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Abstract: The sandwich structures are three- or multi-
layered structures such that their mechanical properties
are better than each single layer. In the current research,
a three-layered cylindrical shell including a functionally
graded porous core and two reinforced nanocomposite
face sheets resting on the Pasternak foundation is used
as model to provide a comprehensive understanding of
vibrational behavior of such structures. The core is made
of limestone, while the epoxy is utilized as the top and
bottom layers’ matrix phase and also it is reinforced by
the graphene nanoplatelets (GNPs). The pattern of the
GNPs dispersion and the pores distribution play a crucial
role at the continuous change of the layers’ properties.
The sinusoidal shear deformation shells theory and the
Hamilton’s principle are employed to derive the equa-
tions of motion for the mentioned cylindrical sandwich
shell. Ultimately, the impacts of the model’s geometry,
foundation moduli, mode number, and deviatory radius
on the vibrational behavior are investigated and dis-
cussed. It is revealed that the natural frequency and rota-
tion angle of the sandwich shell are directly related.
Moreover, mid-radius to thickness ratio enhancement
results in the natural frequency reduction. The results
of this study can be helpful for the future investigations

in such a broad context. Furthermore, for the pipe fac-
tories current study can be effective at their designing
procedure.

Keywords: vibration, sandwich cylindrical shell, porous
materials, graphene nanoplatelets, hygrothermal envir-
onment, sinusoidal shear deformation

1 Introduction

Structural analyses attracted higher levels of scholars’
attention nowadays. Among them, sandwich structures
are well-known due to their high level of functionality.
These structures are broadly implemented in ships, aero-
space vehicles, and cargo containers. The porous type of
sandwich structures meets extensive applications due to
their lower weight to stiffness ratio. For instance, in the
aircraft industries, aircraft with higher speed and stiff-
ness and lower weight is accessible by the means of
sandwich panels [1–4]. Depending on their application,
sandwich structures may include three or more layers.
Catania et al. [5] studied the mechanical damping beha-
vior of multilayer components due to their wide range of
applications. In their work, the results are validated by an
experimental test. Beside this, plasma techniques are
used by Rongong et al. [6] to generate constrained layer
damping coatings on the metallic substrates. Also, in
another work, Yu et al. [7] discussed the damping effi-
ciency of the coating system based on the Reuss model
and Hashin–shtrickman equation. In their work, the the-
oretical results showed that for a coating system, there is
an optimum thickness of the coating layer that causes the
coating structure obtain the best balance between the
strength and the damping capacity. In two different
works, Amir and his coresearchers [8,9] presented their
findings of vibrational behavior of three-layered circular
and annular plates, in which a rheological fluid core
was put between two magnetostrictive face sheets. More
recent sandwich structures exploit a core that is consti-
tuted of porous material to gain a lighter structure.
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Furthermore, functionally graded materials (FGMs)
are a new branch of elaborated engineering composite
materials [10,11] that attracted the scientists’ attention.
The layers constituted from FGMs are fully metallic at
the bottom surface and fully ceramic at the top surface
or vice versa. FGMs are first introduced by Koizumi [12].
Liu et al. [13] broadened our knowledge about FGMs by
working on the wave propagation using a numerical tech-
nique. In another work, Han et al. [14] numerically stu-
died FGMs’ transient wave propagation using another
method. In 2002, Najafizadeh and Eslami [15] examined
buckling the behavior of a circular FGM plate under
radial loading. Arshid and Khorshidvand [16] examined
the vibrational behavior of a saturated porous FG circular
plate patched to piezoelectric face sheets using a differ-
ential quadrature method (DQM). One of the first works
on the sandwich cylindrical shells dates back to 1995,
in which Huang and Dasgupta [17] investigated the com-
posite cylindrical shells to explain their free vibration
behavior. After that, laminated cylindrical shells have
been considered as a model to investigate static bending
behavior under various boundary conditions using the
differential cubature method [18]. In more recent years,
the bending behavior of cylindrical sandwich panels has
been evaluated by Pydah and Batra [19], who succeed to
present an analytical solution for the mentioned bending
behavior. In 2019, Sun et al. [20] experimentally investi-
gated the different dynamic responses of the sandwich
panels. They aimed to present a thorough guideline for
the fabrication of sandwich panels with a higher ratio of
blast protection capacity to weight. Electromechanical
systems are exposed to different electrical and mechan-
ical loadings and require a comprehensive study due to
their important parameters. By the growth of the applica-
tion of sandwich plates, more accurate plate theories are
needed to obtain responses with higher accuracy. In the
past decades, the FG plates and shells have been often
analyzed using the first order shear deformation theory
(FSDT) or higher order theories [21–24]. As an example,
Trabelsi et al. [25] used modified FSDT to examine the
thermal buckling of the FG plates and cylindrical shells.
Based on the nonlocal elasticity theory, Ke et al. [26] took
a nano piezoelectric cylindrical shell into consideration
and investigated its vibrational behavior. They employed
Love’s theory which is usually used for thin shells and
also used DQM for solving the obtained differential equa-
tions. In a similar study, Razavi et al. [27] conducted a
research on electromechanical vibrational response of
nano cylinders. They derived the governing equations
with the aid of the energy method and Hamilton’s prin-
ciple and captured the size effect via the couple stress

theory. As another instance, Khoa et al. [28] employed
a cylindrical panel model which was reinforced by single-
walled carbon nanotubes (SWCNTs) to study the vibrations
of the functionally graded carbon nanotube-reinforced
composite (FG-CNTRC) cylindrical shells. For integrity,
they applied the thermal environment on the entire struc-
tures and used higher-order shear deformation theory
(HSDT). Nanoparticles and especially CNTs and graphene
nanoplatelets (GNPs) specifications are discussed in
numerous researches, recently [29–33]. Single-layered
graphene sheets’ mechanical behavior and especially
their buckling response, regarding the scale-effect, is
considered by Fattahi et al. [34,35]. They attained the
governing equations based on classical theory, FSDT,
and HSDT. As another attempt, forced and free vibra-
tional behaviors of a viscoelastic core equipped with
GNPs-reinforced face sheets are examined by Mohseni
and Shakouri [36]. They assumed face sheets are FG
due to different types of GNPs distributions. A developed
HSDT was applied to provide an analytical solution for
the buckling capacity of sandwich plates containing cores
with and without the GNPs reinforcement phase [37].
Moreover, free vibration and buckling analysis of cylind-
rical shells and sandwich plates is addressed by Kumar
and Srinivasa [38]. After that, Ibrahim et al. [39] used
FSDT to analyze the mechanical responses of FGM
panels. Furthermore, Mehar and Panda [40] employed
the finite element method to evaluate the temperature
dependency of vibrational behavior of sandwich curved
panel reinforced by functionally graded carbon nano-
tubes (FG-CNTs). In their paper, HSDT is used to derive
displacement field equations. More recently, Karimiasl
et al. [41] applied HSDT to assess doubly curved flexible
core integrated with piezoelectric layers as a model to
address the nonlinear vibration analysis. They concluded
that an increment in the shaped memory alloys (SMA)
volume fraction declined the frequency. Furthermore,
the elasto-dynamic behavior of cylindrical tubes is eval-
uated by Ramezani and Mirzaei [42]. They assumed their
model under moving pressures and different boundary
conditions. In 2014, a new quasi-3D hyperbolic shear
deformation theory for vibrational responses is proposed
by Hebali et al. [43] to get more accurate results. This
theory accounts for the stretching and shear deformation
effects and eliminates their dependency on shear correc-
tion factor. Mirjavadi et al. [44] carried out a study on
forced vibration of annular sector plates which are com-
posed of the nanocomposite. They employed More–
Tanaka approach to determine the material properties.
In another study [45], they provided similar research,
but for conical shells, and investigated the effect of
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different parameters on the results. Three types of por-
osity distributions are considered by Safaei [46] to ana-
lyze a multilayered sandwich plate whose core is made
from porous materials. He used finite element method to
obtain the results. Next, Sahmani et al. [47] provided a
closed-form solution for examining vibrational response
of small-scaled beams that are made from GNPs-rein-
forced composites. They derived the motion equations
via HSDT to take the shear deformations into account.
Moreover, they conducted another study [48] to consider
the effect of size on the post-buckling behavior of plates
that were reinforced by GNPs. Different types of GNPs
dispersion patterns are considered by them. Most recently,
Arshid and Amir [49] provided an investigation on the
thermal buckling of porous-reinforced nanocomposite
structures and concluded that adding GNPs to the struc-
ture may increase or decrease the critical buckling tem-
perature, depending on their dispersion patterns. Beside
this, Fan et al. [50] used modified couple stress theory
(MCST) and examined the nonlinear oscillations of
porous FG plates in nanoscale. They used NURBS-based
isogeometric approach to gain the results. Wang et al. [51]
performed nonlinear vibration analysis of porous shells
that were reinforcedwith GNPs. They employed an improved
Donnell nonlinear shell theory to formulate their model.
A general approach is provided for the free vibration
analysis of rotating functionally graded carbon nano-
tube-reinforced composite (FG-CNTRC) cylindrical shells
with arbitrary boundary conditions by Qin et al. [52]
based on FSDT. Also, a comparison study is presented
by Qin et al. [53] on free vibrations of cylindrical shell
with various boundary conditions using numerical methods.
Shen et al. [54] considered effect of thermal environment on

nonlinear vibration of functionally graded graphene nano-
platelets (FG-GNPs)-reinforced laminated cylindrical shells.

In the present paper, a sandwich cylindrical structure
including FG porous core integrated by the GNPs-
reinforced composites (GNP-RC) layers is considered as
model to provide a comprehensive insight on its vibra-
tional behavior. In the previously published papers, the
sandwich cylindrical model with such exclusive config-
uration is not examined, yet. The sandwich structure is
rested on the Pasternak foundation and the whole model
is placed in a hygrothermal environment. As sinusoidal
shear deformation shells theory (SSDST) is more accurate
than lower-order theories, it is hired to gain more reliable
results. Based on the Hamilton’s principle and variational
approach, the equations of motion are derived and ana-
lytically solved. Finally, the influences of various para-
meters as porosity coefficient index and their distribution
patterns, GNPs volume fraction index, and their disper-
sion types, geometry, mode number, and the moduli of
foundation on the natural frequency of presented sand-
wich cylindrical shell are evaluated. The results could
help in obtaining a deeper understanding of these struc-
tures which can be helpful in different industries, such
as, automobiles, micro electro mechanical system (MEMS)
processes, and aerospace.

2 Mathematical modeling

According to the cross-sectional view in Figure 1, the
proposed model is a cylindrical sandwich shell including
an FG porous core confined by two GNP-RC face sheets

Figure 1: Cross-section view of the sandwich cylindrical shell subjected to hygrothermal loads.
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with mid-radius of R, length of L, and rotation angle of φr

resting on Pasternak elastic foundation. The structure is
entirely subjected to hygrothermal loading. Also, hc, ht,
and hb denote representatives of the z direction width of
the porous core, top, and bottom skins. Moreover, the
sum of the height of different parts serves as h repre-
senting the total height of the sandwich model. In the
intermediate-plane of the shell, the cylindrical coordi-
nate system (x, θ, z) is placed at the corner point in which
x, θ, and z are axial, circumferential, and thickness direc-
tions of the model, respectively.

Strain components can be obtained by SSDST. Accord-
ingly, the displacements of an arbitrary point either in porous
core or in GNPs-RC face sheets can be presented as [55]:
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where u, v, and w are the movement components in the
longitudinal, radial, and thickness direction, respectively.
Moreover, u0, v0, and w0 represent the movement compo-
nents on the intermediate-plane; λx and λθ denote the rota-
tion about θ and x-axes, respectively. Furthermore, f(z)
and g(z) can be determined by SSDST as:

( ) = ( / ) ( / ) ( ) =f z h π πz h g z zsin , (2)

Based on the Von Karman’s assumptions, strain field
can be derived as [56,57]:
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By inserting displacement components of equation
(1) into equation (3), the strains can be obtained based
on the SSDST.

The stresses related to the core and face sheets in
the hygrothermal environment can be presented by ref.
[58,59]:
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where C denotes the elastic coefficients and subscript c
and f represent the porous core and GNP-RC face sheets,
respectively. Moreover, α and β represent the coefficients
related to thermal expansion and moisture expansion. ΔT
and ΔH are the temperature alternation and moisture
changes, one after another. A porous layer, made of
Limestone, is used whose elastic coefficients can be
written as [43]:
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where Ec(z) and vc indicate Young’s elasticity modulus
and Poisson’s ratio, respectively. The type of core por-
osity distribution is responsible for elastic coefficients
variations.

In fact, the philosophy of pores’ presence is to help the
weight reduction without having a considerable destruc-
tive impact on the mechanical properties of the whole
sandwich model. It is revealed that the presence of pores
inside the core results in lower magnitude of mechanical
properties reduction in comparison with their presence
within the face sheets. So, they assumed to exist only
within the core layer. For even type of porosity distribu-
tion, pores become distributed symmetrically and elasti-
city modulus, density, and hygrothermal expansion coef-
ficients distributions will be [60]:

( ) = [ − ( / )]E z E p πz h1 cos ,c 0 c (6a)
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Where subscript 0 is the sign to address the material
properties of the perfect layer. Also, p and pm are porosity
andmass density coefficients which can be defined as [61]:
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E1, E2, and ρ1, ρ2 are maximum and minimum magnitudes
of Young’s modulus and maximum and minimum magni-
tudes of the density of the porous core, respectively. On
the other hand, for uneven porosity distributions, pores
distribution is asymmetrical with respect to the inter-
mediate-plane thus [62]:
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At the end, for uniformly distributed porosity, elasticity
modulus and density are thickness independent as [46]:
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To determine the elastic coefficients for the FG-GNP-
RC face sheets, the following relations can be repre-
sented [63]:
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Top and bottom physical properties are also variable
through their thicknesses. To determine the effective values
of these parameters for different models, Halpin–Tsai and
MR micromechanical models are employed. Halpin–Tsai
model uses the following relation to predict the effective
Young’s modulus [64]:
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in which EM denotes matrix part Young’s modulus;
while the volume fraction of GNPs is shown by VGNP.
Furthermore, ζL, ζW, ηL, and ηW state properties of the
GNPs, which is related to its geometry, and can be
defined as [65]:

































































































= = − +

= = − +

ζ l
t

η E
E

E
E

ζ

ζ w
t

η E
E

E
E

ζ

2 , 1 ,

2 , 1W

L
GNP

GNP
W

GNP

M

GNP

M
W

GNP

GNP
L

GNP

M

GNP

M
L

(13)

Here, lGNP denotes the GNPs’ length, their thickness
is shown by tGNP, and their width is represented by wGNP.
Moreover, EGNP is Young’s modulus of GNPs reinforce-
ments. Noteworthy, the GNPs’ volume fraction added to
volume fraction of matrix portion should be 1 and that of
GNPs can be obtained via the following equation [66]:
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In the abovementioned relation, ρ is the density. The
subscripts GNP and M are related to the GNPs reinforce-
ments and matrix. Also, gGNP refers to the dispersion pat-
tern of the reinforcement phase weight fraction and can
be presented as [67]:
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Uniformly dispersed GNPs through the matrix

( ) =g z μ W ;GNP U GNP (15c)

μP, μL, and μU are the GNPs’ gradient indices. The sub-
script P, L, and U are representatives of the words para-
bolic, linear, and uniform, respectively, where they are
addressing different dispersion patterns of GNPs. For
more information, it should be mentioned that the total
GNPs content percentage plays a crucial role in GNPs
dispersion pattern variations. For 0, 1/3, and 1 percentage
of GNPs, the values of μP are 0, 1, and 3, respectively. The
values of μL for 0, 1/3, and 1 percentage of GNPs are 0, 2/
3, and 2, respectively. Also, for 0, 1/3, and 1 percentage of
GNPs, the values of μU are 0, 1/3, and 1, respectively [68].

Moreover, other properties of the face sheets such as
their Poisson’s ratio, density, and hygrothermal expansion
coefficients can be determined via the MR model as [69]:
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3 Motion equations

Hamilton’s principle is used to extract the motion equa-
tions of the aforementioned sandwich shell [70]:
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in which Λ, K, and Π are whole strain energy, kinetic
energy, and external work applied on the sandwich shell,
respectively. Also, t is the time. Strain energy is due to the
two face sheets and core and can be presented as:

= +Λ Λ Λc f (18)

The FG porous core strain energy is derived as:
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Furthermore, the strain energy of GNP-RC face sheets
has the following form [71]:
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Therefore, the variations of the total strain energy
can be presented as:
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Moreover, the definition of kinetic energy can be added as [35]:
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Using the variational approach, variations of the kinetic energy can be stated as:











































































































∫ ∫=

−
∂

∂
−

∂

∂
+

−
∂

∂
−

∂

∂
+

∂

∂ ∂

+

−
∂

∂ ∂
−

∂

∂ ∂
+

∂

∂ ∂
−

∂

∂ ∂

−
∂

∂ ∂
+

∂

∂ ∂
−

∂

∂

+ −
∂

∂
−

∂

∂
+

∂

∂ ∂

+ −
∂

∂
−

∂

∂
+

∂

∂ ∂

δK

I
t

u I
t

λ δu

I
t

v I
t

λ
R

I
θ t

w δv

I
x t

u I
x t

λ I
x t

w
R

I
θ t

v

R
I

θ t
λ I

θ t
w I

t
w

δw

I
t

u I
t

λ I
x t

w δλ

I
t

v I
t

λ I
R θ t

w δλ

R θ x

1

1

1
d d

x θ

x

θ

x

θ

x x

θ θ

0
2

2 0 1
2

2 0

0
2

2 0 1
2

2 1
3

2 0 0

2
3

2 0 4
3

2 5
4

2 2 0 1
3

2 0

3
3

2 3
4

2 2 0 0
2

2 0

0

1
2

2 0 3
2

2 4
3

2 0

1
2

2 0 3
2

2
3

3

2 0

(24)

in which:
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Pasternak foundation is assumed for the sandwich
shells. Therefore, external work due to the Pasternak
foundation can be determined by ref. [72]:
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where Kw is the Winkler spring coefficient and Kg shows
the shear layer coefficient.

The hygrothermal external work applied on the
whole sandwich structure due to the hygrothermal load
as a result of the temperature and moisture difference can
be determined as follows [73,74]:
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where hygrothermal loads in x and θ directions are
shown by Nx

HT and Nθ
HT , respectively, which can be pre-

sented as [10]:
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Finally, whole external work’s variations may be
evaluated by summing the presented two works as:

= +δ δ δΠ Π Π1 2 (29)

So:
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By substituting equations (21), (24), and (30) into
equation (17), the motion equations can be derived, set-
ting the coefficients of δu0, δv0, δw0, δλx, and δλθ to zero.

4 Analytical solution procedure

To solve the obtained differential equations, Navier’s
solution approach is applied. Based on this scheme, the
geometrical boundary conditions for the simply sup-
ported type can be satisfied using the below functions
for the displacement vectors [75]:
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where U, V, W, Υx, and Υθ denote the coefficients which
are unknown. Also, α = nπ/L and β = mπ/φr in which
wavenumbers along x and θ directions are represented
by n and m, respectively, which are integers. In the end,
the motion equations can be obtained in a matrix form as:

([ ] − [ ] ){ } =× ×K ω M UVW ϒ ϒ 0x θ
T

5 5
2

5 5 (32)

The arrays of stiffness [K] and mass [M] matrices can
be determined by substituting the functions of equation
(31) into the governingmotion equations which are obtained
in the previous section. Solving equation (32) yields the nat-
ural frequencies of the studied structure.

5 Results and discussions

The current section is aimed to provide the results, in
numerical and graphical form, to examine the vibrational
behavior of the aforementioned sandwich shell under
different conditions. The results will be reliable when
the main code becomes validated with previous papers
in this context. In this paper, the natural frequencies (in
Hz) are listed for a single-layer orthotropic cylindrical
shell with the following mechanical and geometrical
specifications:

=E 120 GPa,x =E 10 GPa,y =G 5.5 GPa,xy

= /ρ 1,700 kg m ,3 =ν 0.27,x =ν 0.0225,y

=R 1 m, =h 0.01 m, =L 5 m

The cylindrical panel’s different mode numbers’ fre-
quencies are obtained and compared with refs. [56,76]
in Table 1. The results of reference papers are similar
to the results acquired by the current code. Some
partial errors may be in response to different displace-
ment field utilizations, and also, different solution
methods.

As another attempt to validate the results, the out-
comes of this study are compared to those of Razavi et al.
[27] and Ke et al. [26]. In these studies, the dimensionless

natural frequency is achieved via ( − )/ωR ρ ν E1 2 in which
L/R = 20, h/R = 0.01, and ν = 0.3.

Therefore, the validity of the proposed method is
confirmed. The vibrational behavior of the current sand-
wich cylindrical shell in response to different variable
changes will be addressed in the following.

As previously mentioned, FG porous core is made of
limestone, while the faces are fabricated from the GNP-
reinforced epoxy. It is noted that for the limestone, E0 =
25 GPa, ρ0 = 2,700 kg/m3, α0 = 1.23 × 10−5 1/K, β0 = 2.43 ×
10−5 1/K, and ν = 0.25 [77]. Furthermore, the properties of
GNPs reinforcement and the epoxy matrix are listed
below [67]:

=E 1.01 TPa,GNP = /ρ 1062.5 kg m ,GNP
3 =ν 0.186,GNP

=l 2.5 μm,GNP =w 1.5 μm,GNP =t 1.5nm,GNP

= × /−α 2.35 10 1 K,GNP
5 = × /−β 4.35 10 1 K,GNP

5

=E 130 GPa,M = /ρ 8, 960 kg m ,M
3 =ν 0.34,M

= × /−α 60 10 1 K,M
6 = × /−β 43 10 1 KM

6
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Also, it must be noted that all the following results,
except otherwise mentioned, are obtained with a porosity
coefficient of 0.2 and for uniform GNPs dispersion and
even pores distribution patterns (Table 2).

Figure 2 depicts natural frequency variations of the
sandwich shell versus the porosity index. As it is evident,
the higher porosity coefficients led to lower rigidity. As
another expression and to provide a more physical point
of view, it should be noted that higher values of porosity
coefficients mean more holes and free spaces inside the
core and cylindrical structures which is responsible for
the lower stiffness and natural frequency, and higher
flexibility. According to Figure 2, for the constant thick-
ness of the sandwich cylindrical model, mid-radius
enhancement decreased the natural frequency. Figure 3
illustrates the variation range of natural frequency versus
length to thickness ratio (L/h) of the cylindrical sandwich
shell. An increase in the mentioned ratio for constant
total shell thickness implied an enhancement in the
model length which can lead to the reduction of natural
frequency and stiffness. Figure 3 also offers valuable
information about the relationship of the porosity distri-
bution patterns with the natural frequency of sandwich
shell. It is clear that uniform and uneven distributions of
porosity provide the lowest natural frequency and stiff-
ness, respectively, due to pores’ placement and its impact
on the stiffness of the structure. The effects of WGNP and
hc/hf on natural frequency are displayed in Figure 4. At

constant total thickness, an increase in the core thickness
(i.e., a decline in the face sheets thickness) decremented
the natural frequency and rigidity. Importantly, this
reduction got steadier for higher values of porous core

Table 1: Comparing the results for a simpler state with those of previously published works (Hz)

Reference (m,n)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

Liu et al. (2012) (Exact) 741 416 258 198 209 266
Liu et al. (2012) (S-DQFME) 741 416 258 198 209 266
Mohammadimehr et al. (2019) 741.324 415.846 256.596 194.350 203.539 259.921
Current study 741.2861 415.1433 256.7928 194.456 203.468 260.157
Error (%) 0.0385 0.2063 0.4700 1.8214 2.6467 2.2455

Table 2: Comparing the dimensionless natural frequency for simply
supported cylindrical shell with those of previously published
works

Source m

1 2 3 4

Razavi et al. (2017) 0.0161 0.0116 0.0248 0.0448
Ke et al. (2014) 0.0160 0.0093 0.0221 0.0420
Current study 0.0160 0.0104 0.0235 0.0435
Error (%) 0.625 9.057 5.531 2.987
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Figure 3: Porosity distribution pattern influence on the natural fre-
quencies of the shell versus its aspect ratio (h = 0.01m, hc = 10hf,
L = 50h, φr = 2π, μU = 1).
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Figure 2: Effect of porosity coefficient and R/h ratio on the funda-
mental natural frequency (h = 0.01m, hc = 10hf, L = 20h, φr = 2π,
μU = 1).
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thickness. In another conclusion, at constant GNPs length,
higher values of WGNP led to less rigid cylindrical sand-
wich shell structure. Moreover, Figure 5 presents the
effect of different GNPs dispersion on natural frequency.
Based on this figure, for similar GNPs dispersion coeffi-
cients, the parabolic dispersion of GNPs offered a stiffer
structure. It means the highest natural frequency can be
observed in the structures involving parabolic GNPs dis-
persion. Furthermore, comparing the epoxy curvature
highlights the importance of GNPs presence as the rein-
forcing phase within the epoxy matrix. Figure 6 depicts
natural frequency versus mid-radius to thickness ratio
(R/h) of the shell for different temperature gradients.
At the constant thickness of the sandwich cylindrical
model, mid-radius enhancement decreased the natural

6 7 8 9 10 11 12 13 14
2.95

3

3.05

3.1

3.15

3.2

3.25

hc/hf

W0GNP=1%, L=30h

W0GNP=0.5%, L=30h
W0GNP=1%, L=40h

W0GNP=0.5%, L=40h

Figure 4: Thickness ratio and weight fraction of GNPs’ effect on the
results (h = 0.01m, R = 100h, φr = 2π, μP = 2).
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Figure 5: GNPs dispersion patterns’ effect on the natural frequencies
(h = 0.01m, hc = 10hf, R = 100h, φr = 2π).
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Figure 6: Temperature variations’ effect on the vibration of the shell
(h = 0.01m, hc = 10hf, L = 20h, φr = 2π, μU = 1, WGNP = 0.01).
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Figure 7: Moisture changes’ influence on the structure's funda-
mental frequency (h = 0.01m, hc = 10hf, L = 20h, φr = 2π, μU = 1).
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φr = 2π, μP = 2, WGNP = 1.5 × 10−6).
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frequency. Such effect is visible for temperature differ-
ence enhancement and natural frequency, and conse-
quently, stiffness reduction occurred due to the higher
temperatures. The physical point of view is tangible
when such structure initiates to melt due to the higher
values of temperature differences. Natural frequency var-
iation against humidity difference of surroundings is
plotted in Figure 7 to illustrate the decline in the natural

frequency, stiffness, and stability due to the humidity
difference enhancement. The effect of different levels of
moisture in the environment is negligible on the natural
frequency of the whole cylindrical sandwich structure,
but it can cause a crucial difference in the design of sen-
sitive devices. Figure 8 presents the natural frequency
versus GNPs geometrical dimensions. At constant GNPs

Table 3: Effect of pores’ distribution pattern on the natural frequencies of the cylindrical shell for different wavenumbers

L/h Porosity distribution pattern (m,n)

(1,1) (2,1) (1,2) (2,2) (3,1) (3,2) (2,3) (3,3)

10 Even 10.7268 10.9181 32.8658 33.1417 11.2085 33.5922 69.0011 69.4458
Uneven 10.6144 10.7972 32.3807 32.6515 11.0746 33.0934 68.0454 68.4837
Uniform 10.5919 10.7769 32.2801 32.5508 11.0576 32.9928 67.8365 68.2739

20 Even 6.9448 6.7601 10.7268 10.9181 6.3286 11.2085 19.9564 20.3801
Uneven 6.9299 6.7376 10.6144 10.7972 6.2952 11.0746 19.6693 20.0826
Uniform 6.9299 6.7353 10.5919 10.7769 6.2991 11.0576 19.6136 20.0281

Table 4: Effect of GNPs dispersion pattern on the frequencies of the cylindrical shell for various wavenumbers

L/h GNPs dispersion pattern (m,n)

(1,1) (2,1) (1,2) (2,2) (3,1) (3,2) (2,3) (3,3)

10 Linear 11.5614 11.7791 35.9435 36.2448 12.1102 36.7365 75.2780 75.7588
Parabolic 12.1246 12.3609 38.0393 38.3579 12.7207 38.8779 79.5004 80.0055
Uniform 10.5919 10.7769 32.2801 32.5508 11.0576 32.9928 67.8365 68.2739
Pure epoxy 9.3955 9.5379 27.5754 27.8062 9.7526 28.1831 58.1528 58.5329

20 Linear 7.2833 7.1048 11.5614 11.7791 6.6745 12.1102 21.7847 22.2513
Parabolic 7.4928 7.3198 12.1246 12.3609 6.8929 12.7207 23.0332 23.5295
Uniform 6.9230 6.7353 10.5919 10.7769 6.2991 11.0576 19.6136 20.0281
Pure epoxy 6.4981 6.2979 9.3955 9.5379 6.0736 10.3616 18.1627 18.5484
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Figure 9: Rotation angle variations’ effect on the fundamental nat-
ural frequency (R = 100h, L = 20h, φr = 2π, and μP = 2).
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Figure 10: Influence of mid-radius to thickness and rotation angle on
the shell’s natural frequencies (h = 0.01m, hc = 10hf, L = 20h, and
μU = 1).
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width, natural frequency and stability increased by increasing
the GNPs’ length. Tables 3 and 4 are presented to provide
a complete understanding of the effects of the mode
number, pores dispersion, GNPs dispersion, and geome-
trical shape of the sandwich shell on natural frequency.
For each condition, mode numbers of (2,2) and (1,1) led to
the highest and lowest natural frequencies, respectively.
Moreover, even dispersion of pores and parabolic disper-
sion of GNPs caused the highest magnitudes of natural
frequency, stiffness, and stability for each mode. Table 3
is listed for R = 20 h and uniform GNPs dispersion pattern,
while Table 4 is for uniform porosity distribution. Figure 9
investigates the influence of porous core thickness and
rotation angle alternations on the cylindrical sandwich
structure frequency. The whole structure thickness is
kept constant and equal to 1 cm. Figure 10 shows the
dependence of the natural frequency on the rotation
angle of the cylindrical sandwich shell. As it is clear,
the natural frequency and stability of the model deal
with the rotation angle in the direct direction. As another
expression, allocating lower values to the rotation angle
led to lower natural frequency and instability for any
radius to thickness ratio. By comparing Figures 9 and 10
what is novel in Figure 9 is the decline in the natural
frequency due to the porous core thickness enhancement
which resulted in stability reduction as well. Finally, in
the last figure of this section, a 3-D figure is provided in
Figure 11 to generate a comprehensive analysis of natural
frequency variation versus foundation parameters. The
stiffness and rigidity of the system decreased due to a
reduction in the spring and shear layer constants.

6 Conclusion

SSDST, Navier’s methods, and Hamilton’s principle are
used to derive and solve the governing equations of
motion to assess the vibrational responses of a cylindrical
sandwich shell including FG porous core and two
FG-GNPRC face sheets. Different figures and tables are
presented to address the physical properties such as stiff-
ness, flexibility, and rigidity. It is observed that an
enhancement in the GNPs’ length and a decline in the
porosity coefficient, humidity, and temperature differ-
ences can increment the natural frequency. The lowest
natural frequency is observed in non-reinforced samples.
At the constant shell thickness, lower natural frequen-
cies, and consequently, stability are observed in higher
shell radii. On the other hand, the rotation angle of
the shell has a direct relationship with stiffness. These
changes in the stiffness get intensified at the lower values
of the shell radius and rotation angle of the shell. Based
on these results, this paper tried to use the proposed
cylindrical sandwich shell as a model for developing
lighter and stiffer structures to use in the corresponding
industries.
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Appendix

The arrays of stiffness and mass matrices in equation (32)
are defined as:
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