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Abstract: Microwave-absorbing materials with good micro-
wave absorption performance are of great interest for mili-
tary applications and human health, which is threatened
by electromagnetic radiation pollution. Herein, the design
and synthesis of multi-componential metal-hybridized gra-
phene composites via freeze drying and pyrolysis of ferro-
cene hydrazone complex precursor are reported. Various
magnetic nanoparticles are loaded on reduced graphene
oxide (rGO) via controlling their pyrolysis temperature.
The complex electromagnetic parameters of these hybrids
are therefore regulated by the hybrid components. Among
them, rGO hybridized by the sea-island-like Fe2O3/Fe3O4/
FeNi3 multi-componential metals shows a good balance
of dielectric and magnetic constants. Thus, the improved
impedance matching with free space brings about a
superior electromagnetic wave absorption performance,
especially on the effective absorption bandwidth. The
minimum reflection loss (RL) of the hybrids is as low as

−40.3 dB at 11 GHz with the RL bandwidth of −10 dB being
4.55 GHz (from 9.25 to 13.8 GHz).

Keywords: microwave absorption, multi-componential
metals, reduced graphene oxide

1 Introduction

The rapid growth of modern technologies promotes the
applications of electronic devices, providing convenience
to human lives or military equipment. However, elec-
tronic equipment leads to serious electromagnetic wave
pollution [1–5]. Therefore, the development of absorbing
materials seems to be necessary. Generally, the micro-
wave absorption (MA) performances of materials are
determined by their impedance matching and attenua-
tion behaviors. The former decides the incident electro-
magnetic wave into the interior of materials that are sub-
sequently consumed by dielectric and magnetic loss as
described by the latter [6–9]. But the mismatched dielec-
tric constant and permeability, namely, impedance mis-
matching that exists in most materials, always lead to a
narrow absorbing bandwidth. In this regard, the compo-
nential and structural design of materials has aroused the
enthusiasm toward good MA performance with broad
absorption bandwidth.

Among these research studies, constructing pores in
carbon-based materials has been proved to be a mean-
ingful strategy for improving the impedance matching.
The air existing in the porous ensures the impedance
value of materials close to that of free space. Thus, the
porous structure allows a broad absorption bandwidth
[10–15]. However, porous materials always possess poor
strength [16,17] and are easy to be saturated by adsorbed
molecules or clusters due to their high specific surface
area [18]. Incorporation of magnetic metal particles with
dielectric carbon materials, such as graphene, is another
important method for designing absorbing materials. The
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balanced dielectric constant and permeability achieve a
good impedance matching. Graphene layers hybridized
with a series of single magnetic metal particles, including
Fe, Ni, and their oxides, are synthesized. For example,
Co/rGO is simply synthesized by hydrothermal method
[19], and Fe-hybridized rGO is achieved through primitive
chemical reduction [20]. However, these hybrids exhibit
improved but uncontrollable MA performances due to the
single component of magnetic particles [21,22]. Subse-
quently, multi-component metal (McM) compounds are
used for constructing graphene-based nanostructures,
achieving a tunable MA performance [23,24]. But the lim-
ited methods for the componential and structural regula-
tions of McM compounds restrict the development of
related graphene nanostructures.

In this work, ferrocene hydrazone condensation bime-
tallic complex is captured by graphene oxide (GO) sheets.
The following freeze drying and pyrolysis of the complex
precursor form varieties of magnetic particles depended on
the pyrolysis temperature. Compared with the existing
methods, pyrolyzing bimetallic precursor is able to achieve
a controllable McM@rGO hybrid by simply tuning the
annealing temperature. The relationships between their
MA performances and structure are systematically studied,
which provides a meaningful perspective for the compo-
nential and structural design of McM-hybridized graphene
toward high MA performances.

2 Experiment

2.1 Materials

GO was synthesized by a modified Hummers method [25].
Nitrilotriacetic acid, hydrazine hydrate, 1,1′-diacetylferrocen,
and nickel acetate tetrahydrate were purchased from
KeLong Chemistry Company. All the reagents involved in
the experiment are analytical reagent without any further
purification.

2.2 Synthesis of ferrocene hydrazone
condensates

A volume of 100mL of ethanol was mixed with 100mL of
deionized (DI) water, followed by the addition of nitrilo-
triacetic acid (3.9 g) and hydrazine hydrate (6mL). The
solution was heated to 85°C and stirred for 0.5 h. Then,
8.1 g of 1,1′-diacetylferrocen was added into the solution

together with 10mL of acetic acid. The mixture was main-
tained for another 2 h. The separated red precipitate was
filtered, washed with ethanol, and then dried at 60°C
under vacuum for 12 h to obtain the ferrocene hydrazone
condensates (Fc).

2.3 Synthesis of Fc–Ni derivatives

A total of 5.6 g of Fc and 5.6 g of nickel acetate tetra-
hydrate were added to N,N-dimethylformamide (150mL).
The mixture was heated to 160°C and kept stirring for 1 h.
The precipitate was filtered, washed with ethanol, and
then dried at 60°C under vacuum for 12 h to obtain the
brown Fc–Ni derivatives.

2.4 Synthesis of multi-componential
metal-hybridized rGO

The preparation of McM@rGO is diagrammatically illu-
strated in Figure S1. In brief, 100mg of GO was first dis-
solved in 100mL of DI water, and the mixture was mildly
sonicated (70W) for 0.5 h to obtain a GO dispersion
(1 mg/mL). A total of 180mg of Fc–Ni derivatives was
then added into 20 mL of GO dispersion, followed by
the demulsification for 3 min (2,000 rpm) using a demul-
sified machine. The suspensions were freeze-dried to get
the precursors and then annealed at different tempera-
tures for 2 h under the argon atmosphere. The final pro-
duct was referred to as McM@rGO.

2.5 Characterization

The SEM images were characterized by a field-emission
scanning electron microscope (JSM-7001F; JEOL). TEM
and high-resolution TEM (HR-TEM) were performed on
a transmission electron microscope (Zeiss Libra200). The
element distribution was discriminated by the energy-
dispersive spectrometer (EDS) mapping (Oxford 8118).
XRD patterns were obtained on an X-ray diffractometer
(D8 ADVANCE; Bruker) with a Cu Kα radiation (λ =
1.54056 Å). The composition of samples was character-
ized by the XPS (Escalab Xi+; Thermo Fisher Scientific).
Hysteresis loops were tested on a vibrating sample mag-
netometer (PPMS-9; Quantum Design). The electromag-
netic parameters of samples were measured using a
vector network analyzer (E5071C, Agilent) in the fre-
quency range of 2–18 GHz. The samples were mixed
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with wax with a ratio of 20 wt% and then pressed into
cyclic annular with an outer diameter of 7.0 mm and an
inner diameter of 3.04mm for further test.

3 Results and discussion

The annealing process of the precursors always involves
the reduction of graphene layers as well as the decom-
position of Fc–Ni. The structures of the obtained
McM@rGO are significantly dependent on the annealing
temperature. Thus, a series of McM@rGO annealed at
different temperatures are synthesized to recognize their
structural differences. These samples are recorded as
McM@rGO-x, where x refers to the annealing tempera-
tures. The morphologies of the synthesized McM@rGO
are first investigated by SEM as depicted in Figure 1.
At high temperature, the Fc–Ni attached on the surface
of GO decomposes into nanoparticles and annealing
temperatures remarkably influence the structures of
decomposed particles. It is clear that a higher annealing
temperature benefits the uniformity of particle size. But
the annealing temperature of 800°C results in submicron
particles as shown in Figure 1(c). We notice that an
appropriate annealing temperature is important for con-
trolling the particle size. At 600°C, decomposed nanopar-
ticles disperse on the graphene layers uniformly with a
size of about 10 nm.

As the annealing process may influence the decom-
position of precursors, the XRD patterns of McM@rGO
synthesized at different annealing temperatures are tested
to recognize their crystalline structures. As shown in
Figure 2, the McM@rGO-400 exhibits strong diffraction
peaks at 2θ = 30.1, 35.7, 43.1, 57.4, and 62.6°, attributing
to the (220), (311), (400), (511), and (440) planes of
NiFe2O4 [26] (Figure S2). Thus, the particles attached on
the surface of rGO are supposed to be NiFe2O4. But the

McM@rGO prepared at 600 and 800°C present different
peaks at 2θ = 44.2 and 51.8°, which indicates the genera-
tion of FeNi3 [27]. Besides, the (220), (511), and (440)
planes of Fe3O4, and the (012) plane of Fe2O3 are distin-
guished especially in McM@rGO-600, implying the for-
mation of iron oxides [28,29].

TEM characterizations are applied for further inves-
tigations of the nanoparticle-hybridized rGO. As shown in
Figure 3(a), NiFe2O4 densely aggregated on rGO. The par-
ticle size of this sample is in the range of 20–100 nm with
a wide size distribution. For the McM@rGO annealed at
800℃, the nanoparticles display a narrow size distribu-
tion in 40–50 nm. But the TEM image of McM@rGO-600
in Figure 3(b) reveals the uniform distribution of nano-
particles on the surfaces of graphene layers. The size of
these particles is about 10 nm, coinciding with the results
of SEM characterizations in Figure 1(b). The EDSmapping
in Figure S3 identifies the elementary composition of
nanoparticles, majorly involving Fe, Ni, and O. This result
is in accordance with the XPS as shown in Figure S4. The

Figure 1: SEM images of McM@rGO synthesized at different annealing temperatures: (a) McM@rGO-400, (b) McM@rGO-600, and
(c) McM@rGO-800.

Figure 2: XRD patterns of McM@rGO synthesized at different
annealing temperatures.
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HR-TEM images exhibited in Figure 3(d) clearly demon-
strates the multi-componential metals in McM@rGO-600.
The well-resolved lattice of 0.364 nm is attributed to the
interplanar spacing of (012) in Fe2O3 [30]. The particle is
surrounded by Fe3O4 and FeNi3 as recognized by the
marked lattices in the image [31,32]. Thus, the HR-TEM,
along with the aforementioned XRD patterns, proves con-
vincing proofs about the multi-componential sea-island
structure comprising the island-like Fe2O3 nanoparticle
as well as the sea-like Fe3O4 and FeNi3 alloy as illustrated
in Figure 3(e).

Therefore, the structural regulation of McM@rGO is
achieved by controlling the annealing temperatures.
Fc–Ni attached on the graphene fully transforms into
NiFe2O4 at a relatively low temperature of about 400℃.
But with increasing temperature, they are decomposed
into Fe2O3 nanoparticles with a size of several nan-
ometers. The precursors, meanwhile, are partly reduced
by graphene into Fe3O4 and FeNi3, forming a continuous
phase around the Fe2O3 particles. Thus, a coating con-
trasted by the multi-componential metals is achieved on
the rGO layer. With a higher annealing temperature, the
precursors are mostly transformed into FeNi3, resulting in
the significantly enhanced diffraction peaks as identified
in McM@rGO-800.

Considering the intrinsic ferromagnetism of NiFe2O4,
FeNi3 Fe3O4, and Fe2O3, the magnetic behaviors of
McM@rGO hybrids are measured by vibrating sample mag-
netometer (VSM) at room temperature. The hysteresis loops
of these samples are shown in Figure 4. Generally, satura-
tion magnetization and coercivity are regarded as the most
important parameters for a magnetic material [33]. As
shown in the inset, the magnified curves demonstrate the
ferromagnetic of all McM@rGO. Normally, the saturation
magnetic intensity is sequenced as follows: Fe3O4 [34],
FeNi3 [35], NiFe2O4 [36], and α-Fe2O3 [37]. The satura-
tion magnetization (Ms) of McM@rGO-400 is only
18.91 emu/g due to the relatively weak ferromagnetism
of NiFe2O4. But the Ms of McM@rGO-800 is much
larger than that of McM@rGO-600, perhaps due to
the increased ratio of FeNi3 to Fe3O4 as proved by the
structural characterization. We notice that McM@rGO-
600 possesses the largest remanent magnetization (Mr)
and coercivity (Hc) among these samples, which might
owe to its refined grains and good dispersion among all
samples [38]. Thus, the area enclosed by the hysteresis
loop, which represents the magnetic loss capability, is
thought to be higher for McM@rGO-600.

The cooperation between dielectric rGO and mag-
netic McM leads to the changes in complex permittivity

Figure 3: TEM characterizations of McM@rGO synthesized at different temperatures. TEM images of (a)McM@rGO-400, (b)McM@rGO-600,
(c)McM@rGO-800, and (d) HR-TEM image of McM@rGO-600. (e) The diagram of the sea-island structure comprised of McMs on the surface
of rGO.
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(εr = ε′ – jε′′) and permeability (μr = μ′ – jμ′′), which is
closely related to the MA [39–41]. To investigate the MA
performance of the McM@rGO hybrids, frequency-depen-
dent electromagnetic parameters are measured. The real
parts of permittivity (ε′) and permeability (μ′) represent
the storage ability of field energy, whereas the imaginary

parts of permittivity (ε″) and permeability (μ″) indicate
the dissipation capacity [42–45]. The complex permitti-
vities of these synthesized hybrids are given in Figure 5(a
and b). Both the real and imaginary parts decrease with
an increase in frequency, indicating a frequency disper-
sion behavior induced by the enhanced polarization lag-
ging in the high frequency [46,47]. The dielectric beha-
viors of McM@rGO majorly originate from the interfaces
between nanoparticles and graphene layers as well as the
polarization of residual functional groups [48]. Benefit-
ting from the uniform hybridization between sea-island-
like McM and rGO layers, McM@rGO-600 displays an
improvement in dielectric dissipation in the range of
9–14 GHz as described by dielectrical dissipation factors
(tan δε) in Figure 5(c). For the situation of complex per-
meabilities (Figure 5d and e), McM@rGO-400 presents a
comparable permeability but few abilities in magnetic
loss due to the lossless NiFe2O4 [49]. The magnetic loss
factor (tan δμ) in Figure 5(f) demonstrates a strong mag-
netic loss in the range of 11–14 GHz, especially for
McM@rGO-600. The relative low magnetic loss peak
for McM@rGO-800 might be due to the decreased con-
tents of Fe3O4 and Fe2O3 as proved by XRD patterns.

Reflection loss (RL) is an important index that
directly reflects the microwave absorption performance

Figure 4: Hysteresis loops of the McM@rGO synthesized at different
annealing temperatures. The inset provides an enlarged view of the
loops in the range of −300 to 300 OE.

Figure 5: Frequency-dependent electromagnetic parameters of McM@rGO synthesized at different annealing temperatures. (a) ε′, (b) ε″,
(c) tan δε, (d) μ′, (e) μ″, and (f) tan δμ.
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of materials. According to the transmission line theory,
the RL is calculated by the following equations (1) and
(2) [50,51].

Z Z
Z Z
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where d, f, and c are the thickness of absorber, frequency
of incident microwave, and velocity of light.

In Figure 6(a), McM@rGO-400 demonstrates a weak
RL peak, majorly owing to its poor magnetic loss. We
notice that the McM@rGO-600 holds a superior MA
ability even better than McM@rGO-800. The minimum
RL value is down to −40.3 dB at 11 GHz with the effective
absorption bandwidth (RL < −10 dB) of 4.55 GHz (from
9.25 to 13.8 GHz) at 2.7 mm. Moreover, the widest effective
absorption bandwidth is calculated to be 5.25 GHz with a
thickness of only 2.0 mm.

The superior MA performance of McM@rGO-600 is
closely related to the improved impedance matching and
increased dissipation. The impedance matching values

(|Zin/Z0|) of McM@rGO are derived from electromagnetic
parameters and shown in Figure 7. |Zin/Z0| illustrates
the proximity between the input impedance (Zin) of the
absorber and the impedance (Z0) of the free space. The

Figure 6: RL curves of McM@rGO at different thicknesses (1.5–5.0 mm) from 2.0 to 18.0 GHz: (a) McM@rGO-400, (b) McM@rGO-600, and
(c) McM@rGO-800.

Figure 7: The impedance matching of McM@rGO. |Zin/Z0| maps of (a) McM@rGO-400, (b) McM@rGO-600, and (c) McM@rGO-800.

Figure 8: The attenuation constant curves of McM@rGO.
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|Zin/Z0| value of hybrids is expected to be 1 to achieve the
maximum incident wave into the interior of the absorber
[52]. The blue area represents a good impedance matching
(0.8–1.2) as the other colors indicate a mismatching. Bene-
fitting from the matching between permittivity and per-
meability, McM@rGO-600 possesses the best impedance
matching as recognized by the maximum blue area in
Figure 7, profiting the incident of microwave for further
dissipation.

On the other hand, the attenuation value (α) is
used to evaluate the dissipation of incident wave in
absorbers [53,54]. The α values of samples are calcu-
lated using equation (3), and the results are shown
in Figure 8. The increased α, especially in the range
of 10–14 GHz for McM@rGO-600, originates from the
synergistic enhancements of dielectric and magnetic
loss. Moreover, the tiny but uniformly dispersed nano-
particles may also benefit to their MA performance
[55].

α
πf

c

μ ε μ ε μ ε μ ε μ ε μ ε

2

.2 2

=

× ( ″ ″ − ′ ′) + ( ″ ″ − ′ ′) + ( ′ ″ − ″ ′)

(3)

4 Conclusions

In conclusion, this work achieves the compositional and
structural regulations of McM-hybridized rGO by con-
trolling the decomposition and reduction of Fc–Ni pre-
cursors. The rGO hybridized by the sea-island-like Fe2O3/
Fe3O4/FeNi3 McM displays a good balance of dielectric
and magnetic constants, significantly improving the impe-
dance matching with free space. Therefore, a superior
MA performance is realized for the McM@rGO hybrids.
The minimum RL of the hybrids is as low as −40.3 dB at
11 GHz with the RL bandwidth of −10 dB being 4.55 GHz
(from 9.25 to 13.8 GHz), which seems to be an ideal can-
didate for high-performance EM wave absorption.
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