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Abstract: As memristor-simulating synaptic devices
have become available in recent years, the optimiza-
tion on non-linearity degree (NL, related to adjacent
conductance values) is unignorable in the promotion of
the learning accuracy of systems. Importantly, based on
the theoretical support of the Mott theory and the three
partial differential equations, and the model of conduc-
tive filaments (CFs), we analyzed and summarized the
optimization schemes on the physical structure and the
extra stimulus signal from the internal factor and exter-
nal influence, two aspects, respectively. It is worth not-
ing that we divided the extra stimulus signals into two
categories, the combined pulse signal and the feedback
pulse signal. The former has an internal logical optimized
phenomenon, and the composition of only two parts in
each cycle leads to a simple peripheral circuit. The latter
can obtain an almost linear NL curve in software stimu-
lation because of its feature in real-time adjustment of
signals, but it is complex in hardware implementation.
In consideration of space and energy consumption,
achieving memristor with different resistive switching
(RS) layers can be another optimization scheme. Special
attention should be paid to the weaker NL, which could
improve learning accuracy at the system level only when
the value of other non-ideal properties such as the on/off
ratio is within a certain range.
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1 Introduction

The memristor is widely viewed as a potential device in
neuromorphic systems as its analog resistive switching
(RS) process is suitable to simulate the weight update
of a biological synapse (bio-synapse), after showing its
developing advantage in recognizing the digital state of
storage [1-4] and analog states of computational fields
[5-10]. Nearly a decade of research has reinforced the
realizability of memristors in this application area. In
these neural morphic applications, the memristor needs
to exhibit an analog RS behavior (having multi-resistance
states) rather than binary resistance states, and some of
its non-ideal properties lead to a negative influence on
the learning accuracy of the neuromorphic system [11-13].
The focus of this review is on the performance optimiza-
tion of a memristor, and the optimization object is the
non-ideal characteristic of the conductance modulation
of the memristor. The key sections of the review are Sec-
tions 2 and 3, which discuss the theory and mechanism
of supporting the optimization object and the feasible
schemes from the external conditions to achieve optimi-
zation, respectively.

To make a clear comparison between the memris-
tor and the bio-synapse, a model diagram of these two
concepts is shown in Figure 1. The weight update of the
bio-synapse is the basis for transmitting and processing
information [14-16], and the continuous conductivity
state switching of memristors can mimic this function of a
bio-synapse by enabling the distribution of multiple con-
ductance states [17-21]. So a common concept, non-line-
arity (NL for short) of the state distribution, becomes the
key point. Within this article, all of the non-linear terms
we are talking about refer to NL in conductance modula-
tion of a memristor, also known as the NL in the weight
update of a synaptic device. A memristor with an ideal NL
(=0) can simplify the weight update process and hardware
circuit, and improve the learning accuracy [22] in a neu-
romorphic system. The most intuitive expression of the
device with a higher NL (close to 1) is the phenomenon of
two stages in conductance modulation curves [23-28], and
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Figure 1: Comparison between the bio-synapses and the artificial synapses (memristors).

a detailed explanation of NL is given in the second part of
this article.

Metal oxide memristors usually have a typical metal-
insulator-metal (MIM) structure, and its insulator layer
(also known as the RS layer) is made by binary metal
oxides (e.g. TiO, [28-31], WO, [32, 33], TaO, [34-42], HfO,
[43-47], etc.), perovskite metal oxides [48, 49], chalco-
genes [50, 51], and others. Although the RS mechanism
of a memristor does not have a unified conclusion so far,
the conductive filament (CF) model based on ion/vacan-
cies migration in many research conclusions can give
a good degree of coverage of the corresponding experi-
mental data. For example, Shigeoka et al. [52] showed
the work on a memristor based on Ta O, by using the CF
model. Bousoulas et al. [53] demonstrated its research on
Ti/TiO, -based memory devices based on the CF mech-
anism. Qu et al. [33] demonstrated the reason for the
existence of CFs using the experimental results of a WO -
based memristor. In addition, migration of ions/vacan-
cies in the RS layer is thought to be associated with NL [5,
37-39, 54, 55], and further calculations of particle migra-
tion provide theoretical support using the Mott theory
and the finite element method (FEM) [56-58]. The Mott
theory was the cornerstone of research related to parti-
cle migration. The FEM uses the mathematical method
to simulate the real physical system and is used as the
model basis for the internal state analysis of memristors.
Kim et al. [59-63] used this model in a series of research
related to memristors in recent years. Based on these the-
ories, scientists focused much of their attention on the
optimization scheme of NL based on the ion transport of
an RS material, such as doping and the multi RS layer
[64, 65].

For other optimization schemes of NL, using smarter
stimulus signals are suggested, which looks for a series
of signals that balances the device between NL and fea-
sibility. In this review, Section 2 is about NL optimization
in a simple one-dimensional (1D) rigid point ion model

proposed by Mott and Gurney [66], which results in a
self-consistent solution of three partial differential equa-
tions (PDEs). Two kinds of NL optimization schemes, the
smarter stimulus signal and the multi RS layer, are stated
in Sections 3 and 4, respectively. In Section 5, we summa-
rize the optimization schemes, from the four aspects of NL
optimization, feasibility, novelty degree, and consump-
tion. In Section 6, we summarize the direct and indirect
effects of NL change on learning accuracy in a neuromor-
phic system.

2 Causes of the two-stage
phenomenon

2.1 The two-stage phenomenon

The I-V curve cluster is the most common form of graphic
used in characterizing a multi-state modulation of a mem-
ristor, which is taken by applying voltage sweeps with a
certain value of the termination voltage (Vsmp) or a certain
value of the complaint current (ICC). The I-V curves are the
basic characterization method in the field of memristor
research. At the same time, in order to study the analog
RS behavior of the memristor, especially its linearity of
the conductance modulation, the characteristic curve that
indicates the conductance to change with the increase
in the external stimulus loading time becomes the main
means, as shown in Figure 2.

Figure 2A shows the corresponding experimental
results of the I-V relationship based on the TE/HfO /AlO /BE
memristor device, by Kim et al. [59]. In order to obtain more
intuitive expression of conductance distribution, the con-
ductance-cycle number (or time) curves are necessary.
A high-degree fitting results of the experiment is introduced
here to prove the phenomenon of segmentation (Figure 2C),
by Wang et al. [67], by applying a pulse sequence with a
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Figure 2: Multi-level RS behavior and the two-stage phenomenon in conductance modulation in the memristor. (A) Mult-ilevel resistive
switching properties of the Pd/WO,/W device obtained by applying DC sweeps. The number in this figure indicates the sweep sequence.
Blue, the set process; red, the reset process. Adapted with permission from Ref. [25]. Copyright 2011 Applied Physics A Materials Science and
Processing. (B) Non-linear conductance modulation curve with ideal symmetric P/D curves and normalized conductance as the Y-axis. (C) Ta/
Ta0,/TiO,/Ti device. Non-linear conductance modulation curve obtained by applying AC pulses successively. The hollow point is experimental
data, and the black solid curve is the simulation results. Adapted with permission from Ref. [67]. Copyright 2015 Scientific Reports.

constant value in amplitude and frequency (called identical
pulse), based on the Ta/TaO /TiO,/Ti memristor.

Figure 3 lists several conductance modulation curves
for a memristor with different materials or structures.
Not only is this found in the usual two-terminal mem-
ristor, a similar phenomenon also occurs in the three-
terminal memory transistors [61, 63, 71-78]. Zhu et al.,
from Beijing University, developed the WSe,-based syn-
aptic transistors. This device shows good performance,
especially in terms of conductivity modulation linearity
and low energy consumption [61]. In this work, there are
no obvious two-stage phenomena in the conductance
modulation curve, and the ultralow energy consumption
of =30 f] per spike is achieved. The conductance modula-
tion curves show different forms, especially in the aspect
of the slope. Based on these results, it can be concluded
that the slope of the curve shows a segmentation phe-
nomenon. The segmentation of the slope of the curve in
conductance modulation curves of a memristor device
is not a special case, but occurs in the vast majority of
experiments. Das et al. [79] found the segmentation phe-
nomenon at the Y,0-based memristor. Banerjee et al.
[80] found this phenomenon for the TiO /AlO,-based
memristor. Guangyang et al. [72] found this phenom-
enon at the SnO,-based memristor. The segmentation

phenomenon is described as a two-stage phenomenon
here in the aspect of the metal oxide memristor.

For a two-stage phenomenon, the slope of the curve
is usually segmented to a clear two stages, as the initial
stage is significantly higher than the tail, as shown in
Figure 2C. In detail, the abrupt change in the adjacent
conductance value(AG) occurs in the first stage, and the
gentle change reaches the saturation conductance value
(G,,) in the second stage. Either memristors exhibit a
continuous increase or a continuous decrease in conduct-
ance value upon a stimulation pulse with an opposite
polarity, corresponding to the characteristics of bio-
synapses, and these two behaviors can be called long-
term potentiation (LTP) and long-term depression (LTD),
respectively [81-84]. In order for this phenomenon to be
effectively analyzed, the concept of NL proposed by Wang
et al. in 2016 [85] was adopted.

NL=Max|G,,,(n) G, ()|, n=1,2,3, -, N @)

Eq. (1): G,,,(n) and G, (n) are the conductance values
after the nth LTP-pulse and LTD-pulse, respectively. N is
the number of LTP-pulse/LTD-pulse.

This concept is based on the image representa-

tion shown in Figure 2B, in which the LTP and LTD are
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Figure 3: Non-linear conductance modulation curves. (A) Pt/HfO /ZnO /TiN memristor device. Adapted with permission from Ref.

[68]. Copyright 2017 Nanoscale Research Letters. (B) TiN/TaO, /Pt memristor device. Adapted with permission from Ref. [69]. Copyright
2016 Nanoscale. (C) Pt/TiN/PCMO/Pt memristor device. Adapted with permission from Ref. [26]. Copyright 2010 Nano Letters. (D) Ta/ethyl
viologen diperchlorate [EV(CIO,),]/triphenylamine-based polyimide (TPA-PI)/Pt memristor device. Adapted with permission from Ref. [70].

Copyright 2016 Journal of Materials Chemistry C.

symmetrically characterized in one dialog, for facilitating
the conformance of NL, and NL is defined as Eq. (1).

2.2 Theoretical basis

As a key research direction of memristors in the aspect
of internal mechanism, particle migration has been con-
tinuously appearing in related research papers. This
foundation provides theoretical support for other optimi-
zation work. Kim et al. [57, 59], Prezioso et al. [29, 86-88],
and Matveyev et al. [10, 89-91] used this as a support to
propose NL optimization. Sung et al. [92] worked on opti-
mization on the I-V linearity. Garbin et al. [93] worked on
optimization on variability. It is worth mentioning that
Mott first proposed the theory of particle migration in
1948 [94], called the Mott theory, shown as Egs. (2) and
(3), to describe particle migration. Here, a is the effective
escape distances, and E, is the activation energy for the
hopping process, and they are all determined by the kind
of particle and the kind of material in which the particles
migrate.

1 E 1
D=-a’ —Za |, D ==a’ 2
2afexp[ ij 5 2af o)
E
v=af exp(—}é}sinh(ﬁ] 3)

Egs. (2) and (3): D is the ion diffusivity, fis the attempt-
to-escape frequency, E, is the activation energy for the
hopping process, a is the effective hopping distance, T
is the local temperature, E is the local electric field, v is
the drift velocity, k is the Boltzmann constant, and q is the
charge quantity.

Larentis et al. [95] used three partial differential equa-
tions to establish a physical model of a memristor driven
by particle migration in their paper in 2012. In recent
research, this method was followed and optimized by other
researchers. In 2014, Kim et al. [60] proved this method by
comparing the experimental data from a TaO -based mem-
ristor. After that, they divided the internal state variables
w (used to describe the size-doped area) into g (length of
CFs) and r (radius of CFs) because of the appearance of
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the CFs model. This work led researchers to analyze mem-
ristors using second-order or even higher-order models.
Dipesh et al. [96] made the numerical modeling as the
theoretical basis of heat transfer. Sadi et al. [97] made this
theory the simulation methodology in their work based on
SiO_. For exploring the resistive switching mechanism of a
memristor, it is necessary to investigate the activity track
and law of carriers in the memristor device bulk. Thus,
the simulation of the RS process requires the PDEs: (1) a
drift/diffusion continuity equation for V, transport, (2) a
current continuity equation for electrical conduction, and
(3) a Fourier equation for Joule heating, as shown in Egs.
(4-6).

V, transport

on,

?=V~(DVnD—vnD+DSnDVT) (4)

Current continuity

V.oVW =0 ®)
Joule heating
oT ?
Mcpg_V.KthVT:’y-O"VIP‘ (6)

A A B
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CFs ¢—
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Egs. (4-6): n, is the concentration of V, v is the
potential, and T is the temperature.

A simulation of this theory can be achieved through
the establishment of an effective model based on the
finite element method (FEM), in which the value of n,,
y, and T can be calculated within a numerical solver.
The establishment of the model requires a one-to-one
correspondence with the structure of the memristor. In
particular, the multi-layer RS layers of different materi-
als cannot be mixed together for discussion. In order to
facilitate the explanation of this theory, the CF model of a
memristor with a simple structure based on FEM is given
here (Figure 4A, B). All of the meanings and units of the
variables or constants, involved in the Mott theory and the
three PDEs, are summarized in Table 1.

Ton migration is described by a flux in units (cm™ s™),
including diffusion (j,,,) and drift (j, ) [57, 95] components,
as the Mott theory elaborates. Both these two processes
rely on ion hopping. External electric field stimulation will
change the difficulty of particle migration. Specifically,
in the direction of the electric field, the barrier of particle
migration decreases, and particles migrate easier toward
the same direction. On the contrary, particle migration
becomes more difficult in the opposite direction of the exter-
nal electric field. This process results in a directional ion
drift (Figure 4C). On the other hand, the diffusion process

Figure 4: Model of memristor based on the FEM and the particle transition model. (A) 3D CF model of a memristor with a simple structure
based on FEM. (B) 2D CF model of a memristor. (C) Particle transition model.



448 —— H.Liuetal.: Non-linear conductance modulation based on metal oxide memristors

Table 1: The detailed information of the three PDE-related parameters.

Char. Unit Meaning

Parameters in constants

a Nm Hopping distance
E, eV lon migration energy barrier
f Hz Escape attempt frequency
y - v=1 for DC
v=2 for AC

Parameters from measurements and assumption

g Nm Length of the CF

r Nm Radius of the CF

r, nm

P S/cm Resistivity of the CF

o Q*cem™ Electrical conductivity

g, Q'cm™? Electrical conductivity pre-exponential factor

E, eV Activation energy for conduction
Dependent variables

n, cm Concentration of V,

T K Temperature

P Vv Potential
Parameters about particle migration

v cm s Drift velocity

D cm? st Diffusivity

S K- Soret diffusion coefficient
Flux

DVn, Fick diffusion flux

Vn, Fick drift flux

DSnVT Soret diffusion flux
Parameters for current

A A -

v, Vv

g, nm
Parameters determined by materials

u kg/cm? lon mobility

Cp JK*cm3 Heat capacitance

K., Wem™k*  Thermal conductance

0 - Heat dissipation factor

H - Temporal heat factor

of ions depends on both the temperature gradient and the
carrier concentration gradient. Therefore, calculating the
carrier concentration distribution in the device bulk is of
great significance for investigating the RS mechanism of it.
To solve the three PDEs, boundary conditions of ¢ and
an approximately maximum carrier density are needed,
as shown in Table 1. A model for electrical conductivity
in the RS layer and in CFs is considered to be thermally
activated, as shown in Table 1.When making calculations,
the researchers assume that o, E,, and k,, are linearly
related to n,, and the relevant starting and ending values
are related to the material of the RS layer. It must be said
that such assumptions have been verified [56, 58, 95] as
not affecting the validity of the calculations. In the early
simulations, the factor of temperature in the memristor

DE GRUYTER

device bulk was generally ignored. The specific operation
was to set the device bulk temperature equal to room tem-
perature (T,), and regard the heat transfer or divergence.
It has been verified [57, 98] that such assumptions lead to
large differences between the calculated and experimen-
tal results. The Joule heating [62, 99-102], caused by CF
connectivity in the device, causes a significant tempera-
ture change in the device when it is in the RS process,
affecting particle diffusion process, so as for the conduc-
tivity of the device.

2.3 Particle migration in two stages

From the perspective of the CF morphological changes
in the memristor alone, conclusions that are consistent
with the three PDEs simulation results can be obtained.
Alessandro et al. [103] used the CF model to be the expla-
nation of their experimental results. Lu et al. [104] made
their research based on the CF model and showed the two-
stage phenomena in the forming process of the CFs. Zhu
et al. [65] used simulated 2D maps to indicate the oxygen
vacancy (VO) concentration distributions in a memristor,
in which there is significant expanded phenomena in the
horizontal direction about the CFs. In order to more intui-
tively demonstrate the impact of particle migration on the
RS behavior, we summarized and made a diagram of it
shown in Figure 5. V s are present as doping in PDE simu-
lation and are considered as constituent substances of the
CFs. Similarly, the continuation of the conclusion by Gao
etal. [24, 105] in this subsection places the Vs as the main
object. It acts as a carrier in the memristor device bulk,
and there is migration within the device so that the device
can complete the RS process.

The reason for the two-stage phenomenon discussed
in this review is analyzed with the features of the conduct-
ance modulation curves. The model shown in Figure 5
shows the direction of the CF growth in the memristor
device and the effects of the migration of the V s in differ-
ent stages of stimulation. The memristor is initially in an
off state, which means a high resistance state (HRS), and
there are no CFs in the body. Forming process promotes
the formation of CFs by applying external stimuli in the
form of voltage that is slightly higher than the RS voltage.
At the end of this process, which is to remove the voltage
stimulus, there are incomplete CFs formed in the memris-
tor device. At this moment, the device is in the HRS state,
and a gap [106-109] exists inside it. By applying external
stimuli to the device, the gap will be filled with Vs, and
the CFs grow to connect the cathode and anode eventu-
ally, which is called the set process. At this moment, the
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Figure 5: V migration model in a two-stage process in conductance modulation of a memristor. (A) Initial state of the memristor based on
the CF model. (B) Model of processes that dominate V, migration in the first stage. (C) Model of processes that dominate V, migration in the

second stage.

device is in the low-resistance state (LRS). Conversely,
when voltage stimulus with opposite polarity is provided
in the on state, the V s migrate in the opposite direction.
The CFs break after this processing, and the device returns
to the off state with incomplete CFs, which is called the
reset process.

In the set process, the morphological changes of
CFs have different trends with the increase in stimulus
loading time. The memristor device is in the first stage at
the beginning, when the identical pulse is applied to it.
Before the CFs are complete, there is a high electric field
in the gap area, and the V_ (or ion) transmission will be
controlled by the drift process, which is driven by an elec-
tric field effect, along the V  concentration gradient. The
main change in the CFs is their length [110], as shown in
Figure 5B, which leads to rapid increase in the conduct-
ance of the device so that the conductance modulation
curve shows a higher slope and the conductance state dis-
tribution is sparse. Another important feature in the first
stage is that although the conductance value of the mem-
ristor can achieve a substantial increase within a smaller
number of pulses, it is unsaturated. The reason is that V s
in the area near the CFs step into the reduction reaction in
the first stage [60], and Vs in the area farther away from
the CFs need to migrate for a long distance before it, which
happens in the second stage. In the first stage, there is just
part of the V s that can participate in the formation of the
CFs, and the CFs are not strong enough. When the curve
steps into the second stage, the CFs become complete,
and the device tends to be metalized. The complete CFs

resulted in the reduction of the local electric field, which
results in the suppression of the drift process, through the
Mott theory shown in Egs. (2) and (3).

In the second stage, there are obvious differences in
the internal changes of the device from the first stage,
which must be paid attention to. Several studies simu-
lated the temperature changes inside the device during
the RS process and obtained the temperature distribution
results with a consistent trend — the areas near the CFs
have a higher temperature. Kim et al., from the University
of Michigan, worked in this area [56]. Larentis et al., from
the University of Texas, did relevant work [95]. Jeong et al.
did this work in 2015, and here, we quote their work as
shown in Figure 6 [104]. The Joule heating caused by the

A

300K

800K

Figure 6: Simulated temperature distribution in the Pd/Ta,0, ,/TaOy/
Pd device at different points. Reprinted with permission from Ref.
[104]. Copyright 2015 Applied Physics Letters. (A) Point during the first
stage. (B) Point during the first stage.
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connected CFs results in a significant temperature gradi-
ent that leads to an increased local temperature, as shown
in Figure 6. Therefore, the particle diffusion process was
enhanced in the second stage, so the CFs can expand in
the horizontal direction. Especially, this partial migration
process is dominated by the temperature gradient rather
than the concentration gradient. In detail, the local tem-
perature of the area where the CFs are located is higher
than those of the other areas, which leads to particles
migrating toward the CFs. This process can be named as
the thermophoresis process as a result of the temperature
gradient. The diffusion of the Vs promotes the expan-
sion of the CFs in the horizontal direction [56, 72, 98, 111],
which leads to stronger CFs. The reason for the saturated
state in this stage is that the V s inside the device bulk that
can reach the area where the CFs are located are gradu-
ally depleted. Therefore, at the end of the set process,
conductance is saturated, and there is no more significant
increase when the V s in the area, even if far away from
the CFs, is exhausted.

3 The smarter stimulus signal

Spikes were the first to be chosen as a signal source in
the memristor stimulus that exists to mimic the type of
stimulus signal that a bio-synapse accepts [87, 100, 112,
113]. The device can exhibit LTP and LTD features similar

>
=
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to bio-synapses under continuous spiking stimulation.
In addition, stimulated by paired spikes, the memristor
device can also achieve the paired-pulse facilitation (PPF)
[72], that is, the paired signal is processed by the device
to show that the state of the second signal amplitude is
greater than the first one. In recent years, in order to sim-
plify the peripheral signal generator circuit, the rectangu-
lar pulse signal source is used in the simulation of research
about the analog memristor device [114-118]. The ampli-
tude of the pulse signal determines whether the device can
achieve RS or not and the value of AG in the RS process.
The frequency of the pulse signal determines whether the
conductance value caused by the previous pulse can be
maintained until the next pulse arrives at the device.

3.1 Identical pulse

In the simplest form, a pulse sequence with a constant
amplitude and frequency, here called the identical pulse,
is used as a signal source for stimulating the device
(Figure 7A), which is also the signal form commonly used
in research in recent years. Stimulated by this signal
source, the device generally shows segmented phenome-
non in the distribution of conductance value. We collected
research data related to an analog RS behavior in the field
of memristors in recent years and summarized the experi-
mental results based on the identical pulse, as shown
in Table 2. The data in the table shows that the material
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Figure 7: Identical pulse and the response of the memristor to the pulse. (A) Identical pulse. (B) Conductance modulation curves of the
programming pulse with different amplitudes based on the Pd/TaZO(H)/TaOV/Pd memristor device. Adapted with permission from Ref. [104].
Copyright 2015 Applied Physics Letters. (C) Multiple memory model. (D) Conductance modulation curves of the programming pulse with

different amplitudes and t, based ontheTa,0,

-based memristor device. Adapted with permission from Ref. [98]. Copyright 2015 Nano letters.
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Table 2: Summary of response of conductivity distribution to identical pulse scheme in memristor devices.

Materials Programming pulse Nc (#) AG, ., Ref. Year
RS layer TE BE A(V) Width N (#)
Ta,0, /Ta0, Pd Pd -0.9 100 ps 150 <25 ~0.2mS [60] 2014
1.1 10 us - ~0.2mS
Si, ,: Ta,0, ,/Ta0, -0.9 100 pus <25 ~0.3mS
1.1 10 us - ~0.7mS
Si, i 13,0, ,/Ta0, -0.9 100 ps <25 ~0.5mS
1.1 10 us - ~0.5mS
TaZOH/TaOV Pd Pd -1 100 ns 20 <5 ~1.5mS [90] 2015
-0.9 ~1mS
-1.3 ~2.5mS
TaO, /TiO, Ta Ti 8.7 50 us 20 <10 ~90 nS [67] 2015
-7 ~130 nS
-10 ~120 nS
9.5 ~130 nS
9.2 ~120nS
-8 ~130nS
Ta0,/TiO, Ta Ti 3 5ms 70 <10 ~60nS [86] 2016
3 50 ~50nS
-3 50 ~50nS
Ta,0, /Ta0, Pt Pt 0.9 5us 100 <25 ~0.4mS [65] 2017
TiO,:Ag Ag Pt 0.4 200 ns 30 <20 ~0.8 mS [119] 2018
300 ns <16 ~1.8mS
500 ns <8 ~3.8mS
0.6 200 ns <15 ~3.9mS
0.8 <5 ~4.0 mS
HfO, TiN TiN 1.5 10 us 300 <25 ~0.4mS [89] 2015
1.2 <50 ~0.15mS
-2 <25 ~0.85mS
HfO, TiN TiN 0.85 1.5us 150 - 0 [90] 2015
1 <25 ~20uS
1.2 <10 ~90 uS
-1.2 - 0
-1.6 <50 ~80uS
HfO, Ti/TiN TiN 0.8 100 ms 100 <10 ~200 uS [120] 2016
0.8 1lus <10 ~50 uS
-1 1us - ~50 uS
-1.1 1lus <50 ~150 uS
0.9 10 ms 60 <20 ~50uS
10 us <10 ~20uS
HfO,/HfO, Ti TiN 0.8 100 ms 100 <10 ~200 uS [121] 2016
-1.1 1us <25 ~175uS
-1 1us - ~50 uS
HfO_ /ZnO, Pt TiN -0.2 100 ms 125 T ~0.4 mS [68] 2017
1 100 ms \ ~0.6 mS
Nb,0, Al Al 1.5 10 us 100 <10 ~90 mS [122] 2014
WO, w Pd 3 400 us 50 <10 ~20uS [123] 2014
Zn0 Ti Pt 5 180 ms 60 T ~5mS [124] 2016
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Table 2 (continued)
Materials Programming pulse Nc (#) AG,,, Ref. Year
RS layer TE BE AV) Width N@#)
TiO, Pt TiN 3 1ms 100 <40 ~600nS [125] 2016
2.5 - ~200nS
-3 <20 ~600 nS
-2.5 <40 ~400 nS
FeOX Pt Pt 1.6 100 us 50 <10 ~0.4 mS [126] 2016
10 us <5 ~0.3mS
lus <10 ~0.2mS
1.5 10 us 50 <10 ~0.2mS
1.45 <20 ~0.1mS
1.3 - 0
Y,0, Al n-Si 2 50 ms 100 <10 ~10uS [79] 2018
100 ms <10 ~15uS
2.5 100 ms <40 ~830 uS
PEDOT:PSS Ag Ta 50 ms 50 T ~600 mS [127] 2013
PCMO Al 1 1ms 100 <10 ~9nS [22] 2013
2 ~5nS
-2.5 ~0.4nS
-4 ~100 nS
PCMO Pt/TiN Pt 3 1ms 100 <25 ~80 nS [128] 2014
100 ms <25 ~100nS
-3 1ms <25 ~120nS
100 ms <25 ~1mS
EV(CIOA)2+ PEOQ/TPy-Fe Ta ITO 3 10 ms 50 T ~1.5nS [129] 2016
-2 d ~0.75nS
EV(ClO,),/TPA-PI Ta Pt 0.5 10 ms 90 T ~6 mS [70] 2016
-0.5 l ~6mS
AgInSbTe Ta Ag 0.6 5us 50 <10 ~8 mS [130] 2017
-0.6 <10 ~8 mS
Lignin Au ITO 0.7 100 ms 50 <20 ~30uS [131] 2017
-0.7 <20 ~30 1S

—, there is no obvious two-stage phenomenon; T., apparent linearity; A, the pulse amplitude; N, the total number of the programming

pulse; Nc, the pulse number at the critical point; AG

total”

composition of the memristor and the amplitude and the
width of the identical pulse signal all have an effect on
the experimental data. Based on the data in Table 2, we
determine the factors that influence the optimization of
NL in the composition of the external stimulus signal and
the material composition of the memristor.

An obvious conclusion can be drawn from Table 2
that most binary metal oxide-based memristors have a
two-stage phenomenon of conductance modulation. From
the aspect of the stimulus signal, the intensity of the two-
segment phenomenon is closely related to the amplitude
and width of the stimulus signal.

The amplitude of the identical pulse signal is the
value of the extra voltage applied on the device or the

the difference between the maximum conductance and the minimum conductance.

electric field that forces the particle migration inside the
device. According to the Mott theory in the second part of
this review, the applied electric field is the main influence
factor of the process of particle drift [104, 110], which is
enough to affect the formation rate of CFs at the begin-
ning of a complete CF formation. A simple change in this
eigenvalue of the identical pulse signal (from one con-
stant to another) was verified to change the state distribu-
tion of the memristor device. This change manifests itself
as an increase in G___and a steeper conductivity modula-
tion curve [22, 104] (Figure 7B). In detail, the blue curve
with the lowest pulse amplitude in this graph shows the
lowest NL and G__, and the red curve with highest pulse
amplitude in this graph shows the highest NL and G__ .

X
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For features of the red, the reason is that the increased
electric field, caused by the increase in the pulse ampli-
tude, promotes particle drift, so as to increase the number
of V s forming the CFs in the initial state. The conduct-
ance value increases because of that, which results in an
increase in NL. In short, it is useless to optimize the NL
by changing the amplitude of the identical pulse signal.
The timing characteristics of the stimulus signal include
the duration (called the pulse width (¢, ) in the pulse
signal) and time interval (¢, __) of the signal. Both have
an impact on the conductance modulation process.

In biology, the frequency of the external stimuli is
the key to the human brain’s ability to produce memory.
According to the multiple memory model proposed by
Atkinson and Shiffrin, the biological brain can produce
short-term memory (STM) and long-term memory (LTM)
as the frequency of the external stimuli to which the
bio-synapses are subjected increases [132] (Figure 7C).
In experiments and simulations based on memristor
devices, conclusions about similar features have also been
obtained [32, 133]. Such a feature explains the biologi-
cal basis for the characteristic that the memristor device
exhibits a gradual increase in conductance with continu-
ous external stimulation and provided evidence of a pre-
diction that the frequency of stimulation signals affected
the conductance distribution. Figure 7D shows the distri-
bution of the conductance of the memristor device when
pulse signals with different ¢ s are applied as external

interval

stimuli. Stimulated by a pulse signal with a longer ¢___,
the device has a denser conductance distribution than the
one withshortert,  over the same range of conductance
values. From the analysis of the intuitive characteristic of
the device such as current-voltage (I-V) characteristics,
when the ¢ of the stimulus signal is long enough,
the state of the device caused by the previous stimulus
signal has enough time to decay back to the state before
the stimulus. Conversely, when the stimulus signal ¢,
. is sufficiently short, the state of the device caused by
the previous stimulus signal cannot be returned to its
pre-stimulus state even if decay has occurred, when the
next stimulus signal arrives. Such a process results in the
device being able to maintain a continuous state change.
Analyzing from the perspective of the PDEs model, in
conjunction with the calcium ion (Ca**) model in biology
[134, 135] related to synaptic weights update, a second-
order memristor model was established by Kim et al. [98].
In this model, the temperature in the device bulk (T),
which affected the first-order internal state variable w,
while being affected by w, is considered as a second-order
internal state variable. In this model, T is no longer consid-

ered as a non-critical constant, but rather Joule heating is
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considered as a major contributor to particle diffusion in
the device bulk in the RS process. In fact, Stefano et al. [95]
obtained the result that T would be different in the process
of the CFs forming by simulation in 2012. Goodwill et al.
[136] carried out simulations and experiments to indicate
that the V_ flow would be affected by T. Both the fitting
results between the calculation data with experimental
data and the similarity between the device and bio-syn-
apses do have better results in this model. The device has
spontaneous heat dissipation in the device bulk, result-
ing from heat exchange between the device bulk and the
outside or heat release from the electrodes. When the ¢,
is long, Joule heating due to the complete process of the
CFs cannot form heat accumulation in the device bulk. As
a result, the heat generated within the device bulk cannot
promote the particle diffusion process inside. Therefore,
the complete process of the CFs is mainly driven by ion
drift, and the RS process of the device will tend to be flat.
On the contrary, a great number of heat accumulation leads
to the enhancement of the particle diffusion process, so
that the CFs in the device quickly enters the complete state.
In addition, for ¢ ., a pulse signal of appropriate length
allows the device to be controlled with a continuous RS
process. When ¢ is too long, a long time external voltage
is loaded on the device, and as a result, the RS process of
the device tends to be digitized and uncontrollable.

3.2 Abnormal pulse

One of the important means to study the response char-
acteristics and performance optimization of the memris-
tor is to not change the material of the RS layer and the
structural composition of the memristor. Changing the
characteristic parameters of the external stimulus signal,
such as amplitude, width, signal time interval, and so on,
is the main research method. In investigating the NL of
the conductance modulation of the device, for this non-
ideal feature, the researchers found that the response of
the memristor to the programming pulse tends to be intel-
ligent, which means the NL can be optimized by apply-
ing a smarter programming pulse. Jeong et al. [104, 137],
Wang et al. [34, 85], and Park et al. [9, 138] are researchers
who have done research in this area. After reading the rel-
evant articles in this research direction, we divided the NL
optimization based on external stimuli into two catego-
ries, namely, the combined pulse and the feedback pulse,
mainly according to the shape of the stimulation pulse,
and we summarized them in the form of a map in Figure 8.

The combined pulse breaks the characteristic of a
single pulse in a single cycle, and the small-amplitude
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Combined pulse signal
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Feedback pulse signal
C D
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Figure 8: Abnormal pulse signal. (A) Combined pulse signal with the weak anti-pulse. (B) Combined pulse signal with the heating element.

(C) Amplitude feedback pulse signal. (D) Width feedback pulse signal.

pulse, called the weak pulse here, is attached with the
programming pulse into one cycle as the extra stimulus
signal. Figure 8A and B shows this kind of stimulating
signal, and the weak pulse of different polarities has a
different influence on the weight update of the memris-
tor. When a weak signal is a polar opposite to the pro-
gramming pulse, called the weak anti-pulse, the effect
is to offset the AG caused by the programming pulse in
the previous input cycle. On the contrary, when the weak
signal is of the same polarity as the programming pulse,
called the heating element, the weak signal is conducive
to enhancing the particle diffusion in the device, thus,
increasing the G__ . As shown in Figure 8C and D, the
feedback pulse uses feedback to process the amplitude
and width of the stimulus signal in increments. Each
feedback adjusts the next programming pulse according
to the previous weight update results to obtain a conduct-
ance curve with the lowest NL value. The detail about
these two kinds of programming pulse will be explained
in sections 3.2.1 and 3.2.2. In schemes of stimulus signal,
it is very important to note that the number of stimulus
signal has no effect on the characteristic parameters of the
memristor response. Enough stimulation cycle make the
data more complete, more conducive to data processing
and analyzing. According to the data expression of rele-
vant references, the number of signal periods or the time
of signal action is used as the abscissa cycle in the study
of conductance modulation characteristics. In this review,

the action of the cycle numbers is the same as that of the
time as the Abscissa.

3.2.1 Combined pulse signal

3.2.1.1 The weak anti-pulse

Figure 8A shows a typical combined pulse signal, whose
feature is the use of the weak pulses with opposite polar-
ity (the weak anti-pulse) [60, 85, 120] to offset the abrupt
AG caused by the training pulse in the first stage, which
is the key of this scheme. In this scheme, training pulses
are followed by pulses with lower amplitude and duration
than the original pulse, whose polarity is opposite to that
of the original pulse. It is feasible to achieve the NL opti-
mization and preservation on an on/off ratio by taking the
appropriate value of the conductance offset (G _,_,), which
is a concept pointed out by Wang et al. [85] in 2016. There
is an equation that explains the relationship between real-
time conductance (G(n)) and G, (Eq. (7)) [85]. In order to
record the conductance value of the memristor after the
effect of the previous programming pulse, reading pulses
with very small amplitudes are applied after each pro-
gramming pulse in the study. The number of pulses is
used as the time axis to record the conductance value at
the corresponding time. By processing the conductance
value, and the difference conductance values, means
that the AGs of each state change are obtained. The AG is
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included in Eq. (7), in f(G), and the f(G) means a fit func-
tion related to the experimental results.

G(n)=aG.

initial

+f(G)+G

offset

@)

Eq. (7): G(n) is the conductance value after the nth

pulse, G, .. is the initial conductance before training,
and G is the offset value induced by the weak
anti-pulse.

The reason why the pulse signal with the weak anti-
pulseis useful in reducing the value of AG is that the weak
anti-pulse can offset part of the accumulated charges,
caused by the previous training pulse, at the interface
between the electrodes and the RS layer, which results in
the reduction of the electric field. The weakened electric
field not only inhibits the process of ion drift but also
suppresses the ions that are farther away from the CFs
in the interface, and because of that the slope of con-
ductance modulation curve in the first stage eventually
becomes slower and slower (Figure 9A). The NL value,
as defined in Eq. (1), of the identical programming pulse
sequence, is about 0.6~0.81, which is about 0.42~0.54 of
the optimized one. This result proves that the combined
pulse signal with the weak anti-pulse has a practical sig-
nificance for the optimization of NL. As shown in Figure
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9B, both G___and NL are all infected by the value of G ..
G ;... has a value of 0, which means that the identical
pulse is applied to the memristor device as the stimulus
signal. G_; , has a maximum value of 27 nS, because the
maximum value of AG is 27nS when applied to the iden-
tical pulse. The conclusion drawn from Figure 9C is that
the greater the value of G _.__is, the smaller is the NL of
the device.

The conclusion that should be drawn from the men-
tioned results is that in order to get the overall improve-
ment of the properties of a memristor when optimizing
on NL, it is very important to select the weak anti-pulse
with appropriate parameters. In addition to the value of
G ;..o the time interval between the weak anti-pulse and
the programming pulse (tpw), the time interval between
two pulse pairs (tpp) and the duration of the weak anti-
pulse (tw) should all be considered as influencing factors
in the optimization process. Considering that the energy
consumption and the space of the system are pointed
as the focus object when the researchers implement
the neuromorphic calculation, the NL optimization of
the memristor device should be as close as possible
to this point. The implementation of this signal is not
complicated, which only needs to use a two-pulse signal
generator [85].

offset
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Figure 9: Characteristics of the memristor response to the weak anti-
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pulse based on the 3D two-layer Ta/Ta0,/TiO,/Ti memristor device.

(A) Measured conductance modulation curves obtained by applying different pulse signal. Hollow point: response to the identical pulse.
Solid point: response to the weak anti-pulse. Adapted with permission from [139]. Copyright 2016 Springer. (B) Simulated conductance

modulation curves in different G
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(C) Relationship between G . and NL. Reprinted with permission from Ref. [139]. Copyright 2016
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3.2.1.2 The heating element pulse

Figure 8B shows another kind of combined pulse signal,
whose feature is the use of the weak pulses with the same
polarity (the heating element) to enhance the particle dif-
fusion process by rising the local temperature in the device
bulk at the beginning of extra stimulation. Specifically, the
pulse signal in this scheme consists of a heating element
with lower amplitude and a programming element with
a higher amplitude. The heating element will not lead to
the RS process [85], and the RS behavior happens until the
programming element arrives. Because of the considera-
tions of temperature in the memristor device bulk in the
second-order memristor model, the separation of stimula-
tion signals for the two elements is considered as a kind of
optimized scheme in NL.

The reason why this scheme works is that, in the case
of applying an identical pulse on the device, the ions in
the area near the CFs and farther away from the CFs are
already exhausted, and the ions in the area far away from
the CFs have difficulty in migrating to the area where the
CFs are located, which limits further expansion of the CFs.
However, in the case of applying a state-separated pulse,
they promote the ions in the area far away from the CFs
to migrate to the area where the CFs are located because
of the enhanced diffusion process, which can further
expand the CFs. The enhanced diffusion process is caused
by a heating element, which leads to the local tempera-
ture rise. So the value of G___can be improved, and the NL
can be optimized by the scheme here.

In this scheme, the frequency characteristics of the
pulse pair signal are important. Among them, the time
interval between the heating element and the program-
ming element (thp), the time interval between two pulse
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pairs (tpp), and the width of heating element (¢t,) are
all considered as influencing factors in the optimized
results. Only when t,, is small enough does the heating
element have a connection to the programming element,
driving the memristor to a better state with higher con-
ductance. Therefore, in Figure 8B, the top is shown as
zero. Figure 10A demonstrates that as the ¢  decreases,
the range of AG becomes larger, and the slope difference
between the two-stage tends to be smaller. The ¢, must be
longer than or equal to the time constant [98, 104] of the
device, which means the duration or time required for
the device to reach a thermally stable state. The applica-
tion of a heating element with the duration longer than
the time constant would not lead to a further increase in
local temperature and measurable differences in the RS
behavior. However, the duration being shorter than the
time constant would lead to the result that the heating
element cannot complete the task of reducing NL to the
maximum extent. Yeon Jeong et al. [104] applied the
pulse signal involved in this section for the NL optimi-
zation results. The conductance modulation curve of the
memristor device, stimulated by the pulse signal with
heating element, has a higher value of G___and a smaller
difference in slope than the one with identical pulse
(Figure 10B).

3.2.2 The feedback pulse signal

Another type of abnormal pulse signal is the one that is
practically suitable, called the feedback pulse signal [15,
37, 48, 140], because it requires a complicated signal gen-
eration circuit as a peripheral circuit of the memristor
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Figure 10: The response of the memristor to the pulse signal with different frequency characteristics. (A) Memristor conductance change as
a function of the number and the frequency of the pulse. Adapted with permission from Ref. [98]. Copyright 2015 Nano letters. (B) Measured
conductance modulation curves obtained by applying different pulse signals. Blue, the identical pulse; red, the pulse signal with the
heating element. Inset shows the comparison of the difference between adjacent conductance when the device is programmed with the two
kinds of programming schemes. Reprinted with permission from Ref. [104]. Copyright 2015 Applied Physics Letters.
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device. However, it is worth noting that, in theory, it has
the best optimization effect on the NL optimization prob-
lems (Figure 11). Neeraj et al. [131] showed in their article
that the PCMO-based two-terminal memristor in their
experiment had an NL of approximately O under pulsed
feedback stimuli. Similar effects can be achieved with
similar strategies based on the TaO_ [41] memristor. Con-
ductance of the memristor device obtained by applying
an identical pulse is not predictable, as related to current
conductance state. Therefore, the NL can be optimized by
setting the parameters of the next programming pulse by
judging the current response. The scheme in this section
is called the programming scheme based on pulse feed-
back, which can be divided into the amplitude feedback
pulse and the width feedback pulse. The purpose is to get
a consistent AG by applying a training pulse sequence
with different parameters in each pulse cycle, so that the
slope of the conductance modulation curve tends to be
consistent. A pulse with shorter duration (or lower ampli-
tude) corresponds to a larger AG in the original scheme,
and the pulse with a longer duration (or higher ampli-
tude) corresponds to a smaller AG. Both the two strate-
gies can achieve optimization on NL.

For its shortage on complex peripheral circuits, at
least one additional computing unit and a special signal
generator are needed to comply with the input. A system
with a synaptic array cannot achieve parallel weight
updates because of feedback. Therefore, the space occu-
pied, the circuit delay, and the energy consumption of the
system will be significantly increased, which is not condu-
cive to achieve a large-scale system. Only in theory, have
these kinds of schemes any research value.
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4 Memristor with the multi-RS layer

The original memristor had a simple sandwich structure
that contained only one dielectric layer and only one kind
of element except the element oxygen or the element
nitrogen. Although the traditional structure is easy to
implement in the process, it cannot achieve the desired
performance for the current pursuit of device optimiza-
tion. With the development of research, researchers tend
to make a dielectric layer diversification by doping or
making a multi-layer. The same approach is used in the NL
optimization direction, and the desired effect can also be
achieved. Xiao et al. [114] had different experimental results
by doping in the RS layer. Matveyev et al. [10, 90] got it by
making a multi RS layer. Gaba et al. [123] got it by making a
multi RS layer, too. With the deepening of research, it has
been gradually found that two or three layers of different
kinds of dielectric layers have various degrees of optimiza-
tion effects on the performance of the device. The use of
materials with different oxygen contents as a component
of the multi-RS layer has proven to be effective in confining
the location where the CFs break down to smaller areas in
the device bulk so that the performance of the device espe-
cially the stability is improved. A similar approach can be
achieved on the issue of NL optimization. The difference is
that in the NL optimization problem, from a material point
of view, researchers need to consider the particle migra-
tion state inside, including drift speed and thermal diffu-
sion. The combination of materials have different particle
migration effects as the multi-RS layer of the device is veri-
fied to achieve the goal of controlling the device conduct-
ance distribution [102, 141, 142].
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Figure 11: Characteristics of the memristor response to the feedback pulse signal based on the TE/Al/PCMO/BE memristor device.
Reprinted with permission from Ref. [139]. Copyright 2016 Springer. (A) Identical pulse. (B) Feedback pulse.
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In detail, from Egs. (2) and (3) derived from the Mott
theory, particle migration is largely affected by the envi-
ronment where the particles are located [143, 144]. There-
fore, it is feasible to reduce the number of particles that
participate at the beginning of conductance modulation
by limiting the rate of particle migration, to achieve the
purpose of slowing down the process of forming complete
CFs. A viable program is to insert one or more layers with
materials that can suppress particles migrating between
the basic RS layer and the top electrode (Figure 12).
Layers inserted are called the migration limit layer (MLL).
Zongwei et al. [36] named their insert layer as an ion diffu-
sion-limiting layer (DLL).

The PDE model shows that in the set process, under
the stimulation of a directed external voltage, the j, . and
J; are in the same direction at the beginning, and the
diffusion process promotes more particles to participate
in the process of CF completeness. With the extension of
stimulation time, due to the gradient distribution of the
carrier concentration, the direction of j,. is perpendicu-
lar to the direction of j, ., as shown in Figure 5, resulting
in the horizontal expansion of the CFs. The main influ-
ence of the drift process is the applied voltage stimulus.
Therefore, from a material point of view, by controlling
the diffusion process, the number of particles that previ-
ously participated in the RS process at the beginning can
be limited. The purpose of doing so is to depress the high
slope of the conductance modulation curve in the first
stage, prompting NL optimization.

MLL (the Migration Limit Layer)

Figure 12: Model of the memristor with the MLL.
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From the equation D=D, exp (-E /kT) for the diffusion
coefficient, the diffusion coefficient of oxygen (DV) can
be obtained. The materials of the MLL tend to choose the
one with D less than that of the basic RS layer to achieve
the NL optimization. In addition to the temperature of the
device bulk, the two main influencing factors for D are “a”
and “E ”. The former is usually assumed in the calcula-
tion, the hypothesis is set at 0.05 nm ~0.5 nm [56], and the
final simulated value depending on the fitting results of
the calculation data and experiment data. “a” appears as
a hypothetical value in the calculation. In the PDEs model
ignoring the effect of the electrode heat release on the tem-
perature in the device bulk, Kim et al. [56] drew a set of
conclusions based on a series of reasonable assumptions,
excluding the effect of electrode heat release on the tem-
perature in the device. The calculation curves in the con-
clusion show that the larger the value of a, the more the
device tends to be digitized, which means the larger the NL
degree. This trend is unfavorable to the application in the
field of the neuromorphic system. Table 3 lists the hypo-
thetical values used in the calculation of several materi-
als for reference. The latter is the activation energy for the
hopping process, and the greater its value, the harder it
is for the particles in the material to transition. Similarly,
Table 3 lists the values of E_ for several materials. SiO, is
a typical semiconductor material with an E, value in the
range of 0.92 eV-1.71 eV and an average level higher than
the other oxide semiconductors in Table 3. The D, of SiO, is
about 10-10% cm?/s [55, 72] at room temperature, which
is one or more orders of magnitude lower than that of other
binary metal oxides. For example, it is lower by one to six
orders of magnitude compared to TaO_[140, 149]. Zongwei
et al. [36] inserted SiO, as the MLL on the basic layer of
TaO_ in a memristor device. After comparing the memristor

Table 3: Summarization of diffusion constants of some dielectric
layers corresponding to an oxygen.

Assumption value Material Reference
a(nm)
0.1 TaO, [56]
0.1 HfO, [94]
0.15 wo, [145]
0.3 ALO, [146]
Ea (eV)
0.4 WO, [145]
0.85 Ta0, [69]
0.9 ALO, [146]
1 HfO, (147, 148]
0.92~1.71 Sio, [69]
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devices with different thicknesses of SiO, (1 nm, 2 nm,
4 nm), they concluded that the NL of the device is obvi-
ously optimized when the MLL of SiO, is 2 nm (Figure 13).
Finding the right kind of MLL material is the basis of
NL optimization. In detail, the MLL with appropriate thick-
ness can weaken the slope of the conductance modulation
curve in the first stage, which is good for NL optimiza-
tion. As shown in Figure 13A, when the thickness of SiO,
is 1 nm, the NL of the conductance modulation is signifi-
cantly reduced, and the on/off ratio of the device is about
0.7, which is not too small compared with that of the device
with no MLL. However, when the thickness is 4 nm, the G___
is about 25% of the no MLL device, and the on/off ratio is
only about 20%. As the thickness of the MLL increases, the
length of the area where CF growth is limited increases.
This results in an increase in the distance where particles
need to move in a limited area. Over-thick MLL inhibits the
diffusion process and the horizontal expansion process of
the CFs in the memristor device. Therefore, the G___of the
device is significantly reduced. Although the decrease in
the G__ will lead to a reduction in energy consumption of
the device [96], there is a significant reduction in the on/
off ratio, which is inconsistent with the purpose of device
optimization. Furthermore, the SiO, thin film formed by
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sputter deposition has a poor microscopic density com-
pared with that formed by evaporation deposition [54]. The
poor microscopic density results in a larger ion migration
rate to give a more obvious effect on NL optimization.

5 Summary of the optimization
scheme

The optimization schemes on the conductance modulation
of the memristor in this review are mainly divided into two
categories: applying a smarter programming pulse and
changing the structure of the memristor. These schemes
have different NL optimization effects, and there are dif-
ferences in the ease of implementation. In order to make
the paper more directive and intuitive, the advantages and
disadvantages of the schemes are classified and summa-
rized in this section. Objects are summarized in addition
to the optimization schemes in the review and also those
outside the scope of discussion but contributing to the
direction of NL optimization. The above schemes are clas-
sified from three aspects: NL optimization, feasibility, and
novelty degree.
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Figure 13: Conductance modulation curves obtained in memristive devices with SiO, as the MLL with different thicknesses. Adapted with
permission from Ref. [69]. Copyright 2016 Nanoscale. (A) TiN/1 nm-Si0,/TaO /Pt memristor device. (B) TiN/2 nm-Si0,/Ta0, /Pt memristor
device. (C) TiN/4 nm-Si0,/Ta0 /Pt memristor device. (D) TiN/TaO /Pt memristor device, with no DLL.
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For an identical pulse scheme, it is also possible to
obtain a lower NL by changing the initial conductance,
the pulse amplitude, or the pulse width. It is important
to note that methods such as increasing the number of
pulses have no effects on NL optimization. From a realiz-
able point of view, uplifting the initial conductance can
significantly reduce NL while largely reducing the on/off
ratio. It is pointed out that optimizing NL by increasing
the amplitude of the input pulse is useless, the results of
which will be an increase in the maximum AG, not the NL
optimization.

In the four kinds of pulse schemes mentioned above,
the combined pulse schemes have obvious advantages
over the feedback pulse schemes in terms of feasibility,
which are mainly manifested in the stimulus signal gen-
eration module. The feedback schemes can get the most
suitable stimulus signal by processing the response gen-
erated after each cycle and feeding back to the stimulus
signal-generating module. Therefore, the complex stimu-
lus signal generation and processing module is needed,
and the feasibility is low. However, because of this, the
feedback schemes can achieve almost an ideal NL opti-
mization. Because the generating module of the stimulus
signal requires extra consumption, the pulse scheme is
weaker than the structural scheme in terms of feasibility
and energy consumption. From the perspective of novelty,
the pulse optimization scheme depends on the optimiza-
tion of the three PDEs in theory. For example, the first-
order memristor model is optimized to the second-order
memristor model, which is dependent on T and w. It is of
great significance to the performance optimization and
theoretical model of the memristor.

Schemes with a multi-RS layer are immature; they
has an advantage in simplifying the weight update
process and the peripheral circuits compared to the other
schemes, and it is feasible to achieve NL optimization by
choosing suitable TE materials. In the aspect of feasibility,
this scheme is superior to the pulse optimization schemes.
The materials and structures of the RS layer of memristors
are the main means of research in this field, which can
achieve different optimization effects. Therefore, in these
schemes, the novelty is attributed to the pulse optimiza-
tion schemes.

This review focuses on memristors based on binary
metal oxides, but there are also some related studies on
NL optimization in the types of memristors outside this
range. As shown in Table 2, it is worth noting that organic
compound-based memristors, one of the main research
directions of memristors, have NLs with excellent value,
although their other aspects (like the on/off ratio) do not
reach the same level as the metal oxide-based memristors.

DE GRUYTER

With the deepening of research, more and more research
on memristors is using polymetallic oxides as materials of
the RS layer, to achieve the goal of device optimization.
Among them, Nili et al. from RMIT University conducted
research on Nb-doping STO-based memristors [150]. In
their research, Nb:a-STOx-based memristors show a high
degree of uniformity and durability, and a lower NL of
the conductance modulation results can be obtained by
adjusting the partial bias amplitudes. It is worth noting
that this study places the temperature and thermal effects
of the device in an important position, which is the current
research trend. As the upgrade structure of the two-termi-
nal memristors, the three-terminal device [61, 63, 72-78]
can achieve a good balance in NL optimization and other
aspects, like energy consumption.

6 Application on neuromorphic
learning

Synaptic circuits are used as a connection layer between
two neuronal layers, which can use the memristor as the
basic unit, to be components of a neuromorphic system
[12, 151]. A hardware circuit system combines correspond-
ing algorithms, like sparse coding algorithm, to achieve
tasks [26, 138, 152-158] like image recognition. In the
image recognition system, binary black and white images
are made as the training objects. The system can store it
after training, which means learning under stimulation
from a training pulse.

In such an identification system, learning accuracy
[11] is an important parameter to demonstrate the ability
of such neuromorphic systems to accept and correctly
identify what they learned, and conductance maps of the
system can give a direct impression about it. The factors
that may affect the learning accuracy include the NL of the
weight update, the on/off ratio, and the device variations
at the device level. In this section, the improvement of
learning accuracy at the system level caused by optimized
NL at the device level is analyzed.

Figure 14A shows the simulation results of a recogni-
tion system with 8 x 8 synapse cells [85]. The purpose of
the system is to identify an 8 x 8 binary alphabetic “B”
pattern with 10% error bits in each 8 x 8 training pattern.
This indicates the initial state when the training period
is 0. The initial weights of the synapses, which means
the initial conductance of the synaptic memristors, are
randomly distributed, as shown in Figure 14A. When the
synaptic elements have an ideal linear weight update,
the learning results gradually become obvious with an
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Figure 14: Changes in learning accuracy at system level caused by optimized NL at device level. Adapted with permission from Ref. [139].
Copyright 2016 Springer. (A) Comparison of the simulated training weight map of an 8 x 8 binary alphabetic B pattern when the device

is programmed with three weight update schemes. The first column, linear weight update scheme; the second column, scheme based on
identical programming pulse; the third column, scheme based on the weak programming pulse with opposite polarity. (B) Comparison of
the simulated training accuracy, defined by equation inset, when the device is programmed with three weight update schemes. Inset shows
the difference in NL between two kinds of programming schemes (identical pulse, the weak pulse with opposite polarity).

increase in the training cycles. After 60 training cycles, the
learning process is completed with a learning accuracy of
100%, which has no error bit.

When the synaptic elements are in the memristor
device with a vertical double-layer structure based on tan-
talum oxide [159], the learning results are shown as fast
close to saturation. However, the learning accuracy is only
about 78% at the end of the stimulation, in which there
are many error bits, as shown in Figure 14B. The reason
for the higher learning outcome after the fifth training
cycle, as shown in the second column in Figure 14A, can
be attributed to the abrupt RS behavior of the synaptic
device initially. As shown in Section 3, the scheme with
the weak anti-pulse can reduce the NL level of the syn-
aptic device by one level. The third column in Figure 14A
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shows the learning results based on this scheme. This
shows a gradual situation, and the number of error bits is
gradually reduced.

Compared with the learning accuracy based on the
memristor synaptic devices with a different NL, it can
be concluded that the learning accuracy of the system is
affected by the NL of the device, as shown in Figure 14B.

However, optimization on NL would also change other
performances [11] like the on/off ratio. Therefore, the
above results can only indicate that the NL has an impact
on the learning accuracy, but cannot explain which factor
causes it specifically.

Figure 15A shows a map of the learning accuracy in a
neuromorphic system [11] based on the NL-level table as
shown in the inset of the graph. In the case of a perfectly
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Figure 15: Chain effects caused by optimization on NL. (A) Comparison of the learning accuracy with different LTP and LTD non-linearities.
Right, different non-linearity of the LTP and LTD fit from O to 6 and the level table about NL. Adapted with permission from Ref. [139]. Copyright
2016 Springer. (B) Learning accuracy with different on/off ratios. Reprinted with permission from Ref. [139]. Copyright 2016 Springer.
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symmetrical distribution of the LTP and LTD, when the
NL level increases from O to 4, the learning accuracy of
the system decreases gradually. When the NL level con-
tinues to rise to level 5, there is a slight increase in the
learning accuracy. When it rises to level 6, there is a sig-
nificant reduction in the learning accuracy. Figure 15B
shows that in this system, when the on/off ratio of the
device is reduced to less than 25, the learning accuracy
of the system is significantly reduced. However, there is
no obvious change. Although these results are based on a
certain algorithm, we can give the following inspiration:
(1) The on/off ratio of device has a threshold that deter-
mines the learning accuracy of the system. (2) There is a
key point where NL is the main factor causing the learning
accuracy optimization or deterioration.

In summary, the NL of the weight update has direct
and indirect effects on the learning accuracy of a neuro-
morphic system. The indirect effects are caused by the
properties associated with NL. Optimized NL will inevi-
tably change the other properties of the device, which
will result in the improvement in the system learning
accuracy.

7 Summary and prospect

Although there is no uniform standard for the RS mecha-
nism yet, its scope has been gradually narrowing down
along with more and more research about memristors
turning up in recent years, and the non-ideal features of
the memristor are more unignorable in the exploration of
the RS mechanism. Especially, alower NL of a conductance
modulation is found to be helpful not only in establish-
ing a mathematical model of the memristor with a higher
fitting degree [67, 144, 159] but also in helping to improve
the recognition accuracy of the neuromorphic system. The
ultimate goal of doing optimization at the device level is
to achieve systems with excellent performance. Based
on this purpose, optimization on a device needs to find
balance between all the associated properties.

Using the Mott theory and the three PDE models as
a theoretical support for the RS process of the memristor
device, we analyzed the reason for the NL based on the
particle migration theory. Based on these theories, the
formation process of the CFs inside the memristor has
obvious stage phenomena. We do work summarizing the
NL optimization scheme into two categories, applying
smarter programming pulse and changing structure of
the memristor, through the related experimental research,
and analyzed their advantages.

DE GRUYTER

The programming pulse signal has a significant influ-
ence on the CF formation process and internal temperature
change and particle migration inside the memristor. In the
aspect of NL optimization, the intensity parameters and
timing parameters of a pulse signal have a certain influ-
ence on AG and G__ . However, when the identical signals
are as a stimulus, these parameters have no real impact on
NL optimization. Therefore, the abnormal signals become
more and more common in the related research. It is impor-
tant to find a suitable extra pulse for the scheme for using
the combined pulse signal. The design of this kind of signal
is based on the three PDEs, and its experimental results can
prove the correctness of the three PDEs while optimizing
its solution process to obtain the simulation result with a
higher fitting degree. The feedback pulse signal is another
kind of optimization scheme, and it is achievable to obtain
the optimal degree of NL using this programming pulse
signal in the simulation. However, in the actual research,
to realize this simulation physically, it is necessary to solve
the problem of simplification of the complex degree of the
signal-generation module, or the scheme has no practical
application or value at the system level. NL optimization
from the perspective of changing the component struc-
ture of the memristor has the same substantive effect. The
main basis of this kind of scheme is to restrict the distance
and speed of the particles moving inside the memristor by
doping or MLL. One of the things that needs special atten-
tion in both scenarios is that changes in NL optimization
may cause changes in its associated object, such as the on/
off ratio or circuit complexity.

The final beneficiary for optimization at the device
level should be the system. It is important to note that
NL is an important factor that cannot be ignored in the
field of application of neuromorphic systems, and we call
it the relationship between the learning accuracy of the
system, based on the memristor synaptic device, and the
NL of the memristor. It has both a direct relationship and
an indirect relationship. In the case of different systems
and algorithms, NL has a different proportion of influ-
ence on learning accuracy, and its associated objects to
the system will be different. It can be hypothesized that
there are thresholds in NL optimization. When proper-
ties associated with the NL are lower than a threshold, NL
optimization may be meaningless. At the system level, the
stability, large-scale miniaturization, and low power con-
sumption are the main research directions now. Therefore,
optimization on a device must consider them. As regards
NL optimization, doing optimization in the structure of
the memristor is better considering space and energy.
However, in both, the two categories of schemes in NL
optimization, still more work that is valuable needs to be
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done in the future. Other non-ideal properties of the mem-
ristor also have limitations on its development and the
neuromorphic system. Research on optimization needs to
be continued in the future.
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