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Abstract: In this paper, we use a simple and cheap
approach for the synthesis of herceptin-conjugated gra-
phene biosensor to detect the HER2-positive breast cancer
cells. The bifunctional graphene-herceptin nanosheets are
prepared from graphite by a simple ultrasonic-mediated
technique. The prepared protein-mediated graphene is
fully characterized. The results show the exfoliation of
graphene layers in herceptin solution. Moreover, herceptin
is effectively conjugated into the surface of graphene
nanosheets. The synthesized herceptin-conjugated gra-
phene is applied for breast cancer detection. The linear
range of this biosensor is 1–80 cells, which is significant.
The biosensor shows an excellent selectivity performance
for detection of HER2-positive cancer cells. Likewise, the
stability and functionality of the biosensor is about 40 days.

Based on the results, this device is a promising candidate
for rapid and selective detection of cancer cells.

Keywords: single cell, breast cancer, immunosensor, her-
ceptin, graphene

1 Introduction

Cancer is one of the most dangerous diseases in the world
[1–4] and the most common cancer among women is
breast cancer [5]. Based on the existed challenges, there
is still required a nonaggressive, safe, rapid, and easy
method to detect breast cancer [5,6]. Electrochemical bio-
sensing is one of those methods that can detect and quan-
tify the biologic species without destroying the system
[7–9] due to its high specificity, sensitivity, portability,
low-cost preparation, and low response time [10].

Various nanomaterials have been used in biomedical
engineering [11–16] as well as immunosensors and bio-
sensors such as metal oxide nanoparticles [17], carbon-
based nanomaterials [18,19], noble metal nanoparticles
[20], and metal nitride nanoparticles [21]. Graphene is
one of the most powerful 2D nanomaterials for biosensing
applications [22]. Beside high surface area and π conju-
gation structure of graphene that allow a high capability
for binding to other molecules, this material possesses
cavities and also has a tunable structure which makes
it suitable for electroanalysis [23]. Beside high electrical
conductivity, graphene hasmore properties such as ultralight
weight, superior mechanical strength, optical absorption
properties, high thermal conductivity, superior elasticity,
etc. [24–27], which make graphene a promising material for
generating versatile signals in different biological matrixes
[28]. Thus, graphene has been greatly used for several
biomolecules stabilization [29,30]. Some recent successful
cytosensors are based on several cell detections such as
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biosensors for detection of MCF-7 [31], MKN 45, MCF-7 and
HT 29 [32], DU 145 [33], andLO2 [34] cells. A comparison of
the research in different kinds of breast cancer biomarker
detection methods based on graphene materials was
recently reported and discussed [28].

As a brief report of recent research on circulating
tumor cells (CTCs) counting in breast cancer, researchers
used gold microelectrodes and Anti-EpCAM-modified
LC-SPDP monolayer, which lead to a detection limit of
105 cells/mL for MCF-7 breast cancer cells [35]. Yang et al.
[36] used DNA-labeled biosensor and reached a LOD
80 cells/mL. Also, Salahandish et al. [37] could fabricate
a biosensor with a LOD of 2 cells/mL using silver nano-
particles/graphene/polyaniline. Beside, a biosensor based
on peptide-aptamer/polyaniline was fabricated by Liu
et al. [38], demonstrating a LOD of 20 cells/mL. Recently,
Nasrollahpour et al. [39] could prepare a biosensor with a
linear range of 20–2,000 cells/mL by an electrochemi-
luminescence cytosensor in 2021.

We already used a complex procedure for detection
of breast cancer cells with minimum quantification of 2
cells [37]. In this work, we used a simple biosensor con-
sisting of herceptin-conjugated graphene which utilized
the special antibody of HER2 (turns this biosensor to an
immunosensor) for single cell detection. Therefore, we
used a graphene-based immunosensor on the surface
of a glassy carbon electrode to quantify the amount of
SK-BR-3 cancer cells. One of the advantages of this bio-
sensor is simple and low-cost preparation of the electrode,
beside an appropriate linear range for cancer cell level
diagnosis. An exciting property of this biosensor is that
this biosensor could quantify low concentrations of SK-BR-3
cells even to 1 cell number, which can be useful for real
samples and early detection.

2 Materials and methods

2.1 Materials

Graphite prepared fromMerck and Herceptin was obtained
fromMotamed Cancer Institute (Iran). Also, SK-BR-3, MCF-7,
G-292, and HUVEC cell lines were cultured in Motamed
Cancer Institute. The electrodes used in this project were
glassy carbon electrodes and Fe(CN)6 solution was used
as the electrolyte. Also, the water used in preparing aqu-
eous solutions was deionized water.

2.2 Graphene-herceptin synthesis

In order to synthesize the material, we first mixed a 30mL
of 20mg/mL concentration of herceptin with 0.5 g of gra-
phite to reach the primer solution. Then, we stir the solu-
tion using a magnetic stirrer for half an hour to disperse
the graphites in the solution. After that, the stirred dis-
persion was ultrasonicated for 3 h in an ice bath. This was
the major step to slice the graphites in order to reach the
graphene sheets. The ice bath was crucial because of the
presence of proteins in the dispersed solution. It should
be then preserved in a steady and cold situation for 24 h
in order to let remained and unreacted graphites sedi-
ment. After one day, we collected the upper parts of dis-
persion and centrifuged them two times in 3,000 rpm and
one time in 4,000 rpm in order to wash the graphene
sheets and reach the slightly graphene-herceptin. Before
every biosensing test, the graphene-herceptin dispersion
should be ultrasonicated for 15min in ice bath [40].

2.3 Biosensing methods

This biosensing method was based on a three-electrode
platform. Glassy carbon electrodes were used as working
electrodes in this case. Before each step, in order to pre-
pare the electrodes, the electrodes were wet-polished
with alumina powder. Then, cyclic voltammetry (CV)
analysis was carried out to characterize the materials
and confirm the biosensor fabrication. In order to prepare
electrodes for the tests, the dispersed graphene-herceptin
solution was drop-coated on the electrodes and kept in
the cold situation to dry for 24 h. For both selectivity and
calibration tests, square wave (SQW) analysis was taken
before and after putting cells on the electrodes. Tomake cells’
attachment to the antibodies on the electrodes, the solution
was again drop-coated and preserved in the refrigerator for an
hour. The reference and counter electrodes used in the tests
were Ag/AgCl and Platine, respectively. Finally, to complete
the electrochemical cell, a solution was prepared using ferro-
cyanide and KNO3 as the electrolyte.

2.4 Cell culture

SK-BR-3, a human breast cancer cell line, that overexpresses
Her2 antibody (Neu/ErbB-2), human caucasian osteosar-
coma (G-292), human breast adenocarcinoma (MCF-7), and
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human umbilical vein endothelial cells (HUVECs) utilized
here were provided from Pasteur Institute of Iran (IPI). The
cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) at pH 7.4 supplemented with 10% (v/v) heat-inac-
tivated at 50°C for 30min from fetal bovine serum (FBS),
2mM L-glutamine, 100units/mL of penicillin, and 100mg/mL
of streptomycin at 37°C and 5% CO2 in a humidified incu-
bator. Then, the cells were trypsinized (0.025% trypsin,
0.02% EDTA) after they were grown until 70–80% con-
fluent [41].

2.5 Characterization and equipment

The graphene-herceptin was provided by the ultrasonic
probe (Q 500 system with standard probe) and was dried
in the Freeze Dryer GAMMA 1–16 LSC. Ultraviolet visible
(UV) absorption of the material was obtained by T80 +
UV-Vis spectrometer instruments Ltd. Morphology char-
acteristics were investigated by a field emission scanning
electron microscopy (TE-SCAN). Micro/nanostructure eva-
luations were studied by transmission electron microscopy

(TEM) 100 kV Philips TEM. Fourier-transform infrared
spectra (FTIR) of graphene-herceptin were measured by IR
spectrometer (8500S SHIMADZU) (400–4,000/cm). Raman
spectra were tested in the range of 500–400/cm (excitation
wavelength of 642 nm) by RFS-100/s Raman spectrophoto-
meter. All electrochemical tests were scrutinized using a
Potentiostat/Galvanostat model PGSTAT302N boards (Eco
Chemie, Utrecht, Netherlands).

3 Results and discussion

3.1 Biosensor fabrication

The glassy carbon electrodes were cleaned with alumina
powder and alcohol. The herceptin-conjugated graphene
(bio-graphene) was synthesized by ultrasonic method and
casted on the prepared electrodes. An electrochemical pro-
cedure based on the three-electrode platform was used to
evaluate the biosensing performance and breast cancer
detection (CTCs in blood). A schematic representation of
the biosensor fabrication is shown in Figure 1.

Figure 1: Schematic illustration of the herceptin-conjugated graphene synthesis and the immunosensor fabrication.
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3.2 Morphological and physicochemical
characteristics

The morphologies and microstructures of the simple her-
ceptin-conjugated graphene nanosheets are presented in
Figure 2. The FESEM results of the herceptin-conjugated
graphene showed that graphene was the main material in
the sample and the side dimensions of the herceptin-con-
jugated graphene nanosheets were in the range of 10 nm
to several micrometers (Figure 2a). The non-dispersion
method covered the strategy for the economically and envir-
onmentally friendly synthesis of graphene nanostructures.

In Figure 2b, the TEM result of the herceptin-conjugated
graphene exhibited that the prepared graphene was effec-
tively exfoliated and one of the main features of the synthe-
sized herceptin-mediated graphene was high surface area.
TEM result showed the sonicating procedure for reducing
the flake size (the flake dimensions are scaled as t−1/2).
Moreover, TEM and FE-SEM results demonstrated large gra-
phene nanosheets on the surface and their resemblance of
crumpled silk veil waves scrolled and corrugated was the
nature of graphene nanosheets. These typical characteris-
tics of graphene and its derivatives were already confirmed
by many researchers [42–45]. The protein-mediated gra-
phene nanosheets were transparent and demonstrated an
excellent stability under the electron beam. The distinct
diffraction marks approved the structural properties (crys-
tallites) of graphene nanosheets synthesized with a simple
protein-mediated procedure. In the ultrasonic condition,
ultrasonic waves establish acoustic cavitation, leading to
creation, growth, and collapse of bubbles in the solution
[46]. This event leads to shock waves onto the graphite and
graphene layers, leading to exfoliation and isolation of gra-
phene layers. This process relied on low-power sonicating
procedure for long time. Stabilizer helps forming the few-
layer graphene sheet without sheets aggregationwhichmay
be established because of the hydrophobic nature of gra-
phene surface. Therefore, herceptin (protein) was used as a
stabilizer with ultrasonic procedure to address this critical
challenge. Moreover, herceptin could diffuse into the gra-
phene layers and act as a bioreceptor for biosensing. Her-
ceptin is a biological element that can establish selectivity
in the graphene biosensor. Dong et al. reported a water-
phase and non-dispersion exfoliation approach for produ-
cing large scale of high concentration graphene [47]. Khan
et al. investigated exfoliation of graphite dispersions and
preparation of graphene at high concentrations [48]. This
technique facilitated graphene synthesis for many applica-
tions including biosensor, drug delivery, tissue engineering,
and lab on a chip. The prepared hybrid material was depos-
ited on the glassy carbon electrodes. The electrodes were
cleaned completely. Then, the biosensing activity, selec-
tivity, and calibration tests were established.

Fourier-transform infrared (FTIR) spectroscopy of the
herceptin-conjugated graphene was analyzed to scruti-
nize the in situ forming of the novel functional groups
existed in bio-graphene under ultrasonication (Figure 3).
The peaks at 1,098 and 1,550/cm were related to C–N and
C]N stretching vibration, respectively. It seems that the
nature of these peaks is ascribed to the hydrophobic
residue of herceptin that reacts with the graphene layers.
1,720, 1,200, and 3,430/cm peaks are attributed to the
C]O, C–OH, and O–H stretching vibration, respectively.

Figure 2: Micro/nanostructure and morphology of the herceptin-
conjugated graphene prepared by sonication process: (a) TEM and
(b) FE-SEM images.
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Also, the peak at 1,600/cm was ascribed to C]C aromatic
vibration [40].

The UV-Vis spectroscopy analysis of the herceptin-
conjugated bio-graphene is shown in Figure 4. As seen,
a peak is observable at 270 nm, which is ascribed to
the bio-graphene characteristic [49]. An increment was
observed in the intensity of this peak which was attributed
to concentration of the pristine antibody, herceptin. There-
fore, the herceptin-conjugated bio-graphene was success-
fully synthesized.

Raman spectroscopy analysis was used to validate
carbon structure in the nanosheets of the herceptin-con-
jugated graphene (Figure 5). The specific bands of the
functionalized bio-graphene in Raman analysis are D,

G, and 2D. These bands are located at ∼1,350, ∼1,570,
and ∼2,680/cm for D, G, and 2D, respectively. The shape
and position of these bands in the Raman analysis include
critical information in association with the quality of the
bio-graphene. The intensity ratio of D/G for the herceptin-
conjugated graphene and graphite was 0.32 and 0.02,
respectively, revealing that the aromatic domain number
was increased in the bio-graphene micro/nanostructure.
The intensity ratio of 2D/G was 0.42 for the herceptin-con-
jugated graphene, demonstrating successful synthesis of
the bio-graphene.

3.3 Electrochemical characteristics

The CV and Nyquist analysis were conducted for the bare
electrode and the functionalized electrode (herceptin-
conjugated graphene) in 0.01 M phosphate-buffered saline
(PBS) (pH 7.4) containing 5mM K3Fe(CN)6 (these electro-
chemical analyses were commonly applied to the investi-
gation of the characterization of sensors and biosensors).
These two tests were used to explore the electrochemistry
and electrochemical features of the herceptin-conjugated
graphene biosensor (Figures 6 and 7).

As can be seen in Figure 6, herceptin-conjugated
graphene substrate decreased the charge transfer resis-
tance (Rct) in comparison with the bare electrode and
enhanced the conductivity and surface area of the conven-
tional electrode (glassy carbon), presenting a highly conduc-
tive and inexpensive substrate for biosensing applications.
The herceptin-conjugated graphene substrate enriched the

Figure 3: Fourier-transform infrared (FTIR) spectrum of the
herceptin-conjugated graphene synthesized under ultrasonication
in the presence of the antibody, herceptin.

Figure 4: UV-Vis spectrum of the herceptin-conjugated graphene
synthesized under ultrasonication in presence of the antibody,
herceptin.

Figure 5: Raman spectrum of the herceptin-conjugated graphene
synthesized in situ under ultrasonication in presence of the
antibody, herceptin.
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reaction kinetics and decreased the Rct because of great
surface area and porosity that were established by its
pellet/flake-like graphene structure. Owing to the rise in
the surface conductivity, the electron transfer and conduc-
tivity were increased with the ( ) −Fe CN 6

3 probe and subse-
quently formed the diffusion layer.

As can be seen in Figure 7, there is a satisfactory
agreement between Nyquist plot and CV where the peak
height in CVwas decreased with the functionalization of the
electrode with herceptin-conjugated graphene substrate.

The redox peaks of the herceptin-conjugated graphene
and herceptin-conjugated graphene with 20 cells were
reduced in comparison with the bare electrode which could
ascribe to the good electron mediation of herceptin-conju-
gated graphene and the glassy carbon electrode.

Impedance spectroscopy technique is used for electro-
chemical characterization. However, the use of impedance
technique is semi-qualitative for biosensing evaluation
and detection. Moreover, this technique uses resistance
to sense the analyte, which allows the interferences
to affect the results decreasing the selectivity. The
square wave voltammetry was used as a strong tech-
nique for biosensing measurements [50]. Actually, we
established a single cell detection platform for early
breast cancer.

3.4 Selectivity analysis

The main analysis for sensing performance of a biosensor
is the selectivity test and response of the sensor in real
biological samples containing electroactive species. In
order to perform this analysis, we used different kinds
of cell lines including MCF-7, SK-BR-3, HUVEC, and
G-292. In every step, we drop-coated a solution of cells
with a 2,000 cells/mL concentration. In each one, SQW
analysis was performed before and after putting cells on
the electrode surface. In order to remove the parameter of
difference of the electrodes from the selectivity results,
we divided the difference of the SQW peaks intensity on
the primitive intensity (before depositing the cells) as the
parameter ΔI/I. The concerned curves and final compar-
ison of the data are shown in Figure 8.

Apparently, the parameter ΔI/I for SK-BR-3 cells is
more than 0/45 which is more than these data for other
cell lines. This means in the SK-BR-3, cells adhered to the
electrodes were more than other cells which showed the
excellent selectivity and good affinity of the herceptin
antibodies existed in the synthesized graphene to HER-
2 receptors of SK-BR-3 cells (Figure 9).

3.5 Cancer biosensing analyses

The linear range of a biosensor usually shows the analyte
concentration range in which the biosensor exhibits a
good linear correspondent response. The amended electro-
chemical cell and bio-graphene electrode were applied to
achieve the linear dynamic range of the immunosensor

Figure 6: Nyquist plots for the bare electrode (green), herceptin-
conjugated graphene (red), and herceptin-conjugated graphene
with 20 cells (blue), respectively. All tests were done in 0.01 M PBS
(pH = 7.4) containing 5mM K3Fe(CN)6.

Figure 7: Cyclic voltammograms (CVs) for the bare electrode (red),
herceptin-conjugated graphene (blue), and herceptin-conjugated
graphene with 20 cells (green), respectively. All analyses were
established in 0.01 M PBS (pH 7.4) containing 5mM K3Fe(CN)6.
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for detection of HER2+ overexpressed on the surface of
SK-BR3 cell line (as a sample of breast cancer cells). To
find the linear range of the biosensor, we put different
concentrations of SK-BR-3 cells on the electrode surface

so that the following results were reached by comparing
the SQW graphs (Figure 10).

As can be seen in Figure 10, this biosensor can detect
cancer cells linearly with a R2 = 0.9957 in the range of
1–80 cells which is a very successful result for developing
this biosensor in real sample analysis (because in real
samples (blood) of patients, there is low concentration
of cancerous cells). Also, this biosensor had the potential
to be tested in more concentrations above 80 cells.

Beside, in the case of reproducibility of this bio-
sensor, six results in the concentration of 20 cells were
compared. As a result, we found that the parameter ΔI/I
is more than the numerical quantity of 0/45 for four of
six tests. Moreover, the functionality or durability of this
synthesized material was estimated for 40–50 days. As
a result, beside simple and low-cost synthesis of the
used hybrid material, this biosensor was able to be
used in real sample detections and developments for
better performances.

Differential pulse voltammetry (DPV) technique is
used for biosensing measurements. However, the results
of DPV technique are very similar to square wave

Figure 8: Selectivity of the herceptin-conjugated graphene biosensor and the comparison of different cell lines on the sensing performance
of the bioelectrode: (a)MCF-7, (b) G-292, (c) SK-BR-3, and (d) HUVEC. In each graph, the blue and red curves are related to electrodes before
and after depositing cells on them, respectively.

Figure 9: Effect of several cells on the electrode response and a
comparison of the biosensor activity in the presence of the cells:
MCF-7, G-292, SK-BR-3, and HUVEC.
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voltammetry for biosensing evaluation and detection.
Moreover, both of these techniques use the same proce-
dure to sense the analyte. As mentioned, square wave
voltammetry was used, which is a noble technique for
biosensing measurements [50]. In biosensors, linear range
is very important. Inmost biosensors such as glucometer, the
maximal limit of quantification is very critical, because
the amount of the analyte (glucose) is very vital to con-
sider the diet and medication. But, in cancer detection,
only minimal limit of quantification is very important for
medical diagnosis and this platform is more sensitive
than other devices in literature (the ability to detect
single cell). Moreover, there is almost 15–20 cell/mL in
blood of metastatic breast cancer (the worst case of
cancer) [51]. Our platform can detect more than 80 cells,
which is suitable for clinical applications.

4 Conclusion

The quick advances of nanotechnology and nano-science
facilitate the fabrication of nanostructures-mediated bio-
sensing devices with amended biosensing features for
cancer diagnosis. Because of the increasing need to detect
and quantify the chemical and biological species, electro-
chemical biosensors have been widely developed. These
devices have been used for diagnosis and therapy of cancer
owing to their properties such as portability, high sensi-
tivity, specificity, fast response, and being user-friendly.
Additionally, graphene, due to its unique features such
as high surface area, conductivity in room temperature,
and brilliant optical, mechanical, and thermal properties,
is one of most used materials in electrochemical biosensors,

which significantly increases the sensitivity of biosensors.
However, detecting the single cell needs a new class of
nanostructure-based device with excellent sensitivity and
specificity. Biosensors with low limit of detections and fast
responses can make this result feasible. In this project, we
used a facile in situ synthesis of graphene-herceptin hybrid
for applying this material for a SK-BR-3 cell biosensor.
Selectivity tests were successfully carried out which showed
excellent results over the potential electroactive cells pre-
sented in real samples. The calibration test exhibited a
linear dynamic detection in the range of 1–80 cells.
Moreover, it was observed that for SK-BR-3 cells, the para-
meter ΔI/I was more than 0/45. Reproducibility of the bio-
sensor was estimated about 66% which can be passed by
programming the processor to ignore data with ΔI/I less
than 0/45. Also, stability and functionality of this material
were about 40–50 days. The obtained results proved that
this material is a promising candidate for rapid and selec-
tive detection of cancer cells.
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