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Abstract: Four methods are applied to calculate the acousto-
optic (AO) coupling in one-dimensional (1D) phoxonic crystal
(PXC) cavity: transfer matrix method (TMM), finite element
method (FEM), perturbation theory, and Born approxima-
tion. Two types of mechanisms, the photoelastic effect
(PE) and the moving interface effect (MI), are investi-
gated. Whether the AO coupling belongs to linear or
quadratic, the results obtained by the perturbation theory
are in good agreement with the numerical results. We
show that the combination method of FEM and perturba-
tion theory has some advantages over Born approxima-
tion. The dependence of linear and quadratic couplings
on the symmetry of acoustic and optical modes has been
discussed in detail. The linear coupling will vanish if the
defect acoustic mode is even symmetry, but the quadratic
effect may be enhanced. Based on second-order perturba-
tion theory, the contribution of each optical eigenfre-
quency to quadratic coupling is clarified. Finally, the
quadratic coupling is greatly enhanced by tuning the
thickness of the defect layer, which is an order of magni-
tude larger than that of normal defect thickness. The
enhancement mechanism of quadratic coupling is illu-
strated. The symmetry of the acoustic defect mode is
transformed from odd to even, and two optical defect
modes are modulated to be quasi-degenerated modes.
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1 Introduction

The acousto-optic (AO) effect, also known as optomecha-
nics interaction, has been widely used to process light
signals in homogeneous materials in recent years [1-6],
for example, gravitational wave detection [2], tunable
photonic crystals [3], and the optical bandpass switching
[4]. The study concerning the AO effect begins with the
opening of dual phononic and photonic band gaps [7].
Such simultaneous band gaps have been demonstrated
and optimized in various PXCs [8-17]. Square, hexagonal
(honeycomb), and triangular arrays are included, and
large bandgaps can be obtained in square and hexagonal
arrays but not for triangular arrays [9]. By introducing
a defect into perfect periodic PXC, the PXC cavity can
be obtained. In such a cavity, both mechanical energy
and electromagnetic energy are localized [18]. From a
quantum perspective, phonon and photon are highly
confined in a very small volume, and interaction between
phonon and photon can be boosted. Large per-photon
force is realized in a nanometer-scale photonic crystal,
making it possible for the exploration of cavity optome-
chanical regimes [19]. The experimental demonstration of
optomechanical interaction between 200 THz photon and
several GHz phonon provides new methods for stimu-
lating optomechanical interactions in a chip-scale plat-
form [20]. Etching air holes array into thin film of silicon,
electromagnetically induced transparency and tunable
optical delays are both demonstrated with optomecha-
nics [21-23]. By utilizing optical radiation pressure, the
nanomechanical mode of several GHz with the bath tem-
perature of 20K is cooled into its quantum mechanical
ground state [24]. This enables the control of mesoscale
mechanical oscillators in the quantum regime. The interaction
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of the acoustic wave and the optical wave in cavities has
attracted strong attention. The design for quasi-2D PXC
cavities is proposed in detail [25]. The AO coupling in
L, cavity, including optical frequency modulation and
the coupling rate, was studied by FEM [26-29]. Both
slow photon and phonon modes are induced in nano-
beam waveguide, and the AO couplings are significantly
enhanced due to the slow group velocities [30]. The sym-
metry of the modes was found to play a dominant role in
AO coupling [31-34]. The phononic and photonic modes
highly overlap near the slot within a 2D air-slot PXC
cavity, which greatly enhances the interface effect [35].
Considering the plasmonic behavior, AO coupling was
studied in 2D PXC cavities with a line defect [36,37].
The development of AO coupling in recent years was
studied [38]. A recent research showed an efficient AO
modulation realized in an on-chip piezo-optomechanical
transducer and addressed several challenges such as low
optical quality factor [39]. Quadratic AO coupling has
attracted more interests [40,41]. As we know earlier,
quadratic AO coupling is proportional to the square of
input displacement. Because the quadratic coupling is
generally weak, its enhancement is very important for a
PXC. Up to now, the quadratic coupling has just been
enhanced in a 2D PXC by adjusting its cavity slot width
approaching cavity mode linewidth [40,42].

Almost all of these studies were carried out by FEM.
Although FEM is very convenient to calculate the AO cou-
pling, it cannot provide intrinsic physical interpretation
due to its purely numerical calculation. The analytical
results of the AO coupling in 1D PXC cavity can be obtained
by solving the wave equations of the low-dimensional
system. Moreover, due to the similarity between the
Maxwell equation and the Schrodinger equation, the
solution method of the nonlinear Schrodinger equation
can also be used to solve the nonlinear Maxwell equation.
As an analytical method, Born approximation was first
applied to analyze the reflection and transmission of light
in multilayer media perturbed by acoustic waves, and
the expression of reflection coefficient was derived by
means of Green’s function [43]. In this method, the com-
plex reflection coefficient perturbed by the acoustic wave
was evaluated, and then, the perturbed optical frequency
was obtained in the reflectivity spectrum. The linear and
nonlinear AO couplings were analyzed by Born approx-
imation [44,45]. Elastodynamic and electrodynamic layer
multiple-scattering method was used for the calculation
[46-48]. For linear coupling, the results obtained by
the first-order Born approximation are consistent with
numerical results when the input displacement is at the
low level. Nevertheless, as the incident displacement
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increases, the results start to deviate from the numerical
results. For its calculation on quadratic coupling, it has
not been verified by the numerical method.

In this study, four methods are compared to find the
most effective and accurate method. We combine the per-
turbation theory with TMM or FEM to analyze AO cou-
pling. The strength of AO coupling is evaluated by the
normalized optical frequency shift. The normalized fre-
quency shift obtained by the perturbation theory, espe-
cially combined with FEM, is highly consistent with the
numerical result, whether linear or quadratic coupling,
even for large input displacement levels. Besides, we can
also predict the direction of optical frequency drift from
equations of the perturbation theory for both PE and MI
contributions, which cannot be realized directly by Born
approximation. Furthermore, the quadratic coupling is
enhanced by adjusting the thickness of the defect layer.
We focus on the enhancement mechanism of the quad-
ratic coupling. The study provides an efficient method to
evaluate AO coupling and the theoretical basis to design
strong AO coupling devices, especially for quadratic AO
coupling.

This study is organized as follows. In Section 2, we
review the perturbation theory briefly and introduce the
1D PXC structure. In Section 3, four kinds of methods are
applied to the calculation of linear and quadratic cou-
pling, and the advantages and disadvantages of each
method are then analyzed. In addition, some coupling
laws are drawn for linear coupling and quadratic cou-
pling. In Section 4, the enhancement mechanism of the
quadratic coupling is further revealed. The structure with
an optimal cavity is designed. The graphical abstract is
also presented.

2 Perturbation theory

A 1D PXC has a multilayer structure of periodically arran-
ging materials with different acoustic and optical proper-
ties as shown in Figure 1. The PXC cavity is formed by the
introduction of a defect into the perfect periodic structure.
Defect acoustic modes and optical modes are highly con-
fined in a small volume. The interactions between these
two modes are enhanced. When a resonant acoustic wave
propagates in the structure, a strain field is induced,
and the interfaces between different materials are also
moved. The perturbation by the acoustic wave results in
redistribution of the permittivity of the structure. Two
mechanisms are responsible for the interactions between
acoustic modes and optical modes: (1) photoelastic effect
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Figure 1: Schematic diagram of 1D multilayer PXC cavity.

(PE), permittivity variation induced by the strain field; (2)
moving interface effect (MI), permittivity variation caused
by the moving of the interface. The variation of permit-
tivity can be regarded as a quasi-static behavior since the
speed of the light is several orders of magnitude larger
than that of the sound. The permittivity variation is
related to the amplitude of the acoustic wave. In the fol-
lowing, the displacement amplitude of the PXC is named
as input displacement u;,, which is a perfect candidate as
the perturbation parameter. The permittivity variations
caused by two effects in the 1D structure are reduced as
follows:

Aepg(z) = —p12(2)e(2)S(z)
U; ey

’
1]

Aeyy = (& — &i-1)

where pi,(z) and S(z) denote the photoelastic coefficient
and strain field of the material at point z, respectively. ¢;
the relative permittivity in the ith layer of the multilayer
structure and u; is the displacement of ith interface.

The perturbation theory is a classic method to eval-
uate the effect of small variation in parameters on solu-
tions to the equations. It is widely used in astrophysics,
solid mechanics, and other disciplines. The Maxwell
equations are written in a Dirac notation form:

2
VXV x|E) = (%) ¢ |EY, Q)

where E and ¢ denote electric field and velocity of light,
respectively. Based on perturbation theory, and the ortho-
gonality of the modes for the generalized Hermitian eigen-
problem, the first-order correction is obtained as follows [49]:

w©® (E© |Ag| E©)

W — (E™ |Ael )
Aw 2 (EO [g0] Oy’

(3)
where E© and w'® denote the unperturbed eigensolutions.
EO 160 B = [ e@IE@)Pdz, @

L

where L denotes the length of the structure. The term
(EO |Ag| E@Y has different forms for different effects.
For the PE effect,
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If the structure is symmetric and the integrand is odd,
linear coupling of the PE effect will vanish. For MI effect,

N
(E© |Ag] EO) = =3 (€141 - €)ui |EiP, (6)
i

where N denotes the total number of interfaces between
adjacent layers. The second-order correction is expressed
as follows [50]:
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where d; denotes the degree of the degeneracy mode.

3 Calculation methods on linear
and quadratic couplings

We apply the perturbation theory to the same structure as
previously investigated by Born approximation [44]. As
shown in Figure 1, each lattice of the multilayer structure
consists of As,Ses(a/3)/PES(2a/3) with the lattice con-
stant a = 440 nm. As a resonant cavity, the defect layer
is made of PES whose thickness is denoted by aq4. aq is
equal to a unless otherwise stated. The whole structure is
embedded in a silica (Si0O,) matrix. The structure can be
formed in silicon-on-insulator (SOI). The acoustic and
optical parameters of three kinds of materials are listed
in Table 1.

The calculations on the unperturbed structure are
carried out by TMM [51,52]. Figure 2(a) and (d) displays
the dispersion curve of PTC and PNC, respectively. After
the introduction of a defect into the perfect periodic PXC,



446 —

Jun Jin et al.

DE GRUYTER

Table 1: Acoustic and optical physical parameters of As,Ses, PES, and SiO,

Refractive index n Photoelastic coefficient p;,

Density p (kg/m?) Longitudinal sound velocity ¢, (m/s)

As,Ses 2.83 0.27
PES 1.55 0.30
Si0, 1.44 0.27

4,640 2,250
1,370 2,260
2,200 5,965

two defect PTC modes and two defect PNC modes are
localized in the defect of the PXC. Their dispersion curves
appear in the green and yellow shadow regions of PTC
and PNC band gaps, respectively. Normalized frequencies
of the defect PNC modes are Q,a/c;si0, = 1.25492 (2.70 GHz)
and Q,a/cysio, = 2.31323 (4.99 GHz). The corresponding
Q factors of these two PNC modes are 1,550 and 2,811,
respectively. The Q factors certainly can be magnified
by increasing the number of the layer. Figure 2(b) and (c)
displays the localized electric fields, i.e., PTC defect
modes, of two normalized optical resonant frequencies
of w; and w, at 1.61176 and 1.77056, respectively. The
AO coupling of the second PTC defect mode (w.a/c =
1.77056, 192 THz) is emphasized to compare different cal-
culation methods. Figure 2(e) and (f) displays the loca-
lized displacement fields, i.e., PNC defect modes, of two
acoustic resonance frequencies Q; and Q,, respectively.
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The defect modes have either odd or even symmetry due
to the even symmetric structure. Specifically, the second
PTC defect mode w, has even symmetry. As for symmetry
of the first PTC defect mode w,, the real part is even,
whereas the imaginary part is odd. The first PNC defect
mode Q, has even symmetry. As the gradient of displace-
ment, the strain field has an opposite symmetry, i.e., odd
symmetry. However, the second PNC defect mode Q, is
just the opposite.

With four methods, the linear AO coupling is studied.
The normal incident acoustic wave perturbation is applied
to the cavity. We know the first-order correction for PE
effect from equation (5), and the terms p»(2), €%(z), and
|E(z)|* of the line integral all have even symmetry. The
linear AO coupling, measured by the first-order correc-
tion Aw®, will vanish if the strain field of the acoustic
mode has odd symmetry, namely, displacement field has
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Figure 2: (a) Dispersion curve of PTC. Electric distribution of the defect PTC modes (b) wia/c = 1.61176 (because the imaginary part is much
bigger than real part at this frequency, the imaginary is multiplied with 0.1 to show the real part), and (c) w,a/c = 1.77056. (d) Dispersion
curve of PNC. Displacement distribution of the defect PNC modes (e) :1a/¢;sio, = 1.25492, and (f) Q,a/¢;sio, = 2.31323 (solid line: real part,

dotted line: imaginary part). The thickness of the defect layer a4 = a.
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Table 2: Normalized frequency shift of optical mode w, is continuously perturbed by the acoustic wave at the resonance frequency

Q,a/c;sio, = 2.31323. The input displacement u;, = 0.022 nm

Methods w%a/c Awpga/c (x1073) Awwa/c (x1073) Awpeama/c (x1073)
1st Born + TMM 1.77056 2.13 1.05 2.93

1st Perturbation + TMM 1.77056 2.31 1.10 3.41

1st Perturbation + FEM 1.77056 2.366 1.09 3.456

Pure FEM 1.77056 2.367 1.09 3.457

even symmetry, such as Q; shown in Figure 2(e). The
same conclusion can be drawn for MI contribution. Hence,
we turn to Q,. For comparison, input displacement u;, =
0.022 nm, which is similar to that mentioned in ref. [44].
Computed by four methods, the AO couplings between
optical mode w, and acoustic mode Q, are listed in Table 2.
Two analytical methods, the first-order Born approxima-
tion and the first-order perturbation theory, are carried
out by TMM, which are denoted by “Born + TMM” and
“Perturbation + TMM,” respectively. “Perturbation + FEM”
means FEM based on the perturbation theory. “Pure FEM”
represents numerical calculation by FEM. The results
obtained by the first-order perturbation theory are highly
consistent with the numerical results and are more accu-
rate than that by the first-order Born approximation for
both PE effect and MI effect.

Figure 3 illustrates the variation of the normalized
frequency shift of the optical modes w, with the input
displacement at 2,a/cy;sio, = 2.31323. For the sake of sim-
plicity, only the PE effect is taken into account here since
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Figure 3: Normalized frequency shift of the optical modes w, versus
the input displacement at the acoustic normalized frequency of
Q,a/c¢;sio, = 2.31323, where four methods are applied.

the same conclusions can also be drawn for the MI effect.
The results obtained by the “Born + TMM” agree with the
numerical results of “Pure FEM” only in relative low
input displacement. As the input displacement increases,
the results deviate from the numerical results gradually.
What is worse is when the input displacement u;, is
greater than 0.132 nm, the reflectivity obtained by “Born +
TMM” exceeds 1 at some certain optical frequency,
which is against the principle of conservation of energy.
Under these circumstances, the method fails to evaluate
AO coupling. Both “Perturbation + TMM” and “Perturba-
tion + FEM” agree well with numerical calculation even
when the input displacement is at relatively high level.
Because of the mode shape solved by FEM in “FEM +
perturbation,” the results obtained by “FEM + perturba-
tion” are a little more consistent with “pure FEM” than
that obtained by “TMM + perturbation.” Certainly, to cal-
culate the AO coupling higher than the second order,
we need to further study the higher order perturbation
theory. Table 3 lists the advantages and shortcomings of
these four methods.

From equation (3), a positive frequency correction
sign means an increase in the optical frequency, and a
negative sign means the opposite. The frequency correc-
tion sign of the PE effect is further analyzed. From equa-
tion (5), £%(z) and |E(z)|? are always positive. For the given
materials, the sign of piy(z) is known. Thus, only the
strain field is unknown. The sign of the PE effect can be
transformed by redistributing the photoelastic coefficient
and strain field of the materials. As for the MI effect, the
same methods can be applied as well.

Quadratic coupling is then investigated. The PNC
defect mode Q, has an odd symmetry, and the quadratic
coupling is suppressed since the linear coupling is much
stronger. Hence, we turn to the first PNC defect mode
with the normalized frequency of Q;a/cy;sio, = 1.25492.
From equations (5) and (6), the linear coupling vanishes
because of the even symmetry of the displacement field
and the odd symmetry of the strain field as shown in
Figure 2(e). Therefore, based on equation (7), the second-
order perturbation theory is applied to study the
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Table 3: Advantages and shortcomings of these four methods for evaluating AO coupling

Methods Advantages

Shortcomings

Born + TMM

Perturbation + TMM High accuracy

Best physical interpretation

Perturbation + FEM Highest accuracy

Good physical interpretation

Only 1D structure

Low accuracy on nonlinear effect
Limit on small acoustic perturbation
Only 1D structure

Only linear and quadratic effects
Only linear and quadratic effects

Best physical interpretation

Pure FEM Highest accuracy

Weak physical interpretation

quadratic coupling. Figure 4 illustrates that the norma-
lized frequency shift is proportional to the square of
acoustic input displacement (u;,/a)?, where the PE effect
is only taken into account. This indicates that quadratic
coupling is dominant in AO coupling. Only “Perturbation +
FEM” and “Pure FEM” are carried out in the calculation
owing to their good performance. The results obtained by
these two methods show a high consistency even when
the input displacement increases close to u;, = 0.132nm
(a displacement limit is set to ensure structural safety). It
should be pointed out that the convergence is reached by
only taking the first 30 eigenfrequencies into account
although infinite terms are included in equation (7).
Therefore, the combination method of “Perturbation +
FEM” has great advantages in the AO coupling analysis
since the perturbation theory can give the physical inter-
pretation and only the unperturbed electric field solu-
tions are required, while FEM provides a high-precision
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Figure 4: Normalized frequency shift of the optical modes w; as a
function of the acoustic input displacement level (u;,/a)? at the
acoustic normalized frequency of Q,a/c;;sio, = 1.25492, which is
calculated by two methods.

solution and integration. The first term in equation (7)
vanishes since it depends on the first-order correction.
Thus, the sign of the second-order correction depends

on 1/[(4)}0)2 - (ui(o)z] in the last term. As a result, the
second-order correction from the lower eigenfrequencies
than w{® has a positive sign, while that from higher
eigenfrequencies has a negative sign.

It is noteworthy that quadratic coupling is not only
affected by the symmetry of the acoustic mode but also
determined by the symmetry of the optical mode of the
eigenfrequency. Its contribution to quadratic coupling
will vanish if the optical mode of one eigenfrequency
has the same symmetry as the defect mode. Furthermore,
the quadratic coupling will also be weakened if these
eigenfrequencies are too far away from the defect optical
resonance frequency, even if their modes and defect
mode have different symmetries. Table 4 lists the linear
and quadratic couplings depending on the symmetry of
the PNC defect mode, the defect PTC mode, and the other
PTC modes. It can be inferred that the quartic coupling
will be dominant in the AO coupling if both linear and
quadratic couplings vanish. In our case, the relatively
large contribution on the quadratic coupling is -0.10,
-0.21, -0.42, -0.60, and -0.20 (x10™*), which comes
from the optical eigenfrequencies of 231, 272, 315, 356,
and 401 THz, respectively. Finally, with the input displa-
cement similar to that of ref. [44], the PE contribution is
-1.6 x 10~ and MI contribution is —3.0 x 10~>, which can

Table 4: Linear and quadratic couplings depend on symmetry of the
defect PNC mode, the defect PTC mode, and the other PTC modes

Defect Linear Defect Other Quadratic

PNC mode effect PTC mode PTC effect
mode

0dd Strong — — Suppressed

Even Vanish Even Even Vanish

Even Vanish 0dd 0dd Vanish
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Figure 5: (a) Displacement field distribution of the defect PNC mode Q",a/¢;;sio, = 2.65520. Electric field distribution of the defect PTC modes
(b) w'1a/c = 1.61164 and (c) w’,a/c = 1.61596. The thickness of the defect layer a4 = 5a/4.

be obtained by TMM or FEM. The superposition of both
effects is —8.9 x 107>, which is calculated by FEM. How-
ever, the superposition of both effects is about —0.001 in
ref. [44]. It should be noted that for quadratic coupling,
these two effects cannot be added linearly as their
superposition.

4 Enhanced quadratic AO coupling

We further study the dependence of the symmetry of the
PNC defect mode on the thickness a4 of the defect layer.
The symmetry remains the same when the thickness aq is
an integer multiple of the lattice constant a, i.e., ag = ma
(m is an arbitrary integer). However, the symmetry of
these defect modes can be transformed if the thickness
aq # ma. Figure 5 displays the second PNC defect mode

’, and two PTC defect modes when aq = 5a/4. The sym-
metry of the PNC defect mode transforms from odd
(Figure 2(f)) to even (Figure 5(a)), while the PTC defect
mode remains even symmetric. Certainly, when thickness

aq increases from a to 5a/4, the normalized frequency of
the second PNC mode increases from 2.3132 to 2.6522, but
the normalized unperturbed frequency of the second PTC
defect mode decreases from 1.77056 to 1.61596, while that
of the first PTC defect mode remains unchanged. The
mode profile of w, and w’, has little difference. However,
the normalized imaginary parts of w; and w’; are signifi-
cantly different, whose amplitude varies from 110 to 0.51.

We then focus on the dependence of the symmetry of
the second PNC defect mode on the thickness of the
defect layer. The relative thickness increment of the
defect layer is defined as a = (aqg — a)/aq. Results show
that the symmetry of the PNC defect mode Q, can be
transformed from odd to even as long as 0 < a < 0.6.
Nevertheless, when «a is less than 0.1, the frequency of
the defect mode moves toward the band gap edge and the
corresponding displacement field is no longer localized
in the cavity. Thus, the quadratic coupling is studied by
setting a between 0.1 and 0.6, as shown in Figure 6(a).
The input displacement is set as u;, = 0.132nm. The nor-
malized frequency shift of the quadratic coupling is
obtained by “pure FEM” and “Perturbation + FEM,”
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Figure 6: When two PTC defect modes are coupled with the second PNC defect mode, (a) their normalized frequency shift and (b) their
unperturbed frequencies versus the relative increment a of the defect layer thickness, and (c) their normalized frequency shift versus the

wavenumber in first irreducible Brillouin zone for different a.
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respectively, where only the PE effect is taken into con-
sideration. The result obtained by “Perturbation + FEM”
agrees well with that done by “pure FEM” unless the
frequencies of these two PTC defect modes are too close.
Hence, it is still reasonable to reveal the enhancement
mechanism of the quadratic coupling by the perturbation
theory. The absolute values of the normalized frequency
shift of these two PTC defect modes increase first and
then decrease as a increases. The normalized frequency
shift reaches its maximum value when a approaches 0.258
and then undergoes a leapfrog change. From Figure 6(b),
as a increases, the frequency w, remains the same, whereas
the frequency w, decreases all the time. The curves of w,
and w, intersect when a is equal to 0.258, and these two PTC
defect modes become quasi-degenerate modes. The AO cou-
pling becomes stronger, which is not only quadratic but
also contains higher-order nonlinear contributions. Here,
the term 1/ [(u}o)2 - w,.(o)z] in equation (7) increases rapidly
as the frequencies of these two modes approach, and the
dominant contribution for quadratic coupling comes from
each other; hence, the strongest coupling is achieved. At
that time, the normalized frequency shift jumps as shown in
Figure 6(a). The normalized optical frequency shift for PE
contribution was obtained as 3.6 x 10—, which is an order of
magnitude larger than the structure of a = 0 under the same
input displacement. Besides, Figure 6(c) depicts the rela-
tionship between quadratic coupling and wavenumber in
the first irreducible Brillouin zone for different a values.
With the increase of the wavenumber, a sharp dip of the
quadratic coupling can be seen near I' point, especially for
a = 0.256. The quadratic coupling is strong because the two
frequencies w, and w, are closest to each other at I' point,
which is shown in Figure 2(a). For weak coupling, in other
words, when w, is not so close to w;, the quadratic coupling
is almost independent of the wavenumber.

5 Conclusions

We applied the perturbation theory to the calculation of
the AO coupling in a multilayer PXC cavity. In the calcu-
lation of linear AO coupling, four methods were com-
pared. We further focus on the quadratic coupling to
find the coupling mechanism, especially for enhancing
the coupling. The following conclusions can be drawn:
(1) Among these four methods, “Perturbation + FEM” is
the best choice for the AO coupling analysis, the phy-
sical interpretation, high-speed computing, and high
precision.

DE GRUYTER

(2) As listed in Table 4, the linear, quadratic, or quartic
coupling is dominant under specific acoustic and
optical mode symmetry. Besides, these modes of sym-
metry can be changed by adjusting the thickness of
the defect layer. Thus, the linear coupling can be
transformed to quadratic coupling and vice versa.

(3) Quadratic coupling is enhanced by tuning two defect
photonic modes to be quasi-degenerate modes. When
the two defect photonic modes become quasi-degen-
erate modes, the coupling strength is wavenumber
dependent and reaches the maximum value in T
point of the first irreducible Brillouin zone.
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