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Abstract: Research and development on superhydrophobic
carbon nanostructures and their nanocomposites have
high industrial significance. Here, a comprehensive review
of the topic is provided. Reported works on superhydro-
phobic surfaces and coatings of carbon nanotubes, nano-
fibres, nanospheres/nanothorns/others, nanodiamond,
fullerene and their various nanocomposites with metals,
ceramics, and polymers are described. Superhydrophobic
nanostructured carbon soot, graphitic carbon, and others
are also presented. The section on superhydrophobic gra-
phene is presented concisely at the end. Reports in different
application areas, including anti-corrosion, anti-icing, oil
separation, anti-biofouling, and sensors, are discussed
separately. Superoleophobic and superamphiphobic sur-
faces are also discussed.

Keywords: carbon nanomaterial, superhydrophobic, carbon
nanotube, graphene, anti-corrosion, oil separation

1 Introduction

Carbon nanostructures and their composites continued to
attract colossal research attention, owing to their out-
standing chemical, physical, mechanical, and electrical
properties [1-3]. The discovery of fullerenes in 1985 (1996
Nobel Prize in Chemistry) [4], carbon nanotubes (CNTs)
in 1993 [5,6], and graphene (GR) in 2004 (2010 Nobel
Prize in Physics) [7,8] led to a mammoth increase of
research outputs in this area. The most investigated can-
didates are CNTs and GR [2,3,9-13].
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The research realm of superhydrophobic (SHPC) sur-
faces (water contact angle [CA] > 150°) [14-18] has enticed
substantial scientific curiosity owed to their impending
real-world applications [19-21]. The extreme water repel-
lency of SHPC surfaces is credited to the confined air layer
at the surface/water interface [18-25]. Typically, the
superhydrophobicity (SHPY) could be achieved via
proper optimization of the surface roughness (micro/
nano-hierarchical surface structuring) and the surface
energy (low SE) [20,21,24]. Low sliding angle (SA < 5°)
and contact angle hysteresis (CAH < 10°) deliver added
self-cleaning properties [19-21,25]. Precise fundamen-
tals of SHPY [19-21,26-32] and details of basic surface
wettability theories [22,23,33-35] are described elsewhere.

Carbon nanomaterials (CNMs) are typically hydro-
phobic [10,11]. SEs of CNTs could be at the range of
27-45.3mJ/m? [12]. SEs of chemically exfoliated GR and
graphene oxide (GO) have shown to be 46.7 and 62.1
mJ/m?, in that order, while that of normal graphite flake
was ~54.8mJ/m? [13]. The higher surface roughness,
nano/micro-hierarchical surface structures (nanoscale
CNMs and their microscale aggregates), surface reduction
processes (removal of hydrophilic surface groups), addi-
tional low SE treatments all could boost the hydrophobicity.

A significantly higher number of reports are available
on SHPC carbon nanostructure (CNS)-based surfaces and
coatings. Hitherto, no comprehensive review is available
on the topic. Most of the published reviews focused on
GR. Chen et al. in 2013 [36] and Wang et al. in 2015 [37]
reviewed SHPC GR. Gupta et al. reviewed various CNMs in
oil separation application [38]. Liu et al. [39], Khan et al.
[40], and Li et al. [41] provided good accounts of photo-
reduced, chemical vapour deposited, and laser-struc-
tured GR, respectively. Jishnu et al. reviewed GR-based
SHPC anti-corrosion coatings [42], whereas Sharma et al.
provided a short account of CNT-based corrosion-resis-
tant coatings [43]. Recent advances in laser-fabricated GR
surfaces have been reviewed by Ma et al. [44]. A few
recent reviews described SHPC CNSs as a part [10,45,46].
A considerably higher number of recent reports are avail-
able in this area. Hence, we made a systematic approach to
comprehensively present the entire domain’s available
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information under one roof. Single and multicomponent
(with metals, ceramics, and polymers) SHPC surfaces
and coatings based on CNTs, carbon nanofibres (CNFs),
carbon nanospheres/thorns/others, nanodiamonds, full-
erenes, nanoscale carbon soot/graphitic carbon/others,
as well as GR are presented. Due to the available reviews,
detailed descriptions of GR-based materials were not
attempted; however, the literature carefully covered and
presented concisely. Four application areas, viz., anti-cor-
rosion, oil-separation, anti-icing, and anti-biofouling, are
highlighted; other applications are briefly mentioned.

2 Carbon nanostructure-based
superhydrophobic surfaces

Nearly 45% of the reports fall under GR, followed by CNTs
(~32%) (Figure l1a). The most investigated application
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area is oil separation, and the second most is the anti-
corrosion coatings (Figure 1b and c).

2.1 CNTs

SHPY was observed for both aligned and non-aligned
CNT films, with and without an additional low SE compo-
nent/modification. Typically, composite formation with
polymers and ceramics help overcome the long-term dur-
ability issues of SHPC CNT surfaces [47-49].

2.1.1 Aligned carbon nanotube (ACNT) arrays

ACNTs have attracted significant research attention owing
to their unique surface topography [50,51]. The surface
roughness of vertically ACNTs (VACNTSs) could be finely

(b)

(c)

Figure 1: (a) Pie chart showing the extent of works reported with different CNS-based SHPC surfaces: (1) CNTs, (2) CNFs, (3) carbon nano/
microspheres, (4) carbon nanothorn/onion/others, (5) GR, (6) nanoscale carbon soot/graphitic carbon/others, (7) nanodiamond, and (8)
fullerene. (b and c) Pie charts on works reported on (b) CNTs and (c) GR in different applications: (1) anti-corrosion, (2) oil separation, (3)
anti-icing, (4) biomedical/anti-biofouling, (5) sensor, (6) others, and (7) fabrication/mechanism (no specific application studies). Both

single and multi-component (with metals/ceramics/polymers) SHPC surfaces considered. Works reported on SOPC and SAPC systems are

also included (Source: SciFinder/Various sources).
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tuned by adjusting their diameter and interspace distance
[52-57]. Until 2006, the SHPY was reported for VACNTs
only [58-62].

Chemical vapour deposition (CVD)-fabricated 3D ani-
sotropic ACNT film on the patterned Si template (with
quadrate pillar array) displayed both SHPY and superhy-
drophilicity (SHLY) at varying structural parameters of
the template. The SHPY of the as-formed CNT arrays
was attributed to the vertically aligned organization and
the copious fraction of trapped air. The as-formed arrays
with pillar space of 20, 15, 10, and 6 pm have shown CAs of
~22.1°, 142.9°, 25.5°, and 10°, respectively. The corre-
sponding CAs of the surfaces after a vinyltrimethoxysilane
modification were 21.2°, 153.3°, 27.2°, and 20.8° [63]. Lau
et al. showed that a thin layer of polytetrafluoroethylene
(PTFE) coating on VACNT forest could avoid the potential
droplet seeping into the CNT’s voids down to the micro-
scopic level and created a stable SHPC surface with
advancing and receding CAs of 170° and 160°, respec-
tively. CVD was employed to deposit both the CNT array
and the PTFE coating [52]. Wang et al. studied SHPY
under dynamic conditions and observed that the droplet
bounces off several times on an array with a CA of 163°,
whereas for an array with a CA of 140°, the drop remained
pinned [56]. For microfluidics applications, Qu et al.
reported a variety of SHPC ordered CNT polyhedron struc-
tures with a CA of up to 162° via CVD (~850°C) inside the
microchannels of patterned SiO, substrate, where the
confined space was decisive in the realization of poly-
hedral structures with hexa/hepta/octagonal cross-sec-
tions. CNT’s self-ordering and the high-temperature
deposition yielded SHPY where no low SE treatment
was used [64]. Lu et al. showed that micropatterning of
MWCNTs enhances hydrophobicity. They employed a
laser pruning technique to make SHPC parallel micro-
wall arrays from VA-MWCNTs. The optimal SHPC surface
consisted of micro-wall arrays with a width of ~13 pm and
a channel width of ~50 pm [65]. Ramos et al. showed that
CO; laser treatment could re-establish superhydrophilic
(SHPL) VACNT surface to SHPC by decreasing the polar
components (oxygen terminations on the surface) due to
the high local heating rate. The microwave (MW) plasma
CVD-deposited VACNT film was initially pretreated with
oxygen plasma to convert to SHPL and then subjected to
the laser treatment [66]. Lepore et al. compared SHPY of
cabbage leaf and CVD-grown VACNT carpet and showed
that cabbage-like morphologies could be helpful to achieve
better SHPY for nanofluidic applications [67]. Hierarch-
ical CNT assembly fabricated on a Si micro-pillar array
displayed slippery SHPY (CA of ~155° and SA of ~5°)
with excellent durability against water ingression. The
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corresponding CNTs grown on planar Si wafer lose the
SHPY once exposed to tiny water droplets [68]. Aligned
crystalline carboxyl-functionalized MWCNTs grown on SiC
cellular skeleton (ceramic pillars with ~700 ym porous
microchannels and ~250 pm diameter) by catalyst CVD dis-
played long-term stability against water-droplet ingres-
sion [69].

To enhance the surface durability against water-
ingression and surface tension-assisted tie-up, various
surface treatments for SHPC VACNT forests were investi-
gated. In an earlier study, Journet et al. proposed a thiol
modification for CVD-grown (planar Si substrate, 750°C)
CNT forests. The surface first covered with a thin sputtered
Au layer and subsequently, thiol-modified (CA ~ 164 + 2°)
[70]. Studies on liquid flow slippage over SHPC thiol-
modified VACNT forests (CVD, microchannels) disclosed
that the slip lengths varied linearly with the lateral
roughness scale [71]. Santhagopalan et al. showed that
a high-voltage electrophoretic deposited (EPD) and low
SE PTFE-coated VACNT film displayed a CA of ~160° [72].
Jeong et al. employed a simple contact transfer micro-
patterning technique to fabricate VACNT micro-pillar
arrays with different inter-pillar spacings extending
from 45 to 160 pm (width ~65 pm) (Figure 2a—c). A thin
hydrophobic CVD silicone layer coating was helpful to
enhance the SHPC robustness, even under pressurized
conditions. The CAs of the as-fabricated VACNT arrays
(without silicon coating) displayed a steady decrease,
whereas the CAs of silicone-coated arrays were stable
regardless of the droplet volume (Figure 2d). The CAs of
the VACNTs gradually increased with the increase of the
inter-pillar spacing, reaching a maximum for 160 pm
spaced sample (CA of 168 + 0.3°, CAH of 2.64 + 0.4°,
and SA ~ 5°) [73]. Sojoudi et al. have shown that the
top-gathering and elastocapillary densification of the
porous CNTs could be prohibited by conformal deposi-
tion (CVD, 80°C) of an ultrathin film of poly(1H,1H,2H,2H-
perfluorodecylacrylate) [74]. Yung et al. investigated CF,
plasma modification on VACNTs using CVD (800°C) to
fabricate ultra-low reflectance SHPC surface [75].

Aria and Gharib showed that SHPC CNT arrays could
be made by exposing hydrophilic CNT arrays to a suitable
vacuum annealing (via removal of oxygenated hydro-
philic groups). Alternate vacuum pyrolysis and UV/ozone
treatments allowed easy switching of ACNT arrays between
SHPY and SHLY [76]. The authors in a later work studied
droplet-impact dynamics of SHPC CNT arrays and revealed
that no droplet pinning happened during a wide range of
critical Weber number (W,,) [57]. Babu et al. showed that
SHPC VACNTSs could be fabricated via water-assisted CVD
by a regrowth process (by a second-time catalyst-assisted
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Figure 2: (a) Scheme showing fabrication steps of hierarchical VACNT SHPC surface. (b) SEM image of the CNT micro-pillar arrays. Scale bars
correspond to 1 mm and 100 pm (inset). (c) Enlarged view of the pillar top. (d) CA variation with water-droplet volume [73]. Reproduced with

permission from ref. [73]; © 2014 Elsevier Ltd.

deposition). The regrown CNTs displayed high CA (due to
increased surface roughness); however, the CAH was
~60° (attributed to the surface hydrophilic groups). A
subsequent vacuum annealing (350°C) or polydimethyl-
siloxane (PDMS) modification could further increase the
CA with a significant CAH reduction (Figure 3). Both the
high-temperature annealing and the low SE treatment
were helpful to eliminate the hydrophilic groups [77].
Later, the authors confirmed a flat continuous reflecting
air layer at the VACNT surface a few moments after sub-
merging in water [78]. Hsiao et al. fabricated SHPC and
self-cleaning CNT forest on a quartz surface by CVD at
850°C (CA ~ 154°). The lower CA (~115°) obtained for a

@ -OH -0

Firstcycle CNTs
CA~137°,6,>90°

Re-grown CNTs
CA~152°, 6,~60°

~ g

higher temperature (950°C) processed sample was attrib-
uted to the widened outer tube diameters [79].

Several studies reported composites of ACNTs with
other CNSs. Maziar et al. synthesized self-assembled ACNT/
carbon-nanosphere hybrid film. Here, the ACNT array
was first fabricated by CVD (800°C), and then amorphous
carbon nanospheres were deposited by cathodic vacuum
arc (negative substrate bias of 100 V). The wettability was
closely related to the size of the deposited nanospheres.
Increasing the deposition time increased the spheres’
size, decreased the air gaps between the CNTs, and low-
ered the surface hydrophobicity [80]. SHPC CNT arrays
capped with amorphous carbon NPs were fabricated by

Vacuum annealing
(<5 mbar, 250°C, >24h)
CA~ 160°, 6,,< 10°

\

-0Si(CH;), functionalization
(350°C,<1h)
CA~162°, 6, <2°

Figure 3: Schematic of the process. The regrowth CVD process increased the roughness of the CNT surface. Hydrophilic groups in the re-
grown CNTs are removed by either vacuum annealing or silane modification (6, corresponds to CAH) [77]. Reproduced with permission from
ref. [77]; © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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plasma immersion ion implantation (PII, 800°C). The CA
of unprocessed CNT forests was ~0°, whereas the nano-
composite displayed a CA of ~180°. The excellent SHPY
was attributed to the unique overhang structure in which
drops could penetrate only under a higher hydrostatic
pressure [81]. Han et al. synthesized CNT forests (CVD,
800°C) and then processed them by Ar PII so that the
graphitic sidewalls of CNTs were partly shattered and
sphere-shaped amorphous carbon NPs were shaped on
top. The surface displayed a CA of ~160° and an SA of ~5°.
Their electrowetting studies explored slippery-sticky
transformation with applied potentials [82].

Huang et al. demonstrated SHPC ZnO-coated CNTs
(CA ~ 159°) where ZnO thin film was deposited (by
cathodic vacuum arc) on CVD-made ACNTs. Contrary to
the bare CNT surface, the coated surface showed no water
ingression even after an extended period [83]. A report is
available on room temperature EPD-made CNT-Ni and
CNT-Zn. The study showed that CAs of the nanocompo-
site could be adjusted from 60° to >150° by altering the
EPD voltage from 50 V to 250-550 V. The SHPY was attrib-
uted to the combined effect of the multi-scale roughness
and the low SE attributed to the adsorbed hydrocarbon
groups [84].

Most of these studies categorically showed that SHPC
VACNT arrays suffer from long-term durability issues due
to the potential water ingression. A subsequent low SE
surface coating or a desirable composite formation could
alleviate the shortcoming to the desired extent.

2.1.2 CNTs (non-aligned)

Randomly laid CNT films would deliver a more accessible
and cost-effective method for developing SHPC coatings
[62,85-193]. Many fabrication techniques, including CVD,
vacuum filtration, spray coating, and drop coating, were
reported. Typically, as-purchased pristine CNTs or low SE-
modified CNTs are used.

Xu et al. reported SHPC non-aligned CNT coating
(drop coated on glass) by using alkyl (COOC,gHs7)n)-mod-
ified MWCNTSs. The CAs of alkyl-modified, carboxylic-func-
tionalized, and as-purchased MWCNTSs were 155° (SA > 5°),
63°, and 39°, respectively. The SHPY was attributed to
the double-structured surface roughness and the low SE
grafted alkyl chains [62]. Hong et al. prepared SHPC CNT
powder by low-pressure NF; glow-discharge plasma. The
fluorinated CNTs with very low SE (0.12 mJ/m?) displayed
CAs at the range of 153-158° for polyethylene glycol (PEG),
glycerol, and water. The corresponding untreated CNT
powder was SHPL (CA ~ 0°) [85,86]. SHPC MWCNTs
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were derived via a three-step procedure involving oxida-
tion, cycloaddition, and silane modification. The study
showed that incorporating fluorosilane-coated CNTs in
polymers or textiles in small proportions could render
them SHPC [119]. Hsieh et al. employed catalytic CVD to
decorate CNTs on a carbon fabric. The resulted two-tier
roughness along with a spin-coated perfluoroalkyl top
coating yielded CA and CAH of 169.5° and 4.7°, respec-
tively [120]. Zhang and Resasco demonstrated dramatic
changes in hydrophobicity with different types of SWCNT
films made on Si wafers, namely, random network (grass),
vertically aligned (forest), and bundled (pillars). The CNT
pillars prepared under optimized conditions exhibited the
best SHPY with a CA of ~160°, which is attributed to the
typical nano/microscale surface roughness [88].

Sunny et al. have grown CNTs on acid-etched steel by
CVD (750°C), and subsequently, a thin layer of PDMS
(0.5 g of Sylgard in 1 mL of xylene) was spin coated and
dried at 70°C (to facilitate PDMS cross-linking). The
coating improved the abrasion resistance of the surface
while the SHPY and the conductivity were unaffected
[127]. Li et al. described a highly flexible SHPC (CA of
~155°) carpet structure composed of long (~300 um),
roughly aligned, and pure cup-stacked CNTs synthesized
by catalytic CVD at 850°C [89]. Wang et al. developed a
one-step template-free CVD approach, and the fabricated
CNT film effectively avoided the capillary-induced liquid
spreading. The SHPC surface displayed excellent air
exposure and chemical durability (Figure 4) [93]. Recently,
Yin et al. made SHPC CNT film composed of short CNT
strands via CVD at 700°C. The fraction of the water/air
contact area was calculated to be 95.7%, demonstrating
a significant extent of the air pocket existed. The surface
showed excellent durability during 4 weeks of wettability
test and superb chemical robustness over a wider pH range
(0-14) [94]. A few earlier studies attempted CNT only-coat-
ings on steel meshes by CVD [90,91].

Several works employed vacuum filtering. Wu et al.
used a mixture of 0.1g of MWCNTs with the desired
amount of stearic acid (STA) in 80 mL of deionized water.
The mixture was further diluted with water (5 mL diluted
to 100 mL), CH;COOH (1mL) was added, vacuum fil-
trated, and dried (70°C) to obtain the SHPC MWCNT
hybrid [95]. A film fabricated from octadecylamine (ODA)
(~14%) functionalized MWCNTs by vacuum filtration
(MWCNT-ODA dispersion was sieved through a filter
paper, peeled off, and dried at 60°C) exhibited a CA of
165° and an electrical conductivity of 860 S/m [96]. Chen
et al. reported MWCNT/SWCNT hybrid film with a CA of
152° and an SA of 2°. CVD-made MWCNTSs were ultraso-
nically dispersed in EtOH (25mg/mL) and vacuum
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Figure 4: CAs of the SHPC CNT film during (a) air (~60% humidity) and (b) corrosive liquid exposure [93]. Reproduced with permission from

ref. [93]; © 2017 American Chemical Society.

filtrated through an SWCNT film, dried at 80°C, and
annealed at 700°C. The MWCNTs do not detach from
the SWCNTs during bending or twisting studies, dis-
playing a firm hybrid structure [97]. Su et al. reported
layer-by-layer (LbL) SHPC CNT film by vacuum-assem-
bling multilayer carboxylated/aminated MWCNTs, fol-
lowed by transferring onto ethylene-vinyl acetate (EVA)
copolymer and modifying with ODA [99]. An ultrathin
nanocomposite was fabricated on polyethylene via LbL
self-assembly of aminated-MWCNTSs (nucleophilic) and
polyacrylic acid (PAA) or Gantrez (electrophilic). Ionic
assembly of aminated-MWCNT/PAA or covalent assembly
of aminated-MWCNT/Gantrez resulted in SHPY. A five-
times covalent LbL-deposited surface showed a CA of
165° and an SA of >5°, whereas the corresponding ionic
LbL film resulted in CA ~ 155° with water pinning [98].
Kakade et al. reported electrowetting transition (from
SHPC to hydrophilic) in MWCNTs buckypaper fabricated
by ozonolysis and vacuum filtration [87].

Spray-coated SHPC CNTs were widely investigated.
Yang et al. showed that simple spray-coated MWCNT
film (as-purchased, 20 mg, dispersed in 10 mL of chloro-
form) on Cu displayed SHPY (CA ~ 155°, SA ~ 3.1°)
without any chemical modification. SHPC-SHPL transi-
tion was also demonstrated via alternating UV irradiation
and dark storage [100]. The authors in a later work
showed that SHPC spray-coated film changed to SHPL
after heating at 300°C, and the transition was attributed
to the change of electronic structure of CNTs [101]. Li
et al. also reported SHPC spray-coated CNT film without
any low SE polymer coating (CA ~ 160° and SA ~ 3°). As-
purchased CNTs (20 mg) dispersed in 10 mL of EtOH were
used, and the coating was dried at room temperature. The
reversible switchable transition between high and low

water adhesion was presented by alternating heat treat-
ment and UV illumination [102]. An extremely durable
SHPC coating (CA 153.1 + 2° and SA < 5°) was fabricated
by spraying an aqueous dispersion of CNTs and perfluoro-
alkoxy resin [131]. Yoon et al. reported a two-step process
where CNT solution was first spray coated on stainless
steel (SS), and subsequently, a PTFE suspension (water-
based, 60% w/w PTFE) was spin coated. A coating
annealed at 360°C displayed a CA of 154.6 + 6° [124].
Wang et al. reported spray-coated and pressure-proof flex-
ible CNT/silane coating where PDMS and as-purchased
MWCNTs were used. First, the substrate was spin
coated with a solution of 0.1g of PDMS and 0.01g of
curing agent in 10 mL of toluene or n-hexane. Subse-
quently, MWCNT/EtOH suspension was spray coated,
and the surface heated at ~90°C and oven-cured at
150°C. The coated Al foil displayed high CAs even after
subjecting to uniaxial pressing under 3.56—32 ksi pres-
sure. The film displayed excellent chemical (pH 1-14)
and aggressive-air-exposure (2 weeks) durability [103].
Zhu et al. fabricated SHPC coating by spraying MWCNT
dispersion (0.2g in 30 mL acetone + formic acid) fol-
lowed by a subsequent fluorination step. The spray-
coated sample was oven-dried (120°C) and placed in a
sealed desiccator (having ~0.1mL of fluorosilane)
under vacuum for the surface fluorination. The study
also showed that a thermal treatment (400°C) could
retain the damaged (due to mechanical abrasion)
SHPY. However, annealing above 400°C resulted in
the loss of SHPY due to fluorosilane degradation
[104]. Ogihara et al. demonstrated three types of disper-
sions, namely, CNT/EtOH, dodecyl-functionalized-CNT/
EtOH, and CNT/trimethylsiloxysilicate (TMSS)/EtOH. With
the unmodified CNTs, the aggregation due to m—m interaction
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reduced the hydrophobicity, whereas the dodecyl functio-
nalization screened the m—m interaction. The TMSS per-
formed like glue, barred CNTs from aggregation, and low-
ered the required CNTs for the SHPY [105]. A hot/cold
water-repelling superamphiphobic (SAPC) surface was fab-
ricated by spray coating a suspension of MWCNTSs, pre-
pared via hydrolytic condensation of tetraethoxysilane
(TEOS) and perfluorodecyltrichlorosilane (PFTS). The
introduction of PFTS was beneficial for enhancing the coat-
ing’s durability, whereas the TEOS addition was helpful to
reduce the SE. Representative SEM images of the SAPC
coating displayed a random cross-linked network structure
with two-tier roughness composed of modified MWCNTs
(Figure 5b-d). At 1mg/mL of CNTs, the fluorosilane
wrapped most of the CNTs resulting in lower surface
roughness. As the concentration increased to 2 and
4 mg/mL, the fraction of exposed CNTs increased with an
associated enhancement of micro/nanoscale roughness
resulting in superior superamphiphobicity (SAPY)
(Figure 5e). The wettability varied considerably with
the CNT’s diameter (Figure 5f) [106].

The authors also reported a transparent, hot liquid-
repelling durable SAPC coating from a suspension of
polysiloxane-modified MWCNTSs in toluene, followed by
calcination to form SiO, nanotubes (SNTs) and subse-
quent PFTS modification. The SNT/PFTS coating pre-
sented high chemical and mechanical durability during
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liquid immersion (in water, toluene, EtOH, and 1M HCl),
UV light exposure, and water jetting tests [107]. Wang
et al. reported spray-coated SHPC coating with enhanced
wear resistance from an aqueous dispersion containing
CNTs and PTFE. Thin film fabricated on Si (CA of 154.1 +
2° and SA < 2°) retained the SHPY even after 500 times of
abrasion test under 50 g/cm? [134]. Belsanti et al. fabri-
cated SHPC film via spraying CNT suspension on Al alloy
for anti-corrosion application [118]. A flexible, SHPC (CA
of 165 + 2°) and transparent (>70%) PDMS/CNT strain
sensor was fabricated by spray coating CNT solution
onto the PDMS nanowrinkle substrate [109].

Li et al. presented an approach to creating an SHPC
surface from hierarchically combined polystyrene (PS)
microspheres and CNTs. First, a monolayer of PS colloidal
crystals was spin coated on a glass substrate and dried at
130°C; subsequently, Au layer was sputter coated, and
the sample was dipped into 0.1 M mercaptoethylamine
solution to facilitate linking of —-COOH-terminated CNTs
on the PS spheres (CNT solution was drop coated on the
modified colloidal layer). The surface was then immer-
sion coated with EtOH solution of 20 mM PFTS and dried
at 120°C. The CA before and after the PFTS modification
was ~33° and 165°, respectively. The CA decreased to 158°
after 5 days of continuous immersion in water; however,
no significant change was observed during long-term air
exposure studies [110]. Meng and Park employed as-
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purchased and functionalized MWCNTs (by refluxing in
H,0,), which was first dispersed in CHCl; (0.5 mg/mL)
and further mixed with a fluoropolymer (1wt%), and
dip coated on glass. A seven-time dip-coated film with
10:3 (v/v) MWCNT/fluoropolymer displayed the highest
CA of 160.2°, along with 83.5% transmittance and 1.38 x
10* Q/sq sheet resistance [121]. Dispersions of CNTs, GR,
and carbon black (CB) in water/organic solvents were
investigated as water-repellent agents for hydrophilic
wood by simple drop/dip coating [114].

Several works made use of laser in getting patterned/
transparent SHPC surfaces. Kinoshita et al. achieved
SHPC/SHPL micropatterning on CNT film using a laser-
assisted process where the areas exposed to hyperthermal
F-atom and O-atom beams, respectively, became SHPC
and SHPL [111]. To obtain high transparent SHPC pat-
terned CNT clusters, femtosecond laser micro-machining
was employed by Tang et al. [112].

Li et al. hot-pressed raw MWCNTs (1,500°C, 3 min,
30 MPa, vacuum, spark plasma sintering) and the polished
sample was subsequently dipped into a commercial aqu-
eous PTFE latex (1s, ultrasonication) and heated at 310°C
for 20 min. The bulk composite (CNTs, tiny PTFE particles,
and air) having nanometre-scale grains showed CA >160°.
The CA of the bare PTFE was ~114° [113].

Rajiv et al. reported long-term-durable SHPC MWCNT-
CNF composite coatings on fibre-reinforced polymer (FRP)
sheets. The supercritical fluid processing method was used
to reduce the composite flaws and the CNT’s aggregation.
The composite layer displayed better SHPY (CA ~171.6° and
SA ~ 2.7°) than a corresponding coating made by physical
mixing (160° and 7.12°, respectively) [115].

2.1.3 As filler in organic coatings/composites with
polymers

Several works employed CNTs as fillers in the polymer
matrix to enhance mechanical durability. The incorporated
CNTs could also provide the required hierarchical surface
roughness for the SHPY. The CA and SA of the composite
coating could be fine-tuned by regulating the aspect ratio or
concentration of the CNTs. Their inclusion could also pro-
vide additional functionalities, such as conductivity, photo-
thermal effect, EMI shielding, and self-cleaning.

2.1.3.1 With F/Si polymers

Other than the previous section’s works, there are many
reports on CNTs with F/Si polymers. Several works focused
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on CNT-PDMS systems. Zhang et al. reported an SHPC
coating via spraying CNT/PDMS/toluene suspension, fol-
lowed by curing at 120°C [133]. Caffrey and Gupta reported
a method of fabricating electrically conductive SHPC
coating with a micro-textured surface by adding CNT fil-
lers to the PDMS matrix and duplicating the surface tex-
ture using a master. The surface displayed CA >160°,
without any additional modification. A MWCNT loading
of 4.4 wt% improved the conductivity by a factor >10"
over the pure PDMS [129]. Park et al. have developed a
conducting SHPC film with improved adhesion by using a
zirco-aluminate coupling agent. Here, CNTs were first
dispersed in CHCI; and then in triton-x surfactant. Sub-
sequently, SiO, NPs (10vol%) were added, dispersed,
sonicated, and then PDMS and curing agents were
added, sonicated, and the dispersion was used for spray
coating. High CAs and low SAs were obtained until
25v01% of CNTs [135]. An SHPC flexible film with a
sandwich-like structure consisting of PDMS, MWCNTs,
and a thermoplastic elastomer was fabricated by spray
coating of the elastomer on the top side of the MWCNT
sheet and PDMS modification on the bottom side. The
top elastomer layer glued free MWCNTSs together, the
middle MWCNT layer formed a web-like conductive net-
work, whereas the PDMS layer acted both as a glue and a
low SE component. Maximum CA (169.4°) and minimum
SA (2.7°) were obtained when the PDMS concentration
was 1.5 wt%. The loss of SHPY at a PDMS concentration
of >4 wt% was attributed to the thick coating formed
and the buried MWCNTs [137]. Jung et al. proposed a
highly reliable SHPC surface where CNTs were firmly
immobilized on a PDMS/adhesive multilayer. The exposed
CNTs at the lower surface of the layer helped to enhance
the coating/substrate adhesion, whereas those exposed
on the top surface contributed to SHPY. A CNT loading of
2.5wt% was found to be essential for the SHPY. Tape
tests showed that the SHPC surface was robust against
adhesive material’s induced damages. The surface well
preserved the SHPY even at 300°C (Figure 6a). Until
200°C, the SA remained < 2°, while at 300°C, it becomes
~3.7°. The CA of the bare PDMS sheet (116° at 20°C)
displayed an obvious decline with the rise of tempera-
ture (~100° at 300°C). Even at 10,000 kPa, the CA of
the SHPC composite coating was reduced by ~8° only
(Figure 6b). The surface also presented excellent dur-
ability during bending, adhesion, water jet, and che-
mical tests [139]. Han et al. fabricated SHPC surface on
a flexible substrate via screen printing with a paste of
PDMS-PEG copolymer and MWCNTs. Superior SHPY
with >1,000 S/m of conductivity was attained at 25 wt%
of PDMS-PEG [143].
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Figure 6: Stability test results of CNT-incorporated PDMS/adhesive (CIPA) layer with (a) heat and (b) pressure [139]. Reproduced with
permission from ref. [139] (https://pubs.acs.org/doi/10.1021/acsomega.7b01872); © 2018 American Chemical Society. For further per-
missions related to the material excerpted should be directed to the ACS.

Highly conductive nanocomposite coatings of fluo-
ropolymer dispersion with CB, CNTs, or GR nanofillers
were studied. At 50 wt% of CNTs or CB, the SHPC surface
resisted water-drop impalement at 3.7 m/s. GR-based sur-
face displayed the most inferior dynamic impact resis-
tance; however, the best conductive one [138]. Bayer et al.
fabricated electrically conducting SHPC polymer—CNT
coating via an emulsion-based spray process. The emul-
sion was composed of fluoro-acrylic latex solution (cap-
stone ST-100), toluene-MWCNTs, and MtOH. The spray-
coated film was cured at a temperature above the melting
point of the fluoro-acrylic latex (>160°C) to yield the
SHPY (CA >165°, SA < 5°). However, increasing the CNT
loading beyond 17 wt% caused coating flaking and poor
substrate adhesion [132]. Zhang et al. described highly
transparent SAPC coating by CVD of PFTS onto SNTs.
MWCNTs were employed as the template, and the SNTs
were made via hydrolytic condensation of silanes fol-
lowed by calcination. The fabrication steps include pre-
paration of polysiloxane-modified MWCNT suspension,
spray coating, and preparation of SNTs and SNTs/PFTS.
The SAPY and the film transparency were highly depen-
dent on the solvents used; n-octane was optimal [136].
Wu et al. fabricated MWCNT-PVDF hybrids through a
facile phase-separation method. PVDF crystallization was
almost unaffected with the extent of MWCNT loading, and
the B-phase crystals dominated the process. The neat
PVDF exhibited a CA of ~144°, whereas the hybrids with
8 and 16 wt% of MWCNTs displayed CAs of 163° and 166°,
respectively [130]. An SHPC GR/POSS/MWCNT hybrid
coating prepared by a two-step casting process on a glass
substrate displayed a CA of 155° without compromising
the conductivity. MWCNT/POSS was coated on the GO/
THF layer, and thermally treated at 200°C [125]. Core—

shell-structured polyaniline (PANI)/CNT composite, SiO,
NPs, and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOS)
were integrated synergistically into the ethylene tetrafluoro-
ethylene (ETFE) matrix. Here, ETFE powder (1g in 30 mL
ethyl acetate), SiO, (0.05 g), and PFOS (0.2 g) were ultraso-
nicated with a selected amount of PANI/CNTs and the well-
dispersed solution was used for the spray coating, followed
by curing at 300°C. A composite layer made from 6 wt% of
PANI/CNTs revealed superior SAPC property, with CAs of
159°, 163°, and 167° for ethylene glycol, glycerol, and water,
respectively (with SAs < 5°). However, at concentrations
>6 Wt%, surface cracks were evident. The optimum coating
demonstrated durable SHPY with droplets of a wider
pH range (1-14) and thermal stability at temperatures
<400°C. SAPY was preserved even after 30 times bending
test or 45,000 times of abrasion. Direct immersion studies
in aggressive HCl (1 mol/L, 60 days) and NacCl (3.5 wt%,
90 days) revealed excellent chemical durability [128].

A CNT-organic silicone resin (SiR) composite dis-
played outstanding mechanical robustness and hot water
repellency. The wettability variation was closely depen-
dent on the CNT concentration. Coating with 15 wt% or
more CNTs repelled hot water effectively (Figure 7a). The
coating displayed excellent mechanical durability during
the abrasion test (Figure 7b) and waterfall/jet testing
(Figure 7c and d) [140]. Cold-curable silicone sealant
was used along with MWCNTs. Here, the required amount
of silicone matrix was added into a dispersion of CNTs in
hexane and that was used for spray coating. The CA
monotonically increased with the increase of CNT content
in the polymer matrix, reaching 158.4° for 50 wt% loading
[141]. Lv et al. prepared robust and F-free SHPC coating
from polyphenylene sulphide (PPS)-SiR composite. The
SiR also acted as the low SE component, whereas the
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Figure 7: Variation of CAs and SAs of resin-coated samples with (a) concentration of CNTs, (b) abrasion cycles, (c) water pressure, and
(d) duration of water-jet test under 200 kPa [140]. Reproduced with permission from ref. [140]; © 2015 The Royal Society of Chemistry.

reinforced fillers (CNTs or GR) provided the required hier-
archical surface structure; a silane-coupling agent was
also employed. The sprayed and heat-treated (320°C)
coating exhibited a CA of ~161° and an SA of 2°. The
wettability varied both as a function of SiR and CNT con-
tent, and the optimized coating was composed of 10 wt%
of SiR and 1wt% of CNTs. The evenly distributed CNTs
with self-lubricating properties were helpful to reduce the
abrasion loss significantly. After 2,500 times of friction
(1,000 sandpaper, 500 g, 37.5circles/min), the sample
continued to be SHPC with a CA of 150 + 2°. After 5,000
cycles, the CA becomes ~139°. Compared with the PPS
coating (0.2106 g), the SHPC coating’s weight loss (0.063 g)
considerably decreased [142].

Song et al. reported nano-hybrid membrane based on
chitosan (as the matrix), cationic chitosan (chitosan-
modified by a triazine derivative), MWCNTs, and a silicon
coupling agent, which was further modified by low SE
perfluorooctanesulphonyl fluoride. The membrane with
3wt% MWCNTs showed excellent SHPY [144]. Wang
et al. fabricated nanofibre composite membrane of CNTs
and PVDF-co-hexafluoropropylene (PVDF-HFP) using
electrospinning and pressure-driven filtration processes.

After a low SE fluorosilane modification (by CVD), the
CNT/PVDF-HFP membrane displayed SHPC and super-
oleophilic (SOPL) properties [145]. SHPC and SOPL porous
CNTs/PVDF composite was prepared via gel formation
and freeze drying. The study proved that even a small
amount of CNTs could considerably enhance the porosity
and surface roughness of PVDF [146]. Kousalya et al.
made a mixed wetting surface with interchanging par-
allel SHPC/SHPL bands through graphitic petal-deco-
rated CNT coatings via PTFE deposition, shadow mask,
and oxygen plasma treatment [147].

Wettability transitions in a spray-coated coating of
polyfluo 150 wax and fluorocarbon-modified MWCNTs
(1:4 wt ratio, acetone—ethyl acetate solvent) were studied
as a function of temperature. SHPY was attained at 150,
200, and 360°C, whereas SHLY resulted at 300°C. The
variation was associated with the melting/decomposition
of the wax and the related phase separation [122]. Run-
graeng et al. revealed a slippery liquid infused porous
surface consisting of SHPC MWCNT-PTFE layer filled
with a low surface tension liquid. Water, honey, ketchup,
oil, and bacterial biofilms freely slipped off the surface
without leaving any apparent wreckage [148].
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Peng et al., in earlier work, reported a way for trans-
forming common polymers into SHPC conductive surface
by simple pressing of a layer of MWCNTs on a polymer
melt (Figure 8). Under appropriate conditions, the CNTs
were partly inserted inside and partly exposed outside
the coatings’ surface, creating a carpet-like structure,
providing both SHPY and conductivity [126].

2.1.3.2 With polyurethane/epoxy/PS

Several studies explored CNTs as filler/hydrophobicity
promoter with polyurethane (PU), epoxy (EP), and PS
resins. Hejazi et al. described a single-step pressing
method to fabricate SHPC, self-cleaning, and mechani-
cally durable PU/CNT composite. After placing the PU
sheet into a pre-designed mould, 15 mg of CNT powder
(~2vol%) was distributed, and the surface was pressed
under 4 MPa for 10 min and heated to 180°C. The pressing
time had a significant effect on the type of SHPC surface.
A longer processing time (60 min) resulted in sticky SHPY
[149]. A report on spray-coated SAPC coating used fluori-
nated MWCNTSs as a nanoroughness promoter and fluori-
nated PU as a low SE binder and acetone/toluene cosol-
vents [150]. Reports on PU-CNT-based aerogels/sponges
are described in Section 2.1.5.

Besides SHPY, the CNT fillers in the EP matrix could
help to overcome their inherent brittleness and poor wear
resistance. The high mechanical strength and abrasion
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resistance of a spray-coated CNT-EP composite were
attributed to the even dissemination and strong bonding
of CNTs on the EP resin. The suspension for the spray
coating was prepared by adding EP resin (200 mg) to a
dispersion of CNTs (200 mg) in acetone (100 mL). A sub-
sequent curing step at 120°C facilitated melting and ingres-
sion of EP resin to CNT/substrate interface and ensured
coating with exposed CNTs (CA ~ 166° and CAH ~ 4°)
[151]. Hsu et al. reported amphiphilic polyamine-modified
CNT/EP SHPC film by using a dispersion of as-purchased
CNTs (0.05g), polyisobutylene-amine copolymer (PB-
amine, 0.1g), THF, and EP resin (0.071 mmol, 0.025g).
The SHPY (CA > 152° and CAH ~ 7°) of the drop coated
and cured (80-150°C) surface was primarily attributed to
the well-ordered orientation of CNTs. The CA augmented
to ~158° at an optimized PB-amine/CNT wt ratio of 1/2;
however, it declined with a further increase of PB-amine
content (Figure 9a). The corresponding variation of sheet
resistance is also shown (Figure 9a). Their time-depen-
dent CA variation studies displayed excellent durability
for PB-amine/CNT and PB-amine/CNT/EP coatings. On
the other hand, the pristine CNT film failed within 1h
(Figure 9b) [152]. A robust SAPC EP/PVDF/FEP spray
coating with incorporated CNTs and SiO, (2.5 wt% each)
was reported. The synergistic combination of SiO, and
CNTs was utilized to create the required multilayer struc-
ture. Fluorinated ethylene propylene (FEP, 17.8-18.8 m]/
m?) was employed to reduce the SE [153]. The authors
also reported an SAPC and electroactive bilayer

NN

\%WNT Mat MWNTs/Polymer

Composite Coating

~ Mold

Pressing and Infiltration of
Polymer into the MWNT Mat

/‘

«wsq‘

_-v

Substrate

Ultrasonic

‘ Demolding Cleaning

Substrate

Su bstrate

Figure 8: Scheme showing fabrication of SHPC and conductive MWCNTs/polymer composite coating. An optical image of the coated sample

is also shown [126]. Reproduced with permission from ref. [126]; © 2010 American Chemical Society.
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[152]. Reproduced with permission from ref. [152]; © 2013 American Chemical Society.

composite coating by integrating EP, PANI, FEP, SiO,,
and CNTs by air and electrostatic spray methods. The
brilliant cross-linking effect of EP resin and the nanofil-
lers’ reinforcement enhanced the mechanical properties
considerably and provided a durable SHPC surface with
excellent adhesion and wear resistance [154].

Zhang et al. have studied spray-coated SHPC MWCNT/
EP nanocomposite coating on carbon steel (CS), where the
agglomerated CNTs mainly constituted the hierarchical
microstructure. Different amounts of CNTs (0.125, 0.25,
0.5, and 0.75g) were first dispersed in the EP resin
(1.875 g in 40 mL of acetone), to which jeffamine D230
(0.625 g) was added and stirred to prepare the dispersion.
The coated/cured (at 60°C, 2 days) sample with 30 wt%
CNT loading displayed slippery SHPY. However, a lower
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(10 wt%) or a higher (40 wt%) loading does not yield
SHPY and that was, respectively, attributed to the insuf-
ficient CNT content and the wider spacing between the
neighbouring agglomerates [155]. An SAPC coating was
fabricated by spraying a suspension of fluorinated
MWCNTs (hydroxylated MWCNTs dispersed in dry THF
with added 1H,1H,2H,2H-perfluorodecyltriethoxysilane
[PFDTS]) and EP adhesive. The F content was as high
as 47.4%. The natural crowding of the CNTs and the sol-
vent evaporation created the required surface roughness
and the microstructure. The surface maintained the SAPY
even after 40 abrasion cycles. Excellent durability was
observed during finger wiping, sand dropping, and sand-
paper abrasion tests (Figure 10) [156]. Li et al. employed
nanoscale (MWCNTs) and microscale (graphite and

83478.4 nm)
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Figure 10: Surface 3D map images after different abrasion cycles: (a) 0, (b) 20, and (c) 40. CA and SA variation with (d) sand impinging
weight and (e) abrasion cycles [156]. Reproduced with permission from ref. [156]; © 2020 Elsevier.
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expanded graphite) fillers, uniformly dispersed in EP
resin. First, E51 EP resin (2g) and THF (3 g) were stirred
and added to a solution comprising MWCNTs (0.16 g), gra-
phite powder (0.5¢g), EG (0.04g), PFOS (0.1g), and THF
(5g); subsequently, 0.2g of diethylenediamine was also
added. The SHPY was not destroyed during the abrasion
testing (200 sandpaper, 500 g, 20 cm, 50 cycles), even if
several powders have been worn out and the coating
thickness reduced [157].

Several studies explored PS/CNT coatings [158-164].
Yang et al. reported one-step spray-casted SHPC and
transparent (78%, visible) CNT/PS coating. PS capped
with 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy was used
[158]. The authors, in a later work, described a versatile
strategy for fabricating SHPC PAA-block-PS-functionalized
MWCNT (by nitroxide-mediated living free-radical poly-
merization) film by spray coating (CA ~ 166°, SA ~ 5°)
[159]. Song et al. also reported a spray-coated PS/MWCNT
film. SHPY was achieved after incorporating 1wt% of
y-aminopropyl trimethoxysilane-modified MWCNTs. The
surface displayed excellent durability during 1week of
water immersion, and 1month of high-humidity air-expo-
sure studies [160]. An SHPC conductive surface with a max-
imum CA of 165° (SA < 3°) was fabricated via drop coating
by utilizing a-methylstyrene-butylmethacrylate copolymer-
grafted MWCNTs. The CA displayed only a marginal
decrease during 210 days of indoor air-exposure study
[161]. Kim and Cho employed MWCNTs with PS and
THF, and the coating was made on a cover-glass by
spraying. The highest SHPY with a CA of 163.8 + 2.5°
and an SA of 5 + 0.9° was recorded for a film coated
from a mixture of 1wt% of PS and 0.08 wt% of CNTs
[162]. An SHPC anti-static coating was fabricated from
a blend of poly(styrene-alt-maleic anhydride), SiO,, and
MWCNTs. y-Aminopropyl-triethoxysilane was utilized to
bond the inorganic and organic components. A sharp
transition from hydrophobic to SHPC was noted at
~4.6wt% of CNT’s loading. High-temperature curing
(220°C) was found to be essential to enhance the coat-
ing’s durability. The hybrid coating exhibited CA as
high as 180°. The surface remained SHPC even after
20 days of immersion in deionized water [164]. Gu
et al. presented an SHPC PS/CNT hybrid membrane
through covalent attachment of PS to CNT network [163].

2.1.3.3 Others
Earlier works by Han et al. [165], Li et al. [166], and

Men et al. [167] have used CNTs along with polycarbonate
(PC), poly(4-azidophenylmethacrylate-co-methyl acrylate),
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and poly(furfuryl alcohol), respectively. Men et al. used
poly(furfuryl alcohol) as adhesion and low SE agents,
along with fluorocarbon-modified MWCNTs and PTFE.
The spray-coated and cured (70-180°C) coating dis-
played superior SHPY when the three components’
mass ratios were 1:1:1 [167]. Han et al. employed CNTs
and reduced-GO (RGO) sheets to nucleate PC crystalliza-
tion through phase separation. A 10 s of dipping of the
polymer sheet in the MWCNT solution was enough to
shape the SHPC surface with a CAH of <5°. An optimized
solvent mixture of methyl ethyl ketone and isopropyl
alcohol (poor solvent) was used. The study also showed
that MWCNT was a better nucleation agent than SWCNT
or RGO [165].

A few works explored polybenzoxazine (PBZ)-based
SHPC coatings [168-170]. PBZ is also known for its low SE
(21mJ/m?) [169]. Zhang et al. presented an immersion
coating comprising pristine MWCNTs and PBZ for ramie
fabric [168]. Wang et al. sonicated MWCNTSs (10 mg) with
a BZ solution (10 mg in 10 mL THF) and then poured onto
a glass slide, dried, and oven- (at 240°C) or MW cured.
Although the as-fabricated surface was SHPC, the curing
step, as expected, was essential to improve the thermal
and mechanical durability [169]. The authors later devel-
oped different CNTs/PBZ coatings and showed that a
fluorinated surface with a micro/nanoscale structure pos-
sessed the most robust SHPY [170].

The non-solvent-assisted phase separation was uti-
lized to create self-cleaning SHPC porous film based on
polyvinyl chloride (PVC) loaded with CNTs. On the other
hand, the coatings fabricated in the absence of the non-
solvent (EtOH) exhibited sticky behaviour [171]. Su et al.
reported a robust 3D porous SHPC composite with good
cyclic shape memory performance with poly(ethylene-
co-vinyl acetate)/MWCNT as the skeleton and NaCl as
a sacrificial template [172]. Mokarian et al. reported a
highly durable SHPC nanocomposite comprising silicone
rubber and MWCNTs. Outstanding durability was observed
during soaking tests in boiling water, 5wt% NaCl, and
condensed HCI [174]. An SHPC conductive paper was con-
ceived by successive dip coatings in CB/CNT/methylcellu-
lose and fumed-SiO, suspensions [175].

All these reports unanimously proved that CNT’s
incorporation is highly beneficial to enhance mechanical
durability, surface hydrophobicity, electrical conductivity,
and self-cleaning properties of polymer-based nanocom-
posites. The concentration and aspect ratio of the CNTs are
decisive. None of the studies revealed inferior durability
during chemical, mechanical, or thermal stability studies.
However, a few works showed compromised CAs after more
prolonged water immersion or higher abrasion cycles.
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2.1.4 CNT/metal/ceramic hybrids

In addition to a few works discussed above, several
reports are available on SHPC hybrids of different ceramic
oxides and metals with CNTs (with or without polymers)
[176-195]. Wang et al. combined MWCNTSs, Ni NPs, and
diamond-like carbon (DLC) film to fabricate a robust
SHPC MWCNT-Ni/amorphous-carbon coating by one-step
ED. The as-prepared film displayed a CA of 158.89° and an
SA of 1.99°. The integration of CNTs and Ni NPs increased
the surface roughness and enhanced the abrasion resis-
tance. Even after 20 abrasion cycles (sandpaper, 100 g,
10 cm), the CA maintained at ~152° [176]. The authors
also reported a corresponding MWCNT/Co film by ED [177].

Several works employed SiO,. Hsieh et al. decorated
polyacrylonitrile-based carbon fibre (CF) fabric with sol-
gel-made SiO, microparticles and CNTs. A wet chemical
impregnation approach was used to disperse SiO, onto
the fabric, and then CVD (900°C) was employed to grow
CNTs. A CA > 170° was observed in the CF/SiO,/CNT three-
tier structure [178]. Peng et al. fabricated SHPC conductive
coating by air spraying using a mixture of functionalized
MWCNTs and aqueous SiO, sol, followed by fluorosilane
modification. The study explored two types of CNTs:
hydroxylated (h-MWCNTs) and copolymer/silane-wrapped
(w-MWCNTs). The threshold concentration for achieving
the SHPY varied with the type of the CNTs, i.e., 2.7 vol%
for w-MWCNTs and 4.8 vol% for h-MWCNTs. The nano-
composite coatings retained SHPY for more than 1 year in
outdoor weathering. The study also showed that the
w-MWCNTSs/SiO, coatings’ durability increased with coating
drying temperature. During continuous water immersion
studies, the coatings dried at 160°C and 240°C retained
SHPY for 20 and 27 days, respectively. However, for a
coating without high-temperature curing, the SHPY was
lost within 3 days [179]. Li et al. reported spray-coated
SAPC CNT-SiO, hybrid coating. Here, h-MWCNTSs were first
ultrasonically dispersed in EtOH and then 5 mL of 25 wt%
aq. NH; and TEOS-EtOH solution were added. The well-
dispersed solution was used for spraying, and the coated
glass was vacuum dried and subjected to CVD of PFOTS
[180]. Wang et al. demonstrated SHPC spray-coated h-
CNT-SiO, NP composite coating with a post-fluorination
step [181]. SHPC SS mesh was fabricated via coating of
oxidized MWCNT inks with post-modification in perfluoro-
silane/SiO, NP solution and curing at 150°C [183].

Yu et al. presented a method to fabricate SHPC nano-
composite film consisting of CNTs and SiC NWs. The Si
substrate was coated by Ni and amorphous-carbon films
by high vacuum magnetron sputtering, and subsequently
heated with Al powder at 1,000°C in a tube furnace. SEM
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images displayed two different wire-like nanostructures:
curl and straight NWs. The composite surface showed CA
of 157 + 2°, compared to 120 + 2° of pure CNTs, and 86 + 2°
of pure Si wafer. The film retained a CA of 141° even after
continuous water immersion for 2 weeks [184]. Jiang et al.
prepared SHPC coating (CA of 161° and SA < 2°) by
spraying a suspension of SiC particles and CNTs on
EVA plastic [185].

Liu et al. fabricated a durable SHPC Al,O5/CNT/PDA/
PTFE coating. The synergistic effect of the Al,05 hydra-
tion and the addition of CNTs/PTFE promoted mecha-
nical and chemical durability (see Section 3.1.1) [186].
Highly active SHPC Co50,/CNT catalyst was synthesized
by in situ growth of Co30, NPs on MWCNTSs in the pre-
sence of a polymer surfactant, followed by PFDTS modi-
fication [187]. Shen et al. fabricated antibacterial SHPC
Ni/WO3/CNT metal matrix coating by ED and PFDTS modi-
fication, followed by curing at 120°C. The optimized ED
parameters for the SHPY (CA ~ 168.5°, SA ~ 3°) were a
bath having 0.5 g/L CNTs and a deposition current density
of 4 A/dm? The coating remained SHPC when abraded for
180 cm (600 sandpaper); however, after 200 cm of abra-
sion, the CA changed to 148.9°. SHPY was maintained
even after 50 cycles of the tape-peeling test; nevertheless,
the CA reduced to 145.1° after 55 cycles [188].

A transparent SAPC coating was fabricated using a
template approach where CNTs were sol-gel-coated with
Si0, and the CNTs-SiO, suspension was spray coated
onto glass slides and cured at 600°C and further sub-
jected to a fluorination step. The coated surface displayed
many protrusions composed of Si0, NPs and SNTs. The
transparent coating sustained SAPY even at 400°C [189].
Li et al. fabricated semitransparent SOPC SNT coatings on
glass with a post-PFTS modification. The SNT layer was
spray coated using a dispersion of PDMS-modified
MWCNTs and subsequently calcined to remove the CNT
template. The SNT layer’s microstructure and hence the
SAPY could be controlled by optimizing the diameter and
concentration of MWCNTSs. The surface displayed excel-
lent superwettability for water, n-decane, n-hexadecane,
toluene, and several hot liquids [190].

Zhu et al. fabricated an SHPC film by spray coating a
dispersion of ZnO NPs and MWCNTs in PDMS solution
[191]. Barthwal et al. reported ZnO/MWCNT coating (by
sol-gel and dip coating) for Cu mesh, with a subsequent
PDMS modification. The SHPY was maintained during
direct immersion in 3.5 wt% NaCl for 15h and ambient
air exposure for 2 months. A composite coating with
2.5wt% MWCNTs presented a CA of 156° and an SA of
4°, The CAs recorded for coatings with 1 and 5wt%
MWCNTSs were 151° and 145°, respectively [192].
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SWCNT/GR composite was fabricated via covalent
crosslinking through two different coupling strategies:
carbodiimide and Sonogashira. The results showed that
the composite assemblies obtained by Sonogashira cou-
pling exhibited higher surface areas and greater CAs
(159-163°) when compared to the carbodiimide coupling
[193].

2.1.5 Sponges, foams, aerogels, fabrics, and meshes

Several works investigated CNT-based sponge/foam/
aerogel/fabric/mesh for different applications including
oil separation and sensors. Polymer/CNT composite sponges
are mainly studied [196-232].

A few works reported SHPC CNT-only sponges/bun-
dles [198-200], whereas a few others studied CNTs + GR
sponges/monoliths [201-203]. CNT/polymer composite
sponges are attractive for practical applications due to
their improved mechanical durability. Several works
employed composite structures of CNTs with commercial
PU foams. Ge et al. presented a dip-coating method for
building SHPC and SOPL CNT/SiO,-coated PU sponge
where the as-purchased PU sponge was consecutively
dipped in EtOH suspensions of PVDF-HFP and CNTs/
Si0,, and cured at 140°C, blew off the loose particles
and subjected for further fluorination in EtOH solution
of perfluorotetradecanoic acid, and dried at 80°C [204].
Sultanov et al. also employed a dip-coating method
where commercial PU sponges’ walls were coated with
RGO and MWCNTs [205]. PU/MWCNT composite with
a nano/microscale hierarchical porous structure with
copious air holes was fabricated via non-solvent-assisted
thermal phase separation. Morphology analysis revealed
uniform dispersion of the carboxylated-CNTs in the porous
structure, facilitated by strong hydrogen bonding interac-
tion. The composite monolith displayed excellent mechan-
ical elasticity and chemical durability [206]. Hong et al.
reported a flexible, conductive SHPC PU/CNT/silane aerogel
composite microfibre. CNTs (2.5 wt%) were mixed with PU
first and then with PFTS, and further, SiO, aerogel particles
were embedded in the matrix [207].

A few studies employed melamine (ML) sponges [205,
208,209]. Mechanically robust 3D SHPC composite sponges
were prepared using ML as a scaffold, MWCNTs, GR, or
activated carbon as SHPC and robust coating material,
and a polyphenol-Fe** complex as a low-cost adhesive.
The optimized loading of MWCNTSs for the SHPY was 3%
[208].

Cellulose-based materials are attractive in terms of
abundance and eco-friendliness. Lu et al. made SHPC/
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SOPL sponge by cross-linking epichlorohydrin with ethyl
cellulose (CL) sponge and further complexing with sila-
nized CNTs and modifying with SiO,/HDTMS. The SHPC/
SOPL material (water CA ~ 158.2°, oil CA ~ 0°) displayed
superb mechanical strength (withstand 28.6 kPa pres-
sure) due to the facilitated chemical cross-linking and
the incorporated nanofillers. The sponge also revealed
excellent thermal (up to 330°C) and chemical durability
(acid/alkali/salt solutions) [197].

Several works explored SHPC CNT coating on cotton
fabrics. Makowski et al. fabricated SHPC cotton woven
fabrics covered with silane-modified MWCNT layer [210].
Zheng et al. manufactured a conductive SHPC cotton
fabric (CA of 162°) by LbL assembling carboxylated and
aminated MWCNTs and further modifying with PDMS.
The assembly was repeated for different cycles and sub-
sequently dipped in 5 wt% hexane solution of PDMS and
vacuum dried at 135°C [211]. SHPC, flame-retardant, and
conductive cotton fabric was fabricated by LbL assembly
of poly(ethylenimine), ammonium polyphosphate, and
CNTs, followed by PDMS treatment [212].

A few studies explored CNT coating on SS mesh.
Lee et al. described a technique to directly synthesize
VACNTs on commercial SS mesh by CVD for oil separa-
tion [91]. Lu et al. used a spray-coating method for
CNT layer deposition onto steel wire mesh. Poly(methyl-
methacrylate) (PMMA) was used to deliver robust bonding
between CNTs and the mesh surface [213].

Several studies on SHPL and underwater SOPC compo-
site membranes for oil separation applications are avail-
able that include SWCNT/PDA/PEI [216], CNT/FeOOH NR
[217], SWCNT/TiO, [219], CNT/PS/Au NP [220], Ag/PAA/
CNT [221], MWCNT/MnO, NW [222], polyzwitterion/TiO,/
CNT [223], magnetic CNT-PVA [224], and CNT/PAA brush
[225] membranes. Quite a few works reported CNT-based
desalination/water treatment membranes including ACNT
membrane [226], MWCNT/PVDF/PDMS [227], CNT/PFDTS
[228], CNT/polyvinylidene fluoride-co-hexafluoropropy-
lene [229], bauxite/NiO-CNT [230], CNT/PVDF/PP [231],
and SS-CNT [232] membranes.

2.2 Carbon nanofibres
2.2.1 CNFs only

This section discusses CNF-based SHPC surfaces [233-270].
A few works on microscale CFs are also included.

Several earlier (before 2010) reports addressed SHPC
vertically aligned CNFs [233-235,244]. Hsieh et al.
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demonstrated the influence of the F/C ratio on the SHPY
of CNFs prepared by a template-assisted method and
showed that the CA increases with the increase of F/C
ratio [234]. Wang et al. employed an alumina template
to fabricate aligned SHPC CNFs (CA of 153.1 + 2.2°) via
dipping in hydrophilic PVA polymer followed by a car-
bonization process (at 600°C) and subsequent partial
template removal. No low SE modification was used.
The CA of the corresponding disordered CNFs was
only 126.3 + 3.7° [235]. Hima et al. studied three dif-
ferent types of CNSs (caterpillar-like fibres, tubes, and
interwoven spheres) by CVD (700°C, morphology varied
with the growth duration) and showed that the cater-
pillar-like CFs and interwoven carbon spheres exhibited
high CAs of 163 + 2° and 168 + 2°, respectively, and that
was attributed to their unique surface structures. The cor-
responding tube structure displayed CA ~ 140° only [244].

Tsai et al. provided a detailed account of drop-impact
dynamics on SHPC surfaces made up of CNF forest and
microscale-patterned polymers. The study showed that
the multiscale nanoroughness had only a negligible effect
on the impact dynamics when W, was <120; however, it
was significant at W, > 120 [236]. Ogihara et al. demon-
strated EPD-made SHPC coloured films using different
hydrophobic pigment particles, including vapour-grown
CNFs and CB [237].

An SHPC CF coating with boosted corrosion protec-
tion capability was developed on Zn via CVD at 350°C.
The CAs measured on Zn-CF and bare Zn surfaces were
153.3 + 1° and 68.2 + 1°, respectively [238]. Durable CNF
coatings were developed on mild steel (MS) and AZ31 Mg
alloy by subsequent plasma sputtering and CVD. The CA
of the bare MS (~69°) increased to ~150° (SA ~ 7°) after
the CNF coating. The corresponding transition for the Mg
alloy was ~66.7° to ~145° [239].

Several works employed SHPC fabrics made of CFs
[241-245]. Meng et al. explored the role of CNFs in pre-
paring SHPC and electroconductive surface on glass fab-
rics. Homogeneous CNFs were grown by CVD, and the
surface modified with a fluoropolymer [243]. Ko et al.
utilized preferential oxygen plasma etching to fabricate
high-aspect-ratio CF-network-structures with morphology
ranging from nanopillar to hairy. A subsequent siloxane
modification increased CA from 147° (pristine CFs) to 163°
(30 s of siloxane vapour treatment) with a reduction of
CAH from 71° to <5°. Under super-saturated vapour con-
ditions, the pristine CFs were wet with condensation
between fibres. They led to flooding, whereas dropwise
condensation was dominant on the SHPC surface, allowing
the interstitial spaces to remain dry [245].
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Siddiqui et al. employed a two-step plasma-sputter/
CVD (300°C) process to fabricate SHPC CNFs on activated
CF (CA ~ 146°) and glass (CA ~ 156°) substrates without
the use of fluorosilanes. The CAs of the corresponding bare
CF and glass surfaces were ~0° and 36° (Figure 11a—d).
SEM images displaying the surface morphology of the
SHPC surfaces are also shown (Figure 11e-h). The SHPY
was well-maintained during the abrasion test with dif-
ferent sandpapers and applied loads. An already abraded
surface (using P1500 for nine cycles) retained excellent
durability even after subjecting a second round of abra-
sion studies (P800, 100 g) (Figure 11i). The surface pre-
sented outstanding chemical durability over a wider pH
and hot water (95°C). The SHPY was well-maintained
during an ultrasonication test for 300 min (Figure 11j)
[248]. Xu et al. employed an SHPC CF sponge without
any chemical modification for oil separation [247].

2.2.2 With polymers

Several works explored CNFs with silanes/fluorosilanes
[250-258]. In 2011, Das et al. reported a spray-coated
SHPC self-cleaning CNF/PTFE/composite-polymer coating.
CNFs were employed mainly to adjust the conductivity
without compromising the SHPY, whereas PTFE particles
were used as hydrophobic fillers. A solution blend of PVDF
and acrylic PMMA was used as the composite—polymer
matrix. The optimized CNF loading amount was 1.1 wt%
[250,252]. The authors also reported a water-based spray
coating of commercial fluoroacrylic copolymer and hollow
CNFs. The study showed that replacing lengthy CNFs with
short solid nanowhiskers would help produce more stable
fluoropolymer—nanocarbon dispersion. At a CNF concen-
tration of >30wt%, self-cleaning SHPY was observed,
whereas oil-droplet mobility was experienced at 60 wt%
loadings only [251].

CNF-PDMS systems were explored. Seo et al. pre-
pared CNFs by CVD and surface modified by PDMS (CA
~ 170°). A corresponding STA-modified film showed a CA
of ~150° only [253]. Abdulhussein et al. employed one-
step vacuum filtering to fabricate SHPC (CA > 163° and SA
< 5°) and SOPL (oil CA ~ 0°) CNF/PDMS composite block
with high mechanical and chemical stability [254]. A
robust SHPC (CA ~ 163°) and SOPL CNF/PDMS-modified
SS mesh was fabricated by vacuum filtration, followed by
PDMS coating. Well-dispersed CNFs with lengths at the
range of 20-200 pm and diameters of 100 nm were used,
and SS/CNF mesh with a pore diameter of <1pm was
assembled by random cross-linking (Figure 12). Most of
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the CNFs were well-placed inside the SS mesh, whereas a
few stayed exterior. The SHPC surface displayed extreme
chemical durability to 1M NaCl, pH 2 solution, and
toluene solvent. The durability was preserved even after
continuous immersion of the membrane for a longer
duration (Figure 12) [255].

Yang et al. in a recent work presented SHPC and
SOPL CNF-reinforced PDMS-metal rubber (MR) compo-
site. CNFs were embedded into MR via vacuum filtration,
and subsequently, PDMS coated. PDMS acted as an effec-
tive binder between CNF fillers and MR. The composite
remained SHPC even after 100 cycles of compression at
200 N. Excellent chemical durability against pH 2, pH 10,
and 3.5 wt% NaCl solutions was observed [256]. Guo et al.
reported an SHPC/SOPL foam composite in which CNFs
were uniformly distributed on PDMS foam under ultra-
sonication, followed by an extra PDMS modification to
improve the interfacial adhesion [257]. An approach for
designing hemostatic wound-dressing material favouring
rapid blood clotting and easy clot removal utilized SHPC
CNF/PTFE or CNF/PDMS networks [258].

A few works explored CNFs with PUs [259—261]. Zhang
et al. prepared SHPC/SOPL and electrically conducting
PU/CNF network. Hollow CNFs were ultrasonically inte-
grated onto the PU nanofibre surface and subsequently
subjected to PDMS modification. PDMS served as an inter-
facial adhesion agent and waterproof protective layer. The
composite displayed excellent strain independent super-
wettability; original CA (153°) was retained even at 100%
applied strain. The superb durability was attributed to the
robust interfacial (CNFs/PU-nanofibres) adhesion [260].
Baig et al. synthesized CNF-grafted PU sponge by dip
coating. Besides enhancing the hydrophobicity, the CNF’s
grafting helped increase the surface area and decrease the
average pore size of the PU matrix (improved capillary
action) [261].

2.2.3 With metals/ceramics

Li et al. employed CVD grown herringbone CNFs along
with commercial carbon felt and SiO,. Here, fumed SiO,
NPs were distributed onto the carbon felt and then exposed
to CNF growth condition. The CNF/SiC/carbon-felt hybrid
composite formation happened at high temperatures
(1,650°C, Ar) via carbothermal reduction at SiO,/carbon
interfaces. The composite was superbly mechanically
robust [240]. Aljumaily et al. synthesized two types of
hierarchical SHPC CNMs on Ni-doped activated carbon
surface, namely, carbon sphere-free CNFs (CA ~ 167°)
and carbon sphere-mixed CNFs (CA ~ 177°), via CVD at
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650 and 750°C, respectively. The study suggested that
such mixed structures could be an attractive way to
enhance hydrophobicity. The spheres on the CNF net-
work divulged a rougher surface and minimized the cav-
ities [246].

Earlier reports explored SHPC SiO, NP-coated CFs
[263] and hydrothermal (HT)-synthesized ZnO/CNF hybrid
[264]. Wu et al. in a recent work presented nanocomposite
of CFs, PVDF, CB, and CeO, NPs with excellent SHPY (CA ~
156° and SA ~ 5°), mechanical properties (tensile strength
and tensile modulus were ~109 MPa and 10 GPa, respec-
tively), and electrical conductivity (~6.8 S/cm). The SHPY
remained stable even after 60 min of strong acid and 24 h
of strong base immersion, and 200 cycles of sandpaper
abrasion [265]. SHPC fluoroalkylsilane-modified Ni-electro-
deposited CFs displayed a water CA of ~159.1° and an oil CA
of ~0°. The surface remained SHPC with a CA of ~158° even
after 24 months of air exposure [266]. A few works on SHPL
and underwater SOPC membranes/monoliths are also avail-
able [267,268].

2.3 Carbon nanosphere/nanothorn/others

Micro/nanoscale carbon spheres can be synthesized
by various methods, including CVD, pyrolysis, HT/sol-
vothermal, and chemical routes. Qu et al. fabricated
SHPC carbon nanosphere film by depositing the soot of
burning rapeseed oil without any surface modification
[271]. The authors also reported an SAPC film via an addi-
tional fluorosilane modification where the fluorosilane
acted as a glue to the loose carbon nanospheres [272].
Joula et al. reported a method for preparing SHPC surface
by spin coating EtOH colloidal solution of HT-synthesized
carbon nanospheres on glass substrate [273]. EPD at 30 V,
followed by heat treatment at 250-350°C, was utilized to
obtain SHPC carbon micro/nanosphere thin film on FTO
glass. HT (glucose solution, 160°C) prepared carbon
spheres with different diameters were used [274].

A multifunctional composite coating based on meso-
porous carbon nanocapsules and PVDF displayed a CA of
~160° and an SA of ~5°. Excellent chemical durability
was achieved over wider pH (1.29-13.54), and humidity
(35-83%) ranges. The film displayed thermal durability
up to 350°C. The surface maintained the SHPY after 30 s
of abrasion with a CA of ~155° and an SA of ~15° (150
rotations, 200g, dragged while rotating at 300 rpm).
After 60s, even though the SHPY maintained, the SA
increased to ~43°. The surface lost SHPY after 90 s of
abrasion [275,276]. A few other studies also described
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different carbon nanosphere-based SHPC coatings [41,80,
277,278].

In recent work, Li et al. designed an SHPC carbon
nanothorn array by a single-step reaction in a liquid-phase
environment containing 1,3,5-triethynyl-2,4,6-trimethyl-
benzene, pyridine, acetone, and N,N,N’,N’-tetramethyl-
ethylenediamine. The fabricated SHPC surface on a
commercial Cu form displayed excellent long-term dur-
ability during 800 days of water immersion study. When
the experiment was conducted at pH 5 or 9 solutions, the
SHPY marginally compromised (CA of ~145° after 800
days) [279].

SHPC powder sample composed of hierarchical carbon
microflowers (CMFs) and dispersed-MoOs-NPs was fabri-
cated by utilizing the wet chemistry of (NH,)¢Mo,0,,4H,0
and dopamine, followed by annealing (700°C) and PFDTS
modification (0.5 g of CMF/MoO; was added to 40 mL of
0.5% PFDTS-hexane solution). An SHPC coating was fab-
ricated by using the powder, EP resin, and a curing agent
via sieve-deposition technique. The surface displayed
excellent mechanical durability until 50 abrasion cycles
(400 Cw sandpaper, 200 g, moved back and forth for
10 cm). A corresponding coating without EP resin per-
formed poorly in the abrasion testing. Good acid/alkali
resistance (pH 1 and 14) was also noted. The addition of
MoO; was found to be helpful to enhance the chemical
durability [280]. Ghosh et al. deposited SHPC vertically
aligned tree-like carbon nanospheres by CVD. The robust
sticky SHPY was attributed to the highly roughened
porous surface [281].

Onion-like carbon microspheres comprised of nano-
flakes were made from waste polyethylene terephthalate
via pyrolyzing (650°C, supercritical CO,) and vacuum
annealing (1,500°C). The authors fabricated an F-free
SHPC coating on polyester fabric by using the prepared
carbon microspheres with PDMS [282].

2.4 Nanodiamond

In earlier work, Zhou et al. achieved self-cleaning SHPY
on the two topmost hardest materials, diamond and cubic
BN, via reactive ion etching (H/Ar plasma) and surface
fluorination [283]. Coffinier et al. reported SHPC (CA ~
160°, CAH < 2°) B-doped diamond nanograss by reactive
ion etching with oxygen plasma, followed by octadecyl-
trichlorosilane or PFTS modification [284]. The authors
also fabricated heterogenous SHPC/SHPL patterns where
the SHPL regions were generated by selective UV light
exposure [285]. Yang et al. reported an SHPC/SOPL robust
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diamond mesh [286]. SHPC diamond microspheres were
deposited on Si by MW CVD. The microspheres were then
collected by blade scratching and employed in fabricating
an EP-based SHPC film with excellent mechanical and
chemical durability [287]. Deshmukh et al. studied the
electrowetting transition of diamond nanostructures [288].

2.5 Fullerene

A few works addressed SHPC fullerene assemblies [194,195,
289-296]. In earlier work, Nakanishi et al. prepared SHPC
surfaces with two-tier nano/microroughness by the mole-
cular assembly of a fullerene derivative bearing a long
aliphatic chain, without using fluorinated compounds
[290]. The authors also reported the formation of a self-
assembled hierarchical fullerene derivative with long
hydrocarbon chains and perfluoroalkyl tails [292]. An
SHPC thin film was prepared via self-assembly of Au
NPs and fullerene pyridyl derivatives [291]. Mansurov
presented the formation of SHPC fullerenes and CNTs
on Ni and Si supports in benzene-oxygen and propane—
oxygen diffusion flames [194]. A supramolecular method
was used to fabricate C60/tetracene flower-like micro-
structure comprised of nanoplates. FCC C60 microstruc-
tures were further derived via sublimation of tetracene
component at 330°C. Thin films prepared with FCC C60
and C60/tetracene displayed SHPY with CAs of 156.3° and
150.2°, respectively [293].

A two-step self-assembly strategy was reported for
the preparation of SHPC fullerene hierarchical architec-
tures. The process was composed of a precipitation method
to synthesize the initial fullerene microstructure and a
subsequent drop-drying process to facilitate the self-
assembled hierarchical structure [294]. Pérez-Ojeda et al.
also reported hierarchical self-assembly of fullerene deri-
vative with SHPY [296]. Partheeban and Sathish demon-
strated the formation of SHPC flower and octahedron-like
fullerene microcrystals using a liquid-liquid interfacial
precipitation method [295]. Ayyappan et al. presented
an SHPC surface by covalent functionalization of metha-
crylate polymers with CNTs and fullerenes [195].

2.6 Nanostructured carbon soot/graphitic
carbon/others

This section briefs works reported with nanoscale-acti-
vated carbon, CB, carbon soot, carbon sponges etc. that
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are not mentioned in other sections. Carbon soot is one of
the earliest known hydrophobic materials. Despite the
advantages of easy availability and robustness [297-301],
the amorphous nature and loose structural binding
between the carbon NPs restrict their applications [298].
The mechanical robustness and hydrophobicity of carbon
soot can be further attuned through composite formation
or proper chemical treatment. Several works employed
carbon soot-only SHPC surfaces [298-316] that include
carbon film prepared by pyrolysis of nanostructured poly-
acrylonitrile film [299], soot particles via camphor com-
bustion [302], layered soot formed in candle flame [303],
carbon soot from ignited paper-based wick via cone-
shaped Al chimney [304], soot synthesized in flames of
various hydrocarbons using metallic catalysts [305], soot
coating by combustion of rapeseed oil [307], and amor-
phous carbon NPs synthesized by EtOH-flame method
[308]. The SHPY of such surfaces typically ascribed to
the nanostructured graphite-like structures and the soot
particle’s hydrophobicity [299,302,303]. A few works
employed composites of carbon soots with polymers that
include SHPC candle-soot/PVDF porous composite [310],
fluorocarbon-treated soot [312], PDMS/camphor-soot
coating [313], and nanoscale-sawdust/polychloroprene/
carbon soot/silicon polymer coating [314]. A few works
are reported on composites of carbon soot with inorganic
oxides such as candle soot-derived TiO, fractal network
film [298], candle soot/SiO, NPs dip-coated PU sponge
[315], and Ag-doped carbon soot spray coating [316].

Several works investigated SHPC graphite carbon and
their composites [317-333] that include ODA-functiona-
lized SHPC graphite oxide film [318], graphite-reinforced
metal-matrix composites [320], graphite nanoplatelet/
ethylene—acrylic acid copolymer emulsion coating [322],
PVDF/graphite composite coating [323], ultra-thin graphite
sponge [324], nano-graphite-PDMS/ML sponge modified
with HDTMS [325], SHPC/SOPL cotton fabric composed
of Cu-graphite/styrene-butadiene—styrene nanocompo-
site [327], TiO,—graphite blended with fluorinated methyl-
tris(methylethylketoxime)silane and polysiloxane [329],
Ge—graphite core—shell NWs produced by CVD [330],
and MoO,/graphitic carbon [331].

A number of works reported with a mention on
nanostructured CB/activated carbon such as perfluoro-
carbon/perfluoropolyether-anchored CB [334], spray-casted
composite coating of nanostructured CB and submicro-
metre-sized PTFE particles dispersed in nitrile rubber
[335], gas diffusion electrode based on CB-PTFE-modified
graphite felt cathode [336], highly porous GR/CB-fluori-
nated acrylic copolymer nanocomposite for solid-state
ion-selective electrode [337], and CB-based SHPC gauze
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for solar evaporation [338]. Several other reports are also
available [339-351].

Many works investigated SHPC carbon aerogels [352—358]
such as biomass aerogel from corn bracts [352], magnetic
porous aerogel from biorenewable popcorn via carboniza-
tion/magnetization and successive surface treatment
[353], aerogel designed via carbonization of Typha orien-
talis fibres [354], aerogel from Platanus orientalis fibres
by carbonization [356], magnetic SHPC carbon sponge
[357], hybrid aerogel prepared via HT growth of TiO,
NRs on biomass carbon aerogel [358], and carbon/
graphitic C5N, aerogel by in situ urea pyrolysis on cotton
[355].

A few studies on SHPC carbon Qdots, DLC films, CNTs,
and others, not included in previous sections, could be
found in refs. [359-370].

2.7 Graphene

SHPC surfaces and coatings based on GR and its deriva-
tives are briefly provided here [377-621]. A detailed dis-
cussion is out of the scope of this review.

Several works endorsed the SHPY primarily to the
surface roughness and the reduction (removal of hydro-
philic oxygen groups) processes. Different reduction
methods were explored for achieving SHPY with GR/GO,
including thermal [371], chemical [372], and photoreduc-
tion [39]. A significant extent of research has been per-
formed on laser-assisted approaches since 2009 [373-376].
The wettability of hydrophobic GR is similar to that of gra-
phite; however, dynamic wettability could significantly
depend on the layered structure [36,377].

Liu et al. fabricated SHPC anti-corrosion GR film on
Al alloy by spin coating EtOH-dispersed graphene sheets
[382]. Zhong et al. reported a multifunctional paper where
dopamine was concurrently used as a reductant for GO
and a crosslinking adhesive for the adjacent GR [398].
Highly complex wrinkled/crumpled textures were created
through extreme compression of GR coating [383]. Choi
et al. reported a thermally controlled transfer printing
technique for multiple patterned GR layers [384]. A
shrinking method was used to generate strain-sensitive
hierarchical RGO buckling patterns [408]. Multifunc-
tional, rose-petal-like SHPC GR film was fabricated via
self-assembly of GO. Here, vacuum filtration was used to
make a hollow GO film on a PTFE membrane and sub-
sequently reduced by HI vapour at 100°C [399]. Spark
plasma sintering was shown to be a superior GO reduc-
tion method to achieve SHPC RGO in a single step. The
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SHPY was attributed to the sintering-assisted removal/
reduction of oxygenated functional groups in GO where
the surface roughness was ~10 times larger, with a
higher C:0 atomic ratio of ~83 [401,402]. Lin et al. depo-
sited vertical aligned GR nanosheet-embedded carbon film
using an ultrasonic extrusion method to fabricate SHPC,
photo-sterilize, and reusable mask [403]. Most of these
studies, however, resulted in sticky SHPY.

Recent studies extensively employed laser processing
[385-397,404,405]. Rough micropatterns and nanoscale
layers shaped from laser reduction could readily lead to
SHPY [385]. Shi et al. fabricated microflower structures
comprised of GR nanoflakes via a single femtosecond
laser pulse. The GR film was composed of LbL GR nano-
sheets with ~10-50 nm gaps; GR monolayers with ~0.37 nm
interlayer spacing constituted each GR nanosheet [386].
Two-beam laser treatment of GO film was used to create
microscale grating-like assemblies with fine nanoscale
roughness. The hierarchical micro/nanostructuring and
the elimination of oxygen-containing groups endowed
the resultant GR film with unique SHPY [404,405]. Das
et al. demonstrated a direct-pulsed laser approach to
adjust the electrical conductivity and hydrophobicity of
the inkjet-printed GR. The study showed that the laser
writing converted hydrophilic (CA ~ 47.6°) and resistive
(sheet resistance ~21 MQ/sq) GR surface to SHPC (CA
~157.1°) and conductive (~1.1kQ/sq). Molecular dynamic
simulations revealed that the laser-induced nanoscale GR
flake alignment and the hydrophobic surface chemistry
contributed to SHPY [389]. Hall et al. presented a method
to make open microfluidic podiums by controlling the
hydrophobicity of spin-coated GR on a flexible plastic
substrate via laser-assisted patterning [392]. Jiang et al.
first fabricated micro-grooved structures on a GO film via
photolithography, and then two-beam laser treatment
was performed on the corrugated surface to remove the
hydrophilic groups and upsurge the nanoscale surface
roughness [390]. Luong et al. investigated an infiltration
process that enabled the devolution of laser-induced GR
onto different commercial materials and produced SHPC
composites with Portland cement, PDMS, EP, and wax for
multipurpose applications [396].

2.7.1 With polymers

Several earlier works employed silanes/fluorosilane modi-
fication intended for different applications. Fluoropolymers
[410-414] and silane/fluorosilane polymers [378,381,406,
415-417,427,429,431-433,444] are the most used low SE
modifiers. A few works used ODA or phenylenediamines
[379,380,400,428,409,472]. Some works employed long-
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chain fatty acids, such as MA [456,457]. Zhou et al. prepared
SHPC GR film with a CA of ~160.5° via heptadecafluoro-
1,1,2,2-tetradecyl-trimethoxysilane’s functionalization fol-
lowed by vacuum drying at 60°C [378]. Gao et al. employed
a triethoxyoctylsilane surface modification on CVD-made
graphenic carbon nanowalls. The sample without the sur-
face modification displayed SHPY only when the deposition
pressure was 50 Pa [381].

As discussed in Section 2.1, GR was widely used as a
filler to improve the mechanical performance and the
hydrophobicity of polymers. Several works are available
on GR-PDMS systems, where GR could act as a filler, and
PDMS could serve as a binder or a porous network.
Reports include fluorinated GO/PDMS spray coating [418],
RGO-modified PDMS fabric coating [419], GR/PDMS anti-
corrosion coating on Al alloy [420], PDMS/GR coating on
Cu mesh [421], arc-like PDMS macromolecular bridge-
grafted GR sheet hybrid membrane [422], PDMS/GR-based
coating on glass [423], RGO/PDMS composite film-based
acoustic sensor [424], GR/PDMS-based bilayer actuator
[425], PDMS/open-cell GR network via simple inverse
drying [426], RGO and diatomaceous earth modified
with PDMS [440], PDMS/GO decorated with ZnO NRs
[445], and spin-coated Fe;0,/GR/PDMS film on Ti [454].
Many works explored GR—PVDF, such as GR/PVDF gel by
phase separation [465], GR/Nafion film [467], GR/PTFE
by phase separation [469], RGO/PVDF composite [468],
GR/PVDF electrospun film [470], and PVDF/RGO/SiO,/
PFOS coating [471].

Several works employed GR together with PU coat-
ings. The reports include transparent, flexible, SHPC film
of siloxane-functionalized GO/micropillar-patterned poly
(urethane acrylate) [475], PU film loaded with TiO, NPs
and GR [451], perfluorosilane-coated GR/PU [476], flexi-
ble conductive film of PU/cellulose-modified RGO [477],
Si0,-GR shell/PU nanofibre core conductive composite
[439], electrospun PU nanofibres wreathed by GR and
modified by PDA/PFDT [478], and spray-coated hexam-
ethyldisilazane-functionalized fumed SiO, NPs thermally
welded PU coating [479]. Several works explored GR/EP
composite coatings such as GO-diatomaceous earth/EP
[441], POSS-functionalized-GO/EP [481], EP-PTFE/PDA-
modified-GR/SiO,/PFOS [483], POSS-modified GO/EP [484],
and thiol-coupled GR/2-(perfluorooctyl)-Et-acrylate/EP
[485]. A few studies used GR with polyethylene and poly-
propylene [486,488-491].

Other reported works in this category deal with electro-
spinning PS and PVC fibres incorporated with TiO, NPs
and GR nanoflakes [492], fluorosilane-modified GR added
siloxane-acrylic resin coating [494], amine-grafted-GO/
amine-reactive-polymeric nanocomplex [495], GO-grafted
ODA-incorporated polylactide [496], PEDOT:PSS/RGO/
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wool-nylon composite textile [497], fumed SiO,-modified
cellulose nanocrystal/GR coating on non-woven fabric
[498], GR/poly(3-hexyl thiophene) [503], GR-decorated
with poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-pheny-
lene-vinylene] [504], and poly(vinylbenzyl-chloride-
co-divinylbenzene)-grafted GR [505].

2.7.2 With metals/ceramics

Several works explored SHPC composites of GR with other
CNSs, including GR/POSS/CNT coating [125], GR/SWCNT
composite by coupling reaction [193], carbon NP-deco-
rated GR [434], LbL deposited MWNT/RGO film onto
SiO, colloids followed by fluorination [202], nanocompo-
site coating of CB, CNTs, GR nanoplatelets, and their
combinations in fluoropolymer dispersion [138], and APTES/
MWCNT-GR/PDMS/Ag/fluorosilane multilayer coating
[430]. A number of works are available where ceramic
oxides such as SiO, [435-440,442,443,471,479,483], ZnO
[445], Al,O3 [446], SnO, [452], SnS, [453], Fes0, [454],
Er,05 [455], and TiO, [447-451] were used in GR-based
SHPC coatings (with/without polymers).

A few works reported SHPC hybrid film of GO with
metals, such as Ni/GR film on MS by ED followed by MA
modification [456], Ni/RGO/MA coating on CS by ED
[457], RGO/Ni coating on SS by ED [458], GR/amorphous
carbon/Ni-based film by high-voltage ED [459], GR/
amorphous carbon/Co by ED [460], Co/Ni/GR composite
coating on Cu by ED [461], and GO/Ag NW/fluoride poly-
vinyl butyral spray coating [462]. Most of these works
employed ED as a means to incorporate metallic NPs in
the composite.

2.7.3 Sponges, foams, aerogels, fabrics, and meshes

A significant extent of works were reported in this cate-
gory, especially for oil separation application. Analogous
to CNTs, the superwettability, mechanical properties, and
absorption capacity of 3D foams could be precisely
manipulated by covalent grafting of GO [506]. Significant
information is available on SHPC/SOPL or SHPL/under-
water SOPC GR-based sponges/aerogels/monoliths. They
are shown to be effective absorbents for wide-ranging
organic solvents/oils with high absorption capacities and
good recyclability [507]. Several works are available on
pristine/doped/fluorosilane-modified GR aerogels/sponges
[499,512,516,517,519,521,524—-528,532,534,544,570]. A number
of works explored hybrid/composite structures of GR aerogel
with PDMS [508,522,529,541], PTFE [509,538-540], PVDF
[520,523,533], polyborosiloxane (PBS) [515], PAA [530],
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lignin [536], agarose [537], Cu NWs [543], Au NPs and
PFDT [556], and diatomite/carbon-nanobelts [608]. A few
works explored hybrid sponges of GR with other CNSs. The
reports include MWCNT/GR hybrid aerogel [203], PFOS-
modified RGO/CNT/chitosan aerogel [542], and 3D mono-
lith of GR/CNT [201].

A few works reported GR/MOF systems, including
RGO/MOFs [500,518], GO and oleic acid-modified ZIF-8/
cotton fabric [557], highly fluorinated GO/ZIF-8 [463],
UIO-66-F4/RGO hybrid [464], PDA-coated porous GR/MOF
[609], and ZIF-8/thiolated-GR-based polyimide nanofibrous
membrane [613].

Several studies employed GR with commercial PU
sponge. A simple dipping—drying process was typically
used to functionalize GR onto PU sponge [510,513,555].
Reports include GR-coated PU sponge [567], RGO-coated
PU sponge [568], GR-grafted PU foam [563], y-methacry-
loxypropyltrimethoxy silane-modified GR-coated PU sponge
[566], fluorosilane-modified ammonium polyphosphate/
GO-decorated PU foam [480], fluorothiol-modified-PDA-
coated-GO/PU sponge [572], RGO and orthoaminophenol-
functionalized PU [574], fluorosilane-modified-RGO/PU
sponge [573], RGO and MoS, NP-incorporated PU foam
[576], Fes0, NP-incorporated magnetic GR/PU foam
[565], oleic acid-Fe;0, NP/GO/PU sponge [575], lignin-
based PU foam grafted with PDA-RGO and ODA [571],
tetradecylamine-amidated-GO-modified/TiO,—PU composite
foam [578], and GR aerosol/PU sponge [569].

Similar works were reported on GR-incorporated
ML sponges [209,501,511,514,577,579,581-593,595,615,
618], GR-CL sponges [531,545,547,580,664,665], and
others [594,596,597]. Several reports employed GR-
coated cotton fabrics with/without silane/fluorosilane
modification [549-555,610,611]. Reports also explored
GR with polypropylene [555,558], polyester [559], PS
[493,561], and polycarbonate [562].

Several works used GR with steel [598-604] and Cu/
wire [605-607] meshes. A few reports focused on water
treatment/desalination membranes [614,616,619,620].

3 Application areas
3.1 CNT/nanofibre/others

3.1.1 Anti-corrosion

Corrosion continues to be a major industrial threat neces-
sitating costly preventive measures [622-634]. In general,
reported works with SHPC surfaces showed superior
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corrosion resistance than the corresponding bare sur-
faces attributed to the robust interface air layer that could
effectively withstand the ingression of water/aggressive
ions. The long-term durability of such surfaces in aggres-
sive chloride and acidic solutions remains an area to be
further advanced. As far as CNSs are considered, the
superior mechanical/chemical durability is advantageous;
however, graphite’s more noble position in the galvanic
series could intensify the corrosion once local damages
initiated. On the other hand, CNMs are economical and
effective fillers to polymeric resins to enhance mechan-
ical/chemical durability, hydrophobicity, barrier protec-
tion, and substrate adhesion.

Only a few works explored CNT-only SHPC anti-corro-
sion coatings. A recent work showed that a sprayed SAPC
coating (on glass) of fluorinated MWCNTs and a spray
adhesive greatly promoted the chemical robustness [156].
Electrochemical corrosion studies by Belsanti et al. on
spray-coated SHPC CNT film on Al alloy in 0.1M NaCl
presented a positive shift of corrosion potential (Ecq,y)
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and significantly reduced corrosion current density (icor)-
The pitting corrosion resistance was much improved [118].
Most of the reports in this area explored CNT-incorporated
polymer coatings.

Several studies investigated CNT/EP coatings [153-155,
157]. Zhang et al. explored an one-step spray-coated SHPC
nanocomposite coating of EP resin and MWCNTs on CS
and showed that suitable optimization of the filler could
improve the corrosion resistance considerably. The highest
CA (~154°) and corrosion resistance was noted for a 30 wt%
CNT-incorporated coating. The property enhancement was
correlated with the surface roughness (Figure 13). Their EIS
results with different CNT contents showed that the low-
frequency modulus in the Bode plot first decreased with
the increase of CNT content (due to the conductivity
enhancement); however, after reaching SHPY at 30 wt%,
the impedance raised to noble values. A similar trend was
observed in Nyquist plots where the capacitive arcs’ dia-
meter reduced first and then augmented (Figure 13). The
trend confirmed that the trapped air layer considerably

log(f/Hz)

Figure 13: Evolution of (a) surface roughness and (b) CA of MWCNTs/EP coatings. (c) Nyquist and (d) Bode plots recorded in 3.5 wt% NaCl
[155]. Reproduced with permission from ref. [155]; © 2018 Elsevier B.V.
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resisted the interface electron transfer. The surface dis-
played extraordinary mechanical durability and retained
SHPY even after 100 cycles of tape-peeling [155]. Potentio-
dynamic polarization (PDP) studies of spray-coated SAPC
EP/PVDF/FEP/SiO,/CNT-coated Al in 3.5 wt% NaCl revealed
highly competent barrier protection to aggressive ions.
The brittleness and meagre abrasion resistance of EP resin
were considerably enhanced [153]. The authors also
reported spray-coated SAPC EP/PANI/FEP/SiO,/CNT coating
for Al. Electrochemical studies demonstrated significantly
enhanced anti-corrosion performance ascribed to the better
barrier effect and entrenched PANT’s redox catalytic ability.
The CA of the coating retained high values even after 10,000
times of abrasion and ~3 months of immersion studies in pH
14 or pH 1 solutions [154]. Li et al. also showed much-
enhanced corrosion resistance for an SHPC composite EP
coating for Q235 steel. The E_.,; of the bare, EP-coated, and
SHPC samples were —0.462, —0.714, and —0.876 V (vs SCE),
respectively. The corresponding icor, were 6.46 x 107, 3.47 x
107°, and 3.43 x 10°° A/cm® [157].

PDP studies on spray-coated and cured (300°C) SAPC
PANI/CNTs/SiO,/ETFE/PFOS coating displayed exceptional
corrosion resistance for Al. The E.,, of bare Al was —0.797 V
(vs SCE), whereas the SHPC sample exhibited a positive
Ecore of 0.129V and a 10w igope Of 6.1 x 107 A/cm? after
1 day of immersion in 3.5% NaCl. After 90 days, the E.o.;
decreased to 0.051 V. The corresponding value for a com-
posite coating without PANI/CNT was —0.792 V. The i¢or
of the SHPC sample after 90 days was 3.5 x 107° A/cm?,
which was ~3 and 5 orders lesser than the composite-
coated (without PANI/CNTSs) and the bare samples, respec-
tively. The SAPY remained unchanged during continuous
immersion in 3.5 wt% NaCl and 1 mol/L HCI for 90 and 60
days, respectively [128].
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PDP and EIS studies of PPS/SiR/CNT/RGO spray-
coated and heat-treated (320°C) Al in 3.5 wt% NaCl dis-
closed that the E.,;; was shifted from —0.889 V of bare Al
to —0.810 V for PPS/SiR/CNT-coated sample and further
to —0.726 V for PPS/SiR/RGO/CNT-coated sample. The
icorr Of the SHPC sample was three orders of higher mag-
nitude (1.47 x 10°8A/cm? than the bare (3.5 x 107°
A/cm?). The high protection efficiency (>99%) was retained
even after 28 days of continuous immersion in 3.5 wt%
NaCl [142]. Composite spray coating of Al,03/CNT/PDA/
PTFE (calcined at 500°C) on steel plate demonstrated a
significant shift of icoy from 10722 to 10>® pA/cm? and
Ecore from —0.672 to —0.388 V (Figure 14a). The CA of the
coating demonstrated only a slight decrease even after
15 days of immersion in pH 14 and pH 1 solutions
(Figure 14b). The CNT’s addition significantly enhanced
the wear resistance. The coating also displayed excellent
hot water repellency (99°C) and withstood water jet
(20 m/s) test. A few other reports also have the potential
for anti-corrosion application [132,134].

A few works explored metal NP-incorporated coat-
ings [176,177]. Zhou et al. reported Ni NPs and MWCNTSs
doped DLC film by one-step ED. As the CNT concentration
in the coating increased, the i, regularly decreased and
reached the best protection (icop ~ 3.124 x 1071° A/cm?) at
an optimum concentration of 0.07 mg/mL. Higher con-
centrations of CNTs, however, increased the i, further
[176]. The authors also reported a similar study with Co
NPs [177].

Only a few works are available on CNFs in anti-corro-
sion application. Qiu et al. have shown that the CVD-
grown SHPC CF layer on Zn presented significant corro-
sion inhibition. Although CF’s inherent SHPY did not
endure long-term immersion in NaCl solution, the SHPC
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Figure 14: (a) PDP plots: (a1) bare steel, (a2) pure Al,03, (a3) Al,053/CNTs, and (a4) SHPC Al,03/CNT/PTFE-coated samples in 3.5 wt% NaCl.
(b) CAvariation of the SHPC coating in pH 14 and pH 1 solutions as a function of immersion time [186]. Reproduced with permission from ref.

[186]; © 2017 WILEY-VCH.
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surface remained steady during 13 months of air exposure
[238]. A two-step plasma sputter-coated SHPC CNF coating
fabricated on MS and AZ31 alloy displayed excellent corro-
sion protection in 3.5 wt% NaCl with respective i.q,, values
of 0.16 and 14.90 pA/cm? The corresponding iy, of the
bare MS and AZ31 samples were 5.56 and 691.8 pA/cm”.
The coated surface remained SHPC even after a severe
abrasion test (P800 sandpaper, 100 g, 9 cycles). High che-
mical stability over a broader pH (1-14) and robust air-
exposure durability (6 months) were noted [239]. A few
works on different SHPC CNS-based coatings not dis-
cussed above also revealed enhanced corrosion resistance
[345-347,349,350,364].

3.1.2 Oil separation

Compared to traditional separation methods with low
efficiency and selectivity, the unique wettability materials
(filtration materials such as meshes/membranes and absorp-
tion materials such as sponges/aerogels) are deemed pro-
mising for oil/water separation. Significant research efforts
are dedicated to fabricating CNM-based SHPC-SOPL or
SHPL-SOPC materials in this line [198,277].

CNT-based materials are attractive due to their unique
high porosity and interconnected nanopores. Several reports
investigated CNT-only cases. Fard et al. employed high-
quality CVD-made CNT packs for oil removal. The sample
could hold oil up to 17 times its weight. Higher removal
efficiency of ~97% was recorded compared to a commer-
cial counterpart (87%) [198]. Hang et al. employed CVD
CNT-coated anodized Al template. High oil flux (~300
L/m?/h/bar) with >99% purity was sustained even after
20 cycles of separation [94]. A 3D porous SiC cellular ske-
leton with long and aligned CVD-grown MWCNTs was
used [69]. A MnO, NW/MWCNT hybrid membrane made
up by vacuum filtration displayed excellent separation
performance (4,900 L/m?/h/bar with >99.7% efficiency)
for surfactant-free and surfactant-stabilized oil/water emul-
sions. The high separation capacity was maintained even
after ten cycles. The filtrate’s oil contents were <33 ppm. A
simple EtOH cleaning was enough to clean a fouled mem-
brane [222].

Several works employed SHPC/SOPL composites of
CNTs with different organic compounds such as CNT/
PVDF composite porous membrane [146], PFDTS/CNT
hybrid membrane [228], and MWCNT/PDMS cotton fabric
[211]. Wu et al. have studied MWCNT/PDMS membrane
fabricated using vacuum filtration through which chloro-
form quickly permeated, while the surfactant-stabilized
water droplets were blocked. The filtrate’s oil purity was
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>99.9 wt% [218]. Makowski et al. employed MWCNT-
coated and methyltrichlorosilane-modified cotton fabric
with a separation efficiency of ~95%. After 30 separation
cycles, the efficiency still maintained >90% [210].

SHPC polymer/CNT membrane fabricated via cova-
lent linking of PS onto CNT network (Figure 15) displayed
a sorption capacity of ~270 times of its weight and that
was retained even after ten repetitions. Excellent separa-
tion efficiency (~99.9%) and high flux (5,000 L/m?/h/bar)
were recorded for surfactant-stabilized emulsions also.
After the sorption process, alcohol rinsing removed the
absorbed oil, and the dried membrane at 40°C displayed
excellent SHPY [163].

Li et al. employed SHPC/SOPL PC/MWCNT monolith
with 90.1% porosity, fabricated via non-solvent-induced
phase separation (Figure 16a—c). The monolith had excel-
lent mechanical properties and can withstand 400 times
its weight without any deformation. The saturated adsorp-
tion capacity and equilibrium adsorption time recorded
with soybean oil were 12.62g/g and 20s, respectively
(Figure 16d and e). The adsorption capacity maintained
at 4.57-6.24 g/g even after ten cycles [214].

Wang et al. employed SOPL and under-oil SHPC CNT/
poly(vinylidene-fluoride-co-hexafluoropropylene) nano-
fibre membrane and achieved high flux (632.5L/m?/h/
bar) and separation efficiencies >99.90% for various emul-
sions [145]. Several works employed SHPL and under-
water SOPC composites that include SWCNT/TiO, [219],
SWCNT/PDA/PEI [216], tannic acid-MWCNTs [365], CNT/
CS/TA-FeOOH [217], CNT-core-shell PS/Au [220], CNT/
PAA [225], Ag/PAA/CNTs [221], magnetic CNT/PVA [224],
and polyzwitterion/TiO,/PDA/CNT [223].

SHPC and SOPL CNT-based sponges/aerogels were
employed [203,215]. Several works used commercial PU
sponges incorporated with CNTs. The monolith’s superior
mechanical elasticity facilitated easy reuse after multiple
absorbing/squeezing cycles [206,208]. Ge et al. showed
that CNT/SiO,-coated PU sponge displayed excellent
mechanical stability and separation efficiency. No apparent
change in saturated adsorption capacity was observed even
after five cycles [204]. A PU/MWCNT monolith exhibited an
efficiency of 98.4% even after ten cycles of separation. High
absorption capacities at the range of 6.9-42.3 g/g were
recorded for different oils and solvents [206]. A few studies
employed ML sponges [208,209]. MWCNT-coated ML
sponge using polyphenol-Fe** adhesive exhibited
absorption capacities at the range of 38-127 times of its
weight and a separation efficiency of ~97% [208]. LbL
covalent grafted CNT/GO on ML foam presented absorp-
tion capacity ~113 times its weight and a notable flux of
32.6 L/m?/s. Instead, PDA grafting resulted in SHPL/
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Figure 15: (a) Fabrication scheme of PS/CNT membrane. Photographs of (b) composite on Al,0; membrane substrate, and (c and d) free-
standing durable PS/CNT composite membrane after etching Al,053 [163]. Reproduced with permission from ref. [163]; © 2014 The Royal
Society of Chemistry.
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Figure 16: (a) Photograph and (b and ¢) SEM images of PC/MWCNT monolith. (d) Photographs showing the separation process of oil from
water surface. (e) Saturation adsorption capacities for various oils/solvents [214]. Reproduced with permission from ref. [214]; © 2018
American Chemical Society.
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underwater SOPC foam with a flux of 19.3 L/m*/s [506]. CL
sponges with incorporated CNMs were also used [197,262].
Lu et al. employed SHPC/SOPL-reinforced-Et—cellulose
sponge prepared by cross-linking Et—cellulose with epi-
chlorohydrin and complexing with silanized CNTs (Si-
CNTs) (freeze-drying), followed by SiO, NP coating and
HDTMS modification (Figure 17). The sponge displayed
high porosity (>98%), low density (<20 mg/cm’), excel-
lent chemical durability (over wider pH), good mechan-
ical strength (withstand 28.6 kPa), and absorption capa-
city of ~64 times its weight. Even after 50 separation
cycles, the absorption capacity was 86.4% [197].

A few reports employed steel [90,91,213] or Cu meshes
[192]. CVD grown VACNTs on SS mesh demonstrated
efficiencies >80% [91]. A 2.5wt% CNT-added PDMS/
MWCNT/ZnO-coated Cu mesh presented separation effi-
ciencies >95% with high reusability [192].

SHPC and SOPL CNF-based systems are also widely
investigated that include CNF-coated activated CF [248],
fluoroacrylic co-polymer-hollow-core CNF conductive film
[251], CNF/PDMS nanocomposite prepared by vacuum fil-
tration [254], CNF-PDMS foam [257], and CNF-reinforced
PDMS deposited into MR pores via vacuum filtration [256].
A few works addressed SHPL and underwater SOPC mem-
branes [260,261,268], and mesh [255]. Several works on
different CNS-based systems not discussed above are also
available [277,286,311,314,315,325,327,353,356,357,635—-641].

3.1.3 Anti-icing

Ice accumulation could significantly decrease the perfor-
mance of ships, wind turbines, and various other sys-
tems. SHPC surfaces are known for their anti-icing
properties that can prevent surface ice nucleation. The
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conductivity and photothermal effect of CNTs are added
advantages.

Reports are available on SHPC CNT-only [99,115,199]
and CNT-based composite [135,155,174,185,191,218] coat-
ings in anti-icing applications. Rajiv et al. showed excel-
lent anti-icing properties for MWCNT/CNF-coated FRP
sheet. Ice formation was absent when supercooled water
(-20°C) was poured onto the coated surface, whereas
rapid ice formation observed on the uncoated plate [115].
Su et al. investigated electrothermal and photothermal
performances of SHPC ODA/(carboxylated-MWCNTs/ami-
nated-MWCNTSs)n film (Figure 18a). Under 30 V, the SHPC
film quickly (within 60 s) gets heated to 60°C and the ice
slides of within 34 s. The ice on the unheated SHPC film
was not removed even after 2min (Figure 18f and g).
The film’s temperature variation was dependent on the
number of bilayers of MWCNTs (Figure 18b). The film
maintained SHPY and thermal effect even after several
heating/cooling cycles (Figure 18c). [99]. SHPC anti-icing
coating was fabricated from peeled MWCNT agglomerates
from a milled xerogel [199].

Wu et al. employed flexible SHPC PDMS/MWCNT
membrane fabricated by vacuum filtration. An ice layer
(4 mm) dyed by methylene blue was then prepared on the
membrane at —15°C, and a potential of 15V was applied
(vertically fixed, 70% RH, —5°C). Due to the SHPY and the
electrothermal conversion effect, the covered ice layer
was totally detached from the membrane in 120 s itself
[218]. Studies with a composite coating of MWCNTs and
silicone rubber showed that the sample retained SHPY
under 0°C and the droplet freezes with a CA of ~158°.
On shifting the plate to room temperature, the ice melted,
and water rolls off rapidly. The SHPY was retained even
after 12 times freezing/melting steps. Their ice-accumula-
tion studies showed that the gathered ice on the SHPC

Figure 17: (Top) Schematic of the sponge preparation. (Bottom) Photographs/CAs corresponding to (a) cross-linked Et-cellulose sponge,
(b) CNT-reinforced sponge, (c) load-bearing, and oil-absorption tests [197]. Reproduced with permission from ref. [197]; © 2017 American

Chemical Society.
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Figure 18: (a) Schematic of heat production of the composite film under applied voltage. (b and c) Temperature variation of the ODA/
(carboxylated-MWCNTs/aminated-MWCNTs)n film (n = 4, 5, 6) with (b) time and (c) repeated heating/cooling cycles. The evolution of
droplets (d and f) on unheated SHPC film and (e and g) heated SHPC film at 30 V [99]. Reproduced with permission from ref. [99]; © 2018

The Royal Society of Chemistry.

surface (~0.213g) was significantly lesser when com-
pared to the ordinary plate (~0.478 g) [174]. Anti-icing
studies on spray-coated SiC/CNT coating showed that
the water droplet was spherical even after freezing. The
ice adhesion strength of the uncoated EVA was 25.65 kPa,
while that of the SHPC surface was only 2.65 kPa. With
the SHPC surface, the droplet’s freezing time increased
~340% to that of the bare (from 15 to 66 s) [185]. Zhu et al.
studied icing time of a spray-coated ZnO/MWCNT/PDMS
film on various substrates at —6°C. The freezing time of
the droplet on uncoated and coated SiR substrates were
150 and 300s, respectively. The superior effect was
explained because of the reduced droplet/surface con-
tact area and the hindered heat transfer due to the air
layer [191]. Remarkable anti-icing properties were also
reported with EP/MWCNTSs [155], flame-synthesized amor-
phous carbon NP-based [308], and CNT/adhesive polymer/
SiO, [135] coatings.

3.1.4 Anti-biofouling/biomedical

SHPC surfaces are highly desirable for anti-bacterial/
anti-biofouling applications for marine equipment, bio-
medical implants etc. [275]. Both SHPC and SHPL sur-
faces are shown to be effective in minimizing microbial
adhesion. Yoon et al. compared the extent of bacteria

adherence on SHPC and SHPL coatings (fabricated via
annealing SS plates coated with CNT-PTFE and TiO,,
respectively) under different fluid flow conditions. Fluor-
escence intensities of adhered E. coli on SHPC and SHPL
surfaces were ~80% and 65% lower than that of the bare
sample. For the SHPL surface, the readily spread out
water could form a tightly bound layer. It could act as a
lubricating film or water shield, lessening the foulant/
surface electrostatic attraction. On the other hand,
SHPY and self-cleaning attributes were decisive in deter-
mining the property enhancement of the SHPC surface.
The results were further confirmed by aerobic plate count
data (Figure 19). The bacterial attachment was consider-
ably affected by the wall shear rate as well (Figure 19). The
upsurge of flow rates resulted in reduced bacteria adher-
ence [124].

Mittal et al. have shown that SHPC mesoporous
carbon-nanocapsule/PVDF coating rarely contained E. coli
bacterial colonies. More than 90% decline of bacterial
attachment was observed [275]. Song et al. revealed
excellent anti-microbial property for a fluorosilane-mod-
ified nanohybrid membrane based on chitosan matrix,
cationic chitosan, MWCNTSs, and silane coupling additive
[144]. A nanocomposite film made up using CNT/Ag/
PTFE composite target also showed similar results where
the surface SHPY and the Ag NPs’s anti-microbial effect
provided positive effect and suppressed the bacterial
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Figure 19: Fluorescence intensities and aerobic plate counts. The
significant differences corresponding to fluorescence intensity and
aerobic plate count measurements are indicated by lower and
uppercase letters [124]. Reproduced with permission from ref.
[124]; © 2013 Elsevier Ltd.

growth/proliferation [642]. Ionic liquid-functionalized
MWCNT coatings were studied as antibacterial coatings
by Bains et al. [173].

SHPC surfaces with immobilized CNFs are shown to
be excellent hemostatic materials. The CNFs encouraged
rapid fibrin growth and clotting. The SHPC surface severely
limited blood wetting and radically diminished bacteria
adhesion. The clot detachment was also easy [258]. Marcon
et al. achieved selective cell patterning on SHPC-SHPL
patterns on diamond NW surfaces [285]. A few reports
addressed SHPC CNS-based coatings for microfluidics
applications [643]. Several works explored CNS-based
anti-biofouling desalination membranes [231,232,341,644,645].

3.1.5 Others

A few works focused on various sensor applications such
as CNT/PDMS-modified cotton woven fabrics for pressure/
strain sensor [109,210-212], LbL spray-coated APTES/
MWCNT-GR/PDMS and further decorated with Ag NPs
and PFOS for strain sensor [430], paper-based strain
sensor via successive dip coating in CNT/CB/methyl-
cellulose and fumed-SiO, suspensions [175], MWCNT/
poly(ethylene-co-vinyl acetate) for underwater vibration
detection [172], SHPL and SOPC CNT/PU-based humidity/
vapour sensor [646], sandwich-like film consisting of ther-
moplastic elastomer, MWCNT and PDMS as wearable
sensor [137], and conductive PDMS/CNF/PU nanofibre
composite for chemical vapour sensor [260].

SHPC CNS materials are also studied for various other
applications such as electrocatalysts [187,647], super-
capacitors [331], EMI shielding [250,252], gas diffusion
electrodes [336], and others [116,294,648].
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3.2 Graphene
3.2.1 Anti-corrosion

GR-only and GR-based composite SHPC anti-corrosion
coatings are widely investigated. As discussed in Section 2.1,
GR-based composite coatings could provide a more effec-
tive barrier effect and reduced coating cracking. However,
the graphite’s more noble position in the electrochemical
series can harm the base metal at localized defects. More
details of anti-corrosion GR coatings are described else-
where [649-653]. As discussed earlier, SHPC surfaces
always presented better corrosion resistance than the
bare surface. This section briefs reported works on SHPC
GR-based anti-corrosion coatings based on the coating
deposition method used.

3.2.1.1 Electrodeposited coatings

ED is a simple approach in fabricating protective coatings
[622,654]. GR-based SHPC and self-cleaning anti-corro-
sion coatings fabricated by ED displayed superior corro-
sion resistance that includes reduced GR coating on Cu
[407], carbon-based film doped with GO and Co on Si
[460], MA-modified Ni/GR hybrid film on MS [456], Ni-
RGO-MA coating on CS [457], and RGO/Ni coating on SS
[458]. Yan et al. showed that GO and Co were well
embedded in the amorphous carbon matrix and the
SHPC film displayed better protection at a GO doping
concentration of 0.007 mg/mL [460]. Jena et al. achieved
good adhesion and mechanical stability of the fabricated
SHPC coating by a phosphate pre-treatment. The SHPC
sample presented ~2 orders reduced i..,, and ~3 orders
higher EIS impedance when compared to the bare [457].
Bai et al. showed that ED RGO/Ni composite coating on SS
showed more than 99.9% protection in 3.5wt% NaCl
[458]. A novel SHPC GR/amorphous carbon/Ni film fab-
ricated by high-voltage non-aqueous ED also displayed
superior corrosion resistance [459].

3.2.1.2 Solution/spin coatings

A facile design of ternary nanocomposite of PDMS/GO
nanosheets with ZnO NRs was studied for steel. GO-ZnO
hybrid nanofiller was synthesized using one-step che-
mical bath deposition, and the nanocomposite coating
was fabricated by solution casting. The dried and cured
coating with 1 wt% of GO-ZnO addition provided the best
protection [445]. Liu et al. reported a spin-coated SHPC GR
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film with excellent corrosion protection for Al alloys [382].
Abbas et al. described a drop-coated fluorinated GR coat-
ing on Cu with an insignificant decrease of CA in 3.5 wt%
NaCl [411]. A homogeneous SHPC coating was made on Zn
using EtOH-xylene solution of HDPE containing 1-5 wt%
of GO via drop coating. A 5wt% GR-incorporated SHPC
film provided adequate corrosion protection during con-
tinuous immersion in 3 wt% NaCl for up to 29 days [486].
Liquid-phase exfoliated fluoro-GR nanosheets were spa-
tially trapped on the surface of EP resin coating. The
fabrication process consisted of two steps, dip coating in
EP resin/curing agent and then surface fixing the fluoro-
GR nanosheets (fluoro-GR powder dispersed on the EP
coating’ surface and pressurized using ~10 g/cm? weight).
The coating displayed superior protection for Cu [655].
PFDTS-modified GO/Cu silicate coating also showed excel-
lent anti-corrosion property [444].

3.2.1.3 Spraying/painting

POSS-modified GO’s proper blending could significantly
enhance the anti-corrosion capability of EP-based coat-
ings [484]. A 0.5 wt% POSS-GO-incorporated EP coating
presented ~2 orders of greater impedance than pure EP
coating after 150 days of immersion in 3.5 wt% NaCl, and
that was ascribed to the combined effect of barrier protec-
tion, self-lubrication effect, and improved mechanical
properties [481]. Zhang et al. studied electrostatic-sprayed
EP-PTFE/GP-SiO,-PFOS coating on steel. The GR-PDA
(GP)/SiO, interfacial strength was enhanced by in situ
growth of SiO, on the GP surface by utilizing dopamine
self-polymerization and sol-gel methods. The surface
was further modified by PFOS. The resultant SHPC coating
survived more than 105 abrasion cycles with significantly
less weight loss (54.4 mg). The SHPY was maintained even
after 60 days of immersion in 3.5 wt% NaCl [483]. A simple
painted SHPC surface with a mixture of electrochemically
exfoliated GR and PDMS showed 8,868-fold reduced i,
than the bare Al sample [420]. Nine et al. presented a
method to make GR-based SHPC composite anti-corrosion
coating with a formulation of RGO, PDMS-modified diato-
maceous earth, and TiO, NPs [440]. A fluorosilane-modified-
GR incorporated siloxane-acrylic coating also displayed
excellent corrosion resistance [494].

3.2.2 Oil separation

3D GR sponges and aerogels are known for their distinc-
tive properties of SHPY, low density, high porosity, high
specific surface area, excellent irradiation robustness,
and thermal/chemical durability [507,521]. As discussed
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in the previous sections, composite formation is the pre-
ferred strategy to enhance such aerogels’ hydrophobicity
and mechanical property. Several works showed that
neat/doped/fluorosilane-modified GR sponges/aerogels
displayed first-rate absorption capacity for various solvents/
oils [512,516,517,524—-528,534,546,569,579,621,656,657].
Excellent performances were also revealed by various
SHPC and SOPL composite sponges/aerogels/monoliths/
membranes such as MWCNT-GR [203], GO/PAA [530],
N-doped CF/RGO [535], fluorosilane/GO/agarose [537],
PFDT-modified and chitosan-reinforced-RGO/PDA [658],
GR/PVDF [520,523,533], GR/PDMS [508,529,541], GR/PTFE
[509,538,539], GR/PBS [515], GO/lignin [536], Au NP-loaded
GR modified with PFDT [556], EP-functionalized POSS/GO
[564], RGO-PDA functionalized with PFDT [612], RGO/PS
monolith [561], RGO/PC monolith [562], GR/MOF-based
composites [463,500,518,557,609,613,661-663], and others
[499,608,659,660].

Several studies employed neat or fluorosilane-modi-
fied PU/GR systems [510,555,563,566—570,572,573] as well
as their multi-component composites as discussed in
Section 2.7.3. ML/GR [511,209,581-586,592,595] and their
various nanocomposites, including soot-RGO/ML [514],
ODA/RGO/ML [588], PDMS/GR/ML [587], HDTMS/RGO/
ML [589], kaolinite-modified GO/ML [591], magnetic Fe;0,
NP-decorated-RGO/ML [590]. RGO-TiO,/ML [593], and
MOF/RGO/ML [464] were investigated. A study on SHPC
GR-based carrageenan sponge [594] and a few works on
SHPL/oleophobic sponge [577] are also available. A few
works explored CL/GR [664,665] and their composites,
namely, PBZ/RGO-wrapped-CL [580], GO/cellulose-nano-
fibril/SiO, [531], cellulose nanofibre/PVA/GO [545], nano-
fibrillated cellulose/PEI/RGO [547], cellulose nanofibre-GO/
glucose—kaolin [666], GO/microcrystalline-cellulose com-
plex [667], konjac glucomannan/RGO [597], and silane-
modified-GO/kapok fibre [596].

GR-coated cotton/fabric is shown to be a good oil
absorbent material [549]. Several reports in this line are
available, including RGO-coated cotton prepared by dip
coating/thermal reduction/silane modification [551,553,
610], one-step-HT-made RGO/cotton [554], dip-coated/
HT-reduced RGO/cotton [552], hot-iron-treated-GO sprayed
fabric [611], trimethoxysilane-modified-GO/PDMS/poly-
ester [559], and Si0,-GO/PP [558]. A few works employed
steel mesh [598-604], Cu mesh, janus wire mesh, or Ni
foam [511,605-607].

3.2.3 Others

A significant number of reports are available on SHPC GR
in biomedical applications such as anti-bacterial/antibio-
fouling coating [402,438,451], anti-thrombogenic coating
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[668], bioactive coating [669], microfluidics [381,392],
and photo-sterilizable/reusable mask [393,403]. Several
works addressed anti-icing coatings [410,417,441-443,
670,671].

A number of reports addressed different types of sen-
sors such as temperature/strain/pressure [384,408,424,
439,476,478,493,497,498,532,542-544,674], underwater
[426], UV [452], and gas [401,453]. A few works aimed
for various applications such as supercapacitors [395,519,
656,672], flame-retardant coatings [462,480], protective
layer for solar module [475], photothermal energy conver-
sion [502], electrocatalysts [540], and anti-scaling coating
[673].

4 Conclusions and perspectives

Here, we have provided a comprehensive review of CNS-
based SHPC surfaces and coatings. SHPC composites/
hybrids of CNSs with metals, ceramics, and polymers
are detailed. SOPC and SAPC surfaces are also included.
Works reported in specific applications areas are pre-
sented separately. All the information available in this
area is systematically classified and presented.

Among the different SHPC CNSs, the most investi-
gated is GR, and the second most is CNTs. The present
review mainly focuses on CNT- and CNF-based SHPC sur-
faces. Both aligned and non-aligned CNT arrays/coatings
and their various composites/hybrids are presented.
Works reported on sponge, foam, aerogel, fabric, mesh,
and membrane-based systems are discussed separately.
Due to the availability of a few reviews, the section on
GR is presented concisely. The idea was to provide an
overall outlook on the research trends in the entire domain
of CNS-based SHPC surfaces.

The higher surface roughness with nano and micro
(aggregates) scale hierarchical surface structuring is
highly beneficial for SHPY. Surface reduction processes
(removal of hydrophilic surface groups) and low SE com-
ponent/treatment enhance it. CNM-based polymer com-
posite coatings are well known for their multi-functionalities
such as conductivity, photothermal effect, superior
mechanical/thermal/chemical durability, barrier protec-
tion, and several others. A durable SHPC surface could
enhance the device performance in several applications,
as discussed in this review.

Earlier studies, before 2005, were focused on fabri-
cating SHPC VACNT arrays. Although the high-tempera-
ture reduction associated with the CVD process and the
enhanced surface roughness of the CNT arrays could
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make an SHPC surface, the durability gets compromised
with time as the droplets can eventually seep into the
inter-spaces. Later studies categorically proved that dur-
able SHPC VACNTSs could be realized via an additional
low SE polymer modification to alleviate the water ingres-
sion. VACNTs fabricated by Si or SiC template-assisted
methods also displayed excellent durability against water
ingression, which were closely dependent on the tem-
plate structural parameters. Later studies proved that a
simple vacuum annealing treatment could be enough to
regain the SHPY of ACNT arrays. Several studies, how-
ever, showed that the as-grown ACNTs had high SA/CAH
values leading to water pinning. An optimized high-tem-
perature treatment or a low SE modification could reduce
the SA to the desired limit of self-cleaning surfaces.
Several attempts were made via nanocomposite/hybrid
formation with other CNMs, ceramic oxides, and poly-
mers to enhance the durability further. All these studies
support that such an additional modification is manda-
tory to achieve long-term durable SHPC VACNT arrays.
The most used method for the CNT’s fabrication is indeed
CVD. A few works attempted EPD.

Since 2006, researchers started exploring non-aligned
SHPC CNT coatings with superior durability. Other than
CVD, several fabrication methods, including vacuum fil-
tering, spray coating, drop/dip coating, laser-assisted
approaches, sintering approaches, and pressing, were
employed in making CNT-based SHPC surfaces. Quite a
few studies demonstrated SHPY without added low SE
component or high-temperature annealing. However, most
works employed a low SE component in the formulation
or a post-low SE treatment. Some studies used a com-
bined vacuum filtration-LbL assembly to fabricate SHPC
membranes/papers. Many works were dedicated to nano-
composite polymer coatings where CNTs were used as
fillers to the polymeric matrix. The aspect ratio and the
concentration of the CNTs were decisive for the property
enhancement. One of the widely studied systems is CNT-
PDMS. A significant number of reports are available on
PU, EP, and PS-based nanocomposite coatings. Spray
coating is perhaps the best method in making highly
robust CNT/polymer-based coatings. Several studies
showed that superior durability was achieved only after
a high-temperature curing. A few studies used CNTs as
templates. There exist further scopes for the fabrication
of nanocomposites of CNTs with several other polymers
and ceramic oxides. More studies can be focused on fle-
xible SHPC surfaces. For practical applications of SHPC
CNT-based coatings, it is desirable to further enhance
the durability against severe mechanical abrasion and
longer-term water immersion.
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A number of reports are available on SHPC hybrids
and composites of CNTs with different ceramic oxides and
metals such as SiO,, SiC, Al,03, Co50,, W05, ZnO, Ni, and
Co. The most used is SiO,. A significant extent of works
are available on SHPC and SOPL or SHPL and SOPC CNT-
based foams, sponges, aerogels, meshes, and membranes.
Several studies focused on developing CNT-incorporated
commercial sponges with improved mechanical properties
and durability. More works can be focused on composites
of eco-friendly and abundant materials such as CL
sponges. MOF-based systems can be further explored.

SHPC CNF-based systems displayed exceptional che-
mical and mechanical durability. The research trend is
similar to CNTs; however, the quantum of reported works
is significantly less. A few earlier reports, before 2010,
addressed SHPC vertically aligned CNFs. Most of the
works explored CNFs as fillers in organic coatings. Several
studies presented CNF-added foams and aerogels. A pre-
ferred combination is CNF/PDMS/PU. The superb dur-
ability of such systems was attributed to the robust inter-
facial adhesion, where the PDMS could act as an effective
interfacial adhesion agent and waterproof protective
layer. Different hybrids of CNFs with ceramic oxides
and metals were also explored. A few studies addressed
SHPC surfaces based on carbon nanospheres. HT-synthe-
sized or soot-based carbon nanospheres were mainly
employed. Like CNTs, an optimized mixed structure of
CNFs with carbon spheres could yield enhanced hydro-
phobicity. A few works are available on SHPC carbon
nanothorn array, tree-like carbon nanospheres, CMFs,
and onion-like carbon microspheres. Excellent durability
during long-term water immersion up to 800 days was
noted. All these areas, however, demand more works to
arrive at precise decisions and products.

A few works are available on nanodiamond. The typi-
cally used method of fabrication is reactive ion etching
followed by fluorination. Several works addressed SHPC
fullerenes. The most employed fabrication strategy uti-
lized with fullerenes is molecular self-assembly. The
review also provided a concise description of SPHC sur-
faces of nanostructured carbon soots, graphitic carbons,
CB, carbon aerogels, and their various composites.

A detailed discussion of SHPC graphene is out of the
scope of this review. However, all the information avail-
able in this area have been comprehensively collected,
systematically classified, and briefly presented. A signifi-
cantly higher number of reports are available on SHPC
GR and their various composite coatings with silanes/
fluorosilanes, PU, and EP. More works can be focused
on PS, polyethylene, and polypropylene systems. Among
the silanes/fluorosilanes, the trend was similar to that of
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CNTs; the most investigated was GR-PDMS, followed by
GR-PVDF. Several works explored SHPC composites of GR
with other CNSs, ceramic oxides and metals. Many reports
are available on GR-based composite sponges, aerogels, and
monoliths. Eco-friendly and naturally abundant materials
can be explored with GR in this line. GR Qdots could be
explored.

CNSs, in particular GR-based coatings, were widely
investigated for anti-corrosion applications. Due to the
potential galvanic effect, more studies are desirable in
this direction to arrive at precise conclusions. The long-
term durability of such surfaces in aggressive chloride
and acidic solutions needs to be further improved.
Significant data are available on CNS-based materials
for oil separation applications. This is an area explored
to a great extent. A few reports are dedicated to biome-
dical, anti-icing, sensors, and several other applications.
There exists high scope for further research in these
areas.

Despite the extensive information available, as dis-
cussed in this review, further in-depth studies and pilot
plant experiments are required to widespread practical
usage of SHPC CNMs in different applications. Areas to
be further improved are the mechanical and chemical
durability of such SHPC surfaces in extreme exposure
conditions for longer durations. Systematic studies are
demanding the development of protocols and standards
for commercial products.
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Abbreviations

ACNT aligned CNT

CA contact angle

CAH contact angle hysteresis
CB carbon black

CF carbon fibre

CL cellulose

CMF carbon microflower
CNF carbon nanofibre
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CNM carbon nanomaterial
CNS carbon nanostructure
CNT carbon nanotube

CS carbon steel

CVD chemical vapour deposition

DLC diamond-like carbon

ED electrodeposition

EIS electrochemical impedance spectroscopy
EMI electromagnetic interference

EP epoxy

EPD electrophoretic deposition

FEP fluorinated ethylene propylene

GO graphene oxide

GR graphene

HDTMS  hexadecyltrimethoxysilane

HT hydrothermal

LbL layer-by-layer

MA myristic acid

ML melamine

MOF metal-organic framework

MR metal rubber

MS mild steel

MWCNT multi-walled CNT

NP nanoparticle

NR nanorod

NT nanotube

NW nanowire

ODA octadecylamine

PAA polyacrylic acid

PANI polyaniline

PBZ polybenzoxazine

PC polycarbonate

PDA polydopamine

PDMS polydimethylsiloxane

PDP potentiodynamic polarization

PEI polyethylenimine

PFDT 1H,1H,2H,2H-perfluorodecanethiol
PFDTS 1H,1H,2H,2H-perfluorodecyltriethoxysilane
PFOS 1H,1H,2H,2H-perfluorooctyltriethoxysilane
PFTS 1H,1H,2H,2H-perfluorodecyltrichlorosilane
POSS polyhedral oligomeric silsesquioxane
PPS polyphenylene sulphide

PS polystyrene

PTFE polytetrafluoroethylene

PU polyurethane

PVA polyvinyl alcohol

PVDF polyvinylidene fluoride

RGO reduced graphene oxide

SA sliding angle

SAPC superamphiphobic

SAPY superamphiphobicity
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SE surface energy

SHLY superhydrophilicity

SHPC superhydrophobic

SHPL superhydrophilic

SHPY superhydrophobicity

SiR silicone resin

SNT SiO, nanotubes

SOLY superoleophilicity

SOPC superoleophobic

SOPL superoleophilic

SOPY superoleophobicity

SS stainless steel

STA stearic acid

SWCNT  single-walled CNT

TEOS tetraethoxysilane

THF tetrahydrofuran

TMSS trimethylsiloxysilicate

VACNT  vertically aligned CNT

Wn weber number
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