover, the ultrasound-targeted microbubble destruction
technique was proved as an excellent proprietor for gene
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and drug transport on an experimental basis [580,581].
Deep venous thrombosis, acute coronary syndromes, the
remission of arterial ischemia, and acute ischemic strokes
were treated using microbubbles [582-584]. The roles of
synthetic polymers have grown exponentially due to their
versatile nature and capability to provide on-demand nano-
carriers with desirable properties for delivery to almost all
organs, and areas of the body. The size-control, inherent
characteristics incorporated in the nanosystems, and surface
modifications are comparatively feasible in synthetic poly-
mers due to their structural specifications when compared to
natural origin polymers, and this has made these polymers
polymers-of-choice for preparing different kinds of nanosys-
tems, delivery, and diagnostics uses [585,586]. Computa-
tional and numerical simulations on nano-hemodynamics,
and nano-drug delivery, respectively, have also been
recently attempted [587,588]. The nano-designed entities
including nano-scale biomaterials prepared for the purpose
have demonstrated their preventive and therapeutic advan-
tages for diagnosing and treating cardiovascular disorders.
The designed delivery platforms have targeted and removed
coronary artery plaques, protected arterial damages caused
by stenosis as well as arterial occlusion. The NPs have suc-
cessfully minimized reperfusion-related injuries and have
contributed to myocardium recovery through the targeting
of cells, biochemicals, and paracrine factors delivery after
the myocardial infarction [589]. Figure 13 represents nano-
carriers employed for drug delivery to the heart. A listing of
metals and major synthetic polymer-based nano-carrier sys-
tems are provided in Table 7.

6.1.4 Lungs

The pulmonary/nasal route is amply favored by the fact
that the lungs can provide a vast (100 m?) but extremely
thin (0.1-0.2pm), absorbing mucosal membrane area,
together with an adequate supply of blood. The route is
a non-invasive procedure for the delivery of treatment
agents, and also for peptides and proteins. Nevertheless,
recent developments have shown high potential. Nonetheless,
the pulmonary distribution of proteins and peptides is
hindered by the impact of the respiratory temperament,
and the complicity of the human respiratory system’s ana-
tomic forms. The drugs were delivered to the pulmonary
route using two techniques, that is, intratracheal instilla-
tion and aerosol inhalation which was used in intranasal
applications. The increased distribution, with a deeper
penetration in the alveolar region, or the periphery of
the lungs was reached by aerosol technology. However,
this is more expensive and makes it difficult to measure
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Figure 13: Nano-carriers for drug delivery to the heart.

the exact dose inside the lungs. By comparison, the pro-
duction is much smooth, less costly, and the delivery of
medications is not standardized. There are three common
ways to deliver aerosols, jet or ultrasound nebulizer, inha-
lation metered doses, and inhaling of dry powder. For
aerosol delivery, metered-dose inhalers are commonly
used. The dry powder inhalers were designed to deliver
drug/excipient powder into the lungs. Most aerosols use a
chlorofluorocarbon (CFC) propellant. However, in the mid-
nineties, efforts were made to use enviro-friendly hydro
fluoroalkanes (HFAs: HFA-134a, and HFA-227), an alterna-
tive to ozone-depleting CFC. Advances in pulmonary and
nasal delivery employing nano and microparticles, hydro-
gels, liposomes, and dry-coated powders have been recently
reviewed [590,591].

6.1.4.1 Intra-tracheal inhalation

The NPs intratracheal noninvasive delivery provides deep
alveolar reach to the delivered drug with better biodistri-
bution, drug deposition, and residence time. The NPs, by
their physicochemical characteristics and surface modifica-
tions, provide favored drug bindings leading to enhanced

{ Liposomes

Micelles

Titaniumoxide
Nanoparticles

Nano-coated
K Stents

Cerium oxide
Nanoparticles

s

\

therapeutic effects at the cellular and molecular levels. The
site-specificity provides higher drug concentrations, ampli-
fied signals for imaging purposes, and protection against
secondary organs exposure [580]. The successful delivery of
AuNPs, supported the delivery of temozolomide (TMZ), also
as liposomes against induced lung cancer which demon-
strated the superior drug distribution, deeper penetration
of the dose, and probable synergistic actions of the AuNPs,
TMZ, and the liposomes to produce therapeutic effects
[592,593].

7 Nanovaccine delivery: COVID-19

NPs have been used for the delivery of anti-viral medica-
tions. Examples of AuNPs conjugated to certain viruses
that successfully activate macrophages, interferon pro-
duction, and enhanced anti-viral immunity are well known.
The RNA and ferritin-based NPs were used as molecular
chaperons to elicit strong T-cell responses toward pro-
moting interferon production. The developed polymeric
NPs injectable hydrogel system had the capability for sus-
tained antigen release [594]. The hydrogel, which stabilizes
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the antigen, was suggested to be made of a mixture of
hydroxypropyl methylcellulose derivatives, HPMC-C12, and
poly-(ethylene glycol)-b-poly(lactic acid). The antibody titers
remained high against two common variants, B.1.351 (South
Africa) and B.1.1.7 (United Kingdom). The single-dose vac-
cine doubled the dose of all the components and produced
higher titers than the double-dose and two-dose single-com-
ponent hydrogel group. The hydrogel-based vaccine has
potential and the dose sparing will be helpful in difficult
global transportation. In this context, it would be pertinent
to discuss the development of a high-density microarray
patch for delivering the SARS-CoV-2 vaccine through the
skin patch, which resulted in stable and effective vaccine
formulation [595]. Moreover, the prospects of QD and other
nano-structured entities have the potential to be developed
as biosensors to detect COVID-19 instead of the slow poly-
merase chain reaction technique. Toxicity-related issues are
also at the forefront in the diagnosis and therapy of COVID-
19 infections through nanotechnical means [596—599].

8 Safety and toxicological
concerns

The understanding of the hazards and safety issues due
to the use of nanomaterials has started to emerge expli-
citly. Both in vivo and in vitro toxicity evaluation methods
are available. Functional and viability in vitro assays
gauge the effects on cellular processes while the in vivo
methods check for cellular level fatalities, mitochondrial
damage, BBB destruction, cell viability, histocompat-
ibility, tissue and organ damages, allergy, skin rashes,
and overall adverse effects. The in vivo methods utilize
animal models, that is, mice, rats, guinea pig, zebrafish,
including oyster, fish, bacteria, and microalgae. The DNA
synthesis and DNA damage, altered gene expression, immu-
nogenicity, cell proliferation effects, exocytosis, hemolysis,
apoptosis, necrosis, and metabolic and oxidative states
changes, together with dose and LDs, effects are some of
the in vivo conditions and parameters to evaluate the toxicity
of nanomaterials [600].

The inherent characteristics of size, charge, high sur-
face area to volume ratio, ability to pass through the cell
membrane, ability to evade the immune system, enter the
circulatory apparatus, reach organs and interact with
biosystems have posed an enormous threat concerning
toxicity generation and elicitation by nanomaterials. These
materials and nano-scale metal entities are more toxic, and
this includes arsenic, cadmium, other hazardous elements,
and material nanostructures. Exposure to nanomaterials
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is almost unavoidable. The nanomedicinal and nanophar-
maceuticals’ threats are inherent in their latent toxicity,
also resulting from dose mismanagement, drug adverse
reactions, and nano-scale implications of the formulation.
The understanding of the nanomaterials’ effects on the
body is critical before its clinical use. Nanotoxicology
research has gained momentum and answers to safety
and toxicity are being continuously investigated. The inha-
lation, dermal contact and ingestion, intravenous delivery,
implants, and skin penetration for therapeutic purposes
have provided nanomaterials entry to the body, to a maxi-
mal extent through the bloodstream, from where it reaches
all vital organs, lymphatic areas, circulatory system, brain,
lungs, liver, kidneys, gastrointestinal tract, tissues, and
gonads (Figure 14). However, the extent and outreach con-
centration may differ based on affinity and accumulation
of the nanomaterials in specific organs. The encountered
biomolecules adhere to the surface of the exposed nano-
materials and generate protein corona, which was inves-
tigated with fluorescence correlation spectroscopy and
AFM. The protein corona was formed by interactions of
metal NPs, that is, gold, silver, and proteins. The metal
oxide NPs induce oxidative stress, immuno-response, and
apoptosis [601]. The polymeric nanomaterials, especially
the nano-encapsulated, and the constituent polymers’
toxicity is dependent upon the size, shape, dispersity, tun-
able properties, surface coating on the nanomaterial, shell’s
characteristics, and pay-load delivery mode and carrier
[602,603]. There are ways to detect and determine the nano-
materials’ cellular toxicity, oxidative stress, immuno-toxi-
city, genotoxicity, and cell death induced by the in vitro
present NPs [604]. Among the suspected and serious toxi-
city, cellular and genotoxicity are prime concerns. In this
context, the extra hazardous role of NPs, especially metal
NPs cannot be overlooked, due to their catalytic character
and high reactivity. The potential of toxicity and extent of
exposure determines the risk assessment paradigm through
the dose-response relationship [605].

8.1 Nano-entity sizes, cellular-uptake, and
toxicity

The normal protective mechanisms of the biosystem do
not provide an effective defense against nanomaterials.
The macrophagic cells uptake larger PEGylated nano-
entities more efficiently than smaller-sized nanomaterials.
The accumulation of these nanomaterials is responsible
for much of the nanotoxicity. The size of an NP has sub-
stantial effects on their interactions with living cells and
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influences the absorption efficiency, and intracellular
localization of the nanomaterial leading to adverse reac-
tions and cytotoxicity. Despite extensive efforts, the reli-
able correlation between the cellular response(s) and NPs’
size is not possible. Drawing broad inferences from a wide
array of NPs and a complicated mix of biological probes
is still untenable. However, the NPs’ endocytosis occurs
regardless of the particle size. The NPs’ uptake differs
based on the NPs’ size and the cell type as well as the
surface features of the cell. NPs in general are more likely
to be internalized by passive uptake [606].

The size of NPs affects their circulation, biodistribu-
tion, and clearance. The size facilitates better intracel-
lular absorption by passing through the openings of the
tight junctions, and consequently, NPs have been deliv-
ered across the BBB to treat brain diseases, that is,
Parkinson’s, Alzheimer’s, and gliomas. The medications
encapsulated or tagged to NPs were quickly released, also
owing to their concentration at or near the particle sur-
face, in addition to their other encapsulation models, that
is, core—shell. The smaller NPs have a longer t;/, than the
larger ones [607]. The activation in the bloodstream
cleared them from the body in a faster manner, which
was being collected in the liver and spleen. A 50 nm
size is the observed optimal size for cellular uptake as
experimented in the thermodynamic models and several
experimental tests. Additionally, NPs less than 20 nm
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Figure 14: Nanosystem exposure routes and uptake organs.
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penetrated the tumor. According to the observations
on cellular uptake, 37 nm size had been suggested as
the optimal requirement for MRI core diameter [608].
Figure 15 shows the reported optimum NPs’ sizes for cel-
lular uptake. Lipidic and polymeric NPs have a diameter
range of ~100 nm entailed for internalization. The metal-
based and polymeric NPs were recorded to have the size
of 3-50 nm for cellular uptake [609-613].

The SPION were demonstrated to disrupt and sup-
press stem cell differentiation and activate the synthesis
of signaling molecules, tumor antigens, formation of
lysosomes, disturbed cell functioning, and are known
to stimulate the synthesis of IL-8, an inflammation med-
iator. The SiNPs were also implicated in enhanced expres-
sions of IL-18 and TNFa [614].

Another category of nanomaterials, the QDs are nano-
sized (2-10 nm) particulate material, also considered arti-
ficial atoms, are semiconducting in nature, and possess
fluorescent properties. The QD bonding through covalent
and non-covalent interaction to the drug molecule for
delivery and therapeutic purposes was achieved by pas-
sive transport, facile delivery, and active transport. The QD
outer shell surface provided conjugation increases aqu-
eous solubility and reduces the toxicity of the QDs. The
QD toxicity was found to be dependent upon the size,
material used for production, dose, mode of administra-
tion, and the chemical composition of the outer capping.
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The QD toxicity was considered to be generated due to the
leakage of free metal ions, for example, cadmium, and
arsenic, upon oxidative stress. The QDs were absorbed
by mitochondria, cause changes in organ histology, and
malfunction [615,616].

The toxicity of CBNs, single and multiple-walled
CNTs, graphene, reduced GO, and other graphene-based
nanomaterials have also been conjectured of probable
adverse reactions and were investigated for interactions
with the biological environment, toxicity in Caco-2 and
MCF-7 cell lines, and their involvements in organ toxicity
[617-624]. Formation of protein corona on the graphenes
materials’ surface, flocculation and aggregation in the
tissue and organs’ site owing to the colloidal nature of
this genre of nanomaterials, and immunological and
inflammatory responses by biological entities, organs,
and tissues to the graphenes entities, membrane toxicity,
disruptions, mutagenicity and suspected genotoxicity,
and accumulation in organs were recorded. The graphene
toxicity depends on their lateral size, dose, and surface
charge. The toxicity has been contained with polymeric
conjugation, coating, imprinting, and embedding in bio-
compatible polymers, that is, CS, PEG, ethylene-diamine-
modified-poly-isobutylene-maleic-anhydride, polyurethane,
PE], PPI, and PAMAM and their derivatives, wherein some of
these polymers supplement in the delivery of the drugs and
gene, and are uptaken by cells for therapeutic purposes
[625-631]. The materials also promote cell growth, attach-
ment, and damage. The GO caused a decrease in cell viabi-
lity and was responsible for inducing mutagenesis [632] and
lung injury through autophagy [633]. Doses >10 mg/mL
were suggested to lead to acute lung injury and cause
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chronic pulmonary fibrosis [634]. Critical analysis of gra-
phene materials’ toxicity [635], reviews observing the toxi-
city [636,637], and recent information (ca. 2020) on toxicity
data [638] are available to chart further course in nanoma-
terial toxicity and adverse impact in conjunction with the
delivery of the material and targeting in therapeutics and
diagnosis in the biomedical field.

8.2 Nanomaterials and organ toxicity

The organs outreach and biodistribution of the nanoma-
terials to different sites produce a number of disease
conditions. Neurological disorders including Alzheimer’s
and Parkinsonism’s, asthma, bronchitis, emphysema, and
cancers in the brain and lungs are suspected. The circula-
tory system and heart were pointed for atherosclerosis,
vasoconstriction, and arrhythmia, and death, respectively.
Kaposi’s sarcoma of the lymphatic system, glomerular
swellings, renal cells necrosis, Basilar membrane thick-
ening in the kidneys, allergy, itching, dermatitis, and
auto-immune diseases are suspected to have developed
from the skin and topical implants nanomaterials interac-
tions. Crohn’s disease and colon cancer in the gastrointest-
inal tract, tissue degeneration, stromal cells damage in
bones, ovarian lesions, sperm abnormality in gonads,
and sequestration, accumulation, sub-cellular damage,
inflammation, oxidative damages to the liver are known
(Figure 16) [639-641]. As for the nanomaterial toxicity to
reproductive organs is concerned, the liver and reproduc-
tive system toxicity have been studied in detail. Females

Nanomaterialstypes

Figure 15: Comparative nano-scale (optimum) sizes of various nano-carriers for cellular uptake.
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Figure 16: Suspected and confirmed diseases from nanomaterial uptake.

were reported to be more vulnerable to toxicity affecting
the reduction capacity and fetal development. The germ
cells in men were particularly affected which included
the testis. As for the nanomaterials’ toxicity to reproduc-
tive organs is concerned, liver and reproductive system
toxicity were studied in many details, and the females
were reported to be more vulnerable to toxicity affecting
fetal development. The germ cells in men are particularly
affected. The toxicity was related to the nanomaterial
types, their concentration, route to reaching the reproduc-
tive system, and the animal species. The impact on the
primary target organs (first encounter and impact) and

the secondary organs is decisive in the toxicity elicitations.
Toxicity generated with metal and metal oxides and poly-
meric nano-entities is well-recorded [642-644].

The toxicity of lungs by nanomaterials leading to bron-
chitis, emphysema, cell necrosis, and cancer is thought to
be caused by alveolar-I type cells membrane perforation,
inflammation, nano-particulate matter’s cell entry, mem-
brane lipid peroxidation, cell membrane high fluidity, and
generation of ROS. The nano-entities ~50 nm sizes and
the QDs perforate the membrane much easier and cause
severe damage. The nanomaterial toxicity leads to inter-
ferences with cell differentiation and protein synthesis,
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disrupts intracellular transport, cell migration, tubulin
polymerization, formation of adhesive complexes, damage
to the cytoskeleton, and neovascularization [645].

The primal involvement with the liver which accu-
mulates and sequesters up to 30-99% of all the adminis-
tered larger-sized (>100nm) NPs through the systemic
circulation, in turn, lowers the nanomedicine, nano drug-
delivery quotients to the intended organ, and thereby
introduces liver toxicity. Typically, a ratio of under 5%
nanomaterials, especially NPs, was delivered to the
intended diseased site. The Kupffer cells, endothelial,
hepatocyte, and other cellular masses of the liver were
found to be involved in producing liver toxication [646].
The liver damage is caused by elimination of Kupffer cells,
increase in cytokine release, TNF-a, and IL-1 involvement.
The engagement of various receptors and biomolecules
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including the hepatic proteins and disturbances to the
hepatic metabolism are undertaken during the process
involving the nanomaterial interaction. Internal toxicity
removal involves renal, hepatic, and mononuclear phago-
cytic systems. Depending upon the type and composition
of the nanomaterial, which includes zinc, gold, silica,
manganese, iron, and cadmium, silver citrate and gadoli-
nium were variably excreted into the bile, and from there
are transited through the bile ducts, and to the small intes-
tine for excretion. The metal and metal oxides inorganic
NPs with biocompatible surface chemistries with and
without biodegradable, nearly surface interaction neutral
nanomaterials were eliminated intact. The degradable nano-
materials form aggregates, reduced-sized remnants, ionic
disposition as well as metal-protein complex to be removed
[647]. The contribution of polymeric nanomaterials, including

Figure 17: Toxicity cycle components for nanotoxicity causative factors, experimental evaluation vehicles, organs, and tissues toxicity, and

probably effected biochemical changes and observed damages.
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synthetic and naturals, to oxidative stress, inflammation,
genotoxicity, reproductive gonadal toxicity, and hemocom-
patibility is mediated through various biochemical route dis-
turbances, receptor interactions, and enzymatic reactivity at
the polymeric nanomaterials interaction sites. Both in vivo
with different animal models and in vitro toxicity evaluations
against a number of cell lines, biochemical substrates, and
corresponding biomarkers have been reported [602-604].

Toxicity evaluations, concepts and requirements in
preparative designs, size and shape control, materials’
characterizations, biodistribution, metabolism, degrada-
tion, and degradant interactive potential, pharmacokinetics
interactive trends in toxicity elicitations, the toxicokinetics,
interactions at the site and during transport, and systemic
and body clearance are among the details that contribute
toward designing safer nanomaterials. The starting spring-
board to formulation development is embedded in the toxicity
generation understanding whereby the safety-by-design
approach, molecular modeling, computational assessment,
and methodically safe-by-design approach are worth men-
tioning [648-650].

The RES blockages by nanomaterial design-approach
preparation, especially for liposomes, have been reported
to increase the nanomedicine’s efficacy [651].

A toxicity cycle depicting components of nanotoxi-
city causes, experimental evaluation vehicles, organs,
and tissues toxicity, and probably effected biochemical
changes and observed damages from the nanomaterial
exposure are illustrated in Figure 17.

9 Nano-based biomedical
commercial products

Nanotechnology has tremendous commercial value, and
the global nanomedicine market is expected to reach US
$261 billion by 2023. Major nano-medicinal and nano-
pharmaceuticals segments are drug delivery and thera-
peutics, imaging, implants, nano-devices, regenerative
medicine, topical formulations, and vaccines. The category
of products represents all pathological classes including for
oncology, cardio-vascular system (CVS), infections, ortho-
pedics, neuronal diseases, urology, ophthalmology, and
immunity boosters. A number of major products available
in the market are listed (Table 8), which is not a compre-
hensive listing since products are continuously under devel-
opment, clinical trials, and patenting where the liposomal
formulations are a major share [652—-654]. About 1,121 pro-
ducts from 414 companies and 45 countries are listed at
the nanotechnology product database [655] either under

Nano-delivery devices, applications, and toxicity =— 1539

nanomedicine categories, which are approved or under
clinical evaluations. The emulsion, liposome, and oncolo-
gical products dominate the market share. Diagnostics and
bone substitutes form the major part of applications for
commercialization purposes [656].

10 Conclusions and prospects

Nanostructured materials vary in characteristics and appli-
cations due to their inherent starting raw materials’ physi-
cochemical properties, intricate preparation methodologies,
and on-demand designated surface functionalization to
impart the designed characteristics and site-directedness,
together with biocompatibility and biodegradability to
the nano-scale functional materials. The use of natural
and synthetic polymeric raw materials has immensely
contributed to the biocompatibility and biodegradable
behavior of nano-carriers. The metallic, non-metallic, and
hybrid, that is, metal-polymer and non-metal-polymer,
nano-structured entities have provided properties-by-
design characteristics to specifically targeted, singular,
and multiple-use nanomaterials, both in delivery for
diagnosis and treatments. The first generation (simpler,
non-functionalized), and second-generation (singularly func-
tionalized) nano-carrier have gained ground in advancements
with the preparation and bioapplications on experimental
and clinical settings. The third generation nano-carriers
(doubly functionalized) for simultaneous site-specific and
trigger-response mechanisms upon delivery are coming of
age, and extensive preparation techniques modification and
developments have taken place, together with bioapplications
which are in an advanced stage of improvement and expan-
sions. The multiply functionalized dual-use, both for thera-
peutic and diagnostics purposes nano-carriers are starting to
take shape in the realm of preparation, functionalization,
and applications. The fourth-generation nano-carriers have
attained the characteristic of crossing over bio-barriers, which
is a critical future need.

Further developments for various types of nano-
carriers, that is, CNTs, graphene roll-up, molecular cages,
proteins, antigen—antibody, and hetero and homo
polymer-based attached and embed, as well as encapsu-
lating nano-structured materials are the areas needing
further attention according to the delivery specifics for
the tissue, organs, and disease conditions. Another area
needing attention is to address the development draw-
backs of reproducible bulk synthesis of nanomaterials,
much required for clinical evaluations, and subsequent
commercialization.
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