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Abstract: Recently, photocatalysis technology has been
widely considered as an effective method for solving envir-
onmental pollution issues and addressing the energy
crisis. Hybrids of layered double hydroxide (LDH) exhibit
excellent photocatalytic properties for use in the field of
wastewater treatment due to the large interlayer spaces,
chemical stability, and low cost. However, pristine LDH
suffers from numerous limitations, such as insufficient
visible light utilization and a high recombination rate of
electron—-hole pairs, resulting in degradation of photoca-
talytic performance. Recent advancements have demon-
strated that LDH-based hybrids are suitable nanocomposites
for photocatalytic applications when combining LDH
with other semiconductors. This article summarizes the
progress in the field of LDH-based ternary composites
with emphasis on the removal of organic pollutants and
heavy metal ions from aqueous media. Moreover, the
applications and synthesis of LDH-based ternary compo-
sites, including corresponding examples, are discussed.
In addition, the interaction mechanisms between photo-
catalysts and contaminants in water are comprehensively
explained. Finally, the review provides insights into the
challenges and prospects for the advancement of LDH-
based photocatalysts.
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1 Introduction

With the gradual progression in modern industrialization
and urbanization, water pollution has been attracting
global attention as a major environmental problem [1-6].
Thus, eco-friendly and sustainable technologies are urgently
required to deal with this issue. Photocatalysis takes advan-
tage of renewable solar energy to realize the degradation of
pollutants, such as heavy metals and organic compounds, in
water and has been widely regarded as the most appealing
solution [7-14]. Photocatalyst plays an important role in
solar light harvesting and energy conversion [15-18].

To date, considerable effort has been made in explor-
ing various visible-light-driven materials for photocatalytic
applications [19,20]. Among them, layered double hydro-
xides (LDHs) were recognized as high-efficiency photo-
catalysts for the degradation of pollutants under visible
light [21-26]. LDHs are a type of two-dimensional (2D)
material with a hydrotalcite crystal structure that consists
of positively charged metal hydroxide layers and interca-
lated anions. The general formula of LDH is described as
[Mg_0° " M> (OH), " (Ay/n)™-mH,0, where M** and M**
are the fraction of bivalent (Mg?*, Cu?**, Zn*, Mn?*) and
trivalent (AI**, Fe**, Ti**, Cr’*) cations, respectively, A™
represents the interlayer anions, and x represents the
molar ratio of trivalent cations to total cation content
[27-31]. LDHs have been extensively employed in adsor-
bents, photocatalysts, H,O splitting, and many other fields
on account of their unique features such as simple pre-
paration, chemical and physical stability, and adjustable
composition [32-36]. The most inherent LDH property is
exchangeable intercalation, which imparts high catalytic
efficiency [37,38]. Nevertheless, the photocatalytic activity
of pure LDHs is insufficient due to their low efficiency
in utilizing visible light and the rapid recombination of
electron—hole pairs [39,40]. As a result, the hybridization
of LDHs with various functional groups has been devel-
oped to overcome these limitations. This is important
because an LDH-based material not only achieves quick
separation of charge carriers but also improves solar light
absorption [41-43]. Hence, various attempts, including
doping with extraneous elements, modifying surface
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morphology, and constructing heterojunctions, have been
suggested to improve the poor photocatalytic character-
istics of these materials [44—-48]. Constructing a hetero-
structure composite system can accelerate charge transfer,
while creating redox reaction sites, and has emerged as an
effective strategy for improving the photocatalytic activity
of composites used in environmental remediation [49-52].
The hybrid nanocomposites of LDH with other semicon-
ductors, specifically LDH-based ternary nanomaterials,
have invoked extensive research [53,54]. For instance,
Nayak and Parida [55] developed Ag@AgsPO,/g-CsN,/
NiFe-LDH ternary photocatalysts that exhibit great poten-
tial for photocatalytic activity compared to binary semi-
conductor materials. Furthermore, Mureseanu et al. [56]
synthesized g-C3N,/LDH/CuONP hybrid nanocomposites
that significantly enhance visible-light photocatalytic
activity due to the suppression of charge recombination
and improvement of interfacial contact. However, review
articles on the synthesis and applications of LDH-based
ternary photocatalysts are seldom published.

In this article, recent research into LDH-based ternary
nanocomposites and their potential applications in
wastewater treatment is discussed. To the best of our
knowledge, this is the first review of the research devel-
opments in the field of LDH-based ternary photocatalytic
composites. Finally, some stimulating viewpoints on the
current situation and prospects are proposed, which may
further improve the understanding and extensive appli-
cation of LDH-based ternary nanocomposites.

2 Properties and synthesis of LDHs

2.1 Properties of LDHs

LDHs are a type of layered 2D nanostructure, known as
hydrotalcite, which is composed of positively charged
laminates and negatively charged interlayer anions
[57-60], as shown in Figure 1. The surface area of LDHs
ranges from 20 to 120 m”>g”!, providing abundant active
sites and excellent photocatalytic performance. More-
over, the absorption capacity of LDHs is significantly
improved by heating to 400-600°C [61-64]. The layered
crystalline structure of LDHs makes these materials a
suitable photocatalyst for combination with other semi-
conductors. Besides, due to their structure and surface
properties, LDHs have been considered as potential absor-
bent materials for the removal of aqueous pollutants
[65-67]. LDHs also provide abundant sites for chemical
reactions as heterogeneous solid-base catalysts. LDHs
possess many excellent features, such as high chemical
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Figure 1: Structure of an LDH. Reproduced with permission from
ref. [50]; copyright (2018), Elsevier.

stability, distribution of metal cations, biocompatibility,
and exchangeable interlayer anions, which are broadly
considered as characteristics of remarkable photocata-
lysts [68,69]. Among them, a significant characteristic
of LDH is the exchangeability of interlayer anions, which
enables anions to insert into the lamellar spaces of LDHs
during synthesis or anionic exchange [70-75]. Moreover,
the cationic interlayer structure can accommodate var-
ious kinds of anions. The positions of active sites are
adjustable due to the use of selected metal cations and
interlayer anions. LDHs are beneficial to harvesting visible
light by controlling the metal cation. Furthermore, based
on their anionic-exchange ability, LDHs are widely applied
in wastewater treatment. Another important merit is the
“memory effect” that can restore the original LDH struc-
ture and assist with exchanging the inorganic anions
after the adsorption of various anions [76—80]. These
special features of LDH materials allow them to exhibit
a superior adsorption ability toward organic pollutants.
Therefore, in light of these characteristics, the adjustable
structure and constitution of LDHs make them potentially
excellent photocatalytic materials [81]. Nevertheless, the
removal capacity of pristine LDHs is immensely limited
because of the low number of functional groups. LDH-
based nanocomposites are synthesized via combining
LDHs with other materials such as carbon nanomaterials,
polymers, and surfactants. The nanocomposites possess
improved surface area and better adsorption performance
by harnessing the performance contributions of different
materials compared to pure LDH [62,82,83]. Hence,
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researchers have constantly been developing diversified
modification strategies in order to make high-performance
LDH nanocomposites for applications in multiple fields.

2.2 Synthesis of LDHs

The different synthetic method and design will impact the
structure and chemical properties of LDHs. For example,
Sahu et al. [84] successfully synthesized ZnAlTi LDHs by
a simple co-precipitation method using varying Zn:Al:Ti
atomic ratios as a precursor. The LDHs are prepared by
blending metal cations with nanomaterials in alkaline
solution. In detail, a mixed solution of Zn(NO;),-6H,0,
AI(NOs)3-9H,0, and TiCl, was added into stirred solution
of Na,COs, and retained the pH of solution at 10. Then,
the resultant mixture was aged at room temperature for
18 h, collected by centrifugation, washed with distilled
water and ethanol several times, and dried at 90°C in
an air oven. Rahmanian et al. [85] reported that a novel
adsorbent of Ni/Al-LDH was synthesized by a solvothermal
method via the precipitation of metal nitrates. In a typical
procedure, a salt solution containing Al(NO3);-9H,0 and Ni
(NO3),6H,0 was dispersed in the solution of Na,COs; by
ultrasonication for 30 min. Subsequently, NaOH solution
(0.2M) was added into the aforementioned mixture and
stirred for 2h to maintain the pH value of the solution at
10. Finally, the homogenous suspension was transferred
into Teflon-lined stainless steel autoclaves and heated at
150°C for 8 h. Moreover, Abazari et al. [86] developed an
NiTi-LDH through an optimized hydrothermal method. In
their experiments, aqueous solution of metal salts (Ni
(NO3),-6H,0, titanium(v) chloride, and NH,F with the molar
ratio of 2:1:3) was added in 50 mL of deionized water. Simul-
taneously, a solution of NaOH was dissolved to maintain
the pH of the mixed solution at 5. The obtained mixture was
stirred to ensure homogeneity of the reactants, then trans-
ferred to a Teflon-lined autoclave and heated for 48 h at
130°C. The final product was centrifuged and washed with
ethanol and deionized water. The other methods such as
anion-exchange, microwave, and calcination also are the
frequently common and successful strategy to prepare LDH
nanomaterials.

2.3 Mechanism of LDH as a photocatalysis

Photocatalyst is a potential material for environmental
purification by utilizing solar energy to generate chemical
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energy. The electrons and holes are shifted to the surface
of the photocatalytic materials under solar energy, which
produce active species for redox reactions to remove
pollutants [87-90]. Figure 2 obviously describes the
mechanism of the photocatalyst [91]. While the ultraviolet
(UV) light irradiation contacts with LDH photocatalyst, the
electrons are activated to generate holes in the valence
band. The charge was separated and transferred to the
surface of the photocatalyst which produces hole charge
carriers for the degradation of the pollution.

The photocatalytic performance of the LDHs is greatly
hinge on the abundant active sites, specific surface area,
and unique morphology. In addition, the narrow band gap
of LDHs improved the activity of visible light absorption,
making it effectively remove the contaminants in aqueous
solution [92-94].

2.4 Construction of LDH-based ternary
nanocomposites

2.4.1 Precipitation method

Precipitation process is the formation of a solid precipita-
tion from a homogeneous solution in the presence of
precipitating agent, which is also the most common
approach for constructing LDH-based ternary nanocom-
posites. This method is employed widely for synthesizing
composites on account of controllable reaction condi-
tions, the effortless operation, and well-proportioned
products [95-97].
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Figure 2: The fundamental mechanism of photocatalysis.

Reproduced with permission from ref. [80]; copyright (2017),
Elsevier.
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For instance, a salt solution containing Zn(NOs),-6H,0
and Al(NOs)3-9H,0 was ultrasonically added into a sui-
table quantity of the prepared NiFe,O, to obtain a uni-
form suspension [98]. Subsequently, a mixed solution of
NaOH and Na,EDTA was dispersed to maintain the pH
at 10. The resulting mixture was aged for 8 h, followed
by washing with ethyl alcohol and deionized water.
Furthermore, Kandi et al. [99] reported BiVO,/CdS/MgAl-
LDH hybrid for the degradation of pollutant and water
splitting under UV light irradiation. In their experiments,
BiVO, was dispersed into mixed solution of Cd(NOs),-2H,0
and thioglycolic acid (the molar ratio of 2:1). NaOH and
Na,S were added to the solution, which retained the pH at
10.5, and were stirred for 30 min at 65°C. The final pro-
duct was washed with distilled water and dried in an
oven for 24 h. Besides, Mureseanu et al. [56] synthesized
g-C53N,/CuONP/LDH composite, which showed excellent
photocatalytic ability for phenol reduction from aqueous
solutions. Beyki et al. [100] developed MgAl@CaFe,0,—
poly o-phenylenediamine nanohybrid for effective removal
of lead(m), chromium(m), and anionic azo dye (Figure 3).
Sahoo et al. [101] synthesized a Z-scheme dictated WO5_,/
Ag/ZnCr LDH for the degradation of tetracycline (TC) and
H, evolution.

2.4.2 Hydrothermal method

Hydrothermal method is the most simple and cost-effec-
tive technique to fabricate ternary nanocomposites that
are of high purity. This method makes it easy to obtain
well-crystallized product via adjusting the reaction con-
ditions. The resulting LDH-based products can obtain an
adequate reaction and good morphology in a hydro-
thermal system under high temperature and pressure
[102-104].

For instance, a novel CoAl-LDH/g-C5N,/RGO ternary
heterojunction was synthesized as follows: a certain
amount of the obtained CN and GO powders was dis-
solved in 160 mL of aqueous solution and stirred for
10 min [105]. Co(NOs),-6H,0 (0.006 M) and Al(NOs)3-9H,0
(0.002M) were dispersed into the aforementioned sus-
pension under constant ultrasonic agitation for 30 min.
After that, urea (0.05 M) and NH,F (0.016 M) were added
to the aforementioned solution and stirred for 30 min.
The hydrothermal reaction was carried out in a 200 mL
Teflon-lined stainless-steel autoclave and heated at 120°C
for 24 h. The final product was washed with deionized
water several times and dried at 60°C. The schematic
diagram for the synthesis of the ternary composites is
shown in Figure 4. Bhuvaneswari et al. [106] constructed
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Figure 3: Schematic illustration of MgAl@CaFe,0,—poly o-phenyle-
nediamine composite fabrication. Reproduced with permission from
ref. [89]; copyright (2016), Elsevier.

a r-GO/LDH/g-C3N, nanocomposite to efficiently remove
organic dry pollutants under visible light. In brief, a cer-
tain amount of g-C3N, and r-GO was dispersed in 40 mL
of deionized water, which was ultrasonicated for 15 min.
A 0.5M of MgCl,-6H,0 and AI(NOs);-9H,0 were added to
the aforementioned suspension. Subsequently, urea and
NaOH were added into the mixed solution, then ultra-
sonicated for 15min. Finally, the obtained suspension
was moved to a 100 mL autoclave and heated at 180°C
for 5h in an oven. Furthermore, Bing et al. [107] reported
that Bi,05/Bi,W0s/MgAl-CLDH hybrids showed enhanced
adsorption and catalytic performance toward Congo red
and doxycycline degradation under solar light. In this
process, the Bi,05/Bi2WO4/MgAl-CLDH composite was
synthesized by using 2.4 mmol Bi(NOs);-5H,0, 1 mmol
Na,W0,-2H,0, and 0.3g MgAl-LDH, which were sus-
pended in 20 mL of ethylene glycol via ultrasonic treat-
ment for 10 min. After that, the mixture was transferred
into a stainless-steel autoclave and heated at 160°C for
6 h. The final product was obtained and washed with
deionized water.

2.4.3 Solvothermal method

The solvothermal technique is based on the hydrothermal
method, and the synthesis condition use organic solvents
as reaction media instead of water. This approach can
facilitate the stability of the products and the dispersity
of precursors by using organic solvent during chemical reac-
tions [108,109]. The low-boiling point of organic solvents
is beneficial to product crystallization under high pres-
sure. Hence, solvothermal method was widely employed
for constructing LDH-based ternary nanocomposites in
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many research. Liu et al. [110] synthesized a novel TiO,/
BiOCl/ZnCr-LDH composite for visible-light photocata-
lytic degradation of Rhodamine B via a facile solvothermal
process. In this synthesis process, a certain amount of
tetrabutyl titanate was treated with 50 mL of ethanol to
form the suspension by mechanical agitation. A 0.2g of
BiOCl/ZnCr-LDH was dissolved into the aforementioned
solution through ultrasonic treatment for 30 min. The
resulting product was obtained from a 50 mL Teflon-sealed
autoclave at a temperature of 150°C for 20 h. The study
demonstrates that this strategy is simple, effective, and
economical for the synthesis of nano-catalysis materials.

3 Application of pollutant removal
3.1 Organic dyes

In recent years, the pollution of organic dyes has received
wide attention with the rapid development of industria-
lization. However, it is difficult to remove with traditional
techniques due to high stability of many organic dyes in
aqueous solution [111,112]. The photocatalytic technique
is extensively investigated to apply for the degradation of
organic dyes [113-115]. Particularly, LDH-based ternary
composites can greatly improve the photocatalytic activity,
which are widely used for environmental applications.
Herein, the application and performance of LDH-based
ternary nanocomposites are discussed and reviewed.
Zhou et al. [116] prepared Pd(i)/Bi,0s/MgAl-LDH by
the impregnation technique and calcined reconstruction,
which revealed excellent photocatalytic ability for decom-
position of MB under visible-light irradiation. The BET
surface area of Pd()/Bi,03/MgAIl-LDH ternary composites
is 48.4m”g™", which is analyzed by a BET instrument.
The photocatalysis of high crystallinity and hierarchical

structure was observed from scanning electron micro-
scopy (SEM) and transmission electron microscopy (TEM)
images. Besides, the result of UV-vis diffuse reflectance
spectroscopy (DRS) showed that Pd(i1)/Bi,0s/LDH possess
a broad absorption in the visible light region because of a
low band gap of 2.19 eV. The chemical composition of the
samples was detected by energy dispersive X-ray analysis
and inductively coupled plasma-atomic emission spectro-
metry. Figure 4(d) indicates that Pd was doped in Bi,Os/
LDH. Cycling experiments of Pd(ir)/Bi,Os/LDH photocata-
lyst were executed to measure the stability. After four suc-
cessive cycles, the photocatalytic activity still remains
stable, indicating its enormous potential application as
photocatalysis.

The construction of a novel BiVO,/CdS/MgAl-LDH
with visible light-driven photocatalysis was achieved
and applied to degrade methyl orange (MO) and TC
[99]. The BiV0,/CdS/MgAl-LDH photocatalyst degrades
92 and 51% of TC and MO in 60 min, respectively. The
UV-vis DRS is used to evaluate the optical absorption
value of composites. The Z-scheme photocatalysts gener-
ated a good deal of O, and H, under UV light irradiation.
The result of experiment demonstrated that the syner-
gistic effect of BiVO,, CdS, and LDH can effectively enhance
the photocatalytic performance.

Bing et al. [107] employed efficient hydrothermal
method for the fabrication of heterojunction Bi,05/Bi,WOg4/
MgAI-CLDH nanocomposite (Figure 5). SEM, TEM, and high-
resolution transmission electron microscopy (HRTEM)
analyses were employed to investigate the microstructure
and morphology of Bi,03/Bi,W0¢/MgAl-CLDH. It is found
that the synthesized nanocomposites were made up of
MgAl-LDH, Bi,WOs, and Bi,03, which strongly proves the
formation of heterojunctions. Compared with pure Bi,Os
and Bi,WOg, the PL intensity of Bi,05/Bi,W04s/MgAl-CLDH
displayed the weakest peaks, indicating that the recombi-
nation rate of electron-hole pairs is the slowest. The
ternary heterojunction exhibited enhanced photocatalytic
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Figure 5: The synthesis process of Bi,0s/Bi,W04/MgAl-CLDH. Reproduced with permission from ref. [96]; copyright (2018), Elsevier.

activity on account of the high separation efficiencies of
charge carriers, hierarchically porous structure, and synergic
interaction of adsorption and photocatalysis. A total of
71.43% Congo red and 82.85% doxycycline were removed
within 60 min under sunlight irradiation, respectively.

More recently, Tonda and Jo [117] studied a novel Ag/
LDH/g-C3N, nanocomposite with Ag nanoparticles deco-
rated NiAl-LDH/graphitic carbon nitride that enhanced
the photocatalytic performance for the degradation of
aqueous Rhodamine B and 4-chlorophenol. The SEM,
TEM, and HRTEM images showed that spherical Ag NPs
are uniformly distributed on the surface of LDH/CN and
the size of the Ag NPs was in the range of 10-20 nm
(Figure 6). Combining with the data of XPS measure-
ments, it is observed that Ag/LDH/g-C5N, is composed
of Ag, LDH, and CN. UV-vis DRS curves of all the photo-
catalysts display that Ag/LDH/CN nanocomposites have
broader light absorption than pure LDH and CN. The
improved photocatalytic activity was likely ascribed to
rapid charge transfer, surface plasmon resonance, and
unique structure. The high structural stability of Ag/LDH/
g-C3N, nanocomposites ensured no significant change in
degradation activity after successive experimental runs.

Jo et al. [118] reported that a Cu/TiO,/LDH photo-
catalyst exhibited remarkable performance for the degra-
dation of MO under visible light irradiation (Figure 7). The
analysis result of UV-vis diffuse reflectance spectral dis-
played that visible-light absorption is further extended
by doping Cu on TiO,/LDH composites. The morphology
observation and microstructure of Cu/TiO,/LDH compo-
sites showed that the TiO, nanoparticles were uniformly
decorated on the flower-like LDH microspheres by SEM

Figure 6: (a, ¢, and e) SEM and (b, d, and f) TEM images of CN, LDH,
and the ALDHCN-15 samples, respectively. (g and h) High-resolution
TEM images of the ALDHCN-15 nanocomposite. Reproduced with
permission from ref. [106]; copyright (2018), Elsevier.
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and TEM analyses. In addition, the pore diameter and
BET surface area of the composite were higher than those
of the single LDH and TiO, samples. The Cu/TiO,/LDH
composite (30 wt% of Cu/TiO, on P-CN) displayed the
optimal photocatalytic activity and highest stability among
the synthesized photocatalysts.

Li et al. [119] successfully synthesized a novel Ag@TiON/
CoAl-LDH photocatalyst with catalytic memory activity
through a dark deposition method. The absorption edge
of composite material was shifted into the visible light
area via the introduction of Ag nanoparticles and LDH
nanosheet, which effectively improved the efficiency of
light absorption and charge separation. The Ag@TiON/
CoAl-LDH nanocomposite showed higher photocatalytic
ability than pure TiON and CoAl-LDH for the degradation
of MO and the removal efficiency reaches 94%. A possible
mechanism for the photocatalytic reaction is shown in
Figure 8.

In a research, Liu et al. [110] reported that a novel
TiO,/BiOCl/ZnCr-LDH composite was synthesized via a
facile solvothermal method for photocatalytic decoloriza-
tion of Rhodamine B. The SEM and TEM images of the
TiO,/BiOCl/ZnCr-LDH heterostructure showed that the
BiOCl nanosheets and TiO, nanoparticles were deposited

sequentially on the surfaces of ZnCr-LDH material
(Figure 9). The co-catalyst can generate synergistic effect
to enhance the photocatalytic properties by depositing
BiOCl and TiO, on the surface of ZnCr-LDH. Furthermore,
the stability of composite materials is still maintained at a
high level for at least three cycles.

Jo et al. [105] evaluated a novel LDH/CN/RGO ternary
heterojunction photocatalysis with a 2D/2D/2D config-
uration for elimination of aqueous Congo red under
visible light irradiation. UV-vis DRS studies revealed
that LDH/CN/RGO conducts a clear red shift compared
with binary materials, which possess a significant light
absorption capacity. TEM and HRTEM images show that
several LDH nanoflakes are freely distributed on the sur-
face of CN and RGO (Figure 10a and b). The results of
elemental mappings further verified the intimate interfa-
cial contact of CN, LDH, and RGO (Figure 10c-h). The
LDH/CN/RGO ternary heterojunctions exhibited enhanced
photocatalytic property and good stahility through the
large intimate interfacial contact among constituent CN,
LDH, and RGO, which effectively prevents the recombina-
tion of the photoinduced electron—hole pairs.

Recently, Bhuvaneswari et al. [106] reported that a
reduced graphene oxide supported g-Cs;N,/NiMgAl-LDH
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composite system was synthesized by using the hydro-
thermal process. The degradation efficiency of the r-GO/
g-C3N,/LDH hybrid was evaluated under visible-light
irradiation, and it shows excellent photocatalytic activity

and good reusability. The introduction of r-GO and
g-C3N, improves the charge carrier separation efficiency,
which remarkably enhanced the degradation performance
of organic dye. The enhanced photocatalytic activity is

Figure 9: SEM images of (a) pure BiOCl and (b) BiOCIl-ZnCr-Ex and TEM images of (c) ZnCr-Ex, (d) BiOCIl-ZnCr-Ex, (e) pure TiO,, and
(f) TiO,-BiOCI-ZnCr-Ex-4. Reproduced with permission from ref. [99]; copyright (2017), Elsevier.
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Figure 10: TEM (a) and HRTEM (b) images of the LCR-15 photocatalyst. EDS elemental mappings of constituent elements in the LCR-15
photocatalyst (c—h). Reproduced with permission from ref. [94]; copyright (2019), Elsevier.

likely attributed to the synergistic effect of rapid charge
transfer and inhibition of electron-hole recombination.
Figure 11 exhibits the photocatalytic reaction mechanism
of MB dye degradation.

3.2 Heavy metal ions

The pollution of heavy metals from industrial discharge
has resulted in a serious threat to human health and life
on account of high toxicity and degradation resistance,
which has widely aroused the public concern [120]. Var-
ious approaches have been developed for eliminating
heavy metals from wastewater. Among various methods,
considerable attention has been paid to the photocatalytic
reduction method because of excellent properties such as
high efficiency and no secondary pollution. Herein, some

literature about the LDH-based ternary composites for the
removal of metal ions is summarized.

Nayak and Parida [55] reported that a new hetero-
structure Ag@Ag;P0,/g-CsN,/NiFe-LDH photocatalyst was
synthesized through an electrostatic self-assembly and in
situ photoreduction method (Figure 12). The combination
of AgsPO, as a p-type semiconductor and the surface
plasmon resonance effect of metallic Ag NPs on g-C3N,/
NiFeLDH could greatly enhance the photocatalytic effi-
ciency for Cr(vi) reduction under visible light. The mor-
phology and microstructure of the resulting compound
are observed by TEM and HRTEM analyses, which revealed
a unique spherical Ag NP and AgsPO, inset into the
g-C5N,/NiFe-LDH hybrid materials. The surface chemical
composition of the nanocomposites is analyzed by the
X-ray photoelectron spectroscopy (XPS), further confirming
the formation of ternary heterostructures. The photocatalytic
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Figure 11: Schematic image of possible photocatalytic reaction mechanism of MB dye degradation. Reproduced with permission from

ref. [95]; copyright (2020), Elsevier.
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Figure 12: Synthetic steps of the heterostructure Ag@Ag;P0,/g-C3N,/NiFe-LDH nanocomposite. Reproduced with permission from ref. [45];

copyright (2018), American Chemical Society.

activity of Ag@AgsP0,/g-C5N,/NiFe-LDH heterojunction
showed a photocatalytic Cr(vi) reduction rate of 97% for 2 h.

Das et al. [121] successfully developed a novel mag-
netically separable Au-loaded CaFe,0,/CoAl-LDH hetero-
structure through sol-gel and borohydrate reduction

method. The TEM image of the Au/CaFe,0,/CoAl-LDH
heterostructure confirmed that the Au nanoparticles are
attached into CaFe,0,/CoAlLDH heterostructures. The
results of inverted V-shaped M-S plot revealed the exis-
tence of an innermost contact interface between CaFe,0,
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and CoAl-LDH, which improves the efficiency of separa-
tion and transfer of charge pairs. The Au@CoAl-LDH/
CaFe,0, ternary heterostructure exhibited an excellent
Cr(vi) removal rate under visible light irradiation and
high stability during repetitive experiment. The superior
photocatalytic performance of the obtained nanocompo-
sites was attributable to the surface plasmon effect and
formation of a p—n junction by increasing the contact
area.

3.3 Antibiotics and pesticides

Environmental pollution, especially pesticide and anti-
biotics, has attracted much attention owing to an enor-
mous threat to human health, which is one of the most
urgent ecological problems to be solved [122-125]. There-
fore, it is imperative to remove pesticides and antibiotics
in the aqueous solution.

Sahoo et al. [101] reported that a novel Z-scheme
WOs;_,/Ag/ZnCr-LDH photocatalyst was prepared through
coupling with Ag nanoparticle, nonstoichiometric WO5,
and ZnCr-LDH nanosheet. The photocatalytic efficiency
of the resulting compound was estimated under visible
light irradiation. The results of BET show that WO5_,/Ag/
ZnCr-LDH ternary nanomaterials possess larger specific
surface area than the pure LDH and WO5_, materials,
which can provide abundant reaction sites for improved
photocatalytic performance. The WO5_,/Ag/ZnCr-LDH
ternary heterostructure displayed excellent performance
of TC degradation, which was attributed to the rapid
separation efficiency of charge carriers through the Z-
scheme system. Furthermore, the oxygen deficiency of
WO5_, further enhanced the catalytic ability of compo-
sites by restraining the recombination of photoexcited
electron-hole pairs.

Ni et al. [42] successfully developed a NiAl-LDH/
Fe;0,/RGO composite for the degradation of ciproflox-
acin (CIP) under visible light irradiation. The results of
SEM and TEM revealed that NiAl-LDH nanosheet and
Fes0, nanoparticles sized around 15 nm were uniformly
distributed on the surface of RGO sheets. The XPS spectra
of the as-prepared nanocomposites were used to analyze
the surface chemical and valence states, which further
demonstrated the formation of heterojunction. Besides,
it was found that the degradation effectiveness of the
NiAl-LDH/Fes0,/RGO was 1.5 and 3 times more than
that of NiAl-LDH/RGO and NiAl-LDH, respectively. The
addition of RGO and Fe30, greatly improves the migra-
tion rate of charge carriers and the absorption of visible
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light for the degradation of CIP from aqueous solution.
Meanwhile, the NiAl-LDH/Fe;0,/RGO photocatalyst pro-
vided more active species, which played critical roles in
the degradation of CIP.

Fe;0,/Cs,WO3/NiAl-LDH composites were fabricated
through a hydrothermal method for the degradation of
2,4-dichlorophenoxyacetic acid, which can almost com-
pletely remove 2,4-dichlorophenoxyacetic acid in 180 min.
In addition, the high reusability and stability of the
photocatalysts can still be maintained after four circula-
tion runs [126]. The mechanism of improved peroxymono-
sulfate (PMS) activation with Fe;0,-Cs,WO5/NiAl-LDH
heterojunction is demonstrated in Figure 13.

The aforementioned illustration summarized appli-
cations of LDH-based ternary nanocomposite as a photo-
catalyst for the removal of contaminants in water. In this
review, the photocatalyst systems of LDH-based ternary
will provide basic insights and helpful instruction for the
diversified applications.

4 Conclusion and perspectives

In this review, recent development on the manufacture
and applications of LDH-based ternary photocatalyst for
the degradation of organic dyes, heavy metal ion, anti-
biotics, and pesticides has been summarized. Different
preparation approaches such as simple precipitation
method, hydrothermal method, and solvothermal method
have been applied to construct the LDH-based ternary
heterojunction. The formation of LDH-based ternary com-
posite significantly enhanced photocatalytic performance,
which is ascribed to large specific surface area, wide

Figure 13: Schematic diagram of the photocatalytic process occur-
ring on the surface of Fe;0,—Cs,WO5/NiAl-LDH composites.
Reproduced with permission from ref. [115]; copyright (2018),
American Chemical Society.
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spectral response, abundant reaction sites, excellent elec-

tron conductivity, and inhibition of electron—-hole recom-

bination. To date, despite significant improvement in

LDH-based ternary photocatalyst, there are many matters

and challenges to be explained for further optimizing

the property of material and photocatalytic reaction
mechanism. Therefore, the following points may be
taken into consideration:

1. At present, LDH-based ternary composites mainly aim
at photocatalytic degradation of organic pollutant
and heavy metal in aqueous solution. The researchers
should focus on the application for photocatalytic
water splitting, CO, reduction, and nitrogen fixation.

2. Explore the reaction mechanism of reactants and the
LDH-based ternary photocatalysts. The reaction con-
ditions should be further optimized in different
applications.

3. LDH-based ternary hybrids are only researched for the
removal of single pollutant. Hence, testing the perfor-
mance of nanocomposite in multi-pollutant system is
recommended.

4. The hazard assessment and cost effectiveness of LDH-
based ternary photocatalysts should be considered in
the synthesis of nanomaterials.
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