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Abstract: Helical carbon nanotubes (HCNTSs) are a kind of
potential microwave absorption (MA) material due to
their chiral and dielectric properties. However, the inert
surface property makes HCNTs with poor polarization
loss ability and impedance matching characteristic, which
impedes its ability in attenuating microwaves. Herein, the
HCNTs were modified with defects and functional groups
on the surface to optimize their electromagnetic response
characteristics and achieve an enhanced MA performance.
The experimental results show that the modified HCNTs
(F-HCNTSs) exhibit a significant enhancement in MA per-
formance when compared with HCNTs. The minimum
reflection (RLy;,) loss of F-HCNTs reaches —45.4dB at
17.5 GHz at a thickness of 2.4 mm and the bandwidth of
RL < -10dB is 3.6 GHz (from 14.4 to 18.0 GHz). Further
analysis demonstrates that proper modification of HCNTSs
leads to enhanced dielectric loss ability and optimized
impedance matching characteristics, both of which are
beneficial to the MA performance of HCNTs.
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1 Introduction

Chiral structures have been proved to be capable of
attenuating microwaves, and many investigations have
demonstrated that helical carbon nanotubes (HCNTSs)
exhibit good microwave absorption (MA) performance
because of their chiral structure and dielectric properties
[1-4]. Except for the resistance loss and polarization loss
brought by the carbon component and polarization cen-
ters including defects edges and interfaces, the helical
nanostructures can induce cross-polarization under con-
tinuous microwave irradiation that leads to resonance
losses, which also contributes to attenuate the electro-
magnetic waves [5,6]. In addition, the HCNTs had the
advantages of low density and small size, which makes
it feasible to be applied in electromagnetic protection coat-
ings. However, the inert surface property makes HCNTs with
poor polarization loss ability and impedance matching
characteristics [7,8], which impedes its MA performance.
Based on the electromagnetic interference shielding and
the relevant theories, the main mechanisms for attenuating
microwaves are dielectric loss and magnetic loss, wherein
the polarization loss plays a key role. The polarization cen-
ters include the dipoles, heterogeneous interfaces, and
polarizable structures. At GHz frequency band, polarization
centers including electric dipoles and interfaces absorb
greatly microwaves because these cause the electric polar-
ization centers to execute damped oscillations, and mag-
netic dipoles precess with damping under the torques
produced by the microwave’s magnetic field [9,10]. For
HCNTSs, the hexagonal rings are the main structure that offer
resistance loss, the defects including pentagonal rings and
heptagonal rings, and the edges that offer polarization loss
are minority [11,12].
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The mainstream approach to enhance the MA polari-
zation loss and optimize the impedance matching char-
acteristics is to form hybrid materials that incorporate
magnetic or dielectric materials, such as ferrites, nickels,
and polymers [13—15]. For example, Li et al. successfully
fabricated porous nickel ferrite hollow nanospheres/
helical carbon nanowires composites, where the minimal
reflection loss (RL,;,) and bandwidth (RL < —-10 dB) were
—-33.94dB at a thickness of 2.1 mm and 3.22 GHz (from
9.18 to 12.4 GHz), respectively [13]. Tian et al. introduced
polyaniline to modify HCNTs and prepared a dual-chir-
ality hierarchical structure. The experimental results
show that the hierarchical hybrids exhibit significantly
enhanced MA performance when compared with those
of either pure polyaniline or HCNTs [16]. The polarization
centers relax in the alternating electromagnetic field to
transform the electromagnetic energy into other forms;
thus, the newly formed hybrid structure and hetero-
geneous interfaces offer more sites to attenuate micro-
waves. In addition, by incorporating with other materials,
the spatial structure can be designed to optimize the
impedance characteristics and further enhance the MA
performance [17,18]. To fabricate the HCNTSs into compo-
sites or hybrids, a process of activating the HCNTs’ sur-
face to increase the surface activity is necessary [19].
During the process, some vacancies or functional groups
are created on the HCNTs, and their dielectric properties
are simultaneously changed. It can be predicted that the MA
performance of HCNTs would change simultaneously, and
this is a feasible way to tune and enhance the MA perfor-
mance. However, the study about the effect of these pro-
cesses on the MA performance and the potential microwave
loss mechanism remains vacant. Here in this paper, the
evaluation of the effect of the surface modification process
on HCNTs’ structure and properties was performed. The
authors strongly believe that this study not only reveals
the relationship between the surface structure and MA per-
formance but also offers guidance for the researchers who
work on HCNTs and the relative materials.

2 Experiments

2.1 Materials and methods

HCNTs were synthesized through the chemical vapor
deposition method by acetylene decomposition over the
as-obtained precursor that was prepared by the novel
precipitation/sol-gel/reduction technique [20]. The obtained
products were annealed and washed to remove the
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amorphous carbon and excessive precursors before using
and noted as O-HCNTs. The F-HCNTs were prepared by
immersing O-HCNTs in a bottle filled with an acid mixture
(HNOs/H,SO, = 1/3 in volume) for a set time (0.5, 1.0, and
3.0 h). During this process, the bottle was put in ice bath
(sonication with a power of 100 W). The F-HCNTs modified
at different times were noted as F-HCNTs-X h.

2.2 Characterization and testing

X-ray diffraction patterns were recorded with an X-ray
diffractometer (XRD, Philips X-30) with Cu Ka radiation
(A = 1.54056 A). Scanning electron microscope (SEM,
JEOL JSM-7800F) and transmission electron microscope
(TEM, JEOL JEM-2100) were used to characterize the morphol-
ogies. Raman spectra were conducted on Renishaw InVia
Reflex with an excitation wavelength of 532 nm. Fourier trans-
form infrared spectroscopy (FTIR, Bruker Tensor II) was con-
ducted with a spectral resolution of 2/cm. The electromagnetic
parameters of the frequency range of 2-18 GHz were collected
by the vector network analyzer (VNA, Agilent 15071C) by the
coaxial-line method. The testing samples were prepared by
blending the aerogel microspheres with a paraffin matrix in a
weight ratio of 1:9 toroidal-shaped samples ¢, = 7.00 mm
and ¢, = 3.04 mm.

3 Results and discussion

First, the morphological analysis was conducted to eval-
uate the effect of modification time. The HCNTs were
synthesized using Fe-bearing compounds [20], and the
morphology exhibits typical features: chirality and heli-
city. As shown in Figure 1a and inset, the single carbon
nanotubes show a kink-like structure with a tube dia-
meter of about 200 nm. It has been proved that the dia-
meter is determined by the grain size of the catalysts
[21,22]; thus, the uneven tube diameter should be
ascribed to the grain size difference of the catalysts.
Two coiled nanotubes growing from Fe catalyst particle
can be observed from the inset image, demonstrating a
typical symmetrical growth mode that causes a mirror
image of the two nanotubes. After 0.5h of mixed acid
treating, the helical structure remains relatively intact
(Figure 1b), while exhibits remarkable change after
more than 1h of treating. As shown in Figure 1c, the
morphologies of F-HCNTs are destroyed, and almost all
the symmetrical nanotubes were broken and hollow noz-
zles of HCNTs can be observed clearly. When extending
the treating time to 3h, the helical structure was
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Figure 1: Morphological analysis of HCNTs. The SEM images of (a) O-HCNTs and (b-d) F-HCNTs treated for 0.5, 1, and 3 h.

destroyed. Excessive treating causes severe morpholo-
gical destroy of F-HCNTSs, and the structure is simulta-
neously changed.

Then, the Raman and FTIR spectra were performed to
further analyze the structural information. It can be
observed from the Raman spectra that the annealing
treatment is effective to remove the amorphous carbon
due to the Ip/I; value of HCNTs drops from 1.79 to 1.30
after annealing (Figure 2a) [23,24]. It further confirmed
the destructive effect of the mixed acid treatment on
HCNTs for the Ip/I; value gradually increases from 1.30
to 1.43. In addition, the mixed acid treating is also cap-
able of oxidizing the carbon structure. The FTIR spectra

show no significant change of HCNTs after annealing,
while a new peak belonging to carboxyl groups appears
around the 1,722/cm when treated by mixed acid for 0.5 h,
implying the carboxyl groups has been grafted on the
surface of F-HCNTSs (Figure 2b) [25]. Except for the helical
structures, the precursors inside HCNTs’ tubes also offer
electromagnetic loss mechanisms in MA performance.
Thus, the XRD was applied to detect the existence of
Fe. As shown in Figure 2c, there exhibits an obvious pat-
tern of Fe after 3h of treating, indicating the magnetic
component is reserved [26].

Taking the magnetic component of HCNTSs into account,
it can be deduced that both dielectric loss and magnetic
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Figure 2: Structural analysis of HCNTs: (a) the Raman spectra, (b) the FT-IR spectra, and (c) the XRD patterns of O-HCNTs, F-HCNTs treated for

0.5,1, and 3 h.
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loss play key roles in electromagnetic absorption [27].
Along with the chemical treatment, the structural evolu-
tion leads to changes in dielectric and magnetic proper-
ties that relate to the MA performance. Therefore, the
complex permittivity including real part (¢’) and ima-
ginary part (¢”) and the complex permeability including
real part (') and imaginary part (u”) of HCNTs in the
frequency range of 2.0-18.0 GHz was collected by the
vector network analyzer through the coaxial-line method.
&’ represents absorbers’ capacity of storing electromag-
netic energy, and an increase indicates that the material
is easier to be polarized under an external magnetic/elec-
trical field and to store the energy [28,29]. As shown in
Figure 3a, the & of F-HCHTs is lower than O-HCNTs,
which indicates a weakened energy storage ability. The
&’ shows a downward trend with the increase of fre-
quency, which can be comprehended by the increased
lagging of polarization with respect to electric-field
change at higher frequency [30]. The ¢” stands for the
dissipation ability of absorbers [31]. As depicted in
Figure 3b, £” of F-HCNTs shows a small decrease in
2.0-14.4GHz and an increase in 14.4-18.0 GHz when
compared with O-HCNTs. For €” in the lower frequency
band is mainly related to the resistance loss and in higher
frequency band relates to the dielectric loss, which
indicates that the modification process weakens the
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resistance loss ability of F-HCNTs due to the destroyed
carbon structure [32,33]. However, the newly formed sur-
face groups and defects on F-HCNTs are beneficial to
enhance the dielectric loss ability that attenuates the
electromagnetic waves at a higher frequency band. Ben-
efits from the surface groups and defects that offers polari-
zation centers, the F-HCNTs show an improvement in the
capacity of converting electromagnetic wave energy to
other forms in the range of 14-18 GHz as described by
dielectric dissipation factors (tan 6, = £”/¢’) (Figure 3c)
[34]. Except for the dielectric loss part, the HCNTs also
exhibit the ability in magnetic loss due to the helical
structure and the existence of magnetical precursor.
The complex permeability versus frequency curves exhi-
bits several fluctuations in the 13—-18 GHz as the complex
permittivity does, which implies multiple magnetic loss
behaviors and the capacity in storing and converting
electromagnetic energy of the HCNTs (Figure 3d-f).
Although the helical structure of F-HCNTs was certainly
destroyed, the uncovered precursor inside the nanotubes
simultaneously forms enhanced hysteresis including the
multiple resonance effect, nature, and exchange reso-
nance that attributes to the magnetic loss. It can be
seen that the fluctuations appear at the high-frequency
band, indicating a stronger attenuation ability at the
high-frequency band.
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Figure 3: Measured frequency dependence of (a) &, (b) &”, () tan &, (d) y’, (e) u”, and (f) tan &, of O-HCNTs and F-HCNTs.
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The MA performance is closely related to the electro-
magnetic parameters; thus, the MA performance was
evaluated to further verify the above speculation. Based
on parameters, the reflection loss (RL) was calculated by
equations (1) and (2), where Z;, is the input characteristic
impendence, Z, is the free space impendence, y and ¢
are the measured complex permeability and complex per-
mittivity, respectively, d is the thickness of the tested
sample, c is the propagation velocity of microwave in
free space, and f is the frequency of microwave [35].

|

Zin = Zo\u/€ tanhl[j(2nfd/c [ue)].

(Zin - ZO)

RL = 20 lg{
(Zin + Zo)

@

)

As shown in Figure 4a, the pristine O-HCNTs barely
meet the practical requirement of —-10.0 dB [36], while
undergoing the functionalization processing the F-HCNTs
exhibits significantly enhanced MA capacity. When treated
for 0.5h, the minimal RL (RL.;,) reaches -43.0dB at
17.0 GHz with a thickness of 2.5 mm and a bandwidth of
RL < -10dB is 4.0 GHz (from 14.0 to 18.0 GHz) (Figure 4b).

(@p) 5501 LoNAAIRY

(@p) 5501 uonIBRY

When further elongating the treating time for 1h, the MA
performance has a slight increase that the RL,,;, reaches
-45.4dB at 17.5GHz with a thickness of 2.4 mm and
a bandwidth of RL < -10dB is 3.6 GHz (from 14.4 to
18.0 GHz) (Figure 4c). These results are consistent with
the testing electromagnetic parameters, which will be
further analyzed later. However, when increasing the treating

time to 3.0 h, the RL significantly decreases. As illustrated in

Figure 4d, the optimized RL,,;, reaches —20.2dB at 17.7 GHz
with a thickness of 2.5 mm and a bandwidth of RL < -10 dB is
3.4 GHz (from 14.6 to 18.0 GHz).

The MA performance is closely affected by the loss
characteristics. To explain why the MA performance of
HCNTs changes with the treating time, further analysis
on the electromagnetic parameters is performed. First,
the loss mechanism is studied based on the Debye theory,
which is described as the following equations [37]:

(g, &t goojz ‘= (55 + 200]2
2 2 )

where & is the static dielectric constant, €., refers to the
dielectric constant at infinite frequency, and 7 indicates
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Figure 4: The calculated reflection loss of HCNTs. (a) A-HCNTs, (b—d) F-HCNTs-0.5 h, F-HCNTs-1.0 h, and F-HCNTs-3.0 h, respectively.
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polarization relaxation time, respectively. The ¢’ and &”
can be expressed by formulas (4) and (5) [38]
& — €
I = g + ——2 |
1+ (2m)*12

(4)

y _ 2fT(Es — €xo)

1+ Qfm)?r? ®)

Figure 5a depicts the Cole-Cole semicircles. Every
semicircle represents a relaxation process; thus, the
multiple semicircles for all the F-HCNTs imply the pre-
sence of multi-dielectric relaxations [39,40]. Meanwhile,
the number of semicircles increases as treating time
increases, indicating there exists more newly formed
loss mechanisms on F-HCNTSs. In addition, the more mul-
tiple semicircles of F-HCNTs indicate more loss mechan-
isms over O-HCNTs. For carbon nanotubes, the main
mechanism of dielectric loss includes resistance loss at
lower frequency band, polarization relaxation loss, inter-
faces polarization loss, and dielectric structural loss and
resonance loss at higher frequency band. From Figure 3c,
it can be concluded that the loss mechanism transfer
from dielectric loss to polarization loss as the increasing
frequency of all the F-HCNTs. The special spatial confor-
mation of the HCNTs and the surface modification pro-
cess that brings more defects and polarization centers
leads to enhanced dielectric loss mechanisms at high-
frequency bands. While for O-HCNTSs, the tan §, at lower
frequency band is higher than F-HCNTs, which means
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O-HCNTs possess stronger resistance loss ability. This
explains the phenomenon of O-HCNTSs that exist a longer
tail at the curve end. An excellent MA performance
should be obtained only when the material has both
loss characterization and impedance matching at the
same time [32,41,42]. To explain the superior MA perfor-
mance of F-HCNTs-1.0 h to the others, first, the loss char-
acterization (attenuation constant, a) is evaluated by
equation (6) (Figure 5b) [43]. It can be found that a of
F-HCNTs shows an enhanced trend over O-HCNTs at the
higher frequency band (about 14-18 GHz) and a slightly
weaken trend at the lower frequency band. This indicates
that surface modification is beneficial to enhance the
dielectric loss ability. Eddy currents exist in the material
that permeates in the alternate electromagnetic field,
and it would be detrimental to the material’s attenuat-
ing ability. Thus, the eddy currents should be avoided
[14,44]. The C, value is calculated based on equation
(7) to evaluate the effect of eddy currents [45]. As shown
in Figure 5c, F-HCNTs show almost a constant in the
measured frequency, indicating a negligible eddy current
effect. Second, the impedance matching degree (delta, A)
is further evaluated by equation (8), in which the K and M
can be calculated from the relative permittivity and rela-
tive permeability by equations (9) and (10), respectively
[46]. According to the impedance matching theory, the
impedance matching degree should be equal or close to
that of free space at the interface between MA absorbers
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Figure 5: Analysis of the electromagnetic parameters: (a) Cole-Cole curves, (b) attenuation factors, (c) Co, and (d-f) the impedance
matching degree of O-HCNTs, F-HCNTs-0.5 h, F-HCNTs-1.0 h, and F-HCNTs-3.0 h, respectively.
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and free space. Impedance mismatching would cause
reflection or transmission of most electromagnetic waves,
a A value smaller than 0.4 is considered acceptable for
MA performance [47]. As presented in Figure 5d-g, the
F-HCNTSs possess larger area than O-HCNTs, indicating an
enhanced impedance matching degree over the O-HCNTs.
This further explains why the F-HCNTs exhibit better MA
performance over O-HCNTs.

V2nf
c (6)
% \/(Hllgll_ylgl)+ \/(yug/l_H181)2+(Hr/£rl+yl€/)2 ,

a =

"

u
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A = |sinh?(Kfd) - M|, (8)
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1ol .
Mea p'e'cose - cosu

(u' cos € — €'cos y)? + tan? (ﬂ)
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- (u' cos € + €'cos p)?

Based on the above analysis, the difference in MA
performance among HCNTs can be explained. O-HCNTs
have relatively higher resistance loss ability than the
F-HCNTs, while their polarization loss ability is weak
due to the fewer polarization centers. Besides, the impe-
dance matching degree of O-HCNTs is poor, these factors
make O-HCNTs exhibit relatively poor MA performance
than F-HCNTSs. For F-HCNTs-0.5 h whose surface is covered

Mix acid

0.5h

/ HCNTs

) n { |

Mix acid
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by functional groups and defects, the newly formed
heterogeneous structure offers polarization centers to
attenuate microwaves. In addition, the treating process
changes the dielectric properties of HCNTs, reserves
its resistance loss ability, and optimizes its impedance
matching degree to enhance the MA performance. When
elongating the treating time to 1h, more functional
groups and defects appear on the surface of HCNTs,
resulting in enhanced polarization loss ability and opti-
mized impedance matching degree. However, 3h of
treating seriously destroys the structure of HCNTs and
the dielectric loss ability drops obviously, leading to
poor MA performance. In conclusion, the excellent
MA performance of F-HCNTs should be attributed to its
optimized impedance matching and high attenuation
constant, mainly due to the outstanding dielectric loss
generated from the defects, surface groups, residue pre-
cursors, and resistance loss and interfacial polarization of
HCNTs. A possible MA mechanism of HCNTSs is presented
in Figure 6.

4 Conclusion

In summary, this paper synthesized functional helical
carbon nanotubes (F-HCNTs) and evaluated their ability
and mechanism of attenuating microwaves. The F-HCNTs
show an enhanced microwave absorption (MA) perfor-
mance compared to HCNTs. The optimized minimal
reflection loss (RL,;,) of F-HCNTs reaches -45.4dB at
17.5 GHz with a thickness of 2.4 mm and bandwidth of

Induced currents

Electron hopping

3.0h
Dipole & defects
polarization

® Charge carriers ©® Dipoles

Figure 6: Schematic illustration of the potential MA mechanisms for HCNTs.
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RL < -10 dB is 3.6 GHz (from 14.4 to 18.0 GHz). Structural
characterization demonstrated that functional groups
and defects were formed on HCNTs’ surface when treated
by an acid mixture. Enhanced MA performance can be
ascribed to the newly formed polarization centers and
optimized impedance matching characteristics. The coop-
eration of the relaxations from functional groups and
defects synergistically enhances the dielectric loss ability.
In addition, the MA performance could simply be con-
trolled by tuning the treating time of the HCNTs. The
authors believe that this article will provide a new pathway
toward the controllable design of high-performance or multi-
functional devices based on helical carbon nanostructures
and their hybrids.
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