Review Article

Ahmed A. H. Abdellatif, Hamdoon A. Mohammed, Riaz A. Khan*, Varsha Singh, Abdellatif Bouazzaoui, Mohammad Yusuf, Naseem Akhtar, Maria Khan, Amal Al-Subaiyel, Salman A. A. Mohammed, and Mohsen S. Al-Omar

Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity

https://doi.org/10.1515/ntrev-2021-0096 received July 13, 2021; accepted August 24, 2021

Abstract: This review focuses on nano-structured delivery devices prepared from biodegradable and biocompatible natural and synthetic polymers, organic raw materials,

* Corresponding author: Riaz A. Khan, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia,

e-mail: kahnriaz@gmail.com, ridotkhan@qu.edu.sa

Ahmed A. H. Abdellatif: Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt

Hamdoon A. Mohammed: Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

Varsha Singh: Department of Biomedical Engineering, Manav Rachna Institute of Research and Studies (MRIRS), National Capital Region, Aravalli Hills, Sector-41, Faridabad 121 001, India

Abdellatif Bouazzaoui: Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia

Mohammad Yusuf: Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif Al Haweiah, 21974, Saudi Arabia Naseem Akhtar: Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia

Maria Khan: Department of Pharmacognosy, College of Pharmacy, Female Section, Taif University, Taif Al Haweiah, Saudi Arabia Amal Al-Subaiyel: Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia Salman A. A. Mohammed: Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia

metals, metal oxides, and their other compounds that culminated in the preparation of various nano-entities depending on the preparative techniques, and starting raw materials' utilizations. Many nanoparticles (NPs) made of polymeric, metallic, magnetic, and non-magnetic origins, liposomes, hydrogels, dendrimers, and other carbon-based nano-entities have been produced. Developments in nanomaterial substrate and end products' design, structural specifications, preparative strategies, chemo-biological interfacing to involve the biosystems interactions, surface functionalization, and on-site biomolecular and physiology-mediated target-specific delivery concepts, examples, and applications are outlined. The inherent toxicity, and safety of the design concepts in nanomaterial preparation, and their applications in biomedical fields, especially to the organs, cellular and sub-cellular deliveries are deliberated. Bioapplications, the therapeutic delivery modules' pharmacokinetics and medicinal values, nanopharmaceutical designs, and their contributions as nano-entities in the healthcare biotechnology of drug delivery domains have also been discussed. The importance of site-specific triggers in nano-scale deliveries, the inherent and induced structural specifications of numerous nanomaterial entities belonging to NPs, nano-scale composites, nano-conjugates, and other nano-devices of organic and inorganic origins, near biological systems are detailed. Modifications that provide nano-deliveries of their intrinsic therapeutic actions, through structural and physicochemical characteristics modifications, and the proven success of various nano-delivery

Mohsen S. Al-Omar: Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan devices and currently available commercial nanomedicinal and nanopharmaceutical products are also provided.

Keywords: nanomedicine, nanoparticles, hydrogels, liposomes, dendrimers, carbon nanotubes, drug delivery, biomedical applications, nano-products, toxicity

1 Introduction

1.1 Nanotechnology: concept, requirements, concurrent modes, and models in nano-delivery

Nanotechnology is a dynamic and functional field dealing with the process of synthesizing and utilizing materials, technically ranged between 1 and 100 nm in size, which are different in shapes, chemical composition, characteristics, reactivity, and functionalization potentials. The nanotech-originated materials for uploading, encapsulation, and delivery of drugs, genes, and other macromolecular entities are preferred to be in the size ranges of >100 nm for their ease of loading together with their inherent functional merits to meet the biosystem's demands and the biosystem's specifications for facile delivery at the intended site. Today, the nanotechnology-based deliveries to different sites of the biosystems represent state of the art in site-specific targeting of various types of cells, critical cellular masses, tissues, organs, cell-bound and embedded receptors, immunological, and skeletal sites, as well as drug delivery to the physiologically malfunctioning entities, locations, and conditions in the body. The payloads intended for delivery include small-molecule drugs, proteins, peptides, polypeptides, enzymes, antibodies, and other bio-based, and recombinant materials, genes, as well as macromolecular payloads with specific functions, and characteristics of choice. The delivery module design and preparations correspondingly utilize some of the naturally available and synthesized entities, and chemically suitable and structurally viable synthons, polymers, organic and inorganic originated metals, and carbon-based materials. The delivery entities by virtue of their structure and make-up provide desired sitespecificity, and are prone to the induction of site-specific motifs as molecular identification tags, and on-demand designed and developed biocompatible and biodegradable as feasible delivery conjugates for target-specified deliveries and dispositions. The involved delivery modalities include nano-scale entities of various categories, including nanoparticles (NPs) of different origins, characteristics, physicochemical and biological potentials, lipidic nano-carriers,

mesoporous nano-scale materials, molecular cages and other molecular templates, the carbon-based nano-scale entities of single and multiple dimensions (1D, 2D, and 3D), and the dendrimers of specifically designed characteristics and delivery potentials. The development and use of extremely small nano-scale entities have paved the way for key biotechnical advances in drugs and other payload delivery through the size, shape, and characteristics controls of the products intended for applications in various conditions in vitro and in vivo. The nano-biotechnical field has progressed exponentially over the last few decades, and currently, it deals with an interdisciplinary spectrum of potentials, characteristics, and functions through the involvement of various advancing levels of preparative methodologies in a generational manner of developments over the period. The preparative and delivery techniques and the recipe for building better nano-entities, nanoscale devices, nanovehicles, nanosystems, nanomachines, as well as nano gears are continuously being developed. Some of the products are in the conceptual stage, while some are in the market for different applications in biomedical fields. Nonetheless, the nanodelivery segment has assumed larger proportions in the discipline, and current technologies used for the preparation of products for various types of delivery on a nano-scale have provided purpose-built, nature-specific, end-site and characteristics based, and goal-specific bio-systems with assured levels of receptivity. The molecularly well guided nanoscale products with chronological control that attenuate physiological conditions are providing the needed expertise and edge to nanodeliveries. Furthermore, with new approaches continuously coming in, the advancements in methodology and applications in nanomedicines, nanosensors, nanodeliveries, nanodiagnostics, nano-biomaterials, tissue engineering at nano-scale initiatives, nano-scale implants, and stem cells, together with their intertwined and interfacial products and techniques, have evolved nearly up to clinical levels. The advances in techniques have attained the potential to design and produce nanobiomaterials for several biological uses in bones, hearts, lungs, livers, and other organs and to repair, replace, and regenerate the desired entities and to ameliorate undesired effects. Nonetheless, the applications of nanobiomedical technology in various biomedical fields, especially, in nanomedicine, diagnostics, therapeutics, and theranostics have improved the quality of healthcare [1,2]. However, the commercial products and their production are still limited and are in an evolving stage. The field is certainly wide open for innovations. It currently derives the thrust from the understanding of the complexities, and challenges on a minute scale that are effective in nature to discover better and effective applications in therapeutic segments, diagnostics, imaging, sensing, and other biomedical and clinical fields relevant to human health.

The on-demand, accurate delivery of drugs and other payloads is of prime concern. The need for controlled drug delivery is obvious because of concerns about toxicity, and adverse reactions. The dose-controls, bioavailability at the site, membrane permeability of the drugs and other deliverables, as well as solubility in different media, proper holding of the drugs in the delivered medium, and overall superior on-site acceptability, which leads to the control of the delivery dynamics of the drug. are other concerns. Drug delivery, in essence, refers to the methods for transporting a drug into the body system according to requirements to effect, and assist the curing of diseases, and maintaining healthy physiology under various pharmacokinetic controls. It involves conventional and non-conventional drug administering routes, that is, oral, transdermal, rectal, intravenous infusion, intramuscular, topical, nasal, inhalation, otic, ophthalmic, sublingual, buccal, arterial, and subcutaneous [3–6]. The adopted routing modes deliver drugs in considerable quantities to provide, from satisfactory to the highest achievable levels of bioavailability with a play-out on a dose together with its needed frequency, wherein injunctions of bioavailability levels, and drug safety aspects are interplaying at the cellular and sub-cellular levels. The conventional drug routing methods have several disadvantages. The major disadvantages are pain, the likelihood of infection due to non-sterilized interventions, time constraints in delivery, sluggish absorption, as well as the variability of the doses. The firstpass metabolic effects, faster metabolic rates of the drugs, as well as their elimination by the liver before reaching the intended site, and undesired transport through systemic circulation to the unwanted locations, are also some of the other major bottlenecks. Drug deliveries, if not specified in design to reach the site through trigger and feedback of different factors of physiological and biological concerns, may further constrain and complicate delivery to the site. Here, the role of developments in nanomedicine and nanoscale delivery to fit the route specifications becomes important. The delivery modes, including nano-entity-based deliveries, also, at times, generate cellular toxicity, reticular endothelial system (RES) escape, lymphatic and fat accumulations, muscle damage, as well as blood flow variations. The changes in absorption rates, elicitations of toxic reactions, skin irritations, and variable blood flows to the skin, skin dehydration, abrasion, and rashes form a long list of pitfalls that may occur, although by adopting nano-module delivery they may be at lower levels. Moreover, among modern delivery modules, the injunctions for site-specificity, molecular-recognition capability, enzymatic interactions, chronology-based sustained and dose-controlled deliveries befitting the responses to and against the physiological conditions, pH-based performance with biocompatibility, and biodegradation characteristics have been at the forefront of the developments in nanomedicine and theranostic fields. The nanoscale delivery modules are being continuously developed, and improvements in the various processes in animal models, in vitro conditions, and clinical settings are intermittently showing up.

Nano-structured devices: nanomedicine, modern drug delivery, and pharmaceutical injunctions

The field of nanomedicine is remarkably efficient and capable of supporting appropriate changes in the healthcare sector compared to traditional delivery formats. The field has established newer applications and improvements in applications to end-users, especially in the therapeutics, and cellular, organ, gene, tissue engineering, implants, and drug delivery segments. The field of nanomedicine is replete with concurrent developments, and nano-bioengineering devices are under constant development and applications [7,8]. The current scenario in drug delivery system availability provides metal-based and polymeric NPs, synthetic and natural polymer-based NPs, magnetic and inorganic NPs, lipid-based NPs, hydrogels, dendrimers, buckyballs, carbon nanotube (CNT)based materials, virus, and bacteria-based NPs. It also includes nano-admixtures (interfacial devices) as part of the nano-structured devices for a wide variety of drugs and other payload entities deliveries to different sites. Reports on delivery module efficacy, compatibility, site-specificity, various bioapplications, and development of commercial products are continuously coming. More developments are expected, and an overview of nano-structured devices and delivery modules of nano-scale structured systems are significant enough to be taken up to evaluate the impact and future directions in this field which has substantially evolved from the time of its inception.

2.1 NPs

NPs are the foremost delivery modules used in nano-scale delivery domains, especially in the oncology segment. The NPs have novel physico-chemical properties, as opposed to non-nano-scale particulate materials, as well as other entities together with materials of non-nano specifications. The small size, alterable surface specificity, surface area to volume ratio, enhanced solubility, and multi-functional characters of NPs have helped in constructing new nanodevices for biomedical uses, especially in therapeutics delivery. The nanosystems, especially the NPs, have gained much attention for their capabilities in detecting early-stage diseases, together with the delivery of pharmaceutical agents to cure ailing conditions. The NPs can target within, and on the cells within the body, for example, cancer cells, or other diseased cellular masses, and modify and terminate disease progression. The active ingredient(s) delivered by the NPs include releasing of the drug in and to a localized

area to minimize the dose and its frequency, together with curtailing the potential systemic side effects caused by the use of the traditional drug therapy modalities. Oncological chemotherapy is one such prime application area for NPbased drugs as well as for other payloads' deliveries [9,10], including their site-specific targeted delivery. The NP-based products also stimulate and improve biological processes involving, for example, tissue engineering, infection control, and de novo synthesis of biomaterials. The developed nano-structured devices include functionalized CNTs. nanomachines, nano-assembly derived from transposable DNA fragments, DNA scaffolds, self-assembling polymeric nano-constructs, nanofibers, nano-devices of polymeric origins, protein-based nano-products, nanomembranes, nanosized silicon chips, nano-arrays for drugs, nucleic acid, and peptide deliveries, as well as implants construed for nanoscale applications [11]. Abundant reports on the advances in preparative techniques of nanomaterials and NPs are available. Conventional techniques for NPs' production utilize

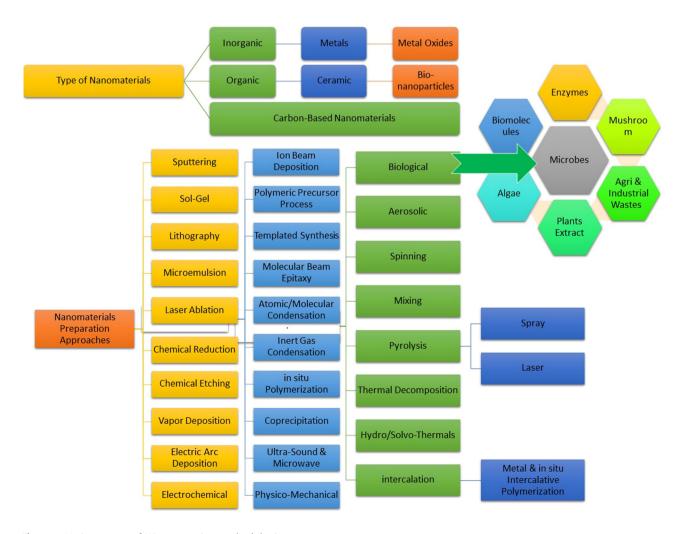


Figure 1: Various types of NP preparation methodologies.

chemical reduction methods, as well as natural, green, and bio-catalyst-based reduction methods to obtain high-density yields of naked and surface-capped NPs. The NP preparation techniques have utilized polymers of synthetic and natural origins, carbon sources, silica, metals, non-metals, as well as biological materials, that is, lipids, lactic acid, chitosan (CS), and phospholipids. A plethora of methods is available for purpose-defined, size-specified, and surface chemistry-controlled NP preparation. The current trends in the preparation of pre-designed, characteristics, and physico-chemical properties defined, and appropriately, functionalized NPs, owing to the advancements in synthesis, fabrication protocols/technologies, and characterization feasibility, have made the production of desirable NPs a reality [12,13]. Several techniques were used to prepare various types of NPs, and their different constructs through a set of chemical, physical, biological, and interfacial ways. A summative diagram depicting the preparation methods is presented in Figure 1.

2.1.1 Polymers-based NPs (PNPs)

PNPs are colloidal particles ranging from 10 to 1,000 nm and serve as drug delivery carriers of nano- to microscale ranges. PNPs offer better storage, encapsulation/entanglements, and transfer capacity with stability, due to the use of several types of surfactants in the formulation, which is maneuvered for embedding, and entrapping the drug and other payloads within its polymeric matrix, adsorbed, or conjugated onto its surface through its reactive functional groups, for efficient release from the matrix [14,15].

Several reports of PNPs preventing the degradation of sensitive drugs, and biomolecules of proteins, peptides,

enzymes, antigens, antibodies, RNAs, and DNA origins are available. Protection is available from degradations caused by enzymatic and hydrolytic dilapidations [16], and many other environmental damaging factors [17–19]. Compared to free drugs, the PNP-encompassed drugs possess several benefits, for example, enhanced delivery, maximum bioavailability, optimized loading capacity, capability for controlled release, and choices of various administering routes. They also provide the ability to accumulate the intended drug in high concentrations for dealing with infections and inflammations through the integration of improved permeability, outreach, and distribution. The PNPs have also shown enhanced cells and tissue targeting when administered in conjugation with cell-specific moieties attached to the surface of the PNPs for specific and on-site targeting [20]. The PNPs possess several other properties, also by design obtained through preparation techniques, freedom of raw material choice, surface coating, and molecular tagging. Stability, tunable drug release properties, size distribution, and surface charge make them accordingly suitable and efficient drug delivery option materials [21] (Figure 2). The PNPs can be prepared as nanospheres and nanocapsules of different makes and matrices specifications depending upon their preparation methods. The nanocapsules are matrix systems with the medication compressed in an internalized cavity, usually, a thick polymeric-membrane wall, where the drug load is homogeneously distributed within the capsule. The nanospheres have the drug load scattered throughout the nanoentity's matrix (Figure 3). A number of techniques are used to prepare NPs, which include different methods like the emulsification process, salting out, solvent diffusion, solvent evaporation, dialysis, super-critical fluid technology, sol-gel, laser ablation, vapor deposition, polymerization, and nanoprecipitation (Figure 4) [22-24].

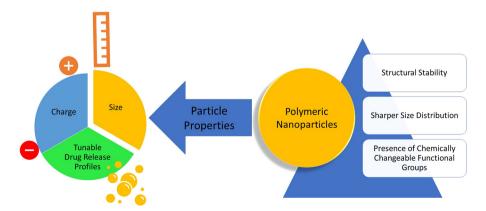


Figure 2: Physicochemical properties of PNPs.

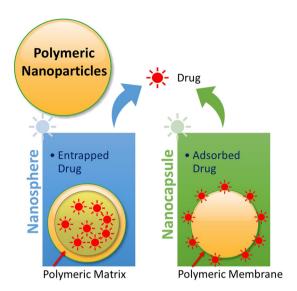


Figure 3: Types of polymeric NPs based on drug loadings.

2.1.2 Natural PNPs

The natural PNPs are prepared from biodegradable and biocompatible polymeric materials sourced from nature [25–28]. Among the most frequently used natural polymers used in preparing the formulations of PNPs are CS, alginate (ALG, sodium alginate), albumin (ALB), alginic acid, and gelatin [29–32]. A list of major natural polymers, together with their drug loading, delivery preferences, and characteristics inferred from the preparations, as well as pharmaceutical applications are summarized in Table 1.

2.1.2.1 CS-based NPs

CS is a non-toxic, biodegradable, and biocompatible carbohydrate class natural polymer, which makes it suitable for use in novel drug delivery systems, as they do not produce any adverse biochemical responses, irritation, and allergy. The CS NPs (CSNPs), colloidal in nature, entrap small molecular weight (MW < 500 Da) bioactive molecules through several mechanisms, that is, chemical and ionic cross-linking, covalent bonding, sequestration, conjugation, complexation, and physicochemical interactions that lead to the 3D-networked entity resulting in CSNPs. The CS and chemically modified-CS (mCS) are also useful in surface attaching and encapsulating the small MW drugs with higher encapsulation efficiency (ee). Different larger-sized bioactive molecules, proteinaceous products, macromolecular entities, genetic materials (all high MW) for different pharmacological backgrounds have been encapsulated in CS and its chemically modified (mCS) derivatives. The CS is also suitable for providing feasible structural and physicochemical characteristics to control the prepared nano-entities' capabilities to effectively transport, and safely deliver the payloads under different biosystem circumstances. CS, as a coating agent for other nano-carriers, for example, liposome, as a transfection agent, and as a carrier system for non-viral gene delivery are well known [33]. Several techniques, for example, emulsion formulations, ionic gelation [34-36], reverse micelle, and self-assembly [37-39] have been achieved for the preparation of CS-microparticles and CSNPs, but the ionic

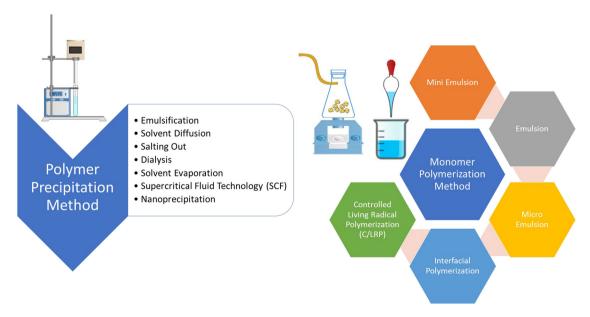


Figure 4: General methods of preparations and properties of PNPs.

Table 1: Natural polymer-based nano-carrier delivery systems

Drug or active entity Nano-carrier	Nano-carrier	Data value	Inferences on the delivery system	Ref.
Insulin	SO	Drug loading (55%) Particle size (200–300 nm)	CSNPs improved insulin absorption in the nasal cavity more than CS aqueous solution	[30]
Linoleic acid-mCS		Particle size (200–600 nm)	Particle size was found to be larger in acidic solutions than in neutral and alkaline solutions	[37]
Trypsin		Particle size (523–1,372 nm)	Showed a higher kinetic constant value of trypsin NPs (71.9 mg/mL) than control	[38]
Curcumin		Drug loading (28–81%) Particle size (300 nm)	Developed formulation evaluation on cell viability HCT-116 colon cancer cells	[42]
Insulin	TMC	ee 80-90%	An in vitro study (Caco-2 cells) and an ex vivo study (excised rat duodenum, jejunum, and ileum) were studied	[48]
		Particle size (250 nm)		
SP	CS	Particle size (50–400 nm)	NPs provided a continuous release of the entrapped SP release for 10 days	[49]
Insulin	CS, TECS	Drug loading (80%)	NPs showed enhanced colon absorption of insulin compared to free insulin in diabetic rats	[20]
		Particle size (170–270 nm)		
Peptide	HSA-ALG	Particle size (60 µm)	The release of peptide-loaded microspheres was slower (release time >8 days) than that of uncoated	[67]
			microspheres	
Yeast	ALG	ee 95%	Yeast microparticles showed potential as oral delivery systems	[89]
B225 gelatin	Gelatin	Particle size (200–250 nm)	The MW profile of gelatin in solution is critically affected in a time-dependent manner	[58]
Insulin		Particle size (250 nm)	Insulin-loaded NPs under gelatin-poloxamer 188 ratio at 1:1 promoted insulin pulmonary absorption effectively	[80]
		Zeta potential (–21.1 mV)		
Ganciclovir	ALB	Drug loading (30%)	The biphasic pattern was shown with initial and rapid release <i>in vitro</i> profiles of the NPs	[88]
		Particle size (200-400 nm)		
DOX	HSA	Drug loading (70–95%) Particle size (150–500 nm)	NPs were tested in two different neuroblastoma cell lines to influence cell viability	[06]

gelation technique and reverse micellar solubilization are among the most frequently used methods. In the former technique, the interactions of oppositely charged loadingintended materials readily generate the CSNPs. The tripolyphosphate (TPP) is used to prepare CSNPs, because of its non-toxicity, multivalent nature, and capacity to create nano-entities and gelation materials through ionic interactions. The concentrations of TPP and CS, through the pH of the solution, control the interactions, whereby the PNPs of smaller sizes are subsequently prepared with a limited size range. The technique dissolves surfactant in an organic solvent that forms reverse micelles. To avoid any turbidity. under steady agitation, an aqueous solution of CS is used. With additional water addition, the NPs of larger sizes are produced. The lower MW polymers are widely used for inverse micelle-based PNP preparations. Bovine serum albumin loading in comparatively low MW polymer resulted in producing approximately 140-430 nm size PNPs [40,41]. Micellar fatty acid (FA)-based solid lipid NPs (SLN-FA) have been prepared by Chirio et al. [42]. Stable polymers of different MW have been utilized in the presence of various non-ionic surfactants, for example, myristate, palmitic, and stearic acids. A 28% and up FA usage strongly affected the preparation of NPs. The SLNs of 300 nm diameter were also generated. An addition of CS·HCl (CS hydrochloride) to NP formulation produced positively charged bioadhesive NPs. The curcumin (CU) charged with FA produced CU-FA-SLN which affected the cell viability of the HCT-116 colon cancer cell lines. The CU-SLN-FA co-conditioning method used for the NP production of <300 nm size with the range of 28-81% use of FA on the medium to high MW and hydrolyzable polymers have been reported. The HCT-116 colon cancer cells treated with CU-NP colloidal nano-carrier, and which were able to treat HCT-116 cells with greater CU concentrations in the presence of lipid carriers with lowered toxicity observations are known [42]. The formulated CS-TPP-NPs, with the capability of peptide absorption throughout the mucosal surface, were reported by Grenha et al. [43]. A spray-drying process with mannitol as an excipient was used to produce the desired PNPs and CSNPs with appropriate characteristics of size and weight for pulmonary delivery. The phospholipid, which was termed as lipid-CS-NP complex (L-CSNPs), was also developed for insulin delivery. The aerodynamic properties of these spherical PNPs were essential for lung delivery. The structure of the phospholipid influenced the characteristics of the L-CSNP complexes. The phospholipid ensured the regulated release (~68%). It also effectively combined the scheme of an encapsulated protein (insulin). The developed microspheres with acceptable properties were offered for deep inhalation [43]. The in vivo capacity of the thiolated-

CS NPs (T-CSNPs) to reduce allergic asthma was also investigated. Lee et al. [44] developed improved T-CSNPs for theophylline supply. The ovalbumin (OVA) challenged and OVA-sensitized BALB/c mice were induced with inflammatory allergic disease, and theophylline, CSNPs, and T-CSNPs were administered through the intranasal route to evaluate their efficacy, which showed superior performance of the T-CSNPs [44]. High-intensity ultrasonication induced considerable damage to the CSNPs, which affected their functioning as a drug carrier, as reported by Tang et al., [45]. Another work analyzed the effects of acidity on the cross-linking between sodium-TPP and CS [46]. The antibacterial activity of positive, fixed-charged NPs, through minimum inhibitory concentration, was also reported [47]. The CSNPs and NPs loaded with copper against multiple microorganisms, for example, Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus were evaluated for their antibacterial activity. Many organisms when tested against these, CSNPs, and copper-laden NPs, fully confirmed their antibacterial activity. Atomic force microscopy (AFM) showed that exposing Salmonella choleraesuis to CSNPs broke their cell membranes, and the cytoplasm leaked during the process [47]. Sandri et al. studied the penetrating effects of N-trimethyl CS NPs (TMCS-NPs). The outcome proposed that the mucoadhesive properties were the limiting factor for these PNPs' absorption, which caused increased contact time with the intestinal epithelium with compromise on an improved chance for internalization of these NPs [48]. Hu et al. produced and characterized CS-poly-(acrylic acid)-complexed NPs of sizes ranging from 50 to 400 nm by template polymerization of acrylic acid (AA) in CS solution, which produced positive charges on the NPs surface. The in vitro silk peptide (SP) release showed that the NPs entrapped SP effectively released the encapsulated material for 10 days. However, the peptide's release was affected by the medium's pH [49].

2.1.2.2 Modified CS-basedNPs

Among the modified CS-derivative (mCS), the dimethyl ethyl CS (DMEC) possesses antimicrobial, anticancer, and antioxidant activity. Another CS-derivative, diethyl methyl CS (DEMC, 79% quaternization), completely soluble in an aqueous medium, possesses a higher degree of antibacterial activity against *E. coli* than the CS, owing to its higher charge density, which was pH dependent, and were used for the preparation of NPs to enhance intestinal absorption of the insulin. NPs based on thiolated DMEC (DMEC-Cys) were also prepared for insulin delivery through buccal films, whereby the NPs enhanced (up to 97.18%)

insulin permeation through buccal mucosa of the rabbits, which exceeded the CS, and its derivative, DMEC [47] performances. The polyelectrolyte complexing technique, spherical morphology, and soft surface structures were created by Bayat et al. [50] by using a freshly quaternized derivative of CS from triethyl CS (TECS), and DMEC for insulin delivery to the colon through approximately 170-210 nm-sized, positively charged NP formulation. An exceeding 80% insulin was loaded and the loaded protein release was well demonstrated, both, in ex vivo and in vivo investigations. The ex vivo studies found better transport of insulin through the colon membrane for NPs, compared to the in vivo studies. The in vivo studies showed enhanced absorption of insulin in the colon using similar NPs, compared to the free insulin in the diabetic rats [50]. The tri ethyl chitosan's (TEC's) roles in NP preparation, and ex vivo condition assessed the uptake, which was enhanced in the colon-specific drug delivery. This was also true for the poorly absorbed drugs, as reported by Younessi et al. [51]. Their study showed a significant increase in the absorption of sodium fluorescein and brilliant blue in the presence of TEC, compared to the CS alone NPs [51]. The CSNPs prepared from different MW polymers, and the TMC-derived NPs for nasal immunization were prepared and characterized by Boonyo et al. The NP prepared from TMC-based material with a 40% degree of quaternization was the most effective in nasal supply [52]. Avadi et al. assessed the in vivo and ex vivo effects of DMEC polymer-based nanoformulation for use as an enhancer for intestinal para-cellular transport. In the presence of DMEC, in ex vivo conditions, the brilliant blue absorption concerning the polymer was significantly increased. The DEMC interacted with tight junctions of the colon epithelial cells with positive charges on them, and enhanced the permeability of the brilliant blue through the tight spaces [53] and demonstrated its effective application.

2.1.2.3 Alginate NPs

The ALG-NPs are sourced from ALG, which is a brown algae-sourced linear polysaccharide, composed of 1–4 interlinked α -L-glucuronic residues (G-block), and β -D-manuronic acid residues (M-block). The aqueous solubility, the tendency to gelate out in better shape, biocompatibility, and non-toxic nature are some of the benefits of this natural polymer [54–56]. Their primary ability, under mild conditions, to form a gel makes this polymer among one of the ideal candidates for the delivery of drugs, also at nano-scale levels. By responding to the divalent cations, the ALGs can form a gel with calcium

ions, Ca²⁺. The divalent calcium cations connected with the cross-linked matrix provided the material for further work on drug loading. ALG, as an anionic polymer, at decreased pH, forms an insoluble alginic acid [57-59]. The ALG matrix upon complex formation with other polymer changes, and with the coating of the prepared ALG particles, a controllable release of the drug triggers in. It also helped to avoid the drug degradation at higher pH, in which the surface coating has an important role to play [60]. Cedroxil® (Cefadroxil, a broad-spectrum first-generation cephalosporin class antibiotic) in vitro delivery, achieved through interpenetrating polymeric networks (IPNs) of sodium ALG with gelatin, and egg ALB, was cross-linked with glutaraldehyde [61]. Cefadroxil with a biological half-life of 1.2-2.0 h for a dose containing 0.5-1.5 g of the drug, wherein the short halflife was proposed to be enhanced through the developed IPN. The IPN also presented the prospect of oral delivery formulation design and its directives for the preparation [60]. In addition, various biological molecules, for example, heparin [62], hemoglobin [63], melatonin [64], and some vaccines [65,66] have been effectively entrapped using plain-beads synthesized from ALG, or as coated ALG-beads, as well as microcapsules. Furthermore, the in vitro analysis of the ALG microspheres coated with serum ALB showed effective peptide release [67]. For the intestinal provision of probiotic yeast based on pH differences, Hébrard et al. produced microparticulate materials of ALG-whey protein [68]. However, the coated microbubbles and microcapsules were comparatively more efficient than the smaller vesicles, given that the micro-entities were allowing more control over drug release for oral delivery systems and through ALG-matrix modifications [60]. The ALG-NPs, with antitubercular combination drugs (rifampicin, isoniazid, pyrazinamide, and ethambutol), using the controlled cation-induced gelification technique, that was prescribed orally to mice infected with TB H37Rv, were prepared by Ahmad et al. [69]. The encapsulated drugs showed high efficiency, reaching up to 70-90% entrapments. A single oral dose of the drug persisted for 7-11 days in the plasma, and 15 days in the organs, that is, liver, spleen, and lungs [69]. Rajaonarivony et al. described a 250-850 nm-sized, ALG-NP formulation, based on gelification by the calcium ions for a doxorubicin (DOX) drugloaded model. These results showed that the ALG-NPs are favorable carriers due to their high drug-loading capacity, which could reach over 50 mg DOX/100 mg ALG [70]. The ALG-CSNPs with low toxicity and biocompatibility, to improve transfection efficiency, were developed by Douglas et al. The presence of ALG diminishes the strength of the interaction between the CS and DNA, which produces

an enhancement in the transfection efficiency, as compared to the CSNPs alone [71]. An anti-sense oligonucleotide carrier system based on ALG-NPs was prepared to examine its ability to protect it from degradation in the presence of serum [72]. A polymeric composite (ALG, CS, and Pluronic F127) nanoformulation was prepared with ionotropic pre-gelation technique containing CU accompanied by the polycationic cross-links for cancer cell delivery. The encapsulation efficiency of the CU-showed a significant rise over ALG-CS non-Pluronic NPs, compared to composite NPs. The cytotoxicity test demonstrated that the composite NPs, when used against HeLa cells at a concentration of 500 µg/mL, were non-toxic. The green fluorescence within HeLa cells verified the internalization of the CU-composite-NPs. The half-maximal inhibitory concentration (IC₅₀) values for pure and free CU and encapsulated CU, were found to be at 13.28 and 14.34 µM, respectively [73]. Hyaluronic acid (HA) is another important natural and alternate polymer. HA is an anionic glycosaminoglycan structured polymer used in constructing delivery platforms [74,75]. The repeated carboxylic groups in each unit produce a response to pH changes, which were enhanced in a cross-linked hydrogel network [76]. For the release of blood clotting enzyme, thrombin, the study reported by Pitarresi et al. evaluated the pH-responsiveness of the photo-cross-linked HA-hydrogels [75]. Another derivative of HA, available with comparatively more abundant carboxylic groups, was used as a nanoformulation for delivery to the colon, and the pH-sensitive delivery of α-chymotrypsin [76] was demonstrated. The cellular pathways studied in vivo and in vitro conditions showed the pH-responsiveness of the HA-NPs. These observations were important factors for the development of an oral delivery system for insulin [77].

2.1.2.4 Gelatin-based NPs

Gelatin is a protein material that can be used with ease for NP production by controlled hydrolysis. It is biodegradable, non-toxic, easy to cross-link and modify chemically, thereby possessing an enormous potential to be used as a drug delivery carrier. Several methods have been described for formulating gelatin-based NPs, which included desolvation [78,79], thermodynamically driven self-assembled processing, emulsion formation [80], crosslinking with the polyethyleneimine (PEI) [81] and glutaraldehyde [82], nanoprecipitation [83], coacervation [84], and grafting of hydrophobic anhydrides to the amino groups of the pristine gelatin to form self-assembled micelles [85]. Novel emulsion techniques for preparing insulin-packed gelatin NPs for diabetes treatment with the help of glyceride

as developed by Zhao et al. were found significantly effective. During the first 4 h after intratracheal stellation, the blood glucose levels in rat models decreased showing their fast-hypoglycemic effect and transitional stability [80]. Hypocrellin B, an agent for photodynamic cancer therapy, was also loaded onto modified poly-(ethylene glycol)-gelatin NPs. Solid tumor cells treated with the NPs resulted in significant tumor regression [86]. The cisplatinloaded NPs prepared by Jain et al. showed higher input into the human breast cancer cells in comparison with the control [87]. Lu et al. described an intravesical delivery of paclitaxel-loaded gelatin NPs, achieved for bladder cancer. The absorption, positive tissue/tumor bladder targeting with 1 week retained supply was reported [88].

2.1.2.5 ALB NPs

The serum protein, ALB, available in pure form, is biodegradable in nature, non-toxic in action, and carries chemically reactive groups, that is, thiol, amino, and carboxyls. It is also non-immunogenic. These characteristics make it an attractive macromolecular carrier for preparing various nano-scale structures and devices, including the nanospheres and nanocapsules for various bioapplications. Different studies have demonstrated that human serum albumin (HSA) aggregates in solid tumors, which again makes it a potential macromolecular carrier as HSA-NPs for site-directed delivery of several drugs, including antitumor drugs, with enhanced bioavailability [89,90].

2.1.3 Synthetic PNPs

Synthetic PNPs have proven to be extremely attractive for biomedical applications in various roles. Synthetic polymers offer a viable and efficient transport and delivery vehicle for a wide variety of drugs, including peptides, proteins, lipids, and nuclear acids, and it is due to their tunable sizes, shape, surface properties, and chemical modification capabilities. Among the available synthetic polymers, poly-(L-lactic) acid (PLA), poly-D,L-lactic acid (PDLLA), poly-L-glycolic acid (PGA), poly(lactide-coglycolic) acid (PLGA), polycaprolactone (PCL), polyanhydrides, polyorthoesters, polycyanoacrylates, poly-glutamic acid, poly malic acid, poly(N-vinyl pyrrolidone), poly(methyl methacrylate), poly(vinyl alcohol) (PVA), poly(acrylic acid), polyacrylamide, poly(ethylene glycol) (PEG), poly (methacrylic acid), poly trimethylene carbonate (PTMC), and cellulose acetate phthalate (CAP) polymer [91-101] are worth mentioning. The most frequently used and

preferred synthetic polymers employed for drug delivery purposes are poly-L-lactide acid (PLA), PDLLA, PLGA, PCL, and PTMC. Another facile and successful method for the preparation of NPs was also developed which was based on the oxidative liquid phase polymerization technique, and it produced spherical-shaped, and functional, poly-(COOH)-poly-(carbazole) polymer from the carbazole-containing monomers. The produced microparticles were intensively examined by scanning electron microscopy. The microparticles were used to functionalize many polymeric and non-polymeric surfaces, matrices, and non-functional nanomaterials, due to the presence of dual-functional groups on them [102,103]. Mohsen et al. assessed the toxicity of novel fluorescent temperature/pHresponsive particles. The poly-N-iso-propyl acrylamide (p-NIPAM) based, p-NIPAM-co-5%-LY (p-NIPAM-co-(5%)luciferin-yellow) was prepared using a surfactant-free emulsion polymerization method. The produced particles were found to be negatively charged with a size of roughly 250 nm at 15°C, which were de-swelled by increasing the temperature, leading to a decrease in the size of up to 100 nm. The toxicity testings were performed on two cell lines (HeLa and Vero), and their cell viability was found to be >80% for both the cell types with 0.3 mg/mL of the pNIPAM-co-5%-LY, while the NIPAM monomer exhibited cell viability at 80% at a concentration equal to or less than 3 mg/mL. The fluorescent property of these particles made them easily traceable, which made them suitable for cancer cell detection and targeting [104]. Paciotti et al. tested colloidal gold (cAu), as a cancer drug, as well as an immunodiagnostic marker. The group prepared a cAuNP as a vector in this experiment that aimed to deliver the tumor necrosis factor (TNF) to a solid tumor that grew in mice. The ideal vector, known as TP-cAu-TNF, consisted of thiol-derivatized PEG molecules. The recombinant human TNF, directly linked to the gold NP surface was used. The intravenous administration of TP-cAu-TNF was induced, which rapidly accumulated in the MC-38 colon carcinoma and showed little to no accumulation in other organs of the animals, that is, liver and spleen. The tumor cells were noticed due to modification in the color of the tumor because of the cAu sol (red/purple). The formulation was found to be less toxic and efficiently dropped the tumor burden when compared to native TNF [105].

2.1.4 Magnetic NPs

Iron oxide NPs (IONPs) are magnetic materials, superparamagnetic in nature. The iron oxide superparamagnetic NPs (SPION) consisted of Fe_2O_3 and Fe_3O_4 . The particles communicate with external magnetic fields, thus provide wide-ranging possibilities through their magnetic character in nanomedicine fields where they have been used as an magnetic resonance imaging (MRI) contrast agent for magnetic hyperthermia-based anti-cancer therapies, and as a delivery option [106]. The magnetic NP-based drug delivery systems are tracked during their movement through the body. This significant property helped clinicians to monitor the drug movement to its targeted site [107]. Kafayati et al. [108] evaluated the toxicity of magnetic NPs with different surfactants, including oleic acid, and glycine, on bacterial cells. These magnetic NPs tend to accumulate at the targeted site [109]. However, it was recommended that the design of a magnetic drug delivery system should take into consideration the different factors, including the size and properties of the particles, drug loading capacity, target accessibility, the strength of the magnetic field, and the rate of the blood flow, which affect its performance [110]. As a nano-carrier system, Ye et al. developed biodegradable polymer-based vesicles to serve multimodal bioimaging and to deliver anti-cancer drugs. Several PLGA vesicles were prepared by encapsulating inorganic imaging agents of superparamagnetic nature, IONPs as PLGA-SPION, manganesedoped zinc sulfide (Mn:ZnS) quantum dots (QDs), and anti-cancer medication busulfan into PLGA-NPs using an emulsion-evaporation process [111]. Adams et al. studied formulations with PEI as PEI-alginic acid, oxidized-PEI (oxPEI), and oxPEI-alginic acid, that was tracing-enabled with the specific associations of the multifunctional metal NP on their surface, for use in the MRI scanning for brain stem cells gene delivery. It also showed that these two formulations prepared for use in combination with the oscillating magnetofection technology could be safely delivered to neural stem cells. After transfection, the intracellular particles were identified by histological procedures with labeled cells displaying contrast in the MRI for real-time cell tracking [112]. The polymeric materials, hydroxyethyl methacrylate (HEMA)-agar, and (HEMA-gelatin were also used to prepare the hydrogels, and their y-irradiation as a stabilizer for magnetic NPs through radiation and co-precipitation loadings were successfully achieved. The hydrogel make-up and dispersion of the magnetic NPs in this gellish network were found to be smaller-sized, and lesser in the loadings that were achieved through the co-precipitation technique, when compared with the loadings in the irradiation technique alone. The HEMA-gelatin-Fe₃O₄ also had higher sizes than the HEMA-agar-Fe₃O₄ particles. The loading capacities and release patterns were dependent on pH and were worked out with the DOX-HCl anti-cancer drug [113].

2.1.5 Other inorganic NPs

The inorganic NPs are non-organic, non-living sourced material-based entities that can be prepared with different shapes, for example, spherical, rod-like, cylindrical, wire, triangular, prism, octahedron, and star-shaped. It also ranges from 1 to 100 nm in size [114]. The specific physicochemical characteristics of inorganic NPs made them a suitable tool in diagnostic biosensing, drug and gene delivery, and biomedical imaging [125]. The most commonly used inorganic NPs are gold, silver, iron oxide, zinc oxide, gadolinium, silica, titanium dioxide, nickel, cadmium, and at times, arsenic [115]. The NPs have, in contrast to bulk materials, unique properties, that is, high surface area, high surface-to-volume ratio, catalytic activity, optical, electronic, and magnetic properties. They also possess rich functionality ready to be utilized for various purposes. These NPs are biocompatible, monodisperse, amphiphilic, with safe-carrier capabilities, and have enhanced capability for targeted delivery among comparable various metal-based NPs. These NPs also have viable surface structures for various capping, conjugation, and tagging use, suitable charges for exploitation, aggregation proneness, and the capability to interact with biomolecules. Some of them also show anti-microbial activity [116-124]. The direct delivery of drugs and biomolecules, however, faces enzymatic and other degradation challenges, within the cells and during transport. Many inorganic materials, for example, calcium phosphate, gold, coal, silicon oxide, iron oxide, and layered dual-hydroxide have been used. Composites consisted of nickel-cobalt nano-needles have also shown lower toxicity. Therefore, these materials are supply alternatives to viral and cationic transporters [126,127], and their synthesis is frequently approached as a "top-down" or "bottom-up" strategy. The top-down approach starts with bigger, bulkier starting materials, and goes to downgrade/remove/reduce/diminish the material until the required-sized structure are obtained in a more or less controlled procedure depending on the exact method of preparation used. Most micro-manufacturing methods (lithography and milling methods) for preparing inorganic NP products are examples of this strategy. The bottom-up approach begins with lower, smaller-scale assembled ultra subunits with different control parameters to achieve the synthesis, which also depends upon the method used, for example synthetic techniques for polymerization [128]. The building up of a nanomaterial can start at a smaller scale to build the specified and differentiated nano-carrier. The preparation methods for NPs can be approached through physical, chemical, and biological methods.

2.1.5.1 Gold NPs

Several reports are available dealing with the chemical and biological synthesis of AuNPs. Beveridge et al. [129] reported AuNP preparation by precipitation technique in various bacteria. Synthesis of gold nanowires from the extracted Rhodopseudomonas capsulate [130], which offered high control over the shape of the nanogold particles through exercising different concentrations of HAuCl₄ solution, was reported. Kaviya et al. [131] reported the use of the sun-dried peel of Citrus sinensis for the synthesis of silver and AuNPs in an aqueous medium, which achieved the production of spherical NPs with a size range between 14 and 20 nm. Moreover, the terpenoid functionalized alcohol, ketone, aldehyde, and amines were suggested to be the cause of NPs' stability. Several workers have reported multiple methods of different NPs, including AuNPs, syntheses with various sizes, shapes, and morphologies (nano-triangles, nano-prism, and octahedron). AuNPs using plant parts, for example, leaf extract of tamarind [132], Pelargonium graveolens (geranium) [133], neem (Azadirachta indica) [134], Hibiscus rosa-sinensis [135], coriander [136], Magnolia kobus, and Dyopiros kaki [137] have been reported. They have also been prepared from Emblica officinalis fruit extracts [138], using phyllanthin and apiin compounds [139,140], Aloe vera [141], mushroom extract [142], and honey [143]. AuNPs from the cell extract of endophytic fungus and Colletotrichum sp. [133] are also reported. The AuNPs present special characters like biocompatibility, large surface area to volume ratio, small size, high reactivity, and temperature stability, together with their ability to cross the cell membrane [144]. The 5-fluorouracil (5-FU) bound AuNPs were found to be more effective against fungal and bacterial organisms, compared to 5-FU alone [145]. In addition, the AuNPs can effectively conjugate with several antibiotics and can work more effectively against both types of bacteria, that is Gram-positive and Gram-negative, compared to the free antibiotic, 5-FU. These observations also suggested that the AuNPs could be utilized as an effective drug delivery system [146,147]. The AuNPs also proved to be effective in killing protozoa and bacteria [148]. Gu et al. [149] synthesized the vancomycin-coated, stable AuNPs, which showed enhanced anti-microbial activity compared to free vancomycin. In another publication, Ahangari et al. found that the gentamicin conjugated with AuNPs showed more antibacterial effects against S. aureus in comparison to the gentamicin alone [150]. In addition, the AuNPs have shown low cytotoxicity, and therefore served as a good scaffold for drug delivery, and they were utilized in medical imaging [151,152].

2.1.5.2 Silver NPs

The silver NPs (AgNPs) have various applications, especially in the fields of biomedical applications, which include anti-bacterial and anti-cancer engagements. They were also used as part of skin creams and ointments. The AgNPs can be prepared through chemical and physical methods, including electrochemical reduction, and solution irradiation [153]. AgNPs have been reported as being effective against infections of burns and wounds [154]. The most widely used AgNPs are silver oxide NPs, followed by zinc oxide NPs, and they have shown effective control against microorganisms, for example, bacteria, viruses, and small eukaryotes [155,156]. The mode of inhibiting the growth of these organisms is reported to be the inactivation of reproduction and protein synthesis and blockage of the electron transport chain reaction, which ultimately kills the bacteria [157]. The effectiveness of the anti-microbial activity depends upon the size of the AgNPs. The smaller the size, the greater the effect [157]. Several research groups have shown that the use of AgNPs in combination with antibiotics resulted in improved anti-microbial activity against both kinds of bacteria, that is, Gram-negative and Gram-positive [158–160]. The AgNPs also exert adverse effects on the host cells and initiate the production of reactive oxygen species (ROS) [161,162]. The AgNPs obtained from a bacterium, Pseudomonas stutzeri AG 259, were produced by the bio-reduction method. When the bacterium was challenged with the silver nitrate solution, well-defined AgNPs within the periplasmic area of the bacterium were produced [163]. The AgNPs were also produced in higher yields from the silver-tolerant yeast strains, MKY3 [164]. The fungi have also served as an efficient biocatalyst for the synthesis of metals and metal-sulfide NPs. The use of Trichoderma harzianum, Colleotrichum sp., Rhizopus stolonifer, Trichoderma viride, Isaria fumosorosea, Guignardia mangifera, Duddingtonia flagrans, Trichoderma longibrachiatum, Epicoccum nigrum, Penicillium oxalicum, Arthroderma fulvum, Sclerotinia sclerotiorum MTCC 8785, and Rhizoctonia solani is reported to produce AgNPs [165]. The fungus, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, Aspergillus fumigates, Phanerochaete chrysosporium (white-rot fungus), as well as Rhizopus oryzae, have also been found to produce stable AgNPs [165,166]. AgNPs were also obtained from Pleurotus sajor-caju/Lentinus sajor-caju (Oyster mushroom), which exhibited anti-microbial activity. The bacteria, for example, Klebsiella pneumonia, Bacillus subtitles, E. coli, Bacillus licheniformis, and Pseudomonas aeruginosa, were also successfully utilized for the preparation of AgNPs [167–169]. Another efficient bio-catalyzed synthesis used n-butanol extract of fresh Buchanania axillaris leaves'

yielding high-density AgNPs [170]. Also, the synthesis of peptide-capped AgNPs, in the range of 10-25 nm sizes, utilized α-NADPH-dependent nitrate reductase and phytochelatin strategy, which were sourced from fungi, bacteria, nematodes, and plants [171].

2.1.5.3 Carbon-based nanomaterials (CBNs)

CBNs are materials-of-choice for targeted delivery owing to their structural properties, functionalization feasibility to attach different motifs for diversified delivery goals. and with minimal, or no toxicity to the biosystem. The graphenes, and their chemically transformed reduced, and oxidized graphenes, morphed graphenes, carbon dots, nano-diamonds, fullerenes, and CNTs of single and multiple-walled, forms the extended CBN family. Reports on carbon dots as nano-therapeutics, HA-functionalized carbon-dot-DOX-loaded NPs for targeted delivery to CD44, the nano-diamond-based pH-responsive delivery system through functionalization and DOX-loading, PEGylated nano-diamonds for gemcitabine delivery are some of the recent examples of CBNs' applications in nano-scale deliveries [172–176]. Graphene, graphene oxide (GO), reduced graphene, graphene sheets, and graphitic carbons have shown the ability to attach drug molecules, biomaterials, and implant motifs. The entities of hydrophobic nature, after proper functionalization, showed aqueous solubility and compatibility to the aqueous environment in the biological system, and CBNs have demonstrated this. The capability to interact with lipids in cell membranes, together with the nanomaterial-based characteristics of high surface-area-tovolume ratio of these materials have facilitated their participation as part of the desired nanovehicle for different types of payload deliveries, including small molecule drugs. The polyaromatic structure, and the ease with which various graphene-forms are functionalized (oxidized, reduced), composite-made, and conjugate-prepared, have offered the graphitic materials' another level of capability, and flexibility to upload different types of payload packings, transport, subsequent targeting, and delivery to cells, tissues, and organs with least observed toxicity. Graphene-based drugs and gene deliveries, delivery systems for tissue engineering, graphene-based electro-responsive implant materials, GO-based multifunctional platform for intracellular delivery, GO-based tumor-response release for DOX, and graphene-nanoribbon-based DNA delivery are some of the graphene applications in nano-delivery. Several recent reviews have covered the topic in detail [177-181].

Table 2: Preparation of different non-polymeric nanosystems from various bio-sources

Serial	Nanosystem	Biological sources	Part/medium	Ref.
1.	Gold	Rhodopseudomonas capsulate	Cell-free extract	[130]
		Citrus sinensis	Sun-dried peels	[131]
		Tamarindus indica	Leaf extract	[132-137]
		Pelargonium graveolens		
		Azadirachta indica		
		Hibiscus rosa sinensis		
		Coriandrum sativum		
		Magnolia kobus, Dyopiros kaki		
		Pelargonium graveolens	Cell extract	[133]
		Emblica officinalis	Fruit extract	[138]
		Phyllanthium	Plant extract	[139-141]
		Aloe vera		
		Volvariella volvacea	Mushroom extract	[142]
		Honey	Honey	[143]
		Epicoccum nigrum	Isolated fungus	[144]
2.	Silver	Rhizopus oryzae	Fungal cell filtrate	[165-171]
		Pseudomonas aeruginosa	Culture supernatant	
		Pseudomonas stutzeri	Microbial culture	
		Yeast strains MKY3	Culture extract	
		Fusarium oxysporum		
		Lentinus/Pleurotus sajor-caju		
		Bacillus licheniformis		
		Aspergillus fumigatus		
		Klebsiella pneumoniae	Culture supernatant	
		Bacillus subtilis		
		Escherichia coli		
		Aspergillus niger	Mushroom substrate	
		Aspergillus flavus	Cell-free filtrate	
		Buchanania axillaris	Leaf extract	
3.	Silica	Cylindrotheca fusiformis	Diatom	[187]

2.1.5.4 Silica NPs

Among different nanoparticulate materials, silica-made NPs (SiNPs) are an attractive choice as a carrier for cells and drugs. Their use in drug delivery and distribution, imaging, and controlled release, owing to their mesoporous nature, were found suitable for drug and gene encapsulations with a preference for loading of biomacromolecules with biocompatibility, retention flexibility, nontoxicity, and in larger quantities with low preparation costs. The SiNPs are among the most widely used nanoentities for several biomedical applications [182,183]. Nano-porous silica materials possessed several large pores with high surface areas, which made them capable of absorbing large quantities of drugs and allowed their accumulations in adequate concentrations at the site, thus enhancing localized delivery with the clear purpose of treatment, and other remediation. Furthermore, the silanol groups present on the SiNP surface allowed easy modifications of these NPs, which allowed proper control

of the drug release, together with increased loading capacity [184]. Several researchers have reported the anti-bacterial activity of silicon nanoparticles (SiNPs) against *Staphylococcus* [185,186]. Well-organized, SiNPs of sizes varying between 50 and 100 nm from diatom species, *Cylindrotheca fusiformis* [187] were synthesized within a few hours at room temperature by Buckle *et al.* Thus, diatoms shells, after treating with magnesium vapors at elevated temperature, formed the Mg–Si oxide layer. The procedure was applied to prepare other metal-based NPs and disclosed the importance of the applications of diatoms in the synthesis of NPs [187]. Diverse ranges of bio-based materials have been utilized in the preparation of various non-polymeric, inorganic NPs (Table 2).

2.1.6 Lipid-based NPs

2.1.6.1 Liposomes

Liposomes are lipid-based vesicles, and the breakthrough preparation of liposomes was provided by Bangham *et al.* [188].

The liposomes have consisted of single and multiple concentric spheres of lipid bilayers, which are separated by compartments produced from natural and synthetic phospholipids. The liposomes have important properties of lessened toxicity, unique physical characteristics, comparatively better drug-loading capacity, and sustained drug release potential. These properties have made them the most desirable carrier for drug delivery purposes [189–192], and the majority of commercial nano-scale delivery modules are of liposomal origins. The liposomes are also more desirable in comparison to the SLN [193]. The compositional and preparative methods alterations for liposomes are diligently followed by a change in their surface charge and size. The liposomes are prepared as single or multiple bilayer vesicles, which are capable of conducting improved gene targeting, and efficient drug delivery [194]. Because of their rapid infusible lipid bilayer with the cell membranes, the liposomes have shown improved activity in anti-cancer and anti-microbial testings, which also provided enhanced drug delivery, drug stability, and drug outreach [195,196]. These characteristics have allowed the controlled accumulation of drug concentrations at the injection site (most common delivery mode for liposomal formulations) and their targeted localization with reduced toxicity [197]. Several researchers have reported liposome-encapsulated antibiotics for significantly improved elimination of intracellular bacterial infections [198,199]. Liposomes have specifically delivered drugs against lung tuberculosis [200], which were prepared by Deol and Khuller. Several ligands were prepared to lead liposomes to the target tumors that included antibodies [201-211], and small ligands, for example, folate [212-221]. Currently, the commercially available therapeutics (monoclonal) antibodies (mAbs) include Herceptin for breast cancer and epratuzumab

for B-cell lymphoma. These mAbs have the advantages of stability with a high binding capacity [222–224], together with reduced immunogenicity in the subjects [225]. The liposomal insertion, scFvHER2 (human epidermal growth factor receptor 2-single-chain variable fragment), as anti-HER2 for anti-cancer DOX drug delivery [226,227], and anti-TfR scFv-lipoplexes (TfR is transferrin receptor) as a gene delivery platform have been reported [228,229].

2.1.6.2 Solid lipid NPs

The SLNs, a spherical, colloid entity, were discovered as a lipid-based carrier for controlled drug delivery, as well as gene carrier systems to replace emulsions, liposomes, and polymeric NPs [230]. The SLNs have a size ranging from 50 nm to 1 µm and are composed of physiological lipids dispersed in an aqueous surfactant solution, or aqueous media [231]. The SLNs were constituted as solid lipid matrix at 37°C or room temperature, and the drug loads inflated their size range up to 1 µm [232]. Since the SLN matrix was formed from physiological lipids, it reduced the hazard of acute and chronic toxicity [233]. The high-pressure homogenization or micro-emulsification processes mainly were used to prepare the SLNs. The SLNs prepared by any concurrent reported methods exist in dispersion form, which on long-term storage results in their instability, essentially due to the hydrolytic reactions, which severely affect their stability. The SLNs can also be altered into solid dry reconstitutable powder through lyophilization of the prepared formulation [234,235]. The advantages of the SLN outweigh its demerits and disadvantages (Figure 5).

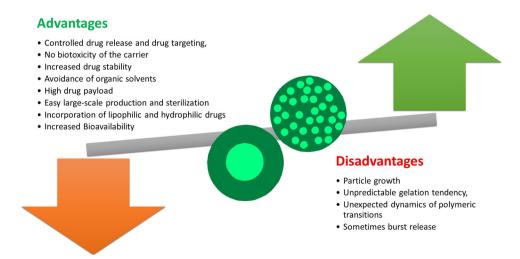


Figure 5: Advantages and disadvantages of SLNs.

SLNs have been recognized as an efficient carrier of drugs, especially lipophilic character drugs and for deliveries of other payloads of low and medium MW ranges [236]. To increase drug bioavailability, particularly in topical ocular delivery [237,238], and in anti-tubercular drug delivery to the lungs' alveolar tissue [239], as well as delivery to the lymphatic system with decreased side effects, the SLNs have been approached well [240].

2.2 Hydrogels

The first mention of the term "hydrogel" in the literature was made in 1894 [241]. A hydrogel is defined as a network of polymer-based hydrophilic chains, which exist as a colloidal gel in water, which is also the dispersion medium. The hydrogels are absorbent materials that can retain high water contents of up to over 90% of their weight [242]. The first synthetic hydrogel was prepared by Wichterle et al. using the copolymerization of ethylene methacrylate and 2-HEMA [243]. From its inception, the hydrogels have been used for biomedical purposes, for example, for contact lens fabrication, coatings on surgical gloves, in urinary catheters, for surgical drainage systems, in wound dressings, and as part of tissue engineering scaffolds material [244]. The drugs loaded inside the constituent polymer matrix of the hydrogel are diffused through the network with controlled-release patterns [245]. Hydrogels being extremely capable of retaining the loaded materials are viewed as efficient drug delivery systems due to their higher biocompatibility. The hydrogels' hydrophilic networks have been synthesized from synthetic as well as natural polymeric materials [246]. Their classification is based on their characteristics,

including mechanical and structural (affine and phantom) characteristics, nature of the constituent polymers' side groups (neutral and ionic), physical forms of existence (amorphous, semi-crystalline, hydrogen-bonded, supramolecular, and hydrocolloid), methods of preparations (homo and co-polymerization based), and responsiveness to the physiologic and environmental stimuli (pH, ionic strength, temperature, and electromagnetic radiation) [247–250]. The classification is depicted in Figure 6.

The hydrogel/glass composite, nitric oxide-releasing NPs (NO-NPs) have been shown to have a high degree of effectiveness against methicillin-resistant S. aureus (MRSA) infection in various mouse models. In a previous study, Martinez et al. reported that the topical application of hydrogel/glass composite NO-NPs to skin wounds infected with MRSA significantly reduced bacterial infection compared to the control [251]. The limitations of the hydrogels, for example, low elasticity, and low loadbearing capacity results in the unwanted flow of drugs from the targeted site, but Peng et al. reported that the limitations would not affect the efficacy of the entrapped drug if it was injected subcutaneously [252]. The hydrogels possessed permeability for oxygen, nutrients, and water-soluble metabolites, and thus, were used in tissue engineering as bio-scaffolds [253]. The biopolymers, for example, collagen, fibrin, and matrigel-derived hydrogels had weak mechanical strength, and the potential for immunological reactions and a likelihood of animal virus contamination were observed [254]. The problem was tackled by developing synthetic polymer-based hydrogels [255]. The unique characteristics of the hydrogels, including their biocompatibility, available range of polymeric materials for their preparation, utilization of different synthetic protocols, and design achieved desirable physical characteristics, have made the hydrogels

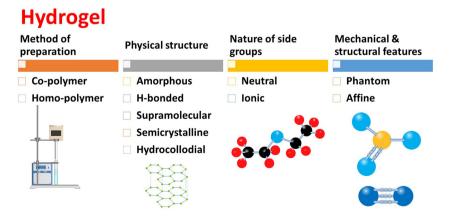


Figure 6: Classification of hydrogels based on their characteristics.

find immense applications in different biomedical fields. Stout and McKessor [256] prepared a cost-effective, antibacterial/fungal glycerin-based hydrogel formulation, which had a gel layer that absorbed the exudate from the wound, and simultaneously released the loaded material from the gel for wound healing. The hydrogel wound care products do not dry or make the wound dressing get bound to the wound and surrounding tissues. Additionally, the non-adhesive nature of the hydrogels does not cause any damage during the dressing removal process. This kind of hydrogel has provided a significant cushion and padding support over, around, and to the wound [257–259]. Elasto-GelTM was FDA approved for all types of injuries, namely pressure ulcer, acute, and chronic injury, diabetic, and traumatic injury, and for use in other dermatological conditions, including first-grade burns as well as in cancers. The glycerin in Elasto-GelTM acted as a skin-filler that tends to reduce the sore [260]. Another type of hydrogel, Aqua-form hydrogel, absorbed more fluid under conditions that simulated moist wounds and thereby indicated a more suitable clinical use for treating sluggish and necrotic wounds [261-265]. The electroconductive hydrogels were synthesized using semi-IPNs containing the novel electro-active polymer, PEI, and 1-vinyl imidazole(vi) polymer blend. The semi-IPNs are also systems constituted of PVA and polyacrylic acid. These systems reported successful electro-responsive drug release and suggested that the method is appropriate to be used for the development of safe and effective electro-responsive drug delivery systems. More than 2.6 and 0.7 mL of PEI and VI-based hydrogel products were found to be effective for the ideal therapeutic electro-responsive drug release (0.8 mg) system, wherein indomethacin was the experimental drug [266].

2.3 Dendrimers

Tomalia and co-workers discovered dendrimers in the late 1980s. The dendrimers are highly ordered, hyperbranched polymeric molecules that get an almost rounded shape as they increase in size and attain deliverable nanoscale sizes. Other names for dendrimers are arborols and cascade molecules. Dendrimers were prepared by a divergent synthesis approach. Dendrimers are shaped symmetrical, 3D rounded, and monodispersed entities that contain a single chemical group at their central, originating core. The dendrimers are also classified by their developmental generation wherein the number of repeated branching cycles on the core is counted, and each repeating cycle (generation) adds nearly double the MW of the previous cycle. The last cycle has comparatively more exposed functional groups. The starting core, which includes frequently used ammonia, ethylenediamine, polydiamine, and benzene tricarboxylic acid chloride has been reported, with more cores being continuously discovered, and established for drugs and other payload delivery purposes. The well-defined composition, shape, monodispersity, availability of abundant functional groups, and stability are among the main characteristics of dendrimers that render them appealing for drug loading and subsequent facile delivery. There is control of the number of functional groups available for attachment for drugs, imaging agents, and other moieties to the dendrimer, thus controlling the loading quantity in a more precise manner. Examples of dendritic loadings of drugs have been synthesized using different biocompatible materials that include PEI, polyethylene oxide (PEO), PEG, polyamidoamine (PAMAM), and polypropylene imine (PPI) [267–269] with several drugs fitted with the couplings on the dendritic end-groups. As a functional group, the PAMAM has primary amine, which allowed penetration of the cellular membrane and delivery of the anti-microbial drugs with high efficiency. Sulfamethoxazole (SMZ, sulfonamide) has low solubility and bioavailability, but when administered with PAMAM dendrimers in the in vitro condition, the SMZ-encapsulating PAMAM dendrimers caused the facile release of the drug and showed 4-8× folds increased antibacterial activity against E. coli, as compared to free SMZ. The gene transfection, attachments of non-steroidal antiinflammatory drugs, anticancer agents, quinolones, and several other pharmaceuticals to various kinds of dendrimers have been reported [270-272]. The usefulness of dendritic systems and the auto-assembly of readily available amphiphilic *Ianus* dendrimers achieved a varied framework. The amphiphilic *Janus* dendrimers, structurally composed of two dendrimeric wedges with the termination of two different functional groups, were self-assembled into a standardized onion-like layout with consistent size, varied shape, and known number of layers. Dendrimersomes and other complex structural architectures have also been reported. The Janus dendrimers have also been used for stabilizing drug suspensions [273,274]. It would be pertinent to mention along with dendrimers, the micelles, spongosomes, cubosomes, lipid-polymer hybrid nanostructures, discs, curved vesicles, and helical bands that have made drug and other payload deliveries including biomedical applications as the emerging alternatives [275,276] in parallel to other nano-entities and the dendrimers. A recent review on the preparation and bioapplications of dendrimers in nanomedicinal fields is available [277].

2.4 Buckyballs

Fullerenes are carbon materials that have formed in different caged-shaped structures. The lower volume, spherical structure, and void core have created a useful platform for drug delivery in the shape of buckyballs [278]. With 60 carbons, buckminsterfullerene [C60] is the most common example. The hydrophobic cleft of the protease enzyme from the human immunodeficiency virus (HIV)-1 could host a C60 molecule [279], as was reported by Friedman et al. Furthermore, many studies have approved the photodynamic inactivation of bacteria by C60 products. The hydrophobic split of the HIV-1 was also differentiated with the fullerene materials [280–285].

2.5 Virus-derived and bacteria-based NPs

The virus-derived NPs were among the latest entry into the nano-scale delivery modules. The viral NPs were derived from plant viruses, bacteriophages, and mammalian viruses. The development and applications of virusderived NPs, and their genome-free versions, termed virus-like particles (VLPs) have been chemically conjugated to various ligands for specific deliveries. Fermentation and molecular farming have produced these VLPs. The particles are biodegradable and biocompatible in nature. The VLPs are used in cancer and immunological therapies, vaccines, gene transfers, and imaging, as well as for antimicrobial, cardiovascular agents' deliveries, and theranostics. The VLPs have shown both in vitro and in vivo applications, together with their functions as enzymatic nano-reactors. The ease of production in the system of choice owing to the superior capability to adapt and infect a wide range of organisms, and ability to customize for required modification, through chemical as well as genetic ways, have made the virus-based NPs an attractive choice for various types of deliveries of a wide range of materials like genes, drugs, and chemotherapeutic agents [286]. The (µ-glutamic acid)based NPs were found to be good carriers of tumor vaccines for the proteins that have been used to provide antigenic proteins for the cells. These were used to develop potent immune responses as reported by Yoshikawa et al. who also proposed that the β -PGA poly-(γ -glutamic acid)-NP platform is sufficient to provide protein-dependent tumor vaccines reached out intracellularly [287]. Robertson et al. reported the T4 phage capsid developed-NPs without Hoc and Soc proteins (T4ΔHocΔSocNPs). They also documented the high efficiency of cell uptake in tumor cells of the T4-free Hoc-free Soc-NPs [288]. The West Nile Virus (WNV)

was detected by a model paramagnetic NP (MNP)-based test for the detection of DNA oligonucleotides. Complemental oligonucleotide samples connected covalently to the manufactured MNPs, and Raman reporter tag-conjugated AuNPs for surface-enhanced Raman scattering sensing, with subsequent removal from the solution by the externally applied magnetic-origin of AuNP-WNV target sequence-MNP hybridization complexes, was also reported [289]. The nanomaterial induced viral infection in living cells using HIV-1 pseudo-type lentiviral particles. Cells were eventually exposed to different NPs and then the lentiviral infections were observed. The efficiency of transfection was shown to be improved by AuNPs, while the silverbased NPs decreased it, with a small or no impact on the infection rates of the virus [290]. Through molecular selfassembly, the viruses can form ordered structures, and the plants' virus systems are particularly advanced and have been utilized as bioinspired-engineered nanomaterials, and nano-vectors for future use. The plant virus-constructed NPs were physically uniform, biocompatible, biodegradable in nature, and facile to fabricate. They were also easily functionalized by alteration of the external surface, and loading of the cargo molecules into their internal cavity. Thus, these viruses can be utilized as targeted drug delivery systems [291]. Moreover, the multifunctional NPs holding promise as imaging and therapeutic delivery agents for the next generation of sensing development are being continuously verified for this purpose, especially incorporating the plant viral capsids. In this context, a previous study showed that the red clover necrotic mosaic virus could be loaded with high amounts of therapeutic molecules with MW of 600 Da and higher. Furthermore, it was also possible to conjugate the targeted peptides with less than 16 amino acids to the capsid using sulfosuccinimidyl-4-(N-maleimide-methyl)-cyclohexane-1-carboxylate as the chemical linker [292]. Moreover, subunit vaccine formulations based on isolated pathogens components (proteins and peptides) allowed the activation of highly specific and protective immune responses. Some researchers have tried to enhance the immunology and stability of the subunits by using genetically modified NPs of a plant virus as the carrier for transmission [293-295]. The in vitro and in vivo studies conducted to test unmodified potato virus X (PVX) toxicity, and the teratogenicity potential of tomato bushy stunt virus [296] was performed by Blandino et al. Various other groups investigated the biodiversity of PVX particles combined with different fluorescent dyes and PEGs of varying chain lengths. This masking eliminated the cell-like interactions with the NPs in plant viruses [297–299]. An A647 (AlexaFluor 647, dve)-labeled PVX-NP conjugated with a 12-amino acid peptide sequence with

I

correspondence to the epidermal growth factor receptor (EGFR) was effectively detected, and imaging was performed for the carcinoma cell lines.

3 Nano-structured delivery device pharmacokinetics

The success rate of a drug delivery carrier depends on important parameters defined by pharmacokinetics. The pharmacokinetics estimates the fate of the drug, active ingredient concentrations, and delivery status at the system, together with the underlying effects of hormones, nutrients, and toxins, thereby affecting the overall status of the drug in the body. Pharmacodynamics takes control over the biophysiological fate of the drug administered to the body. Current nano-drug delivery systems are employed to supply both the small molecules and various biomacromolecular entities, including peptides, proteins, DNA plasmids, and artificial oligonucleotides. To modify the release kinetics, it is desirable to configure the nanoscale drug delivery systems to monitor the distribution and thereby reduce the adverse side effects toward contributing to improving the therapeutic index, as some of the nanomaterials to be delivered have limited activetargeting, low bioavailability, and probable cytotoxicity, which affects the pharmacokinetics (PK). Moreover, current drug delivery systems offer controlled drug release at elevated global and local concentrations, wherein these abilities allow treating the affected area but also target the normal, un-diseased, and undefined locations in the body [300]. The particle size, an extremely important factor in delivery kinetics, plays a primal, decisive, first, and foremost role [301]. The smaller dimension NPs allow the nanostructures to pass cell membranes, reduce the chances of undesired clearance from the body, and minimize uptake by the reticulo-endothelium system (RES) [302,303]. The nano-structured delivery systems have a higher surface-area-to-volume ratio, and the small size is responsible for a better dissolution rate [304]. Undoubtedly, the drug loading capacity of the nanocarriers is comparatively lower than other non-nano procedures and devices. The nano systems' diameter has a significant role in the bioavailability and blood circulating time of the delivered nano-entities together with its entrapped/encapsulated payloads of drug and gene [305-307]. A number of nanoformulations have exhibited size-based characteristics (Table 3). The particulate material <100 nm is prone to be captured by the endocytic vesicles [308] and that led to the suggestion

ile 3: Pharmacokinetics relationship of nano-carrier performance and diameter rang

Formulated module	Formulated module Nano-carrier size Composition	Composition	Inference	Ref.
AuNPs	<100 nm	Ag-colloidal solution	cAg toxicity is caused by the NPs themselves or $Ag(+)$ that was formed [151] during $in\ vivo$ NP destabilization	[151]
Liposomes	100-200 nm	Distearoyl phosphatidylcholine, cholesterol, and distearoylphosphatidyl ethanolamine derivative of PEG	Most prolonged circulation time and the highest tumor accumulation	[302]
SinPs	23 and 85 nm	Dye-doped imaging and internalization	Penetration at 58% for 23 nm-sized NPs as compared to 14% for the 85 nm-sized particles	[328]
	32–142 nm	Cationic, surface amine open, surface amine covered NPs	Monotonous reduction in systemic availability with liver and spleen accumulation, cationic amine-surface NPs showed lowered circulation, shielded amine surface SiNPs showed an increased clearance	[329]
PEGylated NPs	~75 ± 25 nm	PEG	Data showed the effects of particle diameter on targeting the mesangium of the kidney	[339]
Liposomal-DOX	100 nm	PEGylated	Liposomes AUC after a dose of 50 mg/mL was 300× greater than that [351] with free drug	[351]

that the optimum size range is between 10 and 100 nm. The superior, controllable, actionable, and achievable properties of solubility, bioavailability, biodegradability, biocompatibility, encapsulation, retention, and release have made nano-structured devices and entities an ideal candidate for various delivery applications. However, a delivery model, best in all aspects may not be introduced, and the need for hybrid systems with case-by-case customizations may need to be developed for global and local deliveries [309].

3.1 Different NPs

Nano-structured delivery systems, and devices, for example, NPs, nanocapsules, nanotubes, nano-gels, etc., possess specified release patterns, peculiar release kinetics based on their constitution, pay-loads, and their corresponding characteristics as nanosystem, which are, for most of the parts, efficient, optimized, and specified in targeting behaviors [310,311]. The polyelectrolyte shells, produced by deposition through layer-by-layer structuring, have numerous advantages, including membrane thickness, the possibility to regulate surface property, and modulation of the release kinetics [312]. As both the inner and outer interfaces can be easily engineered, the shells are used in designated and permissible conditions of temperature and pH for easy loadings and releases [313]. Examples for that include drugs, enzymes, nucleic acids, dyes, etc. [314,315]. For certain typical applications, the nanotubes, similar to a microscopic-scale drinking straw, offer advantages over spherical NPs [316,317], according to their distinctive interior and exterior surfaces, in which the drug molecules are encapsulated within the vesicle, and thus the payloads are prevented from producing immunogenic reactions [317]. Additionally, the one-end open mouth structure of the nanotubes simplifies their mountings. The hydrogels or "nano jelly" offers simpler synthetic methods with relatively high potential for drug loading, which was also well applicable for topical delivery [318]. These hydrophilic polymer nets are crosslinked 3D networks and are swellable in an aqueous environment [319]. These nano-entities also react in response to several physiological stimuli, including ionic strength, pH, and temperature. Hybrid polymerizable nano-gels have been synthesized, which includes physically and chemically interconnectional motifs [320]. The nano-gel combines the features of gels, and the colloid properties, a large surface-to-volume ratio, a knitted microstructure, low-sizes, and heterogeneity. The architectonic design for the dendrimers is well regulated, thereby providing well-defined shapes, dimensions, and branch length, with predictable density and known surface functionality [321].

The medicinal loads were entangled physically in the dendrimer, or it was found to be chemically bound to the periphery through available functional groups. A number of drugs, that is, cisplatin [322], methotrexate [323], and 5-FU [324], allowed slower release for the higher buildup of solid tumors, with lowered toxicity than the corresponding free drugs to the normal tissue, and these steps were easily achieved particularly with PEGvlated dendrimers [325]. The transverse cell membranes with PAMAM dendrimer were found to be combined with para-cellular transportation and adsorbent endocytosis [326]. The solubility of the dendrimers increased with length. The ester group-terminated dendrimers were comparatively more bioavailable for a given number of surface groups than their aminoend analogs. Among other nano-entities, the smaller-sized mesoporous SiNPs have shown better cellular uptake, cell membrane penetration, and drug retention for cancer cells [326–328]. The mesoporous SiNPs' bio-interaction properties predicted through mathematical modeling and observed through single-photon emission computerized tomography (SPECT)/computerized tomography (CAT) integrated imaging approaches for the effects of their size, surface chemistry, route of administration, linked biodistribution, and clearance in rat models were achieved. The increased particle sizes, from approximately 32 to 142 nm range increments provided lesser systemic bioavailability with lesser accumulation in the liver and spleen. The cationic mesoporous SiNPs with surface amine on them provided reduced circulation with enhanced clearance [329] (Table 3).

The pharmacokinetics, specificity of the PAMAMand PLGA-based nanoformulations, showed sustained delivery with intraocular pressure reduced to 18% and up in eye deliveries [329]. Another brimonidine-loaded CSNP formulation provided longer-lasting effects than conventional eve drops [330]. The CS and HA-based NPs produced a considerable reduction in the intraocular pressure level in the eye when compared to the plain, free drug solution [331]. For the SPION, the NPs surrounding the tumor were checked through a histological test in CD31 expressed animal models [332], while the DOXloaded lanthanide nano-scrolls inhibited tumor growth with insignificant cellular toxicity in both in vitro and in vivo conditions [333]. The application of gadolinium oxide NPs in magnetic theranostics [334] and the use of AuNP conjugates that showed 10× improved selectivity to the brain tumor with improved biocompatibility were also developed [335]. The PLGA and Mn-doped NPs increased delivery to the pancreatic cancer cells with reduced systemic toxicity [336-338]. Kidney mesangium targeting, ultra-small SPION for assessing the lymph nodes as an intravenous contrast agent with reduced signal intensity

for the normal but not the metastatic nodes, and tracking of transplanted bone marrow, and embryonic stem cells in rat brain and spinal cord by IONPs are known [339-341]. An efficient oral delivered nanoformulation consisting of Q10 coenzyme in PLGA was also developed [342]. For transdermal delivery, the PLGA nanovesicles exerted scalp-pore permeability from 2.0 to 2.5× higher than the control, while the CSNPs showed reduced irritation and toxicity [342-345]. NPs incorporating water-insoluble drugs, with the use of sodium dodecyl sulfate (SDS), were loaded into the NP framework without the need for post-synthetic modifications for their pharmacokinetics improvements [346]. The CS-TPP with acyclovir provided enhanced stability for sustained skin delivery of the drug, while the PEG-based NPs were found to have slipped through the human mucus barrier (Table 4) [347-349].

3.2 Liposomes

The liposomes are highly recommended drug delivery candidates due to their improved therapeutic index and better absorption rates. Compared to other drug-encapsulated liquid counterparts, they also prolonged the biological half-life, and reduced cytotoxicity to normal cells. Liposomal Doxil[®] and ALB-NP-based abraxane are available commercially. Their accuracy in the chemotherapy of prostate and breast cancers is documented [350]. Doxil, a DOX-liposomal drug, is RES resistant due to its PEGylated formulation. The pharmacokinetics profile characterized its prolonged blood circulation time with reduced distribution volumes, which thereby encouraged the absorption of the drug to the tumor with a removal half-life of 20–30 h. Its focus at the target site is at least 60-fold higher than free DOX [351].

The PEGylated-liposomal formulations of DOX [351], ciprofloxacin [352], and levofloxacin for contact-lenses anti-bacterial proposition [353], gene transfection [354], immunoliposomes based brain delivery [355], virosome-based immunization targets [356], double-liposome for peptic ulcer [357], active targeting to cancer [358], and toward transdermal diclofenac delivery [359] have been reported. The use of liposome-specific ligands directed against cancer cells' surface receptors is immensely important because their presence in cellular absorption processes tends to improve the therapeutic response at multiple times. The association by the internalization of liposomes with

Table 4: NPs' carriers targeting of body organs and their pharmacokinetics specificity

Site	Composition	Pharmacokinetics	Ref.
Eyes	PAMAM, PLGA	Developed NP formulation resulted in a sustained and effective intraocular pressure reduction (18% or higher) in 4 days	[326]
	Brimonidine tartrate and CS	In vivo tests revealed that brimonidine tartrate and CS-based NPs have a long- lasting effect than standard eye drops	[330]
	HA-mCS	CS and HA-based NPs resulted in a considerable reduction in intraocular pressure levels in comparison to plain drug solution	[331]
Brain	SPION	NPs revealed iron-tagged cells surrounding the tumor margin in animals expressing CD31, confirmed through histology	[332]
	Ultrathin lanthanide nano- scrolls	Developed NPs efficiently loaded (DOX, 80%) and significantly inhibited tumor growth with negligible cellular and tissue toxicity both <i>in vitro</i> and <i>in vivo</i>	[333]
	AuNPs conjugate	Showed 10-fold improved selectivity to the brain tumor by AuNP conjugates	[335]
		Surface plasmon resonance bands and biocompatibility improved with surface area to mass ratio	[336]
Pancreas	Mn-doped QDs	NPs showed para-magnetism and remained maintained with high photoluminescence	[337]
	PLGA-poloxamer	Developed NPs reduced the systemic toxicity of model anti-cancer drugs	[338]
Kidneys	SPION	Intravenously administered NPs reduce the signal intensity of normal but not metastatic nodes and was confirmed by magnetic resonance imaging of an animal model of nodal metastases	[340]
	PLGA	Histological examination indicated the existence of bromo-deoxy-uridine-positive cells as well as NP-labeled cells	[341]
		Therapeutic potential of a newly designed nanoparticulate formulation was tested (Gold Blatt 2K1C model) in renal hypertensive mice	[343]
Trans-dermal	PLGA	Encapsulated PLGA nanospheres exerted a scalp-pore permeability 2.0 to $2.5\times$ higher than the control	[344]
	Polyacrylate, SDS	Observed that incorporated water-insoluble drugs with the use of SDS were directly loaded into the NP framework without the need for post-synthetic modifications	[346]

vascular cells also increased the concentration of the drug extracellularly and increased the amount of the drug that was distributed to the target cells. Receptor-specific ligands or anti-corps were the most common strategy for targeting surface cell receptors that were excessively expressed in cancer cells. The targeting by cell surface receptors had been widely studied in cancer as the upregulation of tumor-specific receptors in many types of cancer cells was previously demonstrated. For example, in response to growing metabolic demand, the TfRs and folate receptors were overexpressed by many types of tumor cells [359–362]. The obstacle to the delivery of liposomes by any tumor was overcome by direct targeting of the tumor cells through tumor vasculature/microenvironment. A system for selecting peptides that were specifically associated with the human tumor vasculature of xenografts of cancer [363] was developed by Chang et al. Connecting these peptides with a DOX-loaded liposome increased the drug's efficacy against several forms of severe combined immunodeficiency conditions. The peptides, IVO-8 (SNPFSKPYGLTV), and IVO-24 (YPHYSLPGSSTL) targeting tumors in neovasculature-specific phages, in general, connected the xenograft tumor vessels in animal models, and the six kinds of human solid tumor blood vessels, all of which were specifically delivered, were detected through dye tagging. The coupled IVO peptides in stealth liposomes with the PEG ends were shown to have increased therapeutic efficacy, enhanced cancer cell apoptosis, and decreased tumor angiogenesis in mice, consequently leading to decreased tumor growth.

A listing of liposome-based nano-carriers for different therapeutic purposes directed to various organs is summarized in Table 5.

4 Nano-delivery: bio-barriers, delivery modes, and devices

4.1 Delivery across the blood-brain barrier

Pharmacologically, central nervous system disorders are tough to treat, and one of the reasons for this is that the entry of drugs into the brain is restricted by the bloodbrain barrier (BBB). It is a highly selectively permeable barrier consisting of brain endothelial cells, which are further interconnected by tight junctions (zonula occludens) with an electrical resistivity of approximately $0.1 \,\mathrm{m}\Omega$ [364]. The endothelial cells are biochemically assisted by starshaped glial cells called astrocyte cell projections [365]. The BBB has a highly effective neuroprotective role, due to which almost 100% of macromolecular drugs and approximately 98% of small-molecule drugs are unable to pass through. Hence, only small lipophilic molecules (<500 Da) including amino acids, gases like CO₂, O₂, and glucose are known to be allowed to cross the barrier to the brain. For other substrates, the transport follows through carriers and receptor-mediated processes. Because of this, the transport of many diagnostics, and therapeutic agents

Table 5: Liposomal drug carriers' organ targetings and their major pharmacokinetic characteristics

Organ	Bioactive drug	Pharmacokinetics	Ref
Eyes	PEGylated-DOX	Reduced uptake by the RES, extended circulation time, and higher uptake at the site	[351]
	Ciprofloxacin	Positively charged liposomes showed superior entrapment efficiency (82.01 \pm 0.52) over the negatively charged and neutral liposomes	[352]
	Levofloxacin	The liposome-coated lenses inhibited bacteria growth against Staphylococcus aureus	[353]
	Plasmid DNA cationic liposome complexes	Plasmid DNA cationic liposomes showed the highest transfection efficiency in eye tissues	[354]
Brain	Immunoliposomes (antibody-directed liposomes)	Immunoliposomes revealed that immunoliposomes accumulate in brain tissue over 24 h	[355]
	β-Amyloid	Virosomes triggered a dramatic decrease in both soluble β -amyloid ($p=0.01$) and soluble β -amyloid ($p=0.03$) in a double transgenic mouse model of Alzheimer's disease	[356]
Stomach	Ranitidine bismuth citrate, and amoxicillin	Dual loaded liposomes showed higher percent growth suppression against <i>Helicobacter pylori</i> than in the control sample	[357]
	DOX	Developed liposomes encapsulated with DOX improved stability and enhanced circulation time	[358]
Transdermal	Sodium diclofenac	An increased amount of liposome in-adhesive patch system enhanced the rate of skin permeation of the drug	[359]

of potential significance are prevented from reaching the brain. Mechanisms for drug delivery into the brain involve going "over," or "hind" the BBB [366]. The brain, which has a large surface area of about 20 m², allows successful administration of drugs through the trans-endothelial route. Improvements in drug delivery systems through transcytosis by targeting the local receptors existing on the surface of the BBB also provide a promising proposition. This target has been achieved by using nano-carriers that mimic the biosystem's structural, and functional specifications to permit the BBB-barred, restricted materials to cross over the BBB. The drugs cross the BBB disguised in these nano-scale carriers. The drugs, and other desirable materials loaded-NPs, and liposomes have gained access through the BBB. The resistance to degradative enzymes and coupling of certain antibodies that bind to the receptors on the surface membrane of the BBB have facilitated the task. However, another obstacle hindering the NP movement is the coverage of the NPs by opsonins, which allows the macrophages to recognize, phagocytose the NPs, leading to the elimination of the drug delivery device before it reaches the brain target, and cause therapeutic effects. The opsonization is avoided by using cell-specific ligands, and the coatings of the carrier by the hydrophilic polymers, for example, PEG. The mechanisms for delivering certain drugs to the brain include going either "through" or "behind" the BBB. This incorporates invasive and noninvasive procedures for drug delivery through various transport methods. One of the most important key players facilitating the successful targeting of the drug to the target site is the selection of the route of administration. A non-invasive drug administration to the brain section would be an ideal choice if it were uncomplicated, painless, and safe. The most common practices in medical and research studies are the intravenous application of drugs followed by the oral route, intranasal, and inhalation.

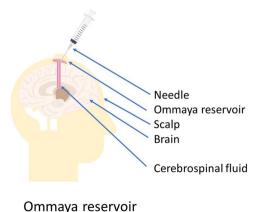


Figure 7: Ommaya reservoir.

The invasive interstitial and conventional techniques are for example, intrathecal/intraventricular, convection-enhanced diffusion, and intracerebral drug delivery systems. In invasive drug application, the delivery needs mechanical breakage of the BBB. In the following section, some of the examples of different invasive and non-invasive administration routes are described [367-369].

4.2 Invasive routes

4.2.1 Interstitial drug delivery

Several devices and techniques, for example, injections, catheters, and micro-pumps have been utilized for drug delivery purposes. The interstitial delivery provided minimum toxicity with the least systemic contacts. The delivery modules were subcutaneously implanted, and refilling of the drug took injections, also assisted by computation-aided functional supports. Through a skull-implanted reservoir, high concentrations of the drug were delivered for use in treating neurodegenerative disorders and brain tumors. Several examples of direct drug delivery to the brain interstitium-Ommaya reservoir (Figure 7), through aid-pump infusion generated by compressed Freon® to constantly deliver the drug, are available. The Medtronic SynchroMed® system used a peristaltic mechanism, and the MiniMed® PIMS (Programmable Implantable Medication System) utilized a solenoid pumping mechanism for the purpose.

Ommaya reservoirs have been used in numerous other clinical trials for constant and desired levels of drug delivery to treat patients with brain tumors by directly transporting the chemotherapeutic agents. BCNU (Carmustine), and its analogs, together with Adriamycin, bleomycin, methotrexate, cisplatin, interleukin-2 (IL-2), and fluorodeoxyuridine, which have also been characterized by a high intratumoral drug concentration, and mildside effects, are reported to be delivered. However, this invasive technique presented different kinds of drawbacks when the catheter was clogged by tissue debris, thereby resulting in inadequate drug distribution in the tumor. In this context, the use of functionalized nano delivery entities has assumed much importance, and liposomal modules of drug delivery were sought in. The epidural delivery of multivesicular liposome (commercially available DepoFoam® technology) drug delivery system was applied. The morphine supply in dogs was activated through the system, which produced prolonged analgesia without any pathological effects after repeated administration of a 10 mg/mL dose to the animal [370].

4.2.2 Intracerebral delivery

The cerebrospinal fluids (CSFs) were demonstrated to play a definitive and major role in drug delivery. The CSF is in direct contact with the interstitial fluid of the brain. Therefore, drugs were sought to be delivered directly into the cerebral ventricles by avoiding the BBB. The intracerebral ventricular delivery has its particular advantages, and the drug half-life was manipulated, resulting in reduced systemic toxicity, as there are minimal or no proteins available for binding. Despite such an advantage, the drug generally drained into the systemic circulation, and efficacy level reached the same levels as that of an intravenously administered drug [370]. It happened because, in comparison to CSF, the clearance rate was slow. The rate of the drug's parenchymal diffusion from CSF, which produces intracranial pressure when the drug was infused into small ventricular volumes, was decreased. Therefore, the outcomes were marred by the high clinical prevalence of hemorrhage, CSF leaks, neurotoxicity, and central nervous system (CNS) infections. The nano delivery concept kicked in and liposomes laden with clodronate were tried [371]. Another strategy to bypass the BBB was to bring the drug directly into the parenchyma of the brain tissue, and this was achievable either through direct injection of the drug-using controlled discharge matrices, or by intrathecal catheteric device [372,373], or also through the intermediacy of the recombinant cells [374]. However, the only drawback observed was the slow movement of the drug from the initial injection site, which decreased exponentially, and the approach was not at all found feasible in acute brain injury, which provides a relatively short period for employing an effective therapy [375,376]. Use of the recombinant adeno-associated virus (rAAV, recombinant adeno-associated viral, adenoassociated virus serotype 2-neurturin, CERE-120) for expression of neurotrophic factors, for example, glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and the nurturin injected directly into the brain parenchyma for the treatment of Parkinson's disease, and atrophy of spinal neurons have been reported [377-379]. The limitations of the rAAV-mediated delivery which includes the host's stimulated immune responses, restricted brain transduction, low packaging capacity and rate-determining steps of transgene expression were controlled. The controlled rAAV delivery modules provide functional approaches to overcome these drawbacks. Coated nano-carriers have been proposed for this purpose. Nano-secondary ion mass spectroscopy analysis of iodine in intracerebral delivery of 5-iodo-2'-deoxyuridine for therapy of the F98 glioma has also been reported [380].

4.2.3 Convection-enhanced delivery (CED)

The CED included inserting a small-caliber catheter device into the micro-pump and infusing the drug into the brain parenchyma cells, penetrating through the interstitial spaces. The method allowed continuous infusion of the drug for several days. It showed a better response in drug diffusion and distribution than simple diffusion procedures. It was also observed for the drug with high MW. In a previous experiment, Bobo et al. used the CED technique to deliver proteins with high MW characteristics and found, after 2h of continuous infusion, that the diffusion reached 2 cm from the injection site in the brain parenchyma cells. Thus, precise placement of catheters in the brain parenchyma and properly transmitted drug delivery are the important factors for successful drug reach using this method [381]. Convection-enhanced brain delivery, biofeedback pump for leptomeningeal carcinomatosis, and identification of hypothalamic neuron-derived neurotrophic factor have also been reported [382-384]. Liposome encapsulated DOX to brain delivery by CED is an example in point [385,386].

4.2.4 Intra-vascular delivery

Due to tight endothelial junctions, the BBB limits the passage of hydrophilic substances. Otherwise, as per routine the passing of only lipophilic drugs is allowed. For a transient opening of the tight junctions, different hyperosmolar substances including arabinose and mannitol have been injected into the cerebral circulation. The injections of pharmaceutical substances for facilitating the treatment of brain tumors were reported [387,388]. The strategy allowed uptake of the drug when the transport system was manipulated. The BBB surface receptormediated, carrier-mediated transports were the way out [389]. However, this strategy presented limitations after traversing the BBB. The drug encountered the basal lamina, which trapped opsonized particles and proteins, making the BBB opening less efficient, and nearly dysfunctional [390]. Leads into the intravascular nano delivery have been reviewed [391].

4.3 Non-invasive techniques

4.3.1 Olfactory pathway

The nasal pathway (Figure 8) also facilitates drug delivery to the CNS circumventing the BBB [392]. Nasal delivery is

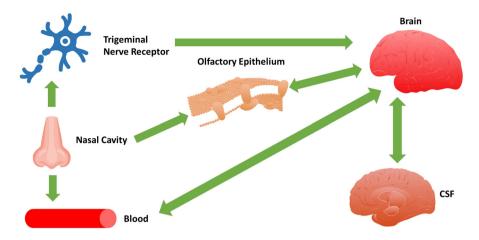


Figure 8: Drug delivery to CNS by olfactory pathway.

not typical for systemic administration; it may either be used intraneuronally or as extraneuronal. It was usually employed for the administration of drug molecules that functioned locally. The intranasal pathway is highly successful in administrating a large number of therapeutics and experimental molecules, including small lipophilic molecules, for example, cocaine, morphine, and proteins, for example, insulin (5.8 kD), leptin (16 kD), nerve growth factors (27.5 kD), selective oligonucleotides, and plasmid DNA [393–399]. Out of the four proposed pathways for transporting molecules by the intranasal cavity to CNS, the major pathway recommended is the olfactory nerve pathway. The olfactory nerves are connected with the trigeminal nervous system between the brain, and the exterior environment, and thereby provide the shortest pathway to delivery and transport of the drug to the brain, and the drug is transported to the CNS within minutes. The trigeminal nerve pathway innervates respiratory and olfactory epithelia, and helped in drug distribution to the brain, that is, brainstem and cerebellum areas [401,402]. The vascular pathway is the third route for delivering small and lipophilic drugs, while the fourth pathway for the intranasal CNS delivery is through CSF [400-402]. The intranasal delivery of glucagonlike peptide-1 antagonist, Exendin (9-39), brain uptake, quantitative analysis of olfactory-route delivered drug to the brain, and intrathecal delivery of pain medication to the brain has been achieved [403]. Nano formulations and other nanoparticulate systems for delivery through the intranasal route have been reported [404–407].

4.3.2 Focused ultrasound (FUS)

The FUS provided reversible BBB disruption with enhanced permeability by concentrating the acoustic energy to a focal

spot, which could be used to target the brain. Various kinds of gas microbubbles were announced as cavitation nuclei to increase the BBB disturbance and minimize impairments to the surrounding normal brain cells. These focused microbubbles convert acoustic energy into mechanical power. In this way, the MRI analysis was used in combination with FUS to direct the FUS energy and to raise the local temperature, as well as to provide an opening for drug delivery [408–410].

4.4 Kidney-targeted drug delivery systems

Renal diseases are difficult to tackle due to their need for long-term medication and expensive dialysis including kidney transplants. In addition, the long-term medication/therapy is accompanied by serious side effects, which fails the clinical safety issues. Therefore, effective kidneyoriented nanosystem development represents promising advancements in treating renal disorders through improved drug delivery, enhanced therapeutic efficacy, and achieved safety. Such renal targeting systems provide powerful contributions in controlling pharmacokinetics and improvement in the efficacy increments of the drug. Attempts at achieving optimized renal supply through high MW CS, comparatively small MW proteins, poly(vinyl pyrrolidone-co-dimethyl maleic acid), and galectin-3-carbohydrate recognition domain (G3-C12) were pressed into action. Systems for proximal tubular cell delivery were designed. In multiple cases, mega line-mediated endocytosis due to the specific intake of the drug carriers by renal tubular proximal cells has been observed. In addition, the carrier's overall charge appears to be a major factor in the provision of kidney-specific drug delivery. On the other hand, mesangial cells are particularly appropriate for NPs and liposomal formulations considering their sizes

[411]. The delivery to the kidney through nano-structured devices and techniques, and involvement of modified nano-structures are commendable (Figure 9).

4.4.1 Macromolecular carriers

The low MW carriers improved water solubility, augmented oral absorption, and enhanced the bioavailability of the conjugated drugs. They also tend to provide sustained release of the drug and reduced extra-renal toxicity. These low MW glomerular proteins (LMWGPs) were also selectively accumulated in the kidneys. The LMWGP is part of the enzymes, immuno-proteins, peptide hormones, including lysozyme and insulin. From the glomeruli, low MW protein was shown to be transferred into renal tubules and reabsorbed. Due to their non-immunogenic property, some of these proteins were also used as a drug. A macromolecular drug—carrier conjugate also tends to be quickly removed, thereby maintaining drug levels within safe limits. This prevents extra-renal load and subsequent kidney damage [412,413].

4.4.2 Lysozyme conjugates

The low MW endogenous proteins (<20 kD) are among the most studied LMWGP. This includes lysozyme, which gets associated with drugs by forming peptide linkage with naproxen, ester linkage in triptolide-lysozyme [414–416], and disulfide bonding with captopril [417,418]. These linkages increased the performance by several folds when the uptake by renal proximal tubular cells occurred, that is, when compared to the free drugs, thereby significantly improving renal targeting. For example, naproxen-lysozyme was converted into naproxen-lysine to inhibit cyclooxygenase, and when naproxen was released from the conjugate its concentration increased to 70× higher than the naproxen itself. Similarly, anti-inflammatory and immunosuppressive

triptolide, when conjugated with lysozyme, its renal concentration increased 20-folds in comparison to the equivalent dose of the free drug, as observed after 30 min of intravenous delivery. The renal targeting efficiency of the conjugate was enhanced from 11.7 to 95.5%. In addition, when free triptolide was administered, toxic effects were observed in the digestive, urogenital, circulatory, and reproductive systems. A lysozyme-conjugated triptolide showed a 22% lessened hepatotoxicity with no adverse effects on the immune system. The renal concentration of the conjugate of the ACE inhibitor, captopril with lysozyme was increased 6-folds in male Wistar rats, compared to the free drug. The drug conjugate was also found useful in reducing proteinuria with no systemic effects on blood pressure. Several other drugs have also been linked to lysozyme in various ways, for example, sunitinib analog 17864 through the platinum-based linker [419], sulfamethoxazole and DOX through cis-aconitic anhydride, and SB202190 through the platinum-[II]-based universal linkage system® (ULS) [420]. Advances in nano-module drug delivery to the kidney have been reviewed recently [421,422].

4.4.3 CS conjugates

The delivery of CS-prednisolone conjugate attached through succinic acid spacer increased the mean residence time of the conjugated drug, and the presence of 19 kD protein conjugate was 13-fold higher in the kidney, while 10% of the 31 kD protein-drug conjugate was retained in the kidney after 120 min of administration, compared to the free prednisolone. The conjugates were non-toxic to L929 and NRK-52E cell lines. The conjugates had a safer pharmacokinetics profile due to their faster uptake, and filtration from the kidney than the lysosome and its conjugate. The low MW polymeric conjugates, that is, CS and HECS (hydroxyethyl CS) with N-acetylation, have been used for safe and targeted transport, with polymers of different degrees of acetylation [423]. Rhein oral delivery for renal conditions and GLY-CS (glycol CS)-based site-

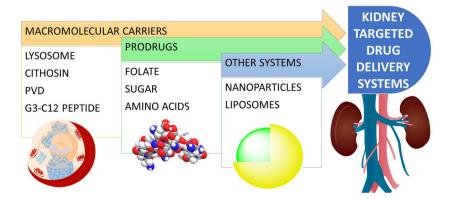


Figure 9: Kidney-targeted drug delivery systems.

specific renal delivery of biopolymeric Nano micelles as immunosuppressant have been recently reported [424,425].

4.4.4 Synthetic polymer-based conjugates

Poly(vinylpyrrolidone-*co*-dimethyl maleic acid), anionized PVP, and other polymeric-conjugates targeted the renal cells while specific uptake was mediated by megalin-based endocytosis. The mesangial cells were a suitable destination for particulate delivery modules. The polymer–drug conjugate delivery is affected by the carrier's MW and charges wherein the best renal targeting of ~80% of the administered dose being delivered to the kidney was preferred over polymeric MW averaging between 6 and 8 kDa with positive charge annotations [426–428].

4.4.5 Peptide conjugates

Galectin-3 (G3-C12), ε-poly-L-lysine derivatives, kidneytargeting peptide-derivatized elastin-like polypeptides, and carrier peptide (KKEEE)3K conjugates have been reported mainly for kidney-specific deliveries providing better pharmacokinetics, biodistribution, longer plasma half-life, and kidney accumulation, which was comparatively multi-folds higher than the free drugs in comparison with their accumulation in other organs. The peptide specific to the galectin-3 carbohydrate recognition domain [G3-C12] [ANTPCG-PVTHDCPVKR], identified using a combinatorial display technique, was shown to be specifically accumulated in (mouse) kidneys after intravenous delivery. Fluorescein isothiocyanate)-labeled G3-C12 peptide was reabsorbed in proximal renal tubular cells. When the sequence G3-C12 was conjugated to captopril, its renal concentration was increased by 2.7× folds as compared to the free drug [427-431].

4.4.6 Prodrugs

The chemically modified derivatives of parent drugs that are *in vivo* subjected to enzymatic, and other biochemical-based transformation to release the active drug, are termed prodrugs. The prodrugs exert desired pharmacological effects, improve the therapeutic efficacy, and reduce toxicity. Suzuki *et al.* [432] proposed glycoconjugates, a dual function entity, as a prodrug, and as a potential vector for renal targeting. The arginine–vasopressin glycosylated conjugates were introduced, and it was found that the structure of alkyl glucoside (Glc–S–C8–) was required to target the kidney. The effect was dependent on the chemical

nature of the sugar that significantly altered targeting efficiency. The alky chain length, peptide structure, and type of chemical bondings, primarily ester, amide, and ether, together with the molecular size played the parts. Therapeutic substrates' conjugates with positive charged and low MW entities were developed [433,434].

The cytotoxicity and absorption tests in HK-2 and MDCK cell lines exhibited decreased cytotoxicity, together with 2.2×-multiplied intake by the cells compared to free prednisolone. The kidney concentration of the drug was increased 4.9-folds in comparison to the free prednisolone, as found in the in vivo tissue distribution tests. The authors concluded that 2-glucosamine could be the likely carrier for renal targeting [435,436]. Zidovudine-CS oligomeric conjugates were also prepared and tested for in vivo release of zidovudine in the mouse model through intravenous administration in a pharmacokinetics test procedure conducted by Liang et al. [437]. The results showed that the conjugate's residence time was 2.5× times higher than free zidovudine in the kidney. In addition, the uptake and distribution of prednisolone and its 2-deoxy-2-amino di-glucose conjugate demonstrated overall better performance. Atorvastatin delivery to the kidneys through ceria NPs for acute injury targeting the mitochondria with ROS responsiveness was also delivered [438].

4.4.6.1 Amino acid-modified prodrugs

Mice tissue distribution patterns of y-glutamyl-dopamine (GGDA) were synthesized and analyzed by Wilk et al. [439]. The dopamine concentration in GGDA-treated kidneys was higher than the equivalent dose of dopamine, which suggested degradation of GGDA by renal enzymes. In the kidneys, the application of dopamine increased blood flow significantly without any significant effect on blood pressure and heartbeats. The concentration of free dopamine in plasma after oral administration of GGDA was very low, whereas the concentration in urine was relatively higher [440,441]. Such findings indicated that GGDA was a candidate for delivering dopamine to the kidneys. An N-acetyl-glutamyl prednisone prodrug material, prepared by Su et al. [442], and investigated for its in vivo distribution; together with its effects on bone density in rats was conducted to evaluate its adverse effects. The bone mineral densities (BMD) of the Wistar rats were assayed, and compared to the parent drug, prednisolone, the ACEP prodrug derivative showed improved kidney-targeting with lowered toxicity. The targeted renal prodrug exhibited increased drug concentration, and osteoporosis incidences induced by prednisolone were reduced.

4.4.6.2 Folate-modified prodrugs

The kidneys have important roles in the reduction of folate losses. The production of folate in the body starts with 5-methylenetetrahydrofolate. Thereafter, it is processed by the folate-binding protein, which is present on the proximal tubular epithelium, and it is reabsorbed during vascular circulation. Folic acid was coupled to diethylenetriaminepentaacetic acid (DTPA), using a spacer arm, ethylenediamine. This allowed a guick excretion of DTPA-folate conjugate. In the thymic tumor-bearing mice, after intravenous delivery of DTPA-folate, the conjugate was taken up by the tumor and transported to the kidneys. The fast deletion from FR-negative tissue of the DTPA-folate conjugate illustrated the critical role of the folate receptors in the absorption of conjugates [443]. The use of folate bindings has been limited, and the physicochemical properties of the conjugate are open to play a role in targeted and random deliveries since folate receptors were also expressed elsewhere.

4.4.7 NPs

The potential of NPs as drug delivery carriers to kidneys was emphasized as crucial since accumulation and toxicity are major concerns for renal tubules. An accumulation in the glomerular mesangial cells of high concentrations of actinomycin-D (AD)-loaded isobutyl acrylate NPs (ADNPs) were reported [444] in, both, in vitro and in vivo experiments. After the applications of ³H-AD, or ³H-ADNP into rats with experimental glomerulonephritis, the uptake ratios of [3H-ADNP/3H-AD] were, respectively, 6.9-folds increased after 30 min, and 4.0× levels increased after 120 min, compared to normal-conditioned rats. The *in vitro* experiments found out that the intakes by epithelial cells were 6-folds lower than the mesangial glomerular cells. The targeting of the glomerular mesangium is especially useful to treat glomerular inflammation with anti-inflammatory medications, for example, cortisone. The mesangium kidney could be targeted by NPs of sizes \sim 75 \pm 25 nm in diameter. Thus the design criteria for NP-based treatments for renal diseases were established [445].

4.4.8 Liposomes

Small unilamellar vesicles (SUVs) linked to a mAb, Dal K29, entrapping methotrexate (MTX-SUVs) were more effective than the free drug, mAb (an IgG1 mAb), and normal mouse IgGs, or the non-specific mouse IgGl in renal cancer [446]. Dal K29-linked-(MTX-SUVs) showed,

respectively, 6- and 8-folds increased binding than the unspecific (MTX-SUVs) and the unlinked (MTX-SUVs), following incubation with human kidney CaKi-1 cancer cells lines in 2 h duration. A colony inhibition experiment also found out that the Dal K29-related MTX-SUVs are 5- and 40-folds higher than that of the Dal K29-MTX, respectively, allowing the MTX to inhibit the growth of CaKi-1 cells. OX7 (OX7-mAb F(ab')2 fragments)-coupled immuno-liposomes (OX7-IL) coupled liposomes attached with Fab fragments of OX7 mAb directed against the Thy1.1 antigen were prepared by Tuffin et al. [447]. The average diameters were 130 and 170 nm for the liposomes, and immuno-liposomes were generated. As the glomerular endothelium is corrugated, and as any base membrane does not divide the glomerular capillary, the mesangial cellulose was particularly a good choice for OX7-IL-based drug delivery. The OX7-IL was found to specifically target the mesangial cells following intravenous administering in rats, but the formulation was blocked in the case of the free OX7F(ab')2 fragment. The low-dose DOX injected rats had glomerular damage while the other kidney sections and body parts were spared, and most likely, it was thought to be caused by the conjugated OX7 antibody.

4.5 Drug delivery to pancreas

Among all the cancers, pancreatic cancer is the most deadly with the lowest survival rates statistics displayed so far. Pancreatic cancer is the third prominent reason for cancer deaths in the world. Lack of effective drug delivery has made it challenging because the pancreatic cells cluster in a nest of scar-like tissue with high resistance to chemo and radiation therapies. For the drugs to get to the pancreas, which is situated deep within the abdomen, specifically targeted delivery modules were deemed necessary. Recent advances in drug delivery systems provided higher prospects for improving the situation with respect to pancreatic cancer treatments. Drug delivery systems, for example, NPs, liposomes, CNTs, suicidal gene, siRNA, oncolytic virus, antibody, and smallmolecule inhibitors, are worth-mentioning drug carriers.

4.5.1 NP- and QD-mediated delivery

Due to their unique structure and characteristics, NPs have been considered ideal carriers for therapeutic deliveries for the treatment of pancreatic cancer. Among many NPs-drug formulations, the **PNPs** encapsulating rapamycin for oral nano-scale drug delivery with favorable pharmacokinetics had better therapeutic effects in inhibiting the growth of pancreatic cancer cells [448]. A drug delivery system for improving the treatment for MIA PaCa-2 (human pancreatic carcinoma) pancreatic cancer by encapsulating PHT-427 in single and double emulsions PLGA-NPs (SE-PLGA-427) and (DE-PLGA-427) were developed by Kobes et al. [449]. When studied in a mouse model, compared to SE-PLGA-427, the DE-PLGA-427 showed delayed drug release with a longer retention time in pancreatic cells. The MRI showed a significant decrease in cellularity with both forms of drug-loaded NPs during therapy. The tumor size decreased by 6- and 4-folds compared to untreated tumors. The primary pancreatic tumor was reduced by 68%. The AuNPs (~5 nm size) that were targeted in vitro and in vivo conditions of pancreas cancer were successful in delivering the intended drug [450]. The AuNP-based system delivered Cetuximab and a pro-epidermal growth factor (pro-EGF) antibody. It was well established that tyrosine kinase (TK), epidermal growth factor receptor (EGFR) (ErbB-1), which is overexpressed in pancreatic cancer, suggested a fair strategy for diagnosis and treating pancreatic cancer [451,452].

The mesoporous SiNPs, due to their robustness and biocompatibility, have demonstrated high potential as a drug delivery vehicle against pancreatic cancer. It is also well suited for use as a nano-theranostic agent for bioimaging and treatments. For the targeted delivery of gemcitabine using SiNPs, a previous study in vitro tested the therapeutic efficacy of the nanoformulation against Panc-1 cancer cells. The pancreatic cancer cells showed high levels of CD44 receptors on their surface, which made them insensitive toward chemotherapy and thus were considered responsible for cancer recurrence [453]. The application of another delivery system based on HA-conjugated NPs played an important role. The naturally available polysaccharide, HA, is also the ligand for CD44. The receptor is highly expressed on different cancer cells and has an important role in developing cancer, for driving the interactions between the extracellular matrix, the cancer cells, and cancer metastasis. HA with negative charge prohibits self-agglomeration and inhibits non-specific interactions, as well as binding to the cell surface. The other advantages of HA-sourced NP formulations are their multi-functionality because of HA, and their ability to target and accumulate in cancer cells due to improved endocytosis. The specificity of the endocytosis becomes possible only due to the interaction between HA and CD44 receptors. It resulted in decreased cytotoxicity compared to the free gemcitabine and un-functionalized NPs. Besides the specificity, the mesoporous SiNP nanoformulations also improved drug efficacy through their sustained

release and protection against external stimulations. The progression was controlled through neural-drug-loaded ferritin NPs. The drug-loaded ferritin-NPs were targeted by the passive method. The NPs regulated the microenvironment to control the growth of pancreatic cancer cells. The ferritin-based NPs thus represented an effective and safe delivery route for pancreatic anti-cancer therapy [454]. Besides, the NPs were also recommended for cancer diagnosis as an imaging agent.

The QDs were also found promising in pancreatic cancer diagnosis. The manganese-doped QDs were stable, distributed into an aqueous environment, and quickly mixed with the targeting molecules. The multimodal QDs were identified as diagnostic agents for early pancreatic cancer detection through imaging, thereby suggesting the vital potential of QD as an efficient, safe, and novel imaging system for the early detection and diagnosis of pancreatic and several other cancers [455–457].

4.5.2 Liposomes

The photo-actable multi-inhibitor liposome (PMIL) doped in carrying cabozantinib and a photo-actable chromophore (benzo-porphyrin derivative) were prepared. The antagonist multikinase was used to exhibit light-induced cytotoxicity associated with the photoinitiated continuous release of the drug, and it was employed to inhibit tumor growth and arrest treatmentescaped signaling pathways. The photodynamic disruption to tumor cells and microvessels was found to be triggered by intravenous PMIL administration. The subsequent release of XL184 (cabozantinib, a kinase inhibitor) inside the tumor was initiated, and a single PMIL treatment achieved prolonged tumor reduction in mouse models which also suppressed metastasis in an orthotropic pancreatic tumor model [458]. For improving second-line treatment for metastatic pancreatic cancer, a liposome called MM-398 consisting of around 80,000 irinotecan molecules was used to disrupt the proper functioning of the DNA in cancer cells [459]. A global, randomized, and open-labelled, phase-III clinical trial consisting of nano-liposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer, after previous gemcitabine-based therapy (NAPOLI-1), was conducted. This delivery system improved the pharmacodynamic and pharmacokinetic features of the drug. However, besides that, 5-FU leucovorin (folinic acid) alone increased the overall survivability dramatically than a mixture of M-398 + 5-FU. A "smart" injectable nano-therapeutics entity scheduled to selectively deliver pharmaceutical products was shown to improve the effectiveness of the drug by

200-fold increments. It was based on their ability, both to resist oxidation and to focus at key target locations, that is, to pancreatic regions comprising the cells that produce insulin. The dramatic increase in effectiveness allowed the use of smaller quantities of drugs, significantly reducing toxic side effects and lowering treatment costs. Due to poor delivery, and systemic toxicity many cytotoxic drugs, that is, folinic acid (leucovorin) (folfirinox), FU, irinotecan, and oxaliplatin, have only limited usefulness in treating pancreatic cancer. The localized delivery of chemotherapeutic agents using iontophoretic instruments inserted directly into the pancreas has become feasible. The iontophoretic therapy-based use of folfirinox for the diagnosis of pancreatic cancer in an orthotropic patient-derived xenograft model was described [460]. The growth suppression of mouse-tumor with controls for 7 weeks with folfirinox iontophoretic delivery in contrast to intravenous delivery was significantly greater. Another device for localized, targeted, time and release-controlled drug delivery systems was found to be 12× more effective than the free drug delivered intravenously. The delivery was also compared with two groups of mice carrying transplanted human pancreatic tumors. The device helped in slowing down the tumor progression, and the tumor size effectively shrank. The thin, flexible film made up of PLGA polymer was easy to implant to the site with a minimally invasive surgical procedure. Being flexible, it took a near-spherical shape. Drugs like paclitaxel were embedded into the film, which was released over a pre-programmed interval. The delivery minimized the side effects. Such a film was also used to open the blocked bile duct, be used as a coating for a stent, and was found to help prevent cancer cells from spreading in the duct, and blocking the duct again [460].

4.6 Drug delivery across the placenta

The human placenta is a complex disc-shaped organ, which acts as a connection between the fetus and mother. It is responsible for performing functions like transferring gasses (O₂ and CO₂), supply of nutrients (glucose, amino acids, FAs, electrolytes, vitamins, and water), and waste removal from the fetus and maternal plasma. As the placenta is an endocrine organ, it produces different steroid hormones like the human chorionic gonadotropin, human placental lactogenic peptides, human growth hormone variant, estrogens, and progesterone. Immunoglobulins also cross from the mother to the fetus by pinocytosis to provide passive immunity in the first months of life.

Nearly all the drugs cross the placenta to reach the fetus [461]. However, some drugs had higher concentrations in

the fetal blood, compared to maternal blood. Succinylcholine has an incomplete transfer to the placenta resulting in a higher concentration in maternal versus fetal blood. The drugs transferred from the mother to the fetal blood are carried into the intervillous space and pass through the syncytiotrophoblast, fetal connective tissue, and the endothelium of fetal capillaries. Multiple factors regulate the drug transport through the placenta, that is, thickness, surface area, the presence of drug carriers, metabolism, uteroplacental blood flow, pH gradient of the fetal and maternal blood across the placenta, MW of the drug, and its lipid solubility. Nonetheless, major transport effects were observed for the polar drugs, and their elimination was accelerated. In contrast, the elimination of lipophilic drugs was slowed, and the effect on the structures of amphiphilic drugs was variable. The polar drugs were found to cross the placenta slowly, gets accumulated in the amniotic fluid, where they were found accumulated in the fetal gut lumen. Lipophilic drugs crossed the placenta rapidly, and their trans-placental distributions were dependent on their affinity to the maternal and fetal affinity, which was mainly dependent upon the drug-protein binding on either side of the placenta. The fetus and neonate disposed of all drugs slowly than adults. The most efficient elimination processes involved the drugs' biotransformations as sulfate conjugate, together with active renal excretion [461,462].

4.6.1 Placental drug transfer mechanism

The transfer of drugs to the placenta takes place both through active and passive transporting mechanisms. The drugs, for example, midazolam and paracetamol, were diffused through passive moving, following Fick's law of diffusion. This makes the rate of diffusion/time directly proportional to the surface area of the placenta and the concentration level across it, and vice versa, which is proportional to the membrane's thickness. According to the formula, the rate of diffusion Q is, $Q = k \times SA \times (C1 - C2)/d$. Here, k is the diffusion constant, Q is the rate of drug diffusion through the placenta/time, SA is the surface area of the placental membrane, C1 is the maternal drug concentration, C2 is the concentration of free drug in the fetus, and d is the thickness of the placental membrane. Small MW drugs readily diffuse if the drug is also lipophilic in nature. This opens the way for SLNs, and other lipid-coated vesicles, and carrier systems for facilitated delivery across the placenta. The size of the nanoparticulate material also plays a role. NPs and nanomaterials of size up to 500 nm have been shown to cross the placental barrier in mouse while for the human

placenta the size limit was observed only up to 240 nm [463,464]. The diffusion was also influenced by the pH and pKa of the maternal blood, which further influences the degree of the drug's ionization. Only the non-ionized part of a partially ionized drug passes through the placenta membrane. Most anesthetic medications are improperly ionized in the blood, and thus, easily, unwittingly spread across the placenta. The exception is the strongly ionized neuromuscular blocks, which are also marginal in transmission. An increase in the rate of drug ionization was observed when the pH of the maternal blood varies. The protein-bound drugs do not spread to the placenta. The cell membranes were crossed free and by unbound drugs in a facilitated diffusion transfer, for example, the cephalosporins and glucocorticoids transferred through facilitated diffusion. Transfer of molecules, for example, norepinephrine and dopamine require some energy input like ATP, as it takes place against a concentration gradient. On both sides of the placental membrane, active drug carriers were found which allowed the transport of drugs from mother to fetus and inversely. The distribution and expression of the active drug carriers within the placenta could vary according to gestation. Early studies discovered different active carriers on the placenta including the multidrug resistance proteins 1-3 (for the transport of drugs like HIV protease inhibitors and MTX), and p-glycoprotein (involved in the transport of drugs, e.g., dexamethasone, digoxin, cyclosporin-A, and chemotherapeutic substrates like vinblastine and vincristine). Another strategy for drug transport between fetus and mother is termed pinocytosis in which drugs were completely enveloped into a membrane and were then removed to the other side of the cells [465,466]. Nanodeliveries across the placenta have provided outreach to the fetus with safe drug delivery options during pregnancy through control of placental interaction with the drugs [467].

5 Smart nanodevices: combination of functional variability and site specificity

5.1 Smart drug delivery systems

Smart drug delivery systems (SDDSs) adjust and match the biological environment-driven responses, and function in the body as well as the systems they interact with. These systems also overcome biological barriers for uninterrupted delivery. The SDDS increases the solubility and stability of controlled payload delivery and facilitates on-site release in a desired, chronological pattern. The systems build and maintain adequate drug concentration at the required site along with the reduction in localized and systemic cytotoxicity. New generation transport systems use smart substrates, that is, shape memory polymers with glass transition temperature called switching temperature (T), which needs to be close to body temperature together with the shape-changing capability intact and actionable at desired conditions. Self-folding polymers, which were buildup from multilayers with hinges. or different thermal expansion coefficients, allowed folding upon being triggered in the delivery situations designed for the purpose. The environment-responsive polymers were used for the preparation of delivery polymers with predefined functions and properties to match any single polymer or every polymer in the blend adjusts independently. Different criteria, that is, aqueous environment, drug loading capacity, release kinetics, and degradation influence the suitability of the polymer through its shapememory polymeric action and other inherent characteristics. The systems are optimized for being minimally invasive upon implanting through the incision and are designed to release the drug payload based on self-anchoring. Shape memory polymers were developed for use as potential drug-eluting stents, for example, double-layer systems made of L-lactide, glycolide, and tri-methylene carbonate loaded with anti-cancer, paclitaxel, the biodegradable polymeric cross-linked poly-(ε -caprolactone), and poly(sebacic anhydride) polymer-based delivery platforms. The oligo-(caprolactone-co-glycolide)-methacrylate combined with the drug, and the delivery started at a temperature range between 28 and 42°C as part of the temperature stimulus device. Wischke et al. [468] observed that the diffusion-controlled drug releases separately than the polymer degradations. SDDS has gained ground as a platform of choice for drug delivery to specific sites. The approaches of targeted drug delivery systems including active, passive, inverse, double, dual, combination, and physical targetings are being used very often in therapy, together with temperature, shape, pH, enzyme, physiological conditions responsiveness, and Janus nanosystems and devices, as part of SDDS [469-472].

5.1.1 Passive targetings

For passive targeting, the nano-carrier needs to be antiphagocytic to enable the drug-loaded nanosystems to stay in circulation for a longer period. Normally NPs of size range 10-100 nm layered with PEG were used as a carrier. The passive targeting additionally integrates targeted preparation delivery to the malignant bed area throughout several invasive modalities. The polymer NPs have shown signs of improved retention and permeability upon targeted release in tumor cells. Moreover, the leaky vasculature, in many ways, improves the delivery of anticancer drugs, and the loaded nanosystems. The lymphatic drainage, which was missed in the tumor bed results in drug buildup, thereby supporting the tumortargeting strategies to enable the nanosystem-loaded drug to accumulate from 10 to 100x in additional concentrations than the free drug. However, locally administered drugs led to increased concentrations at the targeted tumor site with reduced toxicity to normal cells. The E1B-55 kDa gene was expanded by attenuating onyx-0115 of type 2/5 adenovirus [473]. It is a complex, and the p53 gene was inhibited by other protein connections. The medication was administered in various ways directly to the malignant cells. The Onyx-0115 has undergone clinical trials through intra-tumoral administration for head and neck cancers [474], by intra-tumoral delivery through endoscopic ultrasound for pancreatic cancer [475], by hepatic artery to metastatic colorectal cancer [476], through intraperitoneal administration to ovarian cancer [477], and by intra-tumoral administration under radiographic leads for advanced sarcomas [478]. Direct delivery has surpassed other modes and has provided benefits in cancer management. The passive targeting (enhanced permeability and retention [EPR] effect) has provided the nano-scale carrier facilitated route to the tumor wherein NPs, liposomes, and SLNs have been employed [479–481].

5.1.2 Active targetings

The active targeting provided precise ligand–receptor interaction for intracellular localizations following the transport and extravasation [482–486]. The active targeting of tumors was achieved through several means. It was targeted through capillary action, specifically to certain tissues and organs, thereby delivering the drug to the specific malignant cell types, tissues, and organs sans the normal healthy cells. Delivering (nano) medication to Kupffer cells is one such example. The approach controls the NPs for targeted delivery to specific sites. The carbohydrate-holding sites required specific receptor antigens. In carbohydrate targeting, an interaction between the tumor cells' binding glycoproteins, selectins, and the cell surface of carbohydrate were used for delivery purposes [487]. NPs holding carbohydrates motifs on their surface

interact with the cancer cells mediated through selectins, and in the process, the normal healthy cells were spared. The NPs uptake through endocytosis, and receptors, and antigens overexpression allowed specific targetings. The surface functionalization by interaction-bydesign approach provided the desired targeting. The ligand-receptor enhanced the delivery kinetics. The drug-coated NPs were internalized by the cells through cytosolic action and were procured in the cells through lysosomal enzymes [488]. The antigens or receptors were also re-processed to the cells' surface after delivery has been complete. The targeted drug delivery system included key biomolecules of antigenic nature, surface proteins, receptors, and other biomolecular motifs. Chemotherapeutic drugs and traditional as well as other/ herbal drugs had been targeted through the active targeting approach [489]. Figure 10 represents the major drug targeting strategies.

5.2 Stimuli responsive nano-carriers

The premature release of drugs, and other payloads from the loaded, and tagged nanosystems have been prevented through targeted release controls. The nanosystems incorporating the characteristics to release their load upon the stimuli were designed for the de-loading process to start and function. NPs and other nano delivery platforms responding to endogenous or exogenic stimuli have been designed on a large scale and tested. The identified endogenous triggers were pH change, charge reversal, enzyme level alterations, and small organic molecules, for example, glucose presence, as well as changes in redox gradient situations, and exposure to the targeted receptor and other biomolecules present at the intended physiological condition sites that are linked to the pathological characteristics of the disease. Opioid peptide-based releases were also observed to activate and intensify in the diseased areas by the exogenous stimuli, for example, temperature, presence of magnetic field, ultrasonication, photo-illuminance, energy pulsation, and high power radiations [490-492]. A number of stimuli-responsive drug delivery techniques are presented in Figure 11.

5.2.1 pH-responsive nano deliveries

The pH is the most frequently used trigger for drug delivery. Different organs have different pH values, and designed carriers are capable of sensitively differentiating between

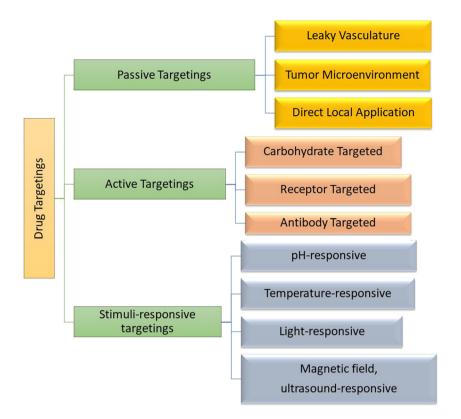


Figure 10: Different types of drug targetings.

delicate pH changes at specific sites, for example, inflammatory, ischemic, and tumor tissue sites. Polymeric micellar delivery platforms were pH-sensitive and were used to improve the effectiveness of cancer chemotherapy. The pH trigger caused the release of the drug after accumulation at the site in response to a slight change in the observed acidic pH of the extracellular tissue fluids. Ternary grafted copolymers, for example, polystyrene, poly(ethylene glycol) methyl ether, and poly-(acrylic acid) were specifically synthesized, and at pH 7.4, stabilized the DOX-containing benzyl benzoate nanoemulsion in water constituting the compact polymeric layer to inhibit any early DOX release. At lower pH 5, the hydrophilic and hydrophobic balance

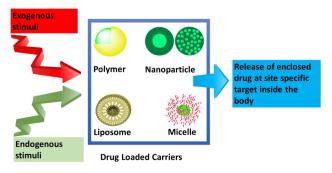


Figure 11: Stimuli responsive/triggered drug release systems.

was disturbed to release DOX from its platform [493]. Acetal-containing pH-responsive polymer-based nano-drug delivery systems have also been developed [494]. High-stability polymers with pH-responsive mechanisms for nano-drug delivery were also reported [495].

5.2.2 Redox-responsive nano-carriers

The redox potential of various tissues in microenvironments is multivariate in nature and was used to model redox-reactive drug delivery systems. Glutathione (GSH)based deliveries were an outstanding approach to optimize the delivery of drugs utilizing the NPs. Such redox signals had been commonly used in the intracellular drug delivery system. A well-known redox mechanism reported for cancer cells is GSH reduction. In contrast, the blood levels of GSH and the usual extracellular matrices redox vary from 2-20 µM to 100- to 500-folds greater than the typical GSH rates inside the cell cancer cells at the same time. A number of approaches including multi-functional nano-carrier, stimuli, and enzyme responsive triggered, and passive and active tumor targetings of nano-carriers to exploit the tumor microenvironment and the on-site redox had been proposed and developed [496].

5.2.3 Temperature and enzyme-triggered nano-carriers

Certain enzymes, for example, glycosidase, lipase, phospholipase, and proteases were manipulated to trigger the biocatalytic function in cancer and inflammatory conditions. The major challenge in an enzymatic drug delivery system was to accurately control the system's initial response time. Another challenge was the higher temperature of the pathophysiological disorders site and biosystem than the normal tissue temperatures, which were utilized as a useful and effective variable to monitor the drug release. Temperature-sensitive nano-platforms of NPs of metallic and polymeric origins, nano-emulsion, and other nano-entities capable of temperature trigger were designed and are reported. The temperature response between 40 and 45°C was also utilized for cancer hyperthermia-related drug delivery through external stimuli of a magnetic field, and ultrasonication energy supply for the trigger release of the drug [497-499]. Additionally, the photosensitive carriers trigger drug release at a single, or repeated light irradiation, as it "opens" and "closes" the nano-platform under programmable command through exposures to the external magnetic field. The spatial regulation with non-invasive stimuli paved the way for targeted, site-specific, time-defined, temperature-sensitive, and payload release control [500-502] delivery options. The regulated release of drugs provided better penetration, bioavailability, biochemical and chemical stability, and increased and adequate drug concentration at the target site on demand through the stimuli adjustments by different types of nano-carriers [503-512].

Based on specific triggers, biocompatible and biodegradable polymers released the entrapped drugs at the designated site according to the pre-fixed delivery cycle and frequency. The phenomenon was maneuvered by the biosystem's specifications for responding to the triggered changes at the site. In this context, the frequently used polymers in developing controlled-release NPs were aliphatic polyesters, for example, PGA, PLA, and PLGA. In addition, the CS and its derivatives were also found suitable for the purpose. CSNPs and mCSNPs, which directed the delivery through tagging of antibodies, and the magnetically driven nanostructures and aptamers, were also used for the purpose. Mesoporous SiNPs also responded as stimuli-responsive nanomaterials to produce smart delivery systems. The biomolecular capping of the NPs pores provided extra reactivity for the biosystem. The intracellular and internal stimuli were used for the removal of the capping to respond to the release of drugs, and other payloads, at the site. The deliveries were met in response to the built-in functional demands from the NPs.

In addition, the optical contrast and magnetic imaging agents were also used to drive the multipurpose drug delivery systems as well as performing the diagnosis through the NP applications [513,514].

The micellar nanostructures, SLNs, and conjugated delivery of anti-cancer agents, that is, DOX, paclitaxel, and MTX, as part of the enhanced performance nanocarriers were reported [515–522]. The immunoliposomal delivery, functionalized PLGA, PLA, and PLGA-PEG NPs for bone delivery were recorded. Lipid-coated, TNF functionalized NPs, prostate cancer-targeted nanosystems, deliveries to the brain, and delivery of antigens, use of dendritic cells, siRNA therapy with sterically stabilized NPs, galactose-carrying polystyrene coated PLGA-NPs for receptor-mediated trans-retinoic acid delivery to the hepatocyte, and poly(hydroxyethyl aspartamide) (PHEAC)based micellar formulations for ocular drug delivery were some of the smart nano-carriers developed for the precise and controlled drug delivery [523-535] options. A list of different drugs delivered through smart nano-carriers is summarized in Table 6.

6 Site-specific organ delivery

6.1 Organ targeting

Targeted delivery dealing with drugs to target-specific organs required a pre-work-out plan on preparation. It also needed to take into consideration the characteristic properties for the site-specificity design of the nanostructured entity, to specifically reach the intended organ's site, and de-load the loaded mass according to the set parameters, and in association with the internal or external stimuli. The feat is considered an additional advantage. The selective drug delivery to specific body sites required exclusively prepared nanosystems after consideration of the selected route. Each body organ has its specific characteristics, requirements, functioning, and biology to deal with the nano-scale drugs and other payload deliveries, as and when that happened.

6.1.1 Eyes

The conventional methods of topical and systemic administration of drugs to the eye are primitive, and the need for controlled and continuous release, particularly for conditions that influence the ocular posterior segment, has profound importance. Different non-implanted and

Table 6: Smart drug delivery nano-carriers used for the treatment of cancers

Drug/active moiety	NP carrier	Cancer/tumor site	Ref.
Adriamycin	Novel pH-sensitive polymeric mixed micelles, PLA, and PEG	Solid tumor	[515]
DOX	Polymer-lipid hybrid NPs	Murine solid tumor model	[516]
	Poly(N - ϵ -(3-diethylamino)propyl-isothiocyanato- ι -lysine)- β -poly(ethyleneglycol)- β -poly(ι -lactide)	Solid tumor	[518]
MTX	HSA	Solid tumor	[517]
Paclitaxel	Trimyristin, phosphatidylcholine, and PEGylated phospholipid	Ovarian and breast cancer	[519]
	PEG-distearoyl phosphoethanolamine conjugate (PEG-PE), solid triglyceride (ST), and cationic lipofectin lipids	Ovarian carcinoma	[520]
Daunorubicin	Biotinylated immunoliposomes, non-covalent (biotin-streptavidin)	Brain tumor	[521]
Ellipticine	Methoxy(polyethylene glycol)-b-poly(5-benzyloxy-trimethylene carbonate	Solid tumor	[523]
MTX, tritium	Non-targeted polymer, folate-conjugated	Epidermoid carcinoma	[524]
Alendronate	PLGA and PEG	Solid tumor	[525]
Docetaxel	Carboxy-terminated PLGA-PEG	Prostate cancer	[526]
Paclitaxel	PLA-PEG	Xenograft tumor model	[527]
Rhodamine-dextran	PLA-PEG	Prostate cancer	[529]
Antigens	PLGA	Bone cancer	[531]

implantable materials and devices have been developed where medications are equipped to deal with specific pre-corneal, fluidic, and other barriers for ocular tissue release of the drug. New, effective, and patient-oriented products and technologies to overcome such barriers and sustain the required levels of drug release to the eves have been developed. In this context, many nano-carriers were formed, for example, nano-suspensions, NPs, nanomicelles, liposomes, and dendrimers. Nano-micelles for ocular anterior segment drug delivery as dexamethasone-loaded nanomicelles made up of copolymers of PHEAC, and PEGylated-PHEAC were introduced [536]. The copolymer of poly[ethylene oxide]-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) as a micellar delivery for transferring plasmid DNA with LacZ gene in rabbit and mice ocular tissues were designed and developed [537]. For posterior ocular drug delivery, cyclosporin-loaded nano micelles for delivery to the rabbit eye were also prepared. Owing to their size, NPs were sought in for the purpose and present an important nano-entity. The use of biocompatible polymeric NPs led to low irritation, allergy, and sustainable drug release avoiding repeated administrations. However, the NPs were quickly cleared from the pre-corneal sacks, and to avoid premature cleaning, the mucoadhesive NPs were introduced to increase the precorneal stopover time [538]. HA, CS, and PEGNPs were commonly used as they provided better pre-corneal habitation times. The quaternized CS, positively charged polymer, has an affinity to bind negatively charged corneal surface, thereby improving the pre-corneal retention time

with increased availability of the drug. In the rabbit eye, Musumeci et al. [539] showed that melatonin-loaded PLGA-PEG-NPs had a significant intraocular pressurelowering effect, and the NPs were more effective as compared to the aqueous solution of an equivalent concentration of melatonin-loaded PLGA-NPs. In a study using Sprague-Dawley rats, 20 nm of particles were rapidly removed from periocular tissues shortly after the application. The fast clearance was considered to be caused by the removal of episcular, conjunctival, and/or other circulatory periodic systems. On the contrary, the particles with a size range between 200 and 2,000 nm were maintained for 2 months after the administration. Hence, NPs with small size were not recommended to be used for delivery, and also for the extended trans-scleral drug delivery to the back of the eye [540,541]. Glucocorticoids, that is, dexamethasone prednisolone and hydrocortisone, widely used for treating eye inflammation were formulated as nanosuspension for better bioavailability [542]. The hydrocortisone (Hc) nanosuspension was prepared (300 nm) by the precipitation and milling process which provided better AUC (0-9h) values of 28.06 ± 4.08 and 30.95 ± 2.2 , respectively, significantly (P < 0.05) higher than that of the HC solution (15.86 \pm 2.7). Prolonged drug action, observed through changes in intraocular pressure, was maintained for 9 h as compared to the 5 h action of the drug's solution. The milled formulation was stable for 2 months and showed no change in size whereas the precipitated formulation yielded 440 nm particle size [543]. Nonetheless, the liposomes provided

near-perfect nano delivery for the ophthalmic application because of their excellent bioavailability, lipidic structure, and capacity to accept both hydrophilic and hydrophobic drugs. The liposomes showed better efficacy for both the frontal and posterior parts of the eye. In the rabbit eye, a single subconjunctival injection of latanoprost-liposomal combination produced a sustained intraocular pressurelowering effect over a period of 50 days compared to the use of the conventional dye drop formulation. The cationic liposomes were more active than the negatively charged liposomes due to the binding of the corneal layer with the later type of liposomes [544]. In an alternate study, in the rabbit eye, liposomes loaded with coenzyme Q10 (CoQ10) and coated with mucoadhesive TMCS, resulted in 4.8-fold improvement in the pre-corneal residence time for tests on delaying selenite-induced cataract, which was observed to be delayed with the coated liposomes [545]. Also, the posterior segment delivery showed liposomes' decreased cleaning from the vitreous humor and prolonged drug release from the liposome-bound cyclosporine [546]. Tacrolimus (FK506) and infliximab liposomal formulation showed improved effectiveness in the suppression of uveoretinitis compared to the medication alone and reduced sensitivity in internal retinal cells [547,548]. Different preparations of liposomal NPs have been investigated for ocular drug delivery, and some are now commercially available, while others are in clinical and pre-clinical trials. PAMAM dendrimers are also widely used as ocular drug transport platforms for the transport of tropicamide and pilocarpine nitrate for miotic and mydriatic activity in albino rabbits [549]. Ocular gene delivery through liposomes [550], the role of viscosity, and particle size of ophthalmic suspension have also been investigated [551]. A recent review summarizing the formulation approaches, and state-of-the-art on patents is also available [552]. Figure 12 presents the different nano-structures involved in ocular drug delivery.

6.1.2 Dental area

Polymer and microparticulate hydrogels have so far been used. Their physicochemical characteristics and the properties gained as constituents of the formulation, influence the drug's distribution, availability, and release profile. Compared to microspheres, microparticles, and emulsion-based drug delivery systems, the NPs provide several benefits, including strong aqueous dispersibility, availability, absorption, controlled release profile, and greater stability. NPs penetrate inaccessible dense periodontal pits due to their size and reduce the drug administration frequency. PNPs synthesized using micellar polymerization resulted

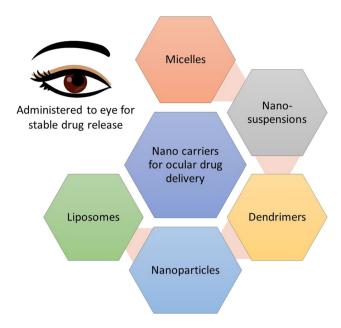


Figure 12: Smart nano-carriers for ocular drug delivery.

in a nanoparticulate powder suitable for dental applications [553]. NPs penetrate inaccessible dense periodontal pits due to their size and reduce the drug administration frequency. Another dental delivery nanosystem using emulsification—diffusion preparation method providing triclosan-loaded polymeric PLGA, PLA, and cellulose acetate phthalate NPs were developed, which crossed the junctional epithelium for use in periodontal defects in dogs. Triclosan delivery was achieved for a longer period. The site-directed and site-specific deliveries using micro/NP solutions to the root canal cavity and periodontal pocket allowed the reduction of therapy sessions for clinicians and acted as an adjuvant for surgical events for teeth protection [554–556].

6.1.3 Heart

For treating cardiovascular diseases, the endothelium is considered a vital target for drug delivery. Several pharmacological interventions for endothelium treatment are available, which also include nano-scale interventions. There are many heart-targeted nano-scale drug delivery systems, for example, dendrimers, liposomes, and NPs made from materials like TiO₂, cerium, polymeric, and SiNPs. Polymeric drug conjugates, microbubbles, nano-coated stents, and micelles have also been used [557–563]. Cardiac-targeted ligands when conjugated on dendrimers' surface resulted in therapeutic entities, for example, poly-amidoamine dendrimer-based polymeric material in

conjugation with chemically functionalized nucleosides, which were found to enhance cardioprotective potency by the activation of the A3 adenosine receptor (A3AR) that exists on the cardiomyocyte surface [564]. S-Nitroso-N-acetyl penicillamine-modified polyamide amine fourthgeneration dendrimers (G4-SNAP) were prepared to decrease I/R (ischemia/reperfusion) injury in rat hearts. It was found that GSH increased the production of NO resulting in the protection of the heart tissue from radical oxidation [565]. The dendrimer complexes were also conjugated to the DNA using the electroporation technique to increase the transfection efficiency in mouse cardiac grafts [566]. The development of liposomal carriers for heat treatment, upon preparation, yielded liposomes loaded with ATP and intended for anti-myosin antibodies. In rat hearts before global ischemia-reperfusion, the formulation delivery resulted in improvement of contractile recovery [567]. Treatment with immuno-liposomes containing vascular endothelial growth factor and conjugated with anti-P-selectin resulted in significant improvement of cardiac functions and vascularization due to the overexpression of P-selection in the damaged myocardium [568-570]. The liposomes were also modified to target angiotensin II type-1. The results showed that after systematic administration in vivo, the NPs were able to transport the active substrate to the affected heart tissue [571]. The functionalized SiNPs were used to target drugs to the heart [572]. Stable magnetic NPs and adenoviral vectors were delivered into the infarcted heart for treating acute myocardial infarction. Nanomaterials using cerium oxide, CeO2, NPs for protection of the heart against inflammatory and oxidative injury caused by monocyte chemotactic protein-1 were prepared and tested [573]. The atherosclerotic burden related to exposure to standard diesel fuel was treated with CeO₂ NPs [574]. The biodegradable polymer-based stents were engineered to prevent re-stenosis before implantation, and stents were in situ degraded after the repair has been performed [575,576]. The PLA stents provided reduced inflammation and long-lasting results in a porcine model [577]. However, the polymer-based stents have poor structural strength, and to remedy this shortcoming, the bio-resorbable stents are now preferably synthesized from metallic and plastic alloy (plastic bends) materials. The magnesium stent was accepted and adopted within the first 3 weeks of implantation [578]. The ceramic nanoporous aluminum oxide coating and its suitability as a carrier for immunosuppressive drug tacrolimus delivery were established. The spongy aluminum oxide-coated stents encapsulating the drug inhibited neo-intimal growth [579]. Moreover, the ultrasound-targeted microbubble destruction technique was proved as an excellent proprietor for gene

and drug transport on an experimental basis [580,581]. Deep venous thrombosis, acute coronary syndromes, the remission of arterial ischemia, and acute ischemic strokes were treated using microbubbles [582-584]. The roles of synthetic polymers have grown exponentially due to their versatile nature and capability to provide on-demand nanocarriers with desirable properties for delivery to almost all organs, and areas of the body. The size-control, inherent characteristics incorporated in the nanosystems, and surface modifications are comparatively feasible in synthetic polymers due to their structural specifications when compared to natural origin polymers, and this has made these polymers polymers-of-choice for preparing different kinds of nanosystems, delivery, and diagnostics uses [585,586]. Computational and numerical simulations on nano-hemodynamics, and nano-drug delivery, respectively, have also been recently attempted [587,588]. The nano-designed entities including nano-scale biomaterials prepared for the purpose have demonstrated their preventive and therapeutic advantages for diagnosing and treating cardiovascular disorders. The designed delivery platforms have targeted and removed coronary artery plaques, protected arterial damages caused by stenosis as well as arterial occlusion. The NPs have successfully minimized reperfusion-related injuries and have contributed to myocardium recovery through the targeting of cells, biochemicals, and paracrine factors delivery after the myocardial infarction [589]. Figure 13 represents nanocarriers employed for drug delivery to the heart. A listing of metals and major synthetic polymer-based nano-carrier systems are provided in Table 7.

6.1.4 Lungs

The pulmonary/nasal route is amply favored by the fact that the lungs can provide a vast (100 m²) but extremely thin (0.1–0.2 µm), absorbing mucosal membrane area, together with an adequate supply of blood. The route is a non-invasive procedure for the delivery of treatment agents, and also for peptides and proteins. Nevertheless, recent developments have shown high potential. Nonetheless, the pulmonary distribution of proteins and peptides is hindered by the impact of the respiratory temperament, and the complicity of the human respiratory system's anatomic forms. The drugs were delivered to the pulmonary route using two techniques, that is, intratracheal instillation and aerosol inhalation which was used in intranasal applications. The increased distribution, with a deeper penetration in the alveolar region, or the periphery of the lungs was reached by aerosol technology. However, this is more expensive and makes it difficult to measure

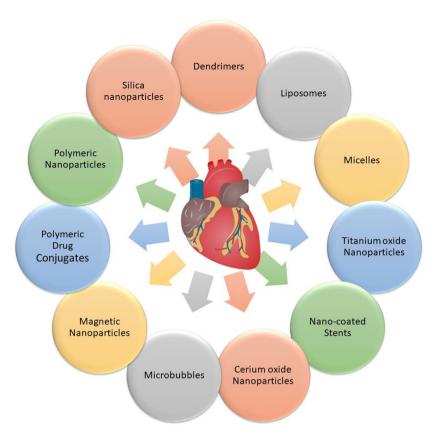


Figure 13: Nano-carriers for drug delivery to the heart.

the exact dose inside the lungs. By comparison, the production is much smooth, less costly, and the delivery of medications is not standardized. There are three common ways to deliver aerosols, jet or ultrasound nebulizer, inhalation metered doses, and inhaling of dry powder. For aerosol delivery, metered-dose inhalers are commonly used. The dry powder inhalers were designed to deliver drug/excipient powder into the lungs. Most aerosols use a chlorofluorocarbon (CFC) propellant. However, in the midnineties, efforts were made to use enviro-friendly hydro fluoroalkanes (HFAs: HFA-134a, and HFA-227), an alternative to ozone-depleting CFC. Advances in pulmonary and nasal delivery employing nano and microparticles, hydrogels, liposomes, and dry-coated powders have been recently reviewed [590,591].

6.1.4.1 Intra-tracheal inhalation

The NPs intratracheal noninvasive delivery provides deep alveolar reach to the delivered drug with better biodistribution, drug deposition, and residence time. The NPs, by their physicochemical characteristics and surface modifications, provide favored drug bindings leading to enhanced therapeutic effects at the cellular and molecular levels. The site-specificity provides higher drug concentrations, amplified signals for imaging purposes, and protection against secondary organs exposure [580]. The successful delivery of AuNPs, supported the delivery of temozolomide (TMZ), also as liposomes against induced lung cancer which demonstrated the superior drug distribution, deeper penetration of the dose, and probable synergistic actions of the AuNPs, TMZ, and the liposomes to produce therapeutic effects [592,593].

7 Nanovaccine delivery: COVID-19

NPs have been used for the delivery of anti-viral medications. Examples of AuNPs conjugated to certain viruses that successfully activate macrophages, interferon production, and enhanced anti-viral immunity are well known. The RNA and ferritin-based NPs were used as molecular chaperons to elicit strong T-cell responses toward promoting interferon production. The developed polymeric NPs injectable hydrogel system had the capability for sustained antigen release [594]. The hydrogel, which stabilizes

Table 7: Metals and synthetic polymer-based nanosystems

p-NIPAM	Particle size (250 nm)	NP monomer showed cell viability over 80% at a concentration equal to or less than 0.3 mg/mL	[104]
Magnetic NPs	Particle size (10–50 nm)	Magnetite NPs showed less toxicity on the living bacteria cells compared to control	[108]
Silver oxide	Particle size (10–50 nm)	AgNPs were confirmed by optical absorption, transmission electron microscopy, X-ray diffraction, and X-	[117]
		ray photoelectron	
r oxide	Particle size (20–50 nm)	Developed NPs produced high anti-bacterial potential	[118]
	Particle size (10–20 nm)	Gold nanowires formed at the higher concentration of gold ions in the aqueous solution	[130]
-	Particle size (10–60 nm)	Performed sequencing of 16S rRNA gene demonstrated the strain of isolated Bacillus as megaterium	[154]
oxide	Particle size (70 nm)	Increased inhibitory effect as the concentration of ZnO NPs increased	[156]
-	Particle size (10–25 nm)	Nitrate reductase-mediated synthesis of AgNPs from AgNO ₃ was developed	[171]
æ	Particle size (50–100 nm)	Significantly improved the anti-Staphylococcal activity of bacitracin and kanamycin sulfate	[186]
۱, PEG	Drug loading (44–80%)	The optimized NPs showed higher ocular tolerability in rabbit eyes using bio-microscopy	[236]
	Particle size (100-400 nm)		
	Zeta potential (–32 mV)		
, PLA, CAP, PVAL	Drug loading (6.04 wt%)	Triclosan released fast from NPs for periodontal treatment in dogs	[555]
	Particle size (82.4 nm)		
	Zeta potential (–19 mV)		
PLGA	Particle size (100–200 nm)	Significantly reduced the inflammatory cell infiltration in the vessel walls of rabbit iliac arteries relative	[222]
	Fungal strain Silver oxide Cells-free extract Gold Strain Bacillus Silver Escherichia coli Zinc oxide Nitrate Reductase Silver Bacitracin Silica Kanamycin PLGA, PEG Triclosan PLGA, PLA, CAP, PVAL	e, CAP, PVAL	Particle size (20–50 nm) Particle size (10–20 nm) Particle size (10–60 nm) Particle size (70 nm) Particle size (70 nm) Particle size (70 nm) Particle size (10–25 nm) Particle size (10–400 nm) Zeta potential (–32 mV) Particle size (82.4 nm) Zeta potential (–19 mV) Particle size (82.4 nm) Particle size (100–200 nm)

the antigen, was suggested to be made of a mixture of hydroxypropyl methylcellulose derivatives, HPMC-C12, and poly-(ethylene glycol)-b-poly(lactic acid). The antibody titers remained high against two common variants, B.1.351 (South Africa) and B.1.1.7 (United Kingdom). The single-dose vaccine doubled the dose of all the components and produced higher titers than the double-dose and two-dose single-component hydrogel group. The hydrogel-based vaccine has potential and the dose sparing will be helpful in difficult global transportation. In this context, it would be pertinent to discuss the development of a high-density microarray patch for delivering the SARS-CoV-2 vaccine through the skin patch, which resulted in stable and effective vaccine formulation [595]. Moreover, the prospects of QD and other nano-structured entities have the potential to be developed as biosensors to detect COVID-19 instead of the slow polymerase chain reaction technique. Toxicity-related issues are also at the forefront in the diagnosis and therapy of COVID-19 infections through nanotechnical means [596–599].

8 Safety and toxicological concerns

The understanding of the hazards and safety issues due to the use of nanomaterials has started to emerge explicitly. Both *in vivo* and *in vitro* toxicity evaluation methods are available. Functional and viability in vitro assays gauge the effects on cellular processes while the in vivo methods check for cellular level fatalities, mitochondrial damage, BBB destruction, cell viability, histocompatibility, tissue and organ damages, allergy, skin rashes, and overall adverse effects. The in vivo methods utilize animal models, that is, mice, rats, guinea pig, zebrafish, including oyster, fish, bacteria, and microalgae. The DNA synthesis and DNA damage, altered gene expression, immunogenicity, cell proliferation effects, exocytosis, hemolysis, apoptosis, necrosis, and metabolic and oxidative states changes, together with dose and LD50 effects are some of the *in vivo* conditions and parameters to evaluate the toxicity of nanomaterials [600].

The inherent characteristics of size, charge, high surface area to volume ratio, ability to pass through the cell membrane, ability to evade the immune system, enter the circulatory apparatus, reach organs and interact with biosystems have posed an enormous threat concerning toxicity generation and elicitation by nanomaterials. These materials and nano-scale metal entities are more toxic, and this includes arsenic, cadmium, other hazardous elements, and material nanostructures. Exposure to nanomaterials

is almost unavoidable. The nanomedicinal and nanopharmaceuticals' threats are inherent in their latent toxicity, also resulting from dose mismanagement, drug adverse reactions, and nano-scale implications of the formulation. The understanding of the nanomaterials' effects on the body is critical before its clinical use. Nanotoxicology research has gained momentum and answers to safety and toxicity are being continuously investigated. The inhalation, dermal contact and ingestion, intravenous delivery, implants, and skin penetration for therapeutic purposes have provided nanomaterials entry to the body, to a maximal extent through the bloodstream, from where it reaches all vital organs, lymphatic areas, circulatory system, brain, lungs, liver, kidneys, gastrointestinal tract, tissues, and gonads (Figure 14). However, the extent and outreach concentration may differ based on affinity and accumulation of the nanomaterials in specific organs. The encountered biomolecules adhere to the surface of the exposed nanomaterials and generate protein corona, which was investigated with fluorescence correlation spectroscopy and AFM. The protein corona was formed by interactions of metal NPs, that is, gold, silver, and proteins. The metal oxide NPs induce oxidative stress, immuno-response, and apoptosis [601]. The polymeric nanomaterials, especially the nano-encapsulated, and the constituent polymers' toxicity is dependent upon the size, shape, dispersity, tunable properties, surface coating on the nanomaterial, shell's characteristics, and pay-load delivery mode and carrier [602,603]. There are ways to detect and determine the nanomaterials' cellular toxicity, oxidative stress, immuno-toxicity, genotoxicity, and cell death induced by the in vitro present NPs [604]. Among the suspected and serious toxicity, cellular and genotoxicity are prime concerns. In this context, the extra hazardous role of NPs, especially metal NPs cannot be overlooked, due to their catalytic character and high reactivity. The potential of toxicity and extent of exposure determines the risk assessment paradigm through the dose–response relationship [605].

8.1 Nano-entity sizes, cellular-uptake, and toxicity

The normal protective mechanisms of the biosystem do not provide an effective defense against nanomaterials. The macrophagic cells uptake larger PEGvlated nanoentities more efficiently than smaller-sized nanomaterials. The accumulation of these nanomaterials is responsible for much of the nanotoxicity. The size of an NP has substantial effects on their interactions with living cells and

influences the absorption efficiency, and intracellular localization of the nanomaterial leading to adverse reactions and cytotoxicity. Despite extensive efforts, the reliable correlation between the cellular response(s) and NPs' size is not possible. Drawing broad inferences from a wide array of NPs and a complicated mix of biological probes is still untenable. However, the NPs' endocytosis occurs regardless of the particle size. The NPs' uptake differs based on the NPs' size and the cell type as well as the surface features of the cell. NPs in general are more likely to be internalized by passive uptake [606].

The size of NPs affects their circulation, biodistribution, and clearance. The size facilitates better intracellular absorption by passing through the openings of the tight junctions, and consequently, NPs have been delivered across the BBB to treat brain diseases, that is, Parkinson's, Alzheimer's, and gliomas. The medications encapsulated or tagged to NPs were quickly released, also owing to their concentration at or near the particle surface, in addition to their other encapsulation models, that is, core-shell. The smaller NPs have a longer $t_{1/2}$ than the larger ones [607]. The activation in the bloodstream cleared them from the body in a faster manner, which was being collected in the liver and spleen. A 50 nm size is the observed optimal size for cellular uptake as experimented in the thermodynamic models and several experimental tests. Additionally, NPs less than 20 nm

penetrated the tumor. According to the observations on cellular uptake, 37 nm size had been suggested as the optimal requirement for MRI core diameter [608]. Figure 15 shows the reported optimum NPs' sizes for cellular uptake. Lipidic and polymeric NPs have a diameter range of ~100 nm entailed for internalization. The metalbased and polymeric NPs were recorded to have the size of 3–50 nm for cellular uptake [609–613].

The SPION were demonstrated to disrupt and suppress stem cell differentiation and activate the synthesis of signaling molecules, tumor antigens, formation of lysosomes, disturbed cell functioning, and are known to stimulate the synthesis of IL-8, an inflammation mediator. The SiNPs were also implicated in enhanced expressions of IL-1 β and TNF α [614].

Another category of nanomaterials, the QDs are nanosized (2–10 nm) particulate material, also considered artificial atoms, are semiconducting in nature, and possess fluorescent properties. The QD bonding through covalent and non-covalent interaction to the drug molecule for delivery and therapeutic purposes was achieved by passive transport, facile delivery, and active transport. The QD outer shell surface provided conjugation increases aqueous solubility and reduces the toxicity of the QDs. The QD toxicity was found to be dependent upon the size, material used for production, dose, mode of administration, and the chemical composition of the outer capping.

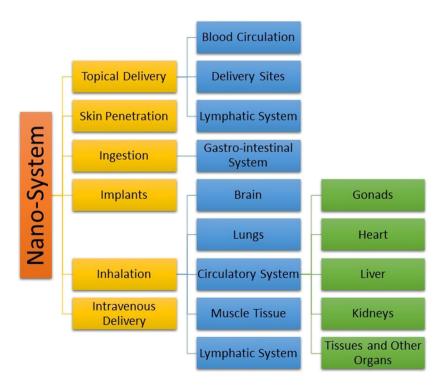


Figure 14: Nanosystem exposure routes and uptake organs.

The QD toxicity was considered to be generated due to the leakage of free metal ions, for example, cadmium, and arsenic, upon oxidative stress. The QDs were absorbed by mitochondria, cause changes in organ histology, and malfunction [615,616].

The toxicity of CBNs, single and multiple-walled CNTs, graphene, reduced GO, and other graphene-based nanomaterials have also been conjectured of probable adverse reactions and were investigated for interactions with the biological environment, toxicity in Caco-2 and MCF-7 cell lines, and their involvements in organ toxicity [617–624]. Formation of protein corona on the graphenes materials' surface, flocculation and aggregation in the tissue and organs' site owing to the colloidal nature of this genre of nanomaterials, and immunological and inflammatory responses by biological entities, organs, and tissues to the graphenes entities, membrane toxicity, disruptions, mutagenicity and suspected genotoxicity, and accumulation in organs were recorded. The graphene toxicity depends on their lateral size, dose, and surface charge. The toxicity has been contained with polymeric conjugation, coating, imprinting, and embedding in biocompatible polymers, that is, CS, PEG, ethylene-diaminemodified-poly-isobutylene-maleic-anhydride, polyurethane, PEI, PPI, and PAMAM and their derivatives, wherein some of these polymers supplement in the delivery of the drugs and gene, and are uptaken by cells for therapeutic purposes [625–631]. The materials also promote cell growth, attachment, and damage. The GO caused a decrease in cell viability and was responsible for inducing mutagenesis [632] and lung injury through autophagy [633]. Doses >10 mg/mL were suggested to lead to acute lung injury and cause

chronic pulmonary fibrosis [634]. Critical analysis of graphene materials' toxicity [635], reviews observing the toxicity [636,637], and recent information (ca. 2020) on toxicity data [638] are available to chart further course in nanomaterial toxicity and adverse impact in conjunction with the delivery of the material and targeting in therapeutics and diagnosis in the biomedical field.

8.2 Nanomaterials and organ toxicity

The organs outreach and biodistribution of the nanomaterials to different sites produce a number of disease conditions. Neurological disorders including Alzheimer's and Parkinsonism's, asthma, bronchitis, emphysema, and cancers in the brain and lungs are suspected. The circulatory system and heart were pointed for atherosclerosis, vasoconstriction, and arrhythmia, and death, respectively. Kaposi's sarcoma of the lymphatic system, glomerular swellings, renal cells necrosis, Basilar membrane thickening in the kidneys, allergy, itching, dermatitis, and auto-immune diseases are suspected to have developed from the skin and topical implants nanomaterials interactions. Crohn's disease and colon cancer in the gastrointestinal tract, tissue degeneration, stromal cells damage in bones, ovarian lesions, sperm abnormality in gonads, and sequestration, accumulation, sub-cellular damage, inflammation, oxidative damages to the liver are known (Figure 16) [639-641]. As for the nanomaterial toxicity to reproductive organs is concerned, the liver and reproductive system toxicity have been studied in detail. Females

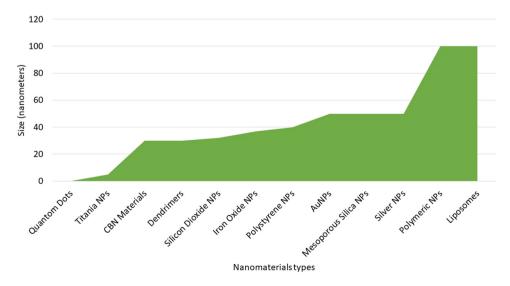


Figure 15: Comparative nano-scale (optimum) sizes of various nano-carriers for cellular uptake.

Figure 16: Suspected and confirmed diseases from nanomaterial uptake.

were reported to be more vulnerable to toxicity affecting the reduction capacity and fetal development. The germ cells in men were particularly affected which included the testis. As for the nanomaterials' toxicity to reproductive organs is concerned, liver and reproductive system toxicity were studied in many details, and the females were reported to be more vulnerable to toxicity affecting fetal development. The germ cells in men are particularly affected. The toxicity was related to the nanomaterial types, their concentration, route to reaching the reproductive system, and the animal species. The impact on the primary target organs (first encounter and impact) and

the secondary organs is decisive in the toxicity elicitations. Toxicity generated with metal and metal oxides and polymeric nano-entities is well-recorded [642–644].

The toxicity of lungs by nanomaterials leading to bronchitis, emphysema, cell necrosis, and cancer is thought to be caused by alveolar-I type cells membrane perforation, inflammation, nano-particulate matter's cell entry, membrane lipid peroxidation, cell membrane high fluidity, and generation of ROS. The nano-entities ~50 nm sizes and the QDs perforate the membrane much easier and cause severe damage. The nanomaterial toxicity leads to interferences with cell differentiation and protein synthesis,

disrupts intracellular transport, cell migration, tubulin polymerization, formation of adhesive complexes, damage to the cytoskeleton, and neovascularization [645].

The primal involvement with the liver which accumulates and sequesters up to 30-99% of all the administered larger-sized (> $100\,\mathrm{nm}$) NPs through the systemic circulation, in turn, lowers the nanomedicine, nano drugdelivery quotients to the intended organ, and thereby introduces liver toxicity. Typically, a ratio of under 5% nanomaterials, especially NPs, was delivered to the intended diseased site. The Kupffer cells, endothelial, hepatocyte, and other cellular masses of the liver were found to be involved in producing liver toxication [646]. The liver damage is caused by elimination of Kupffer cells, increase in cytokine release, TNF- α , and IL-1 involvement. The engagement of various receptors and biomolecules

including the hepatic proteins and disturbances to the hepatic metabolism are undertaken during the process involving the nanomaterial interaction. Internal toxicity removal involves renal, hepatic, and mononuclear phagocytic systems. Depending upon the type and composition of the nanomaterial, which includes zinc, gold, silica, manganese, iron, and cadmium, silver citrate and gadolinium were variably excreted into the bile, and from there are transited through the bile ducts, and to the small intestine for excretion. The metal and metal oxides inorganic NPs with biocompatible surface chemistries with and without biodegradable, nearly surface interaction neutral nanomaterials were eliminated intact. The degradable nanomaterials form aggregates, reduced-sized remnants, ionic disposition as well as metal-protein complex to be removed [647]. The contribution of polymeric nanomaterials, including

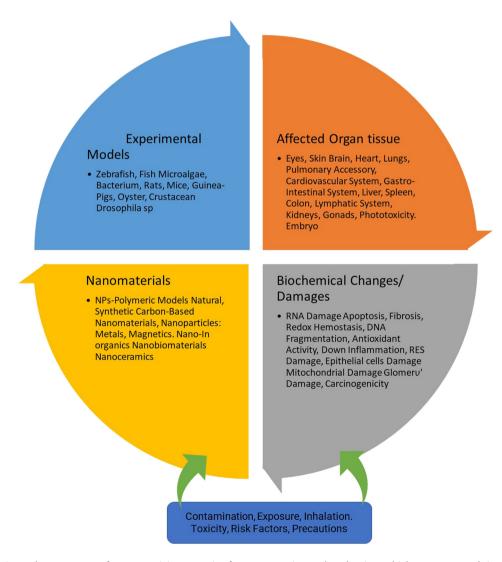


Figure 17: Toxicity cycle components for nanotoxicity causative factors, experimental evaluation vehicles, organs, and tissues toxicity, and probably effected biochemical changes and observed damages.

Table 8: Major commercial nano-products

Company	Product	Drug and carrier	Тһегару	Significance
AMAG	Feraheme™	Ferumoxytol: SPION-PGSCME	Iron-deficient chronic kidney failure	Prolonged, and decreased dose release
Amgen Acorda	Neulasta [®] Zanaflex [®]	Filgrastim: PEG–GCSF protein Tizanidine HCl: nanocrystals	Neutropenia in oncotherapy Muscle relaxant	Plus protein stability Increased availability,
Biogen Bausch & Lomb	Plegridy [®] Visudyne [®]	Interferon-β1a: PEG Verteporfin: liposome	Multiple sclerosis Myopia	uectedaed dose Improved stability Enhanced site-directed
Celgene	Macugen [®] Abraxane [®]	PEG-Aptanib: PEGylation Taxol®: ALB NPs	Macular degeneration; neovascular-aging vision loss Breast cancer; non-small cell lung and	pnotosenstrive delivery Improved stability Enhanced site-specific delivery
Chiesei Farma	Curosurf®	Proteins SP-B and SP-C: liposome	pancreatic cancers Stress disorder, respiratory distress syndrome	Decreased toxicity, increased delivery
Enzon Eagle Pharma Galen Genetech	Oncaspar [®] Ryanodex [®] DaunoXome [®] Pegasys [®]	ı-Asparaginase: PEG Dantrolene sodium: nanocrystals Daunorubicin: liposomes Interferon-α2a: PEG	Acute lymphoblastic leukemia Malignant hypothermia Kaposi's sarcoma Hepatitis B and C	Improvéd stability Higher dosing Increase delivery, decrease toxicity Improved stability
Gilead Sciences Hoffman-La Roche Janssen	AmBisome® Mircera® Doxil® Invega®	Amphotericin B: liposomes Meth-PEG: ß-epoetin DOX-liposome Paliperidone palmitat: nanocrystals	Infections; fungal, protozoal Anemia due to renal failure Ovarian cancer, Kaposi's sarcoma, multiple myeloma Schizophrenia	Reduced nephrotoxic Improved stability Increase delivery, less toxicity Controlled release
Lupin Atlantis MagForce Merck	Iricor Nanotherm [®] Pegintron [®] Emend [®]	renonbrate: nanocrystals IONPs: amino silane coat <i>Interferon-</i> α2b: PEG Aprepitant: nanocrystals	Hyperlipidemia Brain tumor Hepatitis C Anti-emetic	increased availability Heat therapy to destroy tumor cells Improved stability Increased absorption, and bioavailability
Merrimak Nanopharm Cermisphere Novavax	Onivyde [®] Nanocomposite Patch Estrasorb [™]	Irinotecan: liposomes Lidocaine: SiNPs Estradiol: micelle	Pancreatic cancer Topical delivery, wound management Menopause hormonal therapy	Increased delivery Faster pain relief Sustained release
Onco TCS Pacira Pharma Pfizer QLT Ophthalmics Sanofi	Marqibo [®] DepoDur [®] Somavert [®] Visudyne [®] Renagel [®]	Vincristine: liposomes Morphine sulfate: liposomes PEG-visomant HGH receptor antagonist Verteporfin: liposome Sevelamer HCL/CO ₃ -poly(allylamine) HCl	Acute lymphoblastic leukemia Prolonged release Acromegaly Ocular diseases, macular degeneration Chronic renal diseases	Increase site-specific delivery, less toxicity Post-operative loss of pain Improved stability Improved retention time Increase delivery and circulation time

(Continued)

Table 8: Continued

Company	Product	Drug and carrier	Therapy	Significance
Sanofi Aventis	INFeD [®] Iron; Dexferrum [®] Iron	INFeD [®] Iron; Dexferrum [®] Iron dextran (low and high MW) Iron	Chronic kidney failure with iron deficiency	Increased dose-load
Sigma-Tau	Abelset	Amphotericin-B: lipid liposome	Anti-fungal	Reduced toxicity
	DepoCyt [©]	Cytarabine–liposome	Lymphomatous meningitis	Increase site-specific delivery,
	Adagen®	Pegademase bovine–PEG–adenosine	Immunodeficiency disease	Improve circulation time lesser
		deaminase enzyme		immunogenicity
Stryker	Vitoss [®]	Calcium phosphate-nanocrystals	Substitute for bone	Bone structure mimic by cell
				adhesion, growth
Teva	Copaxone [®]	Glatopa-AA copolymer	Multiple sclerosis	Regulated clearance
Tolmar	Eligard [®]	Leuprolide acetate: PLGA	Prostate cancer	Prolonged delivery and
				circulation time
UCB	Cimzia®	Certolizumab: PEG	Crohn's disease, rheumatoid arthritis,	Increase stability and
			spondylitis	circulation time
Wyeth	Rapamune [®]	Sirolimus: nanocrystal	Immunosuppressant, transplant rejection	Increased bioavailability

AA copolymer: Legutamate, Lelanine, Lelysine, and Letyrosine random copolymer; GCSF, granulocyte colony-stimulating factor; nanocryst, nanocrystal; PGSCME, poly gluco-sorbitol carboxymethyl ether.

synthetic and naturals, to oxidative stress, inflammation, genotoxicity, reproductive gonadal toxicity, and hemocompatibility is mediated through various biochemical route disturbances, receptor interactions, and enzymatic reactivity at the polymeric nanomaterials interaction sites. Both in vivo with different animal models and in vitro toxicity evaluations against a number of cell lines, biochemical substrates, and corresponding biomarkers have been reported [602–604].

Toxicity evaluations, concepts and requirements in preparative designs, size and shape control, materials' characterizations, biodistribution, metabolism, degradation, and degradant interactive potential, pharmacokinetics interactive trends in toxicity elicitations, the toxicokinetics, interactions at the site and during transport, and systemic and body clearance are among the details that contribute toward designing safer nanomaterials. The starting springboard to formulation development is embedded in the toxicity generation understanding whereby the safety-by-design approach, molecular modeling, computational assessment, and methodically safe-by-design approach are worth mentioning [648-650].

The RES blockages by nanomaterial design-approach preparation, especially for liposomes, have been reported to increase the nanomedicine's efficacy [651].

A toxicity cycle depicting components of nanotoxicity causes, experimental evaluation vehicles, organs, and tissues toxicity, and probably effected biochemical changes and observed damages from the nanomaterial exposure are illustrated in Figure 17.

Nano-based biomedical commercial products

Nanotechnology has tremendous commercial value, and the global nanomedicine market is expected to reach US \$261 billion by 2023. Major nano-medicinal and nanopharmaceuticals segments are drug delivery and therapeutics, imaging, implants, nano-devices, regenerative medicine, topical formulations, and vaccines. The category of products represents all pathological classes including for oncology, cardio-vascular system (CVS), infections, orthopedics, neuronal diseases, urology, ophthalmology, and immunity boosters. A number of major products available in the market are listed (Table 8), which is not a comprehensive listing since products are continuously under development, clinical trials, and patenting where the liposomal formulations are a major share [652-654]. About 1,121 products from 414 companies and 45 countries are listed at the nanotechnology product database [655] either under nanomedicine categories, which are approved or under clinical evaluations. The emulsion, liposome, and oncological products dominate the market share. Diagnostics and bone substitutes form the major part of applications for commercialization purposes [656].

10 Conclusions and prospects

Nanostructured materials vary in characteristics and applications due to their inherent starting raw materials' physicochemical properties, intricate preparation methodologies, and on-demand designated surface functionalization to impart the designed characteristics and site-directedness, together with biocompatibility and biodegradability to the nano-scale functional materials. The use of natural and synthetic polymeric raw materials has immensely contributed to the biocompatibility and biodegradable behavior of nano-carriers. The metallic, non-metallic, and hybrid, that is, metal-polymer and non-metal-polymer, nano-structured entities have provided properties-bydesign characteristics to specifically targeted, singular, and multiple-use nanomaterials, both in delivery for diagnosis and treatments. The first generation (simpler, non-functionalized), and second-generation (singularly functionalized) nano-carrier have gained ground in advancements with the preparation and bioapplications on experimental and clinical settings. The third generation nano-carriers (doubly functionalized) for simultaneous site-specific and trigger-response mechanisms upon delivery are coming of age, and extensive preparation techniques modification and developments have taken place, together with bioapplications which are in an advanced stage of improvement and expansions. The multiply functionalized dual-use, both for therapeutic and diagnostics purposes nano-carriers are starting to take shape in the realm of preparation, functionalization, and applications. The fourth-generation nano-carriers have attained the characteristic of crossing over bio-barriers, which is a critical future need.

Further developments for various types of nanocarriers, that is, CNTs, graphene roll-up, molecular cages, proteins, antigen-antibody, and hetero and homo polymer-based attached and embed, as well as encapsulating nano-structured materials are the areas needing further attention according to the delivery specifics for the tissue, organs, and disease conditions. Another area needing attention is to address the development drawbacks of reproducible bulk synthesis of nanomaterials, much required for clinical evaluations, and subsequent commercialization.

Acknowledgement: Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project. Authors also thank their respective institutions for support and facilities.

Funding information: Qassim University is acknowledged for funding the publication of this project.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

- [1] Crow MM, Sarewitz D. Nanotechnology and societal transformation. Soc Implic Nanosci Nanotechnol. 2001;45:89-101. Also available as, AAAS Science and Technology Policy Yearbook 2001, Teich AH, Nelson SD, editors. American Association for the Advancement of Science. Washington, DC, USA; 2001. p. 89-101.
- [2] Haberzettl CA. Nanomedicine: destination or journey? Nanotechnology. 2002;13(4):R9-13.
- [3] Hoffman SB, Yoder AR, Trepanier LA. Bioavailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in healthy cats. J Vet Pharmacol Ther. 2002;25(3):189-93.
- [4] Wang NX, von Recum HA. Drug delivery-definition of drug delivery by Medical dictionary; 2011. [Cited 2021 June 26]. Available from: https://www.thefreedictionary.com.
- [5] Wang NX, von Recum HA. Affinity-based drug delivery. Macromol Biosci. 2011;11(3):321-32.
- [6] Roco MC. Broader societal issues of nanotechnology. J Nanopart Res. 2003;5(3):181-9.
- [7] Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther. 2003;3(4):655-63.
- [8] Freitas Jr RA. Nanotechnology, nanomedicine, and nanosurgery. Int J Surg. 2005;3(4):243-6.
- Satava RM. Disruptive visions. Surg Endosc. 2002;16(10):1403-8.
- Satava RM, Wolf RK. Disruptive visions: biosurgery. Surg Endosc Interv Tech. 2003;11:1833-6.
- Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Path. 2009;86(3):215-23.
- [12] Mansfield E, Kaiser DL, Fujita D, Van de Voorde M, editors. Metrology and standardization for nanotechnology: protocols and industrial innovations. New York, NY, USA: John Wiley & Sons; 2017.
- [13] Khan FA. Synthesis of nanomaterials: methods & technology. Applications of nanomaterials in human health. Singapore: Springer; 2020. p. 15-21.
- [14] Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicles for site-directed in vivo delivery of drugs and vaccines. J Nanobiotech. 2011;9(1):55.

- Bharadwaj B, Wu L, Whittum-Hudson JA, da Rocha SR. The potential for the noninvasive delivery of polymeric nanocarriers using propellant-based inhalers in the treatment of Chlamydial respiratory infections. Biomaterials. 2010;31(28):7376-85.
- [16] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18.
- [17] Kawashima Y. Nanoparticulate systems for improved drug delivery. Adv Drug Deliv Rev. 2001;47(1):1-2.
- [18] Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel. 2001;70(1-2):1-20.
- [19] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329-47.
- [20] Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev. 2010;62(4-5):547-59.
- [21] Umamaheshwari RB, Jain NK. Receptor-mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J Drug Target. 2003;11(7):415-23.
- [22] Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12:601626. doi: 10.3389/fphar.2021.601626.
- [23] Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561-73.
- Nagavarma BV, Yadav HK, Ayaz AV, Vasudha LS, [24] Shivakumar HG. Different techniques for preparation of the polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012;5(3):16-23.
- [25] Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomater. 2007;5:869-76.
- [26] Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci. 2008;105(7):2586-91.
- [27] Szlek J, Pacławski A, Lau R, Jachowicz R, Mendyk A. Heuristic modeling of macromolecule release from PLGA microspheres. Int J Nanomed. 2013;8:4601-11.
- [28] Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloid Surf B Biointerfc. 2007;59(1):24-34.
- [29] Farrugia CA, Groves MJ. Gelatin behaviour in dilute aqueous solution: designing a nanoparticulate formulation. J Pharm Pharmacol. 1999;51(6):643-9.
- [30] Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16(10):1576-81.
- Aynie IC, Vauthier C, Fattal E, Foulquier M, Couvreur P. [31] Alginate nanoparticles as a novel carrier for antisense oligonucleotide. In: Diederichs JE, Muler R, editors. Future strategies for drug delivery with particulate systems. Boca Raton, FL, USA: CRC Press; 1998. p. 11-6.
- Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, [32] Sorrenti M, et al. Albumin nanoparticles carrying

- cyclodextrins for nasal delivery of the anti-Alzheimer drug Tacrine. Eur J Pharm Sci. 2011;44(4):559-65.
- [33] Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Del. 2005;12(1):41-57.
- Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J Macromol Sci Pure Appl Chem. 1994;31(5):629-42.
- Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Rel. 1998:50(1-3):79-92.
- [36] Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Rel. 2000;64(1-3):143-53.
- Liu CG, Chen XG, Park HJ. Self-assembled nanoparticles based on linoleic-acid modified chitosan: stability and adsorption of trypsin. Carbohyd Polym. 2005;62(3):293-8.
- [38] Liu CG, Desai KG, Chen XG, Park HJ. Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. J Agric Food Chem. 2005;53(5):1728-33.
- [39] Chen XG, Lee CM, Park HJ. O/W emulsification for the selfaggregation and nanoparticle formation of linoleic acidmodified chitosan in the aqueous system. J Agric Food Chem. 2003;51(10):3135-9.
- [40] Brunel F, Véron L, David L, Domard A, Delair T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir. 2008;24(20):11370-7.
- [41] Krishna SA, Amareshwar P. Preparation of bovine serum albumin loaded chitosan nanoparticle using reverse micelle method. Res J Pharm Biol Chem Sci. 2011;2(3):837-46.
- Chirio D, Gallarate M, Peira E, Battaglia L, Serpe L, Trotta M. Formulation of curcumin-loaded solid lipid nanoparticles produced by fatty acids coacervation technique. J Microencapsul. 2011;28(6):537-48.
- [43] Grenha A, Remuñán-López C, Carvalho EL, Seijo B. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm. 2008;69(1):83-93.
- Lee DW, Shirley SA, Lockey RF, Mohapatra SS. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res. 2006;7(1):112.
- [45] Tang ES, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm. 2003;265(1-2):103-14.
- Devika R, Pokharkar BVB. Studies on the effect of pH on [46] cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS Pharm Sci Tech. 2006;7(2):E138-43.
- Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, [47] Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed. 2013;8:4467-79.
- Sandri G, Bonferroni MC, Rossi S, Ferrari F, Boselli C, Carmella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised

- rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS Pharm SciTech. 2010;11(1):362-71.
- [49] Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials. 2002;23(15):3193-201.
- Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm. 2008;356(1-2):259-66.
- [51] Younessi P, Avadi MR, Shamimi K, Sadeghi AM, Moezi L, Nahid E, et al. Preparation and ex vivo evaluation of TEC as an absorption enhancer for poorly absorbable compounds in colon-specific drug delivery. Acta Pharm. 2004;54(4):339-45.
- Boonyo W, Junginger HE, Waranuch N, Polnok A, [52] Pitaksuteepong T. Preparation and characterization of particles from chitosan with different molecular weights and their trimethyl chitosan derivatives for nasal immunization. J MET Mat Manag. 2008;18(2):59-65.
- Avadi MR, Jalali A, Sadeghi AMM, Shamimi K, Bayati KH, [53] Nahid E, et al. Diethyl methyl chitosan as an intestinal paracellular enhancer: ex vivo and in vivo studies. Int J Pharm. 2005;293(1-2):83-9.
- [54] Dalby MJ, Lee LC, Yang J, MacIntyre A, McCully M. Hydrogel nanoparticles for drug delivery. Nanomed (Lond). 2013;8(11):1744-5.
- Weber C, Reiss S, Langer K. Preparation of surface-modified [55] protein nanoparticles by the introduction of sulfhydryl groups. Int J Pharm. 2000;211(1-2):67-78.
- [56] George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-A review. J Control Rel. 2006;114(1):1-14.
- [57] Chen L, Tian Z, Du Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials. 2004;25(17):3725-32.
- [58] Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pHsensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Rel. 2004;96(2):285-300.
- Huang Y, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco-and bioadhesion: tethered structures and site-specific surfaces. J Control Rel. 2000;65(1-2):63-71.
- [60] Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J Drug Del. 2011;4:583612. doi: 10.1155/ 2014/583612.
- [61] Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE. In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm. 2001;51(2):127-33.
- [62] Edelman ER, Nathan A, Katada M, Gates J, Karnovsky MJ. Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials. 2000;21(22):2279-86.
- Rasmussen MR, Snabe T, Pedersen LH. Numerical modelling [63] of insulin and amyloglucosidase release from swelling Ca-alginate beads. J Control Rel. 2003;91(3):395-405.
- Lee BJ, Min GH. Oral controlled release of melatonin using polymer-reinforced and coated alginate beads. Int J Pharm. 1996;144(1):37-46.

- [65] Kim B, Bowersock T, Griebel P, Kidane A, Babiuk LA, Sanchez M, et al. Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres. J Control Rel. 2002;85(1-3):191-202.
- [66] Romalde JL, Luzardo-Alvárez A, Ravelo C, Toranzo AE, Blanco-Méndez J. Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture. 2004;236(1-4):119-29.
- Hurteaux R, Edwards-Lévy F, Laurent-Maquin D, Lévy MC. Coating alginate microspheres with a serum albumin-alginate membrane: application to the encapsulation of a peptide. Eur J Pharm Sci. 2005;24(2-3):187-97.
- Hébrard G, Hoffart V, Beyssac E, Cardot JM, Alric M, Subirade M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J Microencapsul. 2010;27(4):292-302.
- [69] Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 2006;48(3):171-6.
- [70] Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993;82(9):912-7.
- [71] Douglas KL, Piccirillo CA, Tabrizian M. Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. J Control Rel. 2006;115(3):354-61.
- [72] Aynié I, Vauthier C, Chacun H, Fattal E, Couvreur P. Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 1999;9(3):301-12.
- Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed. 2010;6(1):153-60.
- Pitarresi G, Craparo EF, Palumbo FS, Carlisi B, Giammona G. Composite nanoparticles based on hyaluronic acid chemically cross-linked with α , β -polyaspartylhydrazide. Biomacromolecules. 2007;8(6):1890-8.
- Pitarresi G, Pierro P, Giammona G, Iemma F, Muzzalupo R, Picci N. Drug release from α, β-poly(N-2-hydroxyethyl)-dlaspartamide-based microparticles. Biomaterials. 2004;25(18):4333-43.
- [76] Fiorica C, Pitarresi G, Palumbo FS, Di Stefano M, Calascibetta F, Giammona G. A new hyaluronic acid pH-sensitive derivative obtained by ATRP for potential oral administration of proteins. Int J Pharm. 2013;457(1):150-7.
- Han L, Zhao Y, Yin L, Li R, Liang Y, Huang H, et al. Insulinloaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech. 2012;13(3):836-45.
- Coester CJ, Langer K, van Briesen H, Kreuter J. Gelatin nanoparticles by two-step desolvation-a new preparation method, surface modifications, and cell uptake. J Microencapsul. 2000;17(2):187-93.
- [79] Sailaja AK, Amareshwar P. Preparation of BSA nanoparticles by desolvation technique using acetone as desolvating agent. Int J PharmSci Nanotechnol. 2012;5:1643-7.
- Zhao YZ, Li X, Lu CT, Xu YY, Lv HF, Dai DD, et al. Experiment on the feasibility of using modified gelatin nanoparticles as insulin pulmonary administration system for diabetes therapy. Acta Diabetol. 2012;49(4):315-25.

- Kuo WT, Huang HY, Chou MJ, Wu MC, Huang YY. Surface modification of gelatin nanoparticles with polyethyleneimine as gene vector. J Nanomater. 2011;2011:1-5.
- [82] Leo E, Angela Vandelli MA, Cameroni R, Forni F. Doxorubicinloaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int J Pharm. 1997;155(1):75-82.
- [83] Lee EJ, Khan SA, Park JK, Lim KH. Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng. 2012;35(1-2):297-307.
- [84] Zhenhai G, Jianhui J, Ting Z, Daocheng WJ. Preparation of rhodamine b fluorescent poly(methacrylic acid) coated gelatin nanoparticles. Nanomat. 2011:1:753705.
- [85] Li WM, Liu DM, Chen SY. Amphiphilically-modified gelatin nanoparticles: self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery. J Mater Chem. 2011;21(33):12381-8.
- [86] Babu A, Jeyasubramanian K, Gunasekaran P, Murugesan R. Gelatin nanocarrier enables efficient delivery and phototoxicity of hypocrellin B against a mice tumour model. J Biomed Nanotechnol. 2012;8(1):43-56.
- [87] Jain A, Gulbake A, Jain A, Shilpi S, Hurkat P, Jain A, et al. Development of surface-functionalised nanoparticles for FGF2 receptor-based solid tumour targeting. J Microencap. 2012;29(1):95-102.
- [88] Lu Z, Yeh TK, Wang J, Chen L, Lyness G, Xin Y, et al. Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy. J Urol. 2011;185(4):1478-83.
- [89] Merodio M, Arnedo A, Renedo MJ, Irache JM. Ganciclovirloaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci. 2001;12(3):251-9.
- Dreis S, Rothweiler F, Michaelis M, Cinatl J, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm. 2007;341(1-2):207-14.
- [91] Abdellatif AAH. Identification of somatostatin receptors using labeled pegylated octreotide, as an active internalization. Drug Dev Ind Pharm. 2019;45(10):1707-15.
- Andonova V. Synthetic polymer-based nanoparticles: intel-[92] ligent drug delivery systems. In: Reddy B, editor. Acrylic polymers in healthcare. Rijeka, Croatia, and London, UK: IntechOpen; 2017. doi: 10.5772/intechopen.69056.
- [93] Pan X, Mei S, Lu Y, Yuan J. Synthetic advances of internally nanostructured polymer particles: from and beyond block copolymer. Nano Sel. 2020;1(6):639-58.
- [94] Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage. 2011;54 (Suppl 1):S106-24.
- [95] Mansour HM, Sohn M, Al-Ghananeem A, DeLuca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci. 2010;11(9):3298-322.
- [96] Mahmoud BS, McConville C. Development and optimization of irinotecan-loaded PCL nanoparticles and their cytotoxicity against primary high-grade glioma cells. Pharmaceutics. 2021;13(4):541.

- Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979;31(5):331-2.
- [98] Vauthier-Holtzscherer C, Benabbou S, Spenlehauer G, Veillard M, Couvreur P. Methodology for the preparation of ultra-dispersed polymer systems. STP Pharma Sci. 1991:1(2):109-16.
- Allémann E, Leroux JC, Gurny R, Doelker E. In vitro extendedrelease properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res. 1993;10(12):1732-7.
- [100] Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57(11):1595-639.
- [101] Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887-913.
- [102] Naddaka M, Mondal E, Lellouche JP. Oxidative fabrication of spherical polycarbazole-based microparticles. Mater Lett. 2011;65(8):1165-7.
- [103] Zhao K, Li D, Shi C, Ma X, Rong G, Kang H, et al. Biodegradable polymeric nanoparticles as the delivery carrier for drug. Curr Drug Deliv. 2016;13(4):494-49.
- [104] Mohsen R, Alexander BD, Richardson SC, Mitchell JC, Diab AA, Snowden MJ. Design, synthesis, characterization and toxicity studies of poly(N-Iso-Propylacrylamide-co-Lucifer Yellow) particles for drug delivery applications. J Nanomed Nanotechnol. 2016;7(2):363-72.
- [105] Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11(3):169-83.
- [106] Mok H, Zhang M. Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv. 2013;10(1):73-87.
- [107] Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284-304.
- [108] Kafayati ME, Raheb J, Torabi Angazi M, Alizadeh S, Bardania H. The effect of magnetic Fe₃O₄ nanoparticles on the growth of genetically manipulated bacterium, Pseudomonas aeruginosa (PTSOX4). Iran J Biotechnol. 2013;11(1):41-6.
- [109] Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293(1):483-96.
- [110] Cao Q, Han X, Li L. Enhancement of the efficiency of magnetic targeting for drug delivery: development and evaluation of magnet system. J Magn Magn Mater. 2011;323(15):1919-24.
- [111] Ye F, Barrefelt A, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M, et al. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials. 2014;35(12):3885-94.
- [112] Adams C, Israel LL, Ostrovsky S, Taylor A, Poptani H, Lellouche JP, et al. Development of multifunctional magnetic nanoparticles for genetic engineering and tracking of neural stem cells. Adv Healthc Mater. 2016;5(7):841-9.

- [113] Eid M. Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation. J Polym Res. 2013;20(3):1.
- [114] Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857-70.
- [115] Díaz MR, Vivas-Mejia PE. Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharm (Basel). 2013;6(11):1361-80.
- [116] Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227-49.
- [117] Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;44:278-84.
- [118] Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. 2005;3(1):1.
- [119] Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science. 2000;290(5490):314-7.
- [120] Papasani MR, Wang G, Hill RA. Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomed. 2012;8(6):804-14.
- [121] Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, et al. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials. 2012;33(10):3025-35.
- [122] Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644-54.
- [123] Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325-7.
- Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int. 2014:2014:498420.
- [125] Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomat (Basel). 2011;1(1):31-63.
- [126] Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006;8:343-75.
- [127] Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci. 2006;61(3):1027-40.
- [128] Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16-20.
- [129] Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 1980;141(2):876-87.
- [130] He S, Zhang Y, Guo Z, Gu N. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog. 2008;24(2):476-80.
- [131] Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity.

- Spectrochim Acta A Mol Biomol Spectrosc. 2011:79(3):594-8.
- [132] Ankamwar B, Chaudhary M, Sastry M. Gold nano triangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Organic Nano-Metal Chem. 2005;35(1):19-26.
- Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13(7):1822-6.
- [134] Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004:275(2):496-502.
- [135] Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys E Low Dimensional Syst Nanostruct. 2010;42(5):1417-24.
- [136] Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. 2008;62(30):4588-90.
- [137] Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009;44(10):1133-8.
- [138] Ankamwar B, Damle C, Ahmad A, Sastry M. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol. 2005;5(10):1665-71.
- [139] Kasthuri J, Kathiravan K, Rajendiran N. Phyllanthin-assisted biosynthesis of silver and gold NPs: a novel biological approach. J Nanopart Res. 2009;11:1075-85.
- Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces. 2009;68(1):55-60.
- [141] Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nano triangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. 2006;22(2):577-83.
- [142] Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc. 2009;73(2):374-81.
- [143] Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2009;73(4):650-3.
- [144] Sheikhloo Z, Salouti M, Katiraee F. Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci. 2011;22(4):661-5.
- [145] Selvaraj V, Alagar M. Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. Int J Pharm. 2007;337(1-2):275-81.
- Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK, et al. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett. 2007;2(12):614-22.
- Nirmala Grace AN, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-A brief study. Colloids Surf A Physicochem Eng Asp. 2007;297(1-3):63-70.
- [148] Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG. On the enhanced antibacterial

- activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett. 2009;4(8):794-801.
- [149] Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3(9):1261-3.
- [150] Ahangari A, Salouti M, Heidari Z, Kazemizadeh AR, Safari AA. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Deliv. 2013;20(1):34-9.
- [151] Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small. 2009;5(16):1897-910.
- [152] Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Hevob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26(11):612-21.
- [153] Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1-12.
- [154] Shivai KO, Salouti M, Sorouri ZR. Extracellular deposition of silver NPs by Bacillus Megaterium. Synth React Inorganic Metalorgan Nanomat Chem. 2013;43:903-6.
- [155] Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1-2):83-96.
- [156] Liu YJ, He LL, Mustapha A, Li H, Hu ZQ, Lin MS. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli 0157: H7. J Appl Microbiol. 2009;107(4):1193-201.
- Araújo EA, Andrade NJ, da Silva LH, Bernardes PC, de C, Teixeira AV, et al. Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces. J Food Prot. 2012;75(4):701-5.
- Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. 2007;3(2):168-71.
- [159] Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venkatesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed. 2010:6(1):103-9.
- [160] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83.
- [161] Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608-19.
- [162] Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, et al. Silverion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43(4):1027-32.
- [163] Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA. 1999;96(24):13611-4.
- [164] Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2003;14(1):95-100.
- [165] Guilger-Casagrande M, de Lima RD. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287.

- [166] Kobashigawa JM, Robles CA, Martínez Ricci ML, Carmarán CC. Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii. Saudi J Biol Sci. 2019;26(7):1331-7.
- [167] Owaid MN. Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity. Env Nanotechnol Monit Manag. 2019;12:100256.
- [168] Nefri FM, Rustini DA. Biological synthesis of silver nanoparticles by bacteria and its characterizations. A review. IOSR JAVS (IOSR-JAVS). 2020;13(11):40-7.
- [169] Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces. 2009;74(1):328-35.
- [170] Khateef R, Khadri H, Almatroudi A, Alsuhaibani SA, Mobeen SA, Khan RA. Potential in vitro anti-breast cancer activity of green-synthesized silver nanoparticles preparation against human MCF-7 cell lines. Adv Nat Sci Nanosci Nanotechnol. 2019;10(4):045012.
- [171] Anil Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, et al. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO₃. Biotechnol Lett. 2007;29(3):439-45.
- [172] Debnath SK, Srivastava R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: progress and prospects. Front Nanotech. 2021;3:15.
- [173] Cohen EN, Kondiah PPD, Choonara YE, du Toit LC, Pillay V. Carbon dots as nanotherapeutics for biomedical application. Curr Pharm Des. 2020;26(19):2207-21.
- [174] Jampilek J, Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Mater (Basel). 2021;14(5):1059.
- [175] Long W, Ouyang H, Wan W, Yan W, Zhou C, Huang H, et al. 'Two-in-One': simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH-responsive drug delivery system. Mater Sci Eng C Mater Biol App. 2020:108:110413.
- [176] Li J, Li M, Tian L, Qiu Y, Yu Q, Wang X, et al. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm. 2020;578:119122. doi: 10.1016/ j.ijpharm.2020.119122.
- [177] Beg S, Rahman M, Jain A, Saini S, Hasnain MS, Swain S, et al. Emergence in the functionalized carbon nanotubes as smart nanocarriers for drug delivery applications. In: Grumezescu AM, editors. Fullerens, graphenes and nanotubes. Norwich, NY, USA: William Andrew Publishing; 2018. p. 105-33.
- [178] Campbell E, Hasan MT, Pho C, Callaghan K, Akkaraju GR, Naumov AV. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci Rep. 2019:9(1):416.
- [179] Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, et al. Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int J Nanomed. 2020;15:9469-96.
- [180] Mousavi SM, Soroshnia S, Hashemi SA, Babapoor A, Ghasemi Y, Savardashtaki A, et al. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy

- and drug delivery applications. Drug Metab Rev. 2019;51(1):91-104.
- [181] Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene family of nanomaterials: reviewing advanced applications in drug delivery and medicine. Curr Drug Deliv. 2019;16(3):195-214.
- [182] Kim MH, Na HK, Kim YK, Ryoo SR, Cho HS, Lee KE, et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultra-large pores and their application in gene delivery. ACS Nano. 2011;5(5):3568-76.
- [183] Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6(18):1952-67.
- [184] He Q, Shi J. Mesoporous silica nanoparticle-based Nano drug delivery systems: synthesis, controlled drug release, and delivery, pharmacokinetics and biocompatibility. J Mat Chem. 2011;21(16):5845-55.
- [185] Hun X, Zhang Z. A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem. 2007;105(4):1623-9.
- [186] Grumezescu AM, Ghitulica CD, Voicu G, Huang KS, Yang CH, Ficai A, et al. New silica nanostructure for the improved delivery of topical antibiotics used in the treatment of staphylococcal cutaneous infections. Int J Pharm. 2014;463(2):170-6.
- [187] Buckle EL, Sampath J, Michael N, Whedon SD, Leonen CJA, Pfaendtner J, et al. Trimethylation of the R5 silica-precipitating peptide increases silica particle size by redirecting orthosilicate binding. ChemBioChem. 2020;21(22):3208-11.
- [188] Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238-52.
- [189] Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818-22.
- [190] Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102. doi: 10.1186/1556-276X-8-102.
- [191] Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5(1):25-44.
- [192] Rommasi F, Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16:95. doi: 10.1186/s11671-021-03553-8.
- [193] Abhilash M. Potential applications of nanoparticles. Int J Pharm Biol Sci. 2010;1:1-12.
- [194] Torchilin VP. Lipid-core micelles for targeted drug delivery. Curr Drug Deliv. 2005;2(4):319-27.
- Zhang L, Pornpattananangku D, Hu CM, Huang CM. [195] Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17(6):585-94.
- Fielding RM. Liposomal drug delivery. Advantages and lim-[196] itations from a clinical pharmacokinetic and therapeutic perspective. Clin Pharmacokinet. 1991;21(3):155-64.
- [197] Schiffelers RM, Storm G, Bakker-Woudenberg IA. Host factors influencing the preferential localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue. Pharm Res. 2001;18(6):780-7.
- [198] Huh AJ, Kwon YJ. 'Nanoantibiotics': a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Rel. 2011;156(2):128-45.

- Mimoso IM, Francisco APG, Cruz MEM. Liposomal formulation of netilmicin. Int J Pharm. 1997;147(1):109-17.
- [200] Deol P, Khuller GK. Lung specific stealth liposomes: stability, biodistribution, and toxicity of liposomal antitubercular drugs in mice. Biochim Biophys Acta (BBA) Gen Subj. 1997;1334(2-3):161-72.
- [201] Onyeji CO, Nightingale CH, Nicolau DP, Quintiliani R. Efficacies of liposome-encapsulated clarithromycin and ofloxacin against Mycobacterium avium-M. intracellular complex in human macrophages. Antimicrob Agents Chemother. 1994;38(3):523-7. doi: 10.1128/AAC.38.3.523.
- [202] Balazs DA, Godbey WT. Liposomes for use in gene delivery. J Drug Del. 2011;2011:32649.
- [203] Rahman M, Beg S, Anwar F, Kumar V, Ubale R, Addo RT, et al. Liposome-based nanomedicine therapeutics for rheumatoid arthritis. Crit Rev Ther Drug Carr Syst. 2017;34(4):283-316.
- [204] Allen TM, Sapra P, Moase E. Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett. 2002;7(2):889-94.
- [205] Crommelin DJAA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Rel. 2020;318:256-63.
- [206] Patrick C, (Ed). Antibody engineering: Methods and Protocols. 2d edn., New York, USA: Springer; 2012. ISBN 978-1-61779-974-7.
- Kroon J, Metselaar JM, Storm G, van der PG. Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat Rev. 2014;40(4):578-84.
- [208] Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46(3):834-40.
- [209] Beuttler J, Rothdiener M, Müller D, Frejd FY, Kontermann RE. Targeting of epidermal growth factor receptor (EGFR)expressing tumor cells with sterically stabilized Affibody liposomes (SAL). Bioconjug Chem. 2009;20(6):1201-8.
- [210] Puri A, Kramer-Marek G, Campbell-Massa R, Yavlovich A, Tele SC, Lee SB, et al. HER2-specific Affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res. 2008;18(4):293-307.
- [211] Alexis F, Basto P, Levy-Nissenbaum E, Radovic-Moreno AF, Zhang L, Pridgen E, et al. HER-2-targeted nanoparticle-Affibody bioconjugates for cancer therapy. ChemMedChem. 2008;3(12):1839-43.
- [212] Low PS, Antony AC. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev. 2004;56(8):1055-8.
- [213] Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells. Contribution of translocation domain. J Biol Chem. 1993;268(33):24847-54.
- [214] Low PS, Kularatne SA. Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 2009;13(3):256-62.
- [215] Stevens PJ, Sekido M, Lee RJ. A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res. 2004;21(12):2153-7.

- [216] Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995;1233(2):134-44.
- [217] Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipidanchored folic acid-PEG conjugates. Adv Drug Deliv Rev. 2004;56(8):1177-92.
- [218] Gabizon A. Horowitz AT. Goren D. Tzemach D. Shmeeda H. Zalipsky S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res. 2003;9(17):6551-9.
- [219] Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem. 1999;10(2):289-98.
- [220] Gabizon A, Tzemach D, Gorin J, Mak L, Amitay Y, Shmeeda H, et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol. 2010;66(1):43-52.
- [221] Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther. 2006;5(4):818-24.
- Gao W. Preparation and evaluation of folate receptor-[222] mediated targeting liposomes. In: Lu WL, Qi XR, editors. Liposome-based drug delivery systems. Biomaterial engineering. Berlin, Heidelberg: Springer; 2021. doi: 10.1007/ 978-3-662-49320-5_12.
- [223] Elamir A, Ajith S, Sawaftah NA, Abuwatfa W, Mukhopadhyay D, Paul V, et al. Ultrasound-triggered Herceptin liposomes for breast cancer therapy. Sci Rep. 2021;11(1):7545-87. doi: 10.1038/s41598-021-86860-5. PMID: 33824356; PMCID: PMC8024284.
- [224] Pradhan B, Kumar N, Saha S, Roy A. Liposome: method of preparation, advantages, evaluation and its application. J App Pharm Res. 2015;3(3):1-8.
- [225] Pavlinkova G, Colcher D, Booth BJ, Goel A, Wittel UA, Batra SK. Effects of humanization and gene shuffling on immunogenicity and antigen-binding of anti-tag-72 singlechain Fvs. Int J Cancer. 2001;94(5):717-26.
- [226] Nellis DF, Giardina SL, Janini GM, Shenoy SR, Marks JD, Tsai R, et al. Preclinical manufacture of anti-HER2 liposomeinserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis. Biotechnol Prog. 2005;21(1):221-32.
- [227] Nellis DF, Ekstrom DL, Kirpotin DB, Zhu J, Andersson R, Broadt TL, et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol Prog. 2005;21(1):205-20.
- Xu L, Pirollo KF, Tang WH, Rait A, Chang EH. Transferrin-[228] liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther. 1999;10(18):2941-52.
- [229] Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, et al. Systemic tumor-targeted gene delivery by anti-transferrin

- receptor scFv-immunoliposomes 1. Mol Cancer Ther. 2002;1(5):337-46.
- [230] El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: an approach to control the release and enhance the oral bioavailability on rabbits. PLOS One. 2018;13(8):e0203405.
- [231] Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349-58.
- [232] Engin AB, Engin A. Nanoantibiotics: a novel rational approach to antibiotic-resistant infections. Curr Drug Metab. 2019;20(9):720-41.
- [233] Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363(1-2):132-8.
- [234] Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 2014;181:56-61.
- [235] Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization, and applications. Adv Drug Deliv Rev. 2001:64:83-101.
- [236] Han C, Qi CM, Zhao BK, Cao J, Xie SY, Wang SL, et al. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J Vet Pharmacol Ther. 2009;32(2):116-23.
- [237] Carmona-Ribeiro AM, Barbassa L, De Melo LD. Antimicrobial biomimetics. Biomimetic based applications. Rijeka, Croatia, and London, UK: IntechOpen; 2011. [cited June 26, 2021]. Available from: http:// Antimicrobial Biomimetics | IntechOpen. https://www.intechopen.com/chapters/15766.
- [238] Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238(1-2):241-45.
- [239] Nimje N, Agarwal A, Saraogi GK, Lariya N, Rai G, Agrawal H, et al. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target. 2009;17(10):777-87.
- [240] Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb). 2005;85(4):227-34.
- [241] Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current advances in 3D tissue and organ reconstruction. Int J Mol Sci. 2021;22(2):830.
- [242] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321-39.
- [243] Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117-8.
- [244] Wheeler JC, Woods JA, Cox MJ, Cantrell RW, Watkins FH, Edlich RF. Evolution of hydrogel polymers as contact lenses, surface coatings, dressings, and drug delivery systems. J Long Term Eff Med Implant. 1996;6(3-4):207-17.
- [245] Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Rel. 2008;126(3):187-204.
- [246] Schwall CT, Banerjee IA. Micro-and nanoscale hydrogel systems for drug delivery and tissue engineering. Materials. 2009;2(2):577-612.
- [247] Dreiss. CA. Hydrogel design strategies for drug delivery. Curr Opin Colloid Interface Sci. 2020;48:1-17.

- [248] Peppas NA, Mongia NK. UltraPure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur J Pharm Biopharm. 1997;43(1):51-8.
- [249] Kabanov VA, Papisov IM. Formation of complexes between complementary synthetic polymers and oligomers in dilute solution review. Polym Sci USSR. 1979;21(2):261-307.
- [250] Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Rel. 2007;119(1):5-24.
- [251] Martinez LR, Han G, Chacko M, Mihu MR, Jacobson M, Gialanella P, et al. Antimicrobial and healing efficacy of sustained-release nitric oxide nanoparticles against Staphylococcus aureus skin infection. J Invest Dermatol. 2009:129(10):2463-9.
- [252] Peng KT, Chen CF, Chu IM, Li YM, Hsu WH, Hsu RW, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials. 2010;31(19):5227-36.
- [253] Cushing MC, Anseth KS. Materials science. Hydrogel cell cultures. Science. 2007;316(5828):1133-4.
- [254] Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31(17):4639-56.
- [255] Sirousazar M, Forough M, Farhadi K, Shaabani Y, Molaei R. Hydrogels: properties, preparation, characterization and biomedical, applications in tissue engineering, drug, delivery and wound care. In: Tiwari A, editors. Advanced healthcare materials. Hoboken, NJ, USA: John Wiley; 2014. p. 295-357.
- [256] Stout EI, McKessor A. Glycerin-based hydrogel for infection control. Adv Wound Care (N Rochelle). 2012;1(1):48-51.
- [257] Du X, Hou Y, Wu L, Li S, Yu A, Kong D, et al. An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure. J Mater Chem B. 2020;8(26):5682-93.
- [258] Sivaraj D, Chen K, Chattopadhyay A, Henn D, Wu W, Noishiki C, et al. Hydrogel scaffolds to deliver cell therapies for wound healing. Front Bioeng Biotechnol. 2021;9:660145. doi: 10.3389/fbioe.2021.660145.
- [259] Kopecki Z. Development of next-generation antimicrobial hydrogel dressing to combat burn wound infection. Biosci Rep. 2021;41(2):BSR20203404. doi: 10.1042/BSR20203404.
- [260] Stout EI, McKessor A. Glycerin-based hydrogel for infection control. Advances in Wound Care. 2012;1(1):48-51. doi: 10.1089/wound.2011.0288.
- [261] Stoica AE, Chircov C, Grumezescu AM. Hydrogel dressings for the treatment of burn wounds: an up-to-date overview. Materials. 2020;13(12):2853.
- [262] Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169.
- [263] Thomas S, Hay NP. In vitro investigations of a new hydrogel dressing. J Wound Care. 1996;5(3):130-1.
- [264] Zhang L, Yin H, Lei X, Lau JNY, Yuan M, Wang X, et al. A systematic review and meta-analysis of clinical effectiveness and safety of hydrogel dressings in the management of skin wounds. Front Bioeng Biotechnol. 2019;7:342.
- [265] Trudgian J. Investigating the use of aquaform hydrogel in wound management. Br J Nurs. 2000;9(14):943-8.
- [266] Indermun S, Choonara YE, Kumar P, du Toit LC, Modi G, Luttge R, et al. An interfacially plasticized electro-responsive

- hydrogel for transdermal electro-activated and modulated (TEAM) drug delivery. Int J Pharm. 2014;462(1-2):52-65.
- [267] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17(1):117-32.
- [268] Klajnert B, Peng L, Cena V. Dendrimers in biomedical applications. Cambridge, UK: Royal Society of Chemistry; 2013. p. 1-204. ISBN 978-1-84973-611-4. doi: 10.1039/ 9781849737296.
- [269] Medina SH, El-Sayed ME. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev. 2009;109(7):3141-57.
- [270] Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002:23(16):3359-68.
- [271] Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci U S A. 1996;93(10):4897-902.
- [272] Ma M, Cheng Y, Xu Z, Xu P, Qu H, Fang Y, et al. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem. 2007;42(1):93-8.
- [273] Zhang S, Sun HJ, Hughes AD, Moussodia RO, Bertin A, Chen Y, et al. Self-assembly of amphiphilic Janus dendrimers into uniform onion-like dendrimersomes with predictable size and number of bilayers. Proc Natl Acad Sci USA. 2014;111(25):9058-63.
- [274] Selin M, Nummelin S, Deleu J, Ropponen J, Viitala T, Lahtinen M, et al. High-generation amphiphilic Janus-dendrimers as stabilizing agents for drug suspensions. Biomacromolecules. 2018;19(10):3983-93.
- [275] Wakaskar RR. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target. 2018;26(4):311-8.
- [276] Barriga HMG, Holme MN, Stevens MM. Cubosomes: the next generation of smart lipid nanoparticles. Angew Chem Int Ed Engl. 2019;58(10):2958-78.
- [277] Nikzamir M, Hanifehpour Y, Akbarzadeh A. Applications of dendrimers in nanomedicine and drug delivery: a review. J Inorg Organomet Polym. 2021;31:2246-61.
- [278] Markovic Z, Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials. 2008;29(26):3561-73.
- [279] Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. Inhibition of the HIV-1 protease by fullerene derivatives: model-building studies and experimental verification. J Am Chem Soc. 1993;115(15):6506-9.
- [280] Pantarotto D, Tagmatarchis N, Bianco A, Prato M. Synthesis and biological properties of fullerene-containing amino acids and peptides. Mini Rev Med Chem. 2004;4(7):805-14.
- [281] Yang X, Ebrahimi A, Li J, Cui Q. Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomed. 2014:9:77-92.
- [282] Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003;38(11-12):913-23.
- [283] Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR. Photodynamic therapy with fullerenes. Photochem Photobiol Sci. 2007;6(11):1139-49.

- [284] Tsao N, Luh TY, Chou CK, Chang TY, Wu JJ, Liu CC, et al. In vitro action of carboxy fullerenes. J Antimicrob Chemother. 2002;49(4):641-9.
- [285] Patel MB, Harikrishnan U, Valand NN, Modi NR, Menon SK. Novel cationic Quinazolin-4 (3H)-one conjugated fullerene nanoparticles as anti-mycobacterial and antimicrobial agents. Arch Pharm. 2013;346(3):210-20.
- [286] Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Del Rev. 2020;214-35.
- [287] Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo K, Mukai Y, et al. Development of amphiphilic y-PGA-nanoparticle-based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun. 2008;366(2):408-13.
- [288] Robertson K, Furukawa Y, Underwood A, Black L, Liu JL. Deletion of the Hoc and Soc capsid proteins affects the surface and cellular uptake properties of bacteriophage T4 derived nanoparticles. Biochem Biophys Res Commun. 2012;418(3):537-40.
- [289] Zhang H, Harpster MH, Park HJ, Johnson PA, Wilson WC. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles. Anal Chem. 2011;83(1):254-60.
- Altunbek M, Yalvac EM, Keseroglu K, Palotas A, Rizvanov AA. [290] Gold-and silver-based nano-particles influence pseudotyped lentiviral infection. Curr Nanosci. 2013;9(6):693-7.
- [291] Lico C, Schoubben A, Baschieri S, Blasi P, Santi L. Nanoparticles in biomedicine: new insights from plant viruses. Curr Med Chem. 2013;20(28):3471-87.
- [292] Lockney DM, Guenther RN, Loo L, Overton W, Antonelli R, Clark J, et al. The red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle. Bioconjug Chem. 2011;22(1):67-73.
- [293] Lico C, Baschieri S, Marusic C, Benvenuto E. Molecular farming for antigen (vaccine) production in plants. Improvement of crop plants for industrial end uses. Dordrecht: Springer; 2007. p. 417-33.
- [294] Lebel MÈ, Chartrand K, Leclerc D, Lamarre A. Plant viruses as nanoparticle-based vaccines and adjuvants. Vaccines. 2015;3(3):620-37.
- [295] Streatfield SJ, Kushnir N, Yusibov V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. Plant Biotechnol J. 2015;13(8):1136-59.
- [296] Blandino A, Lico C, Baschieri S, Barberini L, Cirotto C, Blasi P, et al. In vitro and in vivo toxicity evaluation of plant virus nanocarriers. Colloids Surf B Biointerfaces. 2015;129:130-6.
- [297] Raja KS, Wang Q, Gonzalez MJ, Manchester M, Johnson JE, Finn MG. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules. 2003;4(3):472-6.
- [298] Schlick TL, Ding Z, Kovacs EW, Francis MB. Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc. 2005;127(11):3718-23.
- [299] Steinmetz NF, Manchester M. Pegylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules. 2009;10(4):784-92.

- [300] Kayser O, Lemke A, Hernández-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol. 2005;6(1):3-5.
- [301] Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties, and interactions with cells. Adv Drug Deliv Rev. 2002;54(1):135-47.
- [302] Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharm Res. 2006 Jan;23(1):1-30.
- [303] Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev. 2005;57:2106-29.
- [304] Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004:3(9):785-96.
- [305] Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm. 1999;190(1):49-56.
- [306] Dong Y, Zhu H, Shen Y, Zhang W, Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS One. 2019;14(9):e0222322. doi: 10.1371/journal.pone.0222322.
- [307] Stolnik SS, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev. 2012;64:290-301.
- [308] Ogawara KI, Yoshida M, Furumoto K, Takakura Y, Hashida M, Higaki K, et al. Uptake by hepatocytes and biliary excretion of intravenously administered polystyrene microspheres in rats. J Drug Target. 1999;7(3):213-21.
- [309] Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347-60.
- [310] Krol S, Diaspro A, Magrassi R, Ballario P, Grimaldi B, Filetici P, et al. Nanocapsules: coating for living cells. IEEE Trans Nanobioscience. 2004;3(1):32-8.
- [311] Burger KN, Staffhorst RW, de Vijlder HC, Velinova MJ, Bomans PH, Frederik PM, et al. Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med. 2002;8(1):81-4.
- [312] Ai H, Pink JJ, Shuai X, Boothman DA, Gao J. Interactions between self-assembled polyelectrolyte shells and tumor cells. I Biomed Mater Res A Japanese Soc Biomater. Australian Soc Biomaterials, Korean Soc Biomaterials. 2005;73(3):303-12.
- [313] Peyratout CS, Dähne L. Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed Engl. 2004;43(29):3762-83.
- [314] Dähne L, Leporatti S, Donath E, Möhwald H. Fabrication of micro reaction cages with tailored properties. J Am Chem Soc. 2001;123(23):5431-6.
- [315] Ciofani G, (Ed). Smart nanoparticles for biomedicine. New York NY, USA: Elsevier Publishers; 2018.
- [316] Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov. 2003;2(1):29-37.
- Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, et al. Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc. 2002;124(40):11864-5.
- [318] Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res. 2016;39(9):1181-92.

- [319] Peppas NA, Bures P, Leobandung WS, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27-46.
- [320] Morimoto N, Endo T, Ohtomi M, Iwasaki Y, Akiyoshi K. Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers. Macromol Biosci. 2005;5(8):710-6.
- [321] Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247. doi: 10.1186/ 1556-276X-9-247.
- [322] Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999;10(8):767-76.
- [323] Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem. 2000;11(6):910-7.
- [324] Bhadra D, Bhadra S, Jain S, Jain NK. A pegylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003;257(1-2):111-24.
- [325] El-Sayed M, Rhodes CA, Ginski M, Ghandehari H. Transport mechanism (s) of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Int J Pharm. 2003;265(1-2):151-7.
- [326] Devarakonda B, Hill RA, de Villiers MM. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm. 2004;284(1-2):133-40.
- [327] Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for 1 week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6(9):7595-606.
- [328] Hoshvar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed (Lond). 2016;11(6):673-92.
- [329] Dogra P, Adolphi NL, Wang Z, Lin YS, Butler KS, Durfee PN, et al. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imagingbased pharmacokinetics. Nat Commun. 2018;9(1):4551.
- [330] Singh KH, Shinde UA. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmaz. 2011;66(8):594-9.
- [331] Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Hyaluronic acidmodified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target. 2010;18(4):292-302.
- [332] Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 2005;5(6):1003-8.
- [333] Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood. 2005;105(1):420-5.
- [334] Alizadeh MJ, Kariminezhad H, Monfared AS, Mostafazadeh A, Amani H, Niksirat F, et al. An experimental study about the application of gadolinium oxide nanoparticles in magnetic theranostics. Mater Res Express. 2019;6(6):065025.
- [335] Cheng Y, Meyers JD, Agnes RS, Doane TL, Kenney ME, Broome AM, et al. Addressing brain tumors with targeted

- gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small. 2011;7(16):2301-6.
- [336] Spadavecchia J, Movia D, Moore C, Maguire CM, Moustaoui H, Casale S, et al. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. Int J Nanomed. 2016;11:791-822.
- [337] Yong KT. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology. 2009;20(1):015102.
- Dimou A, Syrigos KN, Saif MW. Overcoming the stromal barrier: technologies to optimize drug delivery in pancreatic cancer. Ther Adv Med Oncol. 2012;4(5):271-9.
- [339] Huang Y, Wang J, Jiang K, Chung EJ. Improving kidney targeting: the influence of nanoparticle physicochemical properties on kidney interactions. J Control Rel. 2021;334:127-37.
- [340] Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990;175(2):494-8.
- [341] Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res. 2004;76(2):232-43.
- [342] Ankola DD, Viswanad B, Bhardwaj V, Ramarao P, Kumar MN. Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can simple nutritional supplements be used as first-line therapeutic agents for prophylaxis/therapy? Eur J Pharm Biopharm. 2007;67(2):361-9.
- [343] Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175(2):489-93.
- [344] Herman A, Herman AP. Topically used herbal products for the treatment of hair loss: preclinical and clinical studies. Arch Dermatol Res. 2017;309(8):595-610.
- [345] Lee RW, Shenoy DB, Sheel R. Micellar nanoparticles: applications for topical and passive transdermal drug delivery. Handbook of non-invasive drug delivery systems. Norwich NY, USA: William Andrew Publishing; 2010. p. 37-58.
- [346] Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, et al. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for the development of anti-MRSA agents. Bioorg Med Chem Lett. 2007;17(1):53-6.
- [347] Hasanovic A, Zehl M, Reznicek G, Valenta C. Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol. 2009;61(12):1609-16.
- [348] Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that "slip" through the human mucus barrier. Angew Chem. 2008;47(50):9726-9.
- [349] Yang M, Lai SK, Wang YY, Zhong W, Happe C, Zhang M, et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew Chem. 2011;50(11):2597-600.
- [350] Sanna V, Sechi M. Nanoparticle therapeutics for prostate cancer treatment. Maturit. 2012;73(1):27-32.

- [351] Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: a review of animal and human studies. Clin Pharmacokine. 2003;42(5):419-36.
- [352] Hosny KM. Ciprofloxacin as an ocular liposomal hydrogel. AAPS PharmSciTech. 2010;11(1):241-6.
- [353] Danion A, Arsenault I, Vermette P. Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J Pharm Sci. 2007;96(9):2350-63.
- [354] Kawakami S, Harada A, Sakanaka K, Nishida K, Nakamura J, Sakaeda T, et al. In vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits. Int J Pharm. 2004;278(2):255-62.
- [355] Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. 1996;93(24):14164-9.
- [356] Zurbriggen R, Amacker M, Kammer AR, Westerfeld N, Borghgraef P, Van Leuven F, et al. Virosome-based active immunization targets soluble amyloid species rather than plaques in a transgenic mouse model of Alzheimer's disease. J Mol Neurosci. 2005;27(2):157-66.
- [357] Jain AK, Agarwal A, Agrawal H, Agrawal GP. Double-liposome-based dual-drug delivery system as vectors for effective management of peptic ulcer. J Liposome Res. 2012;22(3):205-14.
- [358] Ray A. Liposome in drug delivery system. Asian J Res Pharm Sci. 2012;2(2):41-4.
- [359] Taghizadeh SM, Bajgholi S. A new liposomal-drug-in-adhesive patch for transdermal delivery of sodium diclofenac. J Biomater Nanobiotechnology. 2011;02(5):576-81.
- [360] Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615-26.
- [361] Kim M, Kim D-M, Kim K-S, Jung W, Kim D-E. Applications of cancer cell-specific aptamers in targeted delivery of anticancer therapeutic agents. Molecules. 2018;23(4):830.
- [362] Liechty WB, Peppas NA. Expert opinion: responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm. 2012;80(2):241-46.
- [363] Chang DK, Chiu CY, Kuo SY, Lin WC, Lo A, Wang YP, et al. Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors. J Biol Chem. 2009;284(19):12905-16.
- [364] Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anesthetized rats: a developmental study. J Physiol. 1990;429(1):47-62.
- [365] Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41-53.
- [366] Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24(9):1733-44.
- [367] Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22(1):11-28.
- [368] Ducheyne P, (Ed). Comprehensive biomaterials. Vol 4, New York NY, USA: Elsevier Publishing; 2011.
- [369] Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102.
- [370] Yaksh TL, Provencher JC, Rathbun ML, Myers RR, Powell H, Richter P, et al. Safety assessment of encapsulated morphine

- delivered epidurally in a sustained-release multivesicular liposome preparation in dogs. Drug Deliv. 2000;7(1):27-36.
- [371] Drabek T, Janata A, Jackson EK, End B, Stezoski J, Vagni VA, et al. Microglial depletion using intrahippocampal injection of liposome-encapsulated clodronate in prolonged hypothermic cardiac arrest in rats. Resuscitation. 2012;83(4):517-26.
- [372] Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252-73.
- [373] Bodor N, Buchwald P. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev. 1999;36(2-3):229-54.
- [374] Rockwell S. Use of hypoxia-directed drugs in the therapy of solid tumors. Semin Oncol. 1992;19(4 Supp 11):29-40.
- [375] Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58(4):672-84.
- [376] Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today. 1996;2(3):106-13.
- [377] Nutt JG, Woodward WR, Hammerstad JP, Carter JH, Anderson JL. The "on-off" phenomenon in Parkinson's disease: relation to levodopa absorption and transport. N Engl J Med. 1984;310(8):483-8.
- [378] Herzog CD, Dass B, Holden JE, Stansell J, III, Gasmi M, Tuszynski MH, et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord. 2007;22(8):1124-32.
- [379] Rousseau J, Adam JF, Deman P, Wu TD, Guerquin-Kern JL, Gouget B, et al. Intracerebral delivery of 5-iodo-2'-deoxyuridine in combination with synchrotron stereotactic radiation for the therapy of the F98 glioma. J Synchrotron Radiat. 2009;16(4):573-81.
- [380] Marks Jr WJ, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol. 2008;7(5):400-8.
- [381] Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA. 1994;91(6):2076-80.
- [382] Vandergrift WA, Patel SJ, Nicholas JS, Varma AK. Convectionenhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg Focus. 2006;20(4):E13.
- [383] Derakhshan F, Toth C. Insulin and the brain. Curr Diabetes Rev. 2013;9(2):102-16.
- [384] Chen TC, Napolitano GR, Adell F, Schönthal AH, Shachar Y. Development of the metronomic biofeedback pump for leptomeningeal carcinomatosis: Technical note. J Neurosurg. 2015;123(2):362-72.
- [385] Zhan W, Wang CH. Convection enhanced delivery of liposome-encapsulated doxorubicin for brain tumour therapy. J Control Rel. 2018;285:212-29.
- [386] Mitrasinovic S, Appelboom G, Detappe A, Sander Connolly ES. Focused ultrasound to transiently disrupt the blood-brain barrier. J Clin Neurosci. 2016;28:187-9.

- [387] Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, et al. Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(11):1537-70.
- [388] Markovitz DC, Fernstrom JD. Diet and uptake of Aldomet by the brain: competition with natural large neutral amino acids. Science. 1977;197(4307):1014-5.
- [389] Taylor EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet. 2002;41(2):81-92.
- [390] van Bree JB, Audus KL, Borchardt RT. Carrier-mediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharm Res. 1988:5(6):369-71.
- [391] Gupta AS. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature. WIRE Nanomed Nanobiotech. 2016;8(2):255-70.
- [392] Ray D. Handbook experimental pharmacology, 103. Physiology and pharmacology of the blood-brain barrier: bradbury MWB. Berlin, Germany: Springer Verlag; 1992. p. 549; Human Exp Toxicol. 1992;13(2):141.
- [393] Chow HS, Chen Z, Matsuura GT. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci. 1999;88(8):754-8.
- [394] Westin U, Piras E, Jansson B, Bergström U, Dahlin M, Brittebo E, et al. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci. 2005;24(5):565-73.
- [395] Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514-6.
- [396] Schulz C, Paulus K, Lehnert HH. Central nervous and metabolic effects of intranasally applied leptin. Endocrinology. 2004;145(6):2696-701.
- [397] Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey II, WH. Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimers Dis. 1998;1(1):35-44.
- [398] Hashizume R, Ozawa T, Gryaznov SM, Bollen AW, Lamborn KR, Frey WH, et al. New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163. Neuro-Oncology. 2008;10(2):112-20.
- [399] Han IK, Kim MY, Byun HM, Hwang TS, Kim JM, Hwang KW, et al. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med (Berl). 2007;85(1):75-83.
- [400] Dhuria SV, Hanson LR, Frey WH, II. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654-73.
- Wen MM. Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain-current development. Discov Med. 2011;11(61):497-503.
- [402] Miyake MM, Bleier BS. The blood-brain barrier and nasal drug delivery to the central nervous system. Am J Rhinol Allergy. 2015;29(2):124-7.
- [403] Banks WA, During MJ, Niehoff ML. Brain uptake of the glucagon-like peptide-1 antagonist exendin (9-39) after intranasal administration. J Pharmacol Exp Ther. 2004;309(2):469-75.

- [404] Thorne RG, Emory CR, Ala TA, Frey WH, II. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692(1-2):278-82.
- [405] Bonouvrié LA, van Schie PE, Becher JG, van Ouwerkerk WJ, Vermeulen RJ. Intrathecal baclofen for progressive neurological disease in childhood: a systematic review of literature. Eur J Paediatr Neurol. 2012;16(3):279-84.
- [406] Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020;25(8):1929.
- [407] Alshweiat A, Ambrus R, Csóka I. Intranasal nanoparticulate systems as an alternative route of drug delivery. Curr Med Chem. 2019;26(35):6459-92.
- [408] Sun S, Wang P, Sun S, Liang X. Applications of micro/nanotechnology in ultrasound-based drug delivery and therapy for tumor. Curr Med Chem. 2021;28(3):525-47.
- [409] Fisher DG, Price RJ. Recent advances in the use of focused ultrasound for magnetic resonance image-guided therapeutic nanoparticle delivery to the central nervous system. Front Pharmacol. 2019;10:1348. doi: 10.3389/ fphar.2019.01348.
- [410] Liu Y, Bai L, Guo K, Jia Y, Zhang K, Liu Q, et al. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics. 2019;9(18):5261-81.
- Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Rel. 2020;321:442-62.
- [412] Haas M, de Zeeuw D, van Zanten A, Meijer DK. Quantification of renal low-molecular-weight protein handling in the intact rat. Kidney Int. 1993;43(4):949-54.
- [413] Franssen EJ, Koiter J, Kuipers CA, Bruins AP, Moolenaar F, De Zeeuw D, et al. Low-molecular-weight proteins as carriers for renal drug targeting. Preparation of drug-protein conjugates and drug-spacer derivatives and their catabolism in renal cortex homogenates and lysosomal lysates. J Med Chem. 1992;35(7):1246-59.
- [414] Haas M, Kluppel AC, Wartna ES, Moolenaar F, Meijer DK, De Jong PE, et al. Drug-targeting to the kidney: renal delivery and degradation of a naproxen-lysozyme conjugate in vivo. Kidney Int. 1997;52(6):1693-9.
- [415] Zhang Z, Zheng Q, Han J, Gao G, Liu J, Gong T, et al. The targeting of 14-succinate triptolide-lysozyme conjugate to proximal renal tubular epithelial cells. Biomaterials. 2009;30(7):1372-81.
- [416] Zheng Q, Gong T, Sun X, Zhang ZR. Synthesis, characterization, and in vitro evaluation of triptolide-lysozyme conjugate for renal targeting delivery of triptolide. Arch Pharm Res. 2006;29(12):1164-70.
- Kok RJ, Grijpstra F, Walthuis RB, Moolenaar F, De Zeeuw D, Meijer DK. Specific delivery of captopril to the kidney with the prodrug captopril-lysozyme. J Pharmacol Exp Ther. 1999;288(1):281-5.
- [418] Haverdings RF, Haas M, Navis G, van Loenen-Weemaes AM, Meijer DK, De Zeeuw D, et al. Renal targeting of captopril selectively enhances the intrarenal over the systemic effects of ACE inhibition in rats. Br J Pharmacol. 2002;136(8):1107-16.

- Dolman ME, Harmsen S, Pieters EH, Sparidans RW, Lacombe M, Szokol B, et al. Targeting of a platinum-bound sunitinib analog to renal proximal tubular cells. Int J Nanomed. 2012;7:417-33.
- [420] Dolman ME, Harmsen S, Storm G, Hennink WE, Kok RJ. Drug targeting to the kidney: advances in the active targeting of therapeutics to proximal tubular cells. Adv Drug Deliv Rev. 2010:62(14):1344-57.
- [421] Zhou P, Sun X, Zhang Z. Kidney-targeted drug delivery systems. Acta Pharm Sin B. 2014;4(1):37-42.
- [422] Jiang D, Rosenkrans ZT, Ni D, Lin J, Huang P, Cai W. Nanomedicines for renal management: from imaging to treatment. Acc Chem Res. 2020;53(9):1869-80.
- [423] Yuan ZX, Li JJ, Zhu D, Sun X, Gong T, Zhang ZR. Enhanced accumulation of low-molecular-weight chitosan in kidneys: a study on the influence of N-acetylation of chitosan on renal targeting. J Drug Target. 2011;19(7):540-51.
- [424] Luo J, Sun J, Luo X, Wei Y, Zheng H, Mu C, et al. Low molecular weight chitosan-based conjugates for efficient Rhein oral delivery: synthesis, characterization, and pharmacokinetics. Drug Dev Ind Pharm. 2019;45(1):96-104.
- [425] Kim CS, Mathew AP, Uthaman S, Moon MJ, Bae EH, Kim SW, et al. Glycol chitosan-based renal docking biopolymeric nanomicelles for site-specific delivery of the immunosuppressant. Carbohyd Polym. 2020;241:116255.
- [426] Sarko D, Georges RB. Kidney-specific drug delivery: a review of opportunities, achievements, and challenges. J Anal Pharm Res. 2016;2(5):33-8.
- [427] Huang X, Ma Y, Li Y, Han F, Lin W. Targeted drug delivery systems for kidney diseases. Front Bioeng Biotechnol. 2021;9:683247.
- [428] Rahman A, Likius DS, Uahengo V. Polymer nanomaterials as drug delivery system for renal disease: a short commentary. Nephrol Ren Dis. 2017;2(3):1-3.
- [429] Bidwell III GL, Mahdi F, Shao Q, Logue OC, Waller JP, Reese C, et al. A kidney-selective biopolymer for targeted drug delivery. Am J Physiol Ren Physiol. 2017;312(1):F54-F64.
- Kumar SR, Deutscher SL. 111 In-labeled galectin-3-targeting peptide as a SPECT agent for imaging breast tumors. J Nucl Med. 2008;49(5):796-803.
- [431] Deutscher S, Figueroa S, Kumar S. Tumor targeting and SPECT imaging properties of an ¹¹¹In-labeled galectin-3 binding peptide in prostate carcinoma. Nuc Med Biol. 2009;36(2):137-46.
- [432] Suzuki K, Susaki H, Okuno S, Yamada H, Watanabe HK, Sugiyama Y. Kidney targeting of glycosylated peptides. Drug Metab Pharmacokinet. 1997;12(Supplement):96-7.
- [433] Suzuki K, Susaki H, Okuno S, Yamada H, Watanabe HK, Sugiyama Y. Specific renal delivery of sugar-modified lowmolecular-weight peptides. J Pharmacol Exp Ther. 1999;288(2):888-97.
- Shirota K, Kato Y, Suzuki K, Sugiyama Y. Characterization [434] of novel kidney-specific delivery system using an alkylglucoside vector. J Pharmacol Exp Ther. 2001;299(2):459-67.
- [435] Lin Y, Sun X, Gong T, Zhang ZR. Prednisolone succinateglucosamine conjugate: synthesis, characterization and in vitro cellular uptake by kidney cell lines. Chin Chem Lett. 2012;23(1):25-8.

- [436] Lin Y, Sun X, Gong T, Zhang ZR. Synthesis and in vivo distribution of 2-deoxy-2-amino diglucose-prednisolone conjugate (DPC). Chin Chem Lett. 2012;23(5):557-60.
- [437] Liang Z, Gong T, Sun X, Tang JZ, Zhang Z. Chitosan oligomers as drug carriers for renal delivery of zidovudine. Carbohyd Polym. 2012;87(3):2284-90.
- [438] Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020;10(5):2342-57.
- [439] Wilk SH, Mizoguchi HA, Orlowski MA. Gamma-glutamyl dopa: a kidney-specific dopamine precursor. J Pharmacol Exp Ther. 1978;206(1):227-32.
- [440] Pestana M, Soares-da-Silva P. The renal handling of dopamine originating from L-DOPA and y-Glutamyl-L-DOPA. Br J Pharmacol. 1994;112(2):417-22.
- [441] Mizoguchi H, Orlowski M, Wilk S, Green JP. y-Glutamyl DOPA and y-Glutamyl Dopamine: Effect of plasma glucose levels. Eur J Pharmacol. 1979;57(2-3):239-45.
- [442] Su M, He Q, Zhang ZR, Hu B, Liu SW. Kidney-targeting characteristics of N-acetyl-L-glutamic prednisolone prodrug. Yao Xue Xue Bao. 2003;38(8):627-30.
- [443] Wang S, Luo J, Lantrip DA, Waters DJ, Mathias CJ, Green MA, et al. Design and synthesis of [111In] DTPA- folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem. 1997;8(5):673-9.
- [444] Eftekhari A, Maleki Dizaj S, Ahmadian E, Przekora A, Hosseiniyan Khatibi SM, Ardalan M, et al. Application of advanced nanomaterials for kidney failure treatment and regeneration. Mater (Basel). 2021;14(11):2939.
- [445] Choi CH, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci U S A. 2011;108(16):6656-61.
- [446] Singh M, Ghose T, Faulkner G, Kralovec J, Mezei M. Targeting of methotrexate-containing liposomes with a monoclonal antibody against human renal cancer. Cancer Res. 1989;49(14):3976-84.
- [447] Tuffin G, Waelti E, Huwyler J, Hammer C, Marti HP. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J Am Soc Nephrol. 2005;16(11):3295-305.
- [448] Bisht S, Feldmann G, Koorstra JB, Mullendore M, Alvarez H, Karikari C, et al. In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol Cancer Ther. 2008;7(12):3878-88.
- [449] Kobes JE, Daryaei I, Howison CM, Bontrager JG, Sirianni RW, Meuillet EJ, et al. Improved treatment of pancreatic cancer with drug delivery nanoparticles loaded with a novel AKT/ PDK1 inhibitor. Pancreas. 2016;45(8):1158-66.
- [450] Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev. 2010;62(3):346-61.
- [451] Kleespies A, Jauch KW, Bruns CJ. Tyrosine kinase inhibitors and gemcitabine: new treatment options in pancreatic cancer? Drug Resist Updat. 2006;9(1-2):1-18.
- [452] Nigam P, Sarkar D. Multifunctional silica nanoparticles for pancreatic cancer-specific drug delivery and bioimaging. J Chem Appl Biochem. 2015;2(1):110.

- [453] Hong SP, Wen J, Bang S, Park S, Song SY. CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer. 2009;125(10):2323-31.
- [454] Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J Control Rel. 2016;232:131-42.
- [455] Alarfaj NA, El-Tohamy MF, Oraby HF. CA 19-9 pancreatic tumor marker fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite. Int J Mol Sci. 2018;19(4):1162.
- [456] Kim MW, Jeong HY, Kang SJ, Choi MJ, You YM, Im CS, et al. Cancer-targeted nucleic acid delivery and quantum dot imaging using egf receptor aptamer-conjugated lipid nanoparticles. Sci Rep. 2017;7:9474.
- [457] Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano. 2009;3(3):502-10.
- [458] Spring BQ, Bryan Sears RB, Zheng LZ, Mai Z, Watanabe R, Sherwood ME, et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat Nanotechnol. 2016;11(4):378-87.
- [459] Bates SE, Fojo T. New drug for pancreatic cancer highlights the dual effect of regulatory approvals. Nat Rev Clin Oncol. 2016;13(4):205-6.
- [460] Nguyen HV, Faivre V. Targeted drug delivery therapies inspired by natural taxes. J Control Rel. 2020;322:439-56.
- [461] Reynolds F, Knott C. Pharmacokinetics in pregnancy and placental drug transfer. Oxf Rev Reprod Biol. 1989;11:389-449.
- [462] van der Aa EM, Peereboom-Stegeman JH, Noordhoek J, Gribnau FW, Russel FG. Mechanisms of drug transfer across the human placenta. Pharm World Sci. 1998;20(4):139-48.
- [463] Huang JP, Hsieh PC, Chen CY, Wang TY, Chen PC, Liu CC, et al. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis. Placenta. 2015;36(12):1433-41.
- [464] Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, et al. Barrier capacity of human placenta for nanosized materials. Env Health Perspect. 2010;118(3):432-6.
- [465] Audus KL. Controlling drug delivery across the placenta. Eur J Pharm Sci. 1999;8(3):161-5.
- [466] Eshkoli T, Sheiner E, Ben-Zvi Z, Holcberg G. Drug transport across the placenta. Curr Pharm Biotechnol. 2011;12(5):707-14.
- [467] Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev. 2020;160:244-61.
- [468] Wischke C, Neffe AT, Steuer S, Lendlein A. Comparing techniques for drug loading of shape-memory polymer networkseffect on their functionalities. Eur J Pharm Sci. 2010;41(1):136-47.
- [469] Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: a review. Carbohyd Polym. 2021:251:116871.
- [470] Van Gheluwe L, Chourpa I, Gaigne C, Munnier E. Polymerbased smart drug delivery systems for skin application and demonstration of stimuli-responsiveness. Polymers. 2021;13(8):1285.

- [471] El-Sherbiny IM, Abbas Y. Janus Nano-and microparticles as smart drug delivery systems. Curr Pharm Biotechnol. 2016;17(8):673-82.
- [472] Aggarwal N, Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: a smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv Transl Res. 2021;1-22. PMID: 33486689, doi: 10.1007/s13346-021-00907-8.
- [473] Barker DD, Berk AJ. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology. 1987;156(1):107-21.
- [474] Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L. et al. A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6(8):879-85.
- [475] Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM, et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res. 2003;9(2):555-61.
- [476] Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J, et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 2002;62(21):6070-9.
- [477] Vasey PA, Shulman LN, Campos S, Davis J, Gore M, Johnston S, et al. Phase I trial of intraperitoneal injection of the E1B-55-kD-Gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol. 2002;20(6):1562-9.
- [478] Galanis E, Okuno SH, Nascimento AG, Lewis BD, Lee RA, Oliveira AM, et al. Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther. 2005;12(5):437-45.
- [479] Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. 2019;34(1). PMID: 30707682, doi: 10.1515/dmpt-2018-0032.
- [480] Li Z, Ma X, Xia Y, Qian K, Akakuru OU, Luo L, et al. A pHsensitive polymer-based precise tumor targeting strategy with reduced uptake of nanoparticles by non-cancerous cells. J Mater Chem B. 2019;7(39):5983-91.
- [481] Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, et al. Passive targeting in nanomedicine: Fundamental concepts, body interactions, and clinical potential. In: Chung EJ, Leon L, Rinaldi C, (Eds). Nanoparticles for biomedical applications. New York NY, USA: Elsevier Publishers; 2020. p. 37-53.
- [482] Béduneau A, Saulnier P, Hindré F, Clavreul A, Leroux JC, Benoit JP. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab'fragments. Biomaterials. 2007;28(33):4978-90.
- [483] Bottini M, Sacchetti C, Pietroiusti A, Bellucci S, Magrini A, Rosato N, et al. Targeted nanodrugs for cancer therapy: prospects and challenges. J Nanosci Nanotechnol. 2014;14(1):98-114.
- [484] Hong M, Zhu S, Jiang Y, Tang G, Pei Y. Efficient tumor targeting of hydroxycamptothecin loaded pegylated niosomes modified with transferrin. J Control Rel. 2009;133(2):96-102.

- [485] Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons. J Control Rel. 2009;137(1):78-86.
- [486] Canal F, Vicent MJ, Pasut G, Schiavon O. Relevance of folic acid/polymer ratio in targeted PEG-epirubicin conjugates. J Control Rel. 2010;146(3):388-99.
- [487] Gorelik E, Galili U, Raz A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 2001;20(3-4):245-77.
- [488] Olsnes S, Sandvig K. How protein toxins enter and kill cells. Cancer Treat Res. 1988;37:39-73.
- [489] Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed. 2018;13:3921-35.
- [490] Moorcroft SCT, Jayne DG, Evans SD, Ong ZY. Stimuliresponsive release of antimicrobials using hybrid inorganic nanoparticle-associated drug-delivery systems. Macromol Biosci. 2018;18(12):e180020730318831.
- Sjöholm E, Sandler N. Additive manufacturing of persona-[491] lized orodispersible warfarin films. Int J Pharm. 2019;564:117-23.
- [492] Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, et al. Stimuliresponsive nano-assemblies for remotely controlled drug delivery. J Control Rel. 2020;322:566-92.
- [493] Liu F, Lin S, Zhang Z, Hu J, Liu G, Tu Y, et al. pH-responsive nanoemulsions for controlled drug release. Biomacromolecules. 2014;15(3):968-77.
- [494] Gannimani R, Walvekar P, Naidu VR, Aminabhavi TM, Govender T. Acetal containing polymers as pH-responsive nano-drug delivery systems. J Control Rel. 2020;328:736-61.
- [495] Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, et al. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol. 2020;3(1):95.
- [496] Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813-27.
- [497] De La Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64(11):967-78.
- [498] Zhao Y, Fan X, Liu D, Wang Z. Pegylated thermo-sensitive poly (amidoamine) dendritic drug delivery systems. Int J Pharm. 2011;409(1-2):229-36.
- [499] Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013;3(6):366-76.
- [500] Li Y, Pan C, Sun P, Peng Z, Feng E, Wu J, et al. Photo-triggered nucleus targeting for cancer drug delivery. Nano Res. 2021;1-9. doi: 10.1007/s12274-020-3264-0.
- [501] Simonazzi A, Cid AG, Villegas M, Romero AI, Palma SD, Bermúdez JM. Nanotechnology applications in drug controlled release. In: Grumezescu AM, editor. Drug targeting and stimuli sensitive drug delivery systems. Norwich, NY, USA: William Andrew Publishing; 2018. p. 81-116.

- [502] Zhang M, Zhang X, Cai S, Mei H, He Y, Huang D, et al. Photoinduced specific intracellular release EGFR inhibitor from enzyme/ROS-dual sensitive nano-platforms for molecular targeted-photodynamic combinational therapy of non-small cell lung cancer. J Mater Chem B. 2020;8(35):7931-40.
- [503] Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001-12.
- [504] Del-Grosso E, Dallaire AM, Vallée-Bélisle A, Ricci F. Enzymeoperated DNA-based nanodevices. Nano Lett. 2015;15(12):8407-11.
- [505] Mahanty S, Sruti J, Ch NP, ME BR. Particle design of drugs by spherical crystallization techniques. Int J Pharm Sci Nanotech Int J. 2010;3(2):912-8.
- [506] Aouada FA, de Moura MR, Orts WJ, Mattoso LHC. Polyacrylamide and methylcellulose hydrogel as delivery vehicles for the controlled release of paraquat pesticide. J Mater Sci. 2010;45(18):4977-85.
- [507] Adibkia K, Hamedeyazdan S, Javadzadeh Y. Drug release kinetics and physicochemical characteristics of floating drug delivery systems. Expert Opin Drug Deliv. 2011;8(7):891-903.
- [508] Mengqian L, Guangkuo Z, Wei-Ke S, Qi S. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Front Chem. 2020;8:647.
- [509] Bruno JG. A review of therapeutic aptamer conjugates with emphasis on new approaches. Pharm (Basel). 2013;6(3):340-57.
- [510] Tameire F. Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: mechanisms and targets for therapy. Semin Cancer Biol. 2015;33:3-15.
- [511] Wang Y, Zhang Y, Ru Z, Song W, Chen L, Ma H, et al. A ROSresponsive polymeric prodrug nanosystem with self-amplified drug release for PSMA (-) prostate cancer specific therapy. J Nanobiotechnol. 2019;17(1):91.
- [512] Rafi AA, Mahkam M, Davaran S, Hamishehkar H. A smart pHresponsive nano-carrier as a drug delivery system: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): preparation, characterization, and in vitro release studies of an anti-cancer drug. Eur J Pharm Sci. 2016:93:64-73.
- [513] Rosa L, Blackledge J, Boretti A. Nano-magnetic resonance imaging (Nano-MRI) gives personalized medicine a new perspective. Biomedicines. 2017;5(1):7.
- [514] Kumar S, Aaron J, Sokolov K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc. 2008;3(2):314-20.
- [515] Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Rel. 2003;91(1-2):103-13.
- [516] Wong HL, Rauth AM, Bendayan R, Wu XY. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm. 2007;65(3):300-8.
- [517] Wosikowski K, Biedermann E, Rattel B, Breiter N, Jank P, Löser R, et al. In vitro and in vivo antitumor activity of

- methotrexate conjugated to human serum albumin in human cancer cells. Clin Cancer Res. 2003;9(5):1917-26.
- [518] Oh KT, Oh YT, Oh NM, Kim K, Lee DH, Lee ES. A smart flowerlike polymeric micelle for pH-triggered anticancer drug release. Int J Pharm. 2009;375(1-2):163-9.
- [519] Lee MK, Lim SJ, Kim CK. Preparation, characterization, and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials. 2007;28(12):2137-46.
- [520] Wang J, Mongayt D, Torchilin VP. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target. 2005;13(1):73-80.
- [521] Schnyder A, Krähenbühl S, Drewe J, Huwyler J. Targeting of daunomycin using biotinylated immunoliposomes: pharmacokinetics, tissue distribution and in vitro pharmacological effects. J Drug Target. 2005;13(5):325-35.
- [522] Soleimani AH, Garg SM, Paiva IM, Vakili MR, Alshareef A, Huang YH, et al. Micellar nano-carriers for the delivery of STAT3 dimerization inhibitors to melanoma. Drug Deliv Transl Res. 2017;7(4):571-81.
- [523] Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipidpolymer micelles as Nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2002;2(9):979-82.
- [524] Liu J, Zeng F, Allen C. Influence of serum protein on polycarbonate-based Copolymer Micelles as a delivery system for a hydrophobic anti-cancer agent. J Control Rel. 2005;103(2):481-97.
- [525] Kukowska Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, et al. Nanoparticles targeting of anticancer drug improves therapeutic response in an animal model of human epithelial cancer. Cancer Res. 2005;65(12):5317-24.
- [526] Choi SW, Kim JH. Design of surface-modified poly(D,L-lactideco-glycolide) nanoparticles for targeted drug delivery to the bone. J Control Rel. 2007;122(1):24-30.
- Kim HM, Woo SJ. Ocular drug delivery to the retina: current [527] innovations and future perspectives. Pharmaceutics. 2021;13(1):108. doi: 10.3390/pharmaceutics13010108.
- [528] Patil YB, Toti US, Khdair A, Ma L, Panyam J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials. 2009;30(5):859-66.
- [529] Messerschmidt SKE, Musyanovych A, Altvater M, Scheurich P, Pfizenmaier K, Landfester K, et al. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factorfunctionalized particles to tumor cells. J Control Rel. 2009;137(1):69-77.
- [530] Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64(21):7668-72.
- [531] Olivier JC. Drug transport to the brain with targeted nanoparticles. Neurorx. 2005;2(1):108-19.
- [532] Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine. 2004;22(19):2406-12.
- [533] Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-

- targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004:32(19):e149.
- [534] Cho CS, Cho KY, Park IK, Kim SH, Sasagawa T, Uchiyama M, et al. Receptor-mediated delivery of all-trans-retinoic acid to hepatocyte using poly(L-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J Control Rel. 2001;77(1-2):7-15.
- [535] Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm. 2009;378(1-2):177-86.
- [536] Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther. 2001:8(13):999-1004.
- [537] Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2(2):82-95.
- [538] Bu HZ, Gukasyan HJ, Goulet L, Lou XJ, Xiang C, Koudriakova T. Ocular disposition, pharmacokinetics, efficacy, and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab. 2007;8(2):91-107.
- [539] Musumeci T, Bucolo C, Carbone C, Pignatello R, Drago F, Puglisi G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm. 2013;440(2):135-40.
- [540] Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555-63.
- [541] Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis. 2008;14:150-60.
- [542] Kassem MA, Abdel-Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340(1-2):126-33.
- [543] Ali HS, York P, Ali AM, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Rel. 2011;149(2):175-81.
- [544] Natarajan JV, Chattopadhyay S, Ang M, Darwitan A, Foo S, Zhen M, et al. Sustained release of an anti-glaucoma drug: demonstration of the efficacy of a liposomal formulation in the rabbit eye. PLOS One. 2011;6(9):e24513.
- [545] Zhang J, Wang S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm. 2009;372(1-2):66-75.
- [546] Alghadyan AA, Peyman GA, Khoobehi B, Milner S, Liu KR. Liposome-bound cyclosporine: aqueous and vitreous level after subconjunctival injection. Int Ophthalmol. 1988;12(2):101-4.
- [547] Zhang R, Qian J, Li X, Yuan Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol. 2017;101(12):1731-8.
- [548] Zhang R, He R, Qian J, Guo J, Xue K, Yuan YF. Treatment of experimental autoimmune uveoretinitis with intravitreal

- injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci. 2010;51(7):3575-82.
- [549] Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Rel. 2005;102(1):23-38.
- [550] Machado S, Calado S, Bitoque D, Oliveira AV, Øpstad CL, Zeeshan M, et al. Cationic polyene phospholipids as DNA carriers for ocular gene therapy. BioMed Res Int. 2014;2014:703253.
- [551] Toropainen E, Fraser-Miller SJ, Novakovic D, Del Amo EM, Vellonen KS, Ruponen M, et al. Biopharmaceutics of topical ophthalmic suspensions: the importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics, 2021;13(4):452.
- [552] Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, et al. Advanced formulation approaches for ocular drug delivery: state- of-the-art and recent patents. Pharmaceutics. 2019;11(9):460.
- Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, et al. Drug delivery (Nano) platforms for oral and dental applications: tissue regeneration, infection control, and cancer management. Adv Sci (Weinh). 2021;8(8):2004014.
- Yang Z, Han L, Guo Y, Jia L, Yin C, Xia Y. Nanotechnology in [554] dental therapy and oral tissue regeneration. In: Xu H, Gu N, editors. Nanotechnology in regenerative medicine and drug delivery therapy. Singapore: Springer; 2020. p. 91-189.
- [555] Piñón-Segundo E, Ganem-Quintanar A, Alonso-Pérez V, Quintanar-Guerrero D. Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int J Pharm. 2005;294(1-2):217-32.
- [556] Pragati S, Ashok S, Singh K. Recent advances in periodontal drug delivery systems. Int J Drug Deliv. 2009;1(1):1-14.
- [557] Shehata IA, Ballard JR, Casper AJ, Liu D, Mitchell T, Ebbini ES. Feasibility of targeting atherosclerotic plaques by highintensity-focused ultrasound: an in vivo study. J Vasc Interv Radiol. 2013;24(12):1880-7.e2.
- [558] Margaritis M, Channon KM, Antoniades C. Statins as regulators of redox state in the vascular endothelium: beyond lipid-lowering. Antioxid Redox Signal. 2014;20(8):1198-215.
- [559] Taneja G, Sud A, Pendse N, Panigrahi B, Kumar A, Sharma AK. Nano-medicine and vascular endothelial dysfunction: options and delivery strategies. Cardiovasc Toxicol. 2019;19(1):1-12.
- [560] Gupta P, Garcia E, Sarkar A, Kapoor S, Rafiq K, Chand HS, et al. Nanoparticle-based treatment for cardiovascular diseases. Cardiovasc Hematol Disord Drug Targets. 2019;19(1):33-44.
- [561] Chandarana M, Curtis A, Hoskins C. The use of nanotechnology in cardiovascular disease. App Nanosci. 2018;8(7):1607-19.
- Cheraghi M, Negahdari B, Daraee H, Eatemadi A. Heart tar-[562] geted nanoliposomal/nanoparticles drug delivery: an updated review. Biomed Pharmacother. 2017;86:316-23.
- [563] Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, et al. Multiscale technologies for treatment of ischemic cardiomyopathy. Nat Nanotech. 2017;12(9):845-55.
- [564] Kuznetsova NR, Stepanova EV, Peretolchina NM, Khochenkov DA, Boldyrev IA, Bovin NV, et al. Targeting liposomes loaded with melphalan prodrug to tumor

- vasculature via the Sialyl Lewis X selectin ligand. J Drug Target. 2014;22(3):242-50.
- [565] Chanyshev B, Shainberg A, Isak A, Litinsky A, Chepurko Y, Tosh DK, et al. Anti-ischemic effects of multivalent dendrimeric A3 adenosine receptor agonists in cultured cardiomyocytes and the isolated rat heart. Pharmacol Res. 2012;65(3):338-46.
- [566] Johnson TA, Stasko NA, Matthews JL, Cascio WE, Holmuhamedov EL, Johnson CB, et al. Reduced ischemia/ reperfusion injury via glutathione-initiated nitric oxidereleasing dendrimers. Nitric Oxide. 2010;22(1):30-6.
- [567] Wang Y, Bai Y, Price C, Boros P, Qin L, Bielinska AU, et al. Combination of electroporation and DNA/dendrimer complexes enhances gene transfer into murine cardiac transplants. Am J Transpl. 2001;1(4):334-8.
- [568] Verma DD, Levchenko TS, Bernstein EA, Mongayt D, Torchilin VP. ATP-loaded immunoliposomes specific for cardiac myosin provide improved protection of the mechanical functions of myocardium from global ischemia in an isolated rat heart model. J Drug Target. 2006;14(5):273-80.
- [569] Scott RC, Rosano JM, Ivanov Z, Wang B, Chong PL, Issekutz AC, et al. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 2009;23(10):3361-7.
- [570] Bejerano T, Etzion S, Elyagon S, Etzion Y, Cohen S. Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett. 2018;18(9):5885-91.
- [571] Wang B, Rosano J, Crabbe DL, Kiani MF. Oxygen transport to tissue XXXIV. In: Welch WJ, Palm F, Bruley DF, Harrison DK, (Eds). New York NY, USA: Springer; 2013. p. 307-14.
- [572] Dvir T, Bauer M, Schroeder A, Tsui JH, Anderson DG, Langer R, et al. Nanoparticles targeting the infarcted heart. Nano Lett. 2011;11(10):4411-4.
- [573] Galagudza M, Korolev D, Sonin D, Postnov PG, Belozertseva A, et al. Targeted drug delivery into reversibly injured myocardium with silica nanoparticles: surface functionalization & natural biodistribution, and acute toxicity. Int J Nanomed. 2010;5:231.
- [574] Niu J, Azfer A, Rogers L, Wang X, Kolattukudy P. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res. 2007;73(3):549-59.
- [575] Cassee FR, Campbell A, Boere AJ, McLean SG, Duffin R, Krystek P, et al. The biological effects of subacute inhalation of diesel exhaust following the addition of cerium oxide nanoparticles in atherosclerosis-prone mice. Env Res. 2012;115:1-10.
- [576] Polyak B, Medved M, Lazareva N, Steele L, Patel T, Rai A, et al. Magnetic nanoparticle-mediated targeting of cell therapy reduces in-stent stenosis in injured arteries. ACS Nano. 2016;10(10):9559-69.
- [577] Zheng X, Wang Y, Lan Z, Lyu Y, Feng G, Zhang Y, et al. Improved biocompatibility of poly(lactic-co-glycolic acid) and poly-l-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications. J Biomed Nanotechnol. 2014;10(6):900-10.
- [578] Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for

- treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation. 2010;122(22):2301-12.
- [579] Lincoff AM, Furst JG, Ellis SG, Tuch RJ, Topol EJ. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol. 1997;29(4):808-16.
- [580] Böse D, Eggebrecht H, Erbel R. Absorbable metal stent in human coronary arteries: imaging with intravascular ultrasound. Heart. 2006;92(7):892.
- [581] Wieneke H, Dirsch O, Sawitowski T, Gu YL, Brauer H, Dahmen U, et al. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter Cardiovasc Interv. 2003:60(3):399-407.
- [582] Chen Z, Xie M, Wang X, Lv Q, Ding S. Efficient gene delivery to the myocardium with ultrasound targeted microbubble destruction and polyethyleneimine. J Huazhong Univ Sci Technol (Med Sci). 2008;28(5):613-7.
- [583] Chen Z, Liang K, Qiu RX, Luo L. Ultrasound and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethyleneimine. Ultra Biol. 2011;37(8):S145.
- [584] Alexandrov AV, Molina CA, Grotta JC, Garami Z, Ford SR, Alvarez-Sabin J, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004;351(21):2170-8.
- [585] Rosenschein U, Roth A, Rassin T, Basan S, Laniado S, Miller HI. Analysis of coronary ultrasound thrombolysis endpoints in acute myocardial infarction (ACUTE trial): results of the feasibility phase. Circulation. 1997;95(6):1411-6.
- [586] Wissgott C, Richter A, Kamusella P, Steinkamp HJ. Treatment of critical limb ischemia using ultrasound-enhanced thrombolysis (PARES trial): final results. J Endovasc Ther. 2007;14(4):438-43.
- [587] Tripathi J, Vasu B, Bég OA. Computational simulations of hybrid mediated nano-hemodynamics (Au Ag/Blood) through an irregular symmetric stenosis. Comput Biol Med. 2021;130:104213.
- [588] Zhang X, Luo M, Wang E, Zheng L, Shu C. Numerical simulation of magnetic Nano drug targeting to atherosclerosis: effect of plaque morphology (stenosis degree and shoulder length). Comput Methods Prog Biomed. 2020;195:105556.
- [589] Tripathi J, Vasu B, Bég OA, Gorla RSR. Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery: biomedical drug delivery simulation. Proc Inst Mech Eng H. 2021;235(10):1175-96.
- [590] Friedlander SK, Pui DY. Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res. 2004;6:313-20. doi: 10.1023/ B:NANO.0000034725.89027.6b.
- Bahmanpour AH, Ghaffari M, Ashraf S, Mozafari M. [591] Nanotechnology for pulmonary and nasal drug delivery. In: Mozafari M, (Eds). Woodhead publishing series in biomaterials. 23. Nanoengineered biomaterials for advanced drug delivery. New York NY, USA: Elsevier Publishers; 2020. p. 561-79.
- [592] Wang H, Wu L, Sun X. Intratracheal delivery of Nano- and microparticles and hyperpolarized gases: a promising

- strategy for the imaging and treatment of respiratory disease. Chest. 2020;157(6):1579-90.
- [593] Hamzawy MA, Abo-Youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv. 2017;24(1):599-607.
- [594] Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, et al. Nano-based platforms for diagnosis and treatment of COVID-19: from benchtop to bedside. ACS Biomater Sci Eng. 2021;7(6):2150-76.
- [595] Gale EC, Powell AE, Roth GA, Ou BS, Meany EL, Grosskopf AK, et al. Hydrogel-based slow release of a receptor-binding domain subunit vaccine elicits neutralizing antibody responses against SARS-CoV-2. bioRxiv. 2021. PMID: 33821276, doi: 10.1101/2021.03.31.437792.
- [596] McMillan CLD, Choo JJY, Idris A, Supramaniam A, Modhiran N, Amarilla AA, et al. Complete protection by a single dose skin patch delivered SARS-CoV-2 spike vaccine. bioRxiv. 2021;446357. doi: 10.1101/2021.05.30.446357.
- [597] Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater. 2021;4:1-25.
- [598] Tavakol S, Zahmatkeshan M, Mohammadinejad R, Mehrzadi S, Joghataei MT, Alavijeh MS, et al. The role of nanotechnology in current COVID-19 outbreak. Heliyon. 2021;7(4):e06841.
- [599] Yang D. Application of nanotechnology in the COVID-19 pandemic. Int J Nanomed. 2021;16:623-49.
- [600] Kumar V, Sharma N, Maitra SS. In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett. 2017;7(4):243-56.
- [601] Rajendran S, Mukherjee A, Nguyen TA, Godugu C, Shukla RK, (Eds). Micro and nanotechnologies, nanotoxicity. New York NY, USA: Elsevier Publishers; 2020. p. 107-23.
- [602] Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res. 2014;16(6):2379.
- [603] Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O. Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far. Front Bioeng Biotechnol. 2019;7:261.
- [604] Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13(1):44.
- [605] Kansara K, Kumar A. In vitro methods to assess the cellular toxicity of nanoparticles. In: Rajendran S, Mukherjee A, Nguyen TA, Godugu C, Shukla RK, (Eds). Micro and nano technologies, nanotoxicity. New York NY, USA: Elsevier Publishers; 2020. p. 21-40. ISBN 9780128199435.
- [606] Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26-49.
- [607] Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology. 2014;12:5.
- [608] Adamo G, Campora S, Ghersi G. Functionalization of nanoparticles in specific targeting and mechanism release. Nanostruct Nov Ther. 2017;57-80. doi: 10.1016/B978-0-323-46142-9.00003-7.
- [609] Kettler K, Krystek P, Giannakou C, Hendriks AJ, de Jong WH. Exploring the effect of silver nanoparticle size and medium

- composition on uptake into pulmonary epithelial 16HBE14ocells. J Nanopart Res. 2016;18:182.
- [610] Lopez-Campos F, Candini D, Carrasco E, Berenguer Francés MA. Nanoparticles applied to cancer immunoregulation. Rep Pract Oncol Radiother. 2019;24(1):47-55.
- [611] Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S. Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cell Nanomed Biotechnol. 2016;44(1):83-91.
- [612] Abdellatif AAH, Rasheed Z, Alhowail AH, Algasoumi A, Alsharidah M, Khan RA, et al. Silver citrate nanoparticles inhibit PMA-induced TNF-alpha expression via deactivation of NF-kappaB activity in human cancer cell lines, MCF-7. Int J Nanomed. 2020;15:8479-93.
- [613] Abdellatif AAH. A plausible way for excretion of metal nanoparticles via active targeting. Drug Dev Ind Pharm. 2020;46(5):744-50.
- [614] Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 2018;3(10):358-74.
- [615] Park EJ, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 2009;184(1):18-25.
- [616] Gidwani B, Sahu S, Shukla SS, Pandey R, Joshi V, Jain VK, et al. Quantum dots: prospectives, toxicity, advances, and applications. J Drug Deliv Sci Technol. 2021;61:102308.
- Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol. 2019;16(1):18.
- [618] Jović D, Jaćević V, Kuča K, Borišev I, Mrdjanovic J, Petrovic D, et al. The puzzling potential of carbon nanomaterials: general properties, application, and toxicity. Nanomat (Basel). 2020;10(8):1508.
- [619] Garriga R, Herrero-Continente T, Palos M, Cebolla VL, Osada J, Muñoz E, et al. Toxicity of carbon nanomaterials and their potential application as drug delivery systems: in vitro studies in Caco-2 and MCF-7 cell lines. Nanomater. 2020:10(8):1617.
- [620] Asghar W, Shafiee H, Velasco V, Sah VR, Guo S, El Assal R, et al. Toxicology study of single-walled carbon nanotubes and reduced graphene oxide in human sperm. Sci Rep. 2016:6:30270.
- [621] Tan JM, Foo JB, Fakurazi S, Hussein MZ. Release behavior and toxicity evaluation of levodopa from carboxylated singlewalled carbon nanotubes. Beilstein J Nanotechnol. 2015:6:243-53.
- [622] Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health. 2017;59(5):394-407.
- [623] Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A. Effects of single and multi-walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res. 2011;722(1):20-31.
- Singh Z. Applications and toxicity of graphene family nano-[624] materials and their composites. Nanotechnol Sci Appl. 2016:9:15-28.
- [625] Ma K, Li W, Zhu G, Chi H, Yin Y, Li Y, et al. Pegylated DOXcoated nano-graphene oxide as pH-responsive multifunctional nanocarrier for targeted drug delivery. J Drug Target. 2021;29(8):884-91.
- [626] Wang C, Chen B, Zou M, Cheng G. Cyclic RGD-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging. Colloids Surf B Biointerfaces. 2014;122:332-40.

- [627] Teimouri M, Nia AH, Abnous K, Eshghi H, Ramezani M. Graphene oxide-cationic polymer conjugates: synthesis and application as gene delivery vectors. Plasmid. 2016;84-85:51-60.
- [628] Han S, Su L, Zhai M, Ma L, Liu S, Teng Y. A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. J Mater Sci. 2019;54(4):3331-41.
- [629] Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020;10:2717.
- [630] Jiao Z, Zhang B, Li C, Kuang W, Zhang J, Xiong Y, et al. Carboxymethyl cellulose-grafted graphene oxide for efficient antitumor drug delivery. Nanotech Rev. 2018;7(4):291-301.
- [631] Chen Y, Yang Y, Xian Y, Singh P, Feng J, Cui S, et al. Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS App Mater Interfaces. 2020;12(1):352-60.
- [632] Liu Y, Luo Y, Wu J, Wang Y, Yang X, Yang R, et al. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci Rep. 2013:3(1):3469.
- [633] Zhang L, Ouyang S, Zhang H, Qiu M, Dai Y, Wang S, et al. Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy. Exp Ther Med. 2021;21(5):462.
- [634] Li B, Yang J, Huang Q, Zhang Y, Peng C, Zhang Y, et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater. 2013;5(4):e44.
- [635] Volkov Y, McIntyre J, Prina-Mello A. Graphene toxicity as a double-edged sword of risks and exploitable opportunities: a critical analysis of the most recent trends and developments. 2D Mater. 2017;4(2):022001.
- [636] Ou L, Song B, Liang H, Liu J, Feng X, Deng B, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. 2016;13(1):57.
- [637] Yang K, Li Y, Tan X, Peng R, Liu Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small. 2013;27(9):1492-503.
- [638] Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, et al. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol. 2020;94(6):1915-39.
- [639] Nguyen KC, Rippstein P, Tayabali AF, Willmore WG. Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol Sci. 2015;146(1):31-42.
- [640] Buzeav C, Pacheco I. Toxicity of nanoparticles (Chapter 28). In: Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist CG, Pruna A, Amirkhanian S, editors. Woodhead publishing, nanotechnology in eco-efficient construction. 2nd ed. Sawston, UK: Woodhead Publishing; 2019. p. 705-54.
- Ramanathan A. Toxicity of nanoparticles_ challenges and opportunities. Appl Microsc. 2019;49(1):2.

- [642] Yousef MI. Reproductive toxicity of aluminum oxide nanoparticles and zinc oxide nanoparticles in male rats. Nanopart. 2019;1(1):3.
- [643] Kong L, Gao X, Zhu J, Zhang T, Xue Y, Tang M. Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. Env Toxicol. 2017;32(5):1530-8.
- [644] Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, et al. Toxicity of nanoparticles on the reproductive system in animal models: a review. Front Pharmacol. 2017;8:606.
- [645] Wang T, Bai J, Jiang X, Nienhaus GU. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR Spectro-electrochemistry. ACS Nano. 2012;6(2):1251-9.
- [646] Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Rel. 2016;240:332-48.
- [647] Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomed. 2010;5:385-99.
- [648] Casalini T, Limongelli V, Schmutz M, Som C, Jordan O, Wick P, et al. Molecular modeling for nanomaterial-biology interactions: opportunities, challenges, and perspectives. Front Bioeng Biotechnol. 2019;7:268.
- [649] Roman DL, Roman M, Som C, Schmutz M, Hernandez E, Wick P, et al. Computational assessment of the pharmacological profiles of degradation products of chitosan. Front Bioeng Biotechnol. 2019;7:214.
- [650] Schmutz M, Borges O, Jesus S, Borchard G, Perale G, Zinn M, et al. A methodological safe-by-design approach for the development of nanomedicines. Front Bioeng Biotechnol. 2020;8:258.
- [651] Liu T, Choi H, Zhou R, Chen I-W. RES blockade: a strategy for boosting efficiency of nanoparticle drug. NanoToday. 2015;10(1):11-21.
- [652] Akhtar N, Mohammed SA, Singh V, Abdellatif AA, Mohammad HA, Ahad A, et al. Liposome-based drug delivery of various anticancer agents of synthetic and natural product origin: a patent overview. Pharm Pat Anal. 2020;9(3):87-116.
- [653] Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market-(part 1). Int J Nanomed. 2014;9:4357-73.
- [654] Weissig V, Guzman-Villanueva D. Nanopharmaceuticals (part 2): Products in the pipeline-(part 2). Int J Nanomed. 2015;10:1245-57.
- [655] Nanotechnology Products Database. [Cited June 26, 2021]. Available from: https://product.statnano.com/industry/ medicine
- [656] Berger M. Almost 250 nanomedicine products approved or in clinical study. Nanowerk. 2013. [Cited June 26, 2021]. Available from: https://www.nanowerk.com/spotlight/ spotid=28500.php