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Abstract: As memristor-simulating synaptic devices 
have become available in recent years, the optimiza-
tion on non-linearity degree (NL, related to adjacent 
conductance values) is unignorable in the promotion of 
the learning accuracy of systems. Importantly, based on 
the theoretical support of the Mott theory and the three 
partial differential equations, and the model of conduc-
tive filaments (CFs), we analyzed and summarized the 
optimization schemes on the physical structure and the 
extra stimulus signal from the internal factor and exter-
nal influence, two aspects, respectively. It is worth not-
ing that we divided the extra stimulus signals into two 
categories, the combined pulse signal and the feedback 
pulse signal. The former has an internal logical optimized 
phenomenon, and the composition of only two parts in 
each cycle leads to a simple peripheral circuit. The latter 
can obtain an almost linear NL curve in software stimu-
lation because of its feature in real-time adjustment of 
signals, but it is complex in hardware implementation. 
In consideration of space and energy consumption, 
achieving memristor with different resistive switching 
(RS) layers can be another optimization scheme. Special 
attention should be paid to the weaker NL, which could 
improve learning accuracy at the system level only when 
the value of other non-ideal properties such as the on/off 
ratio is within a certain range.

Keywords: conductance modulation; memristor; neuro-
morphic system; non-linearity.

1  �Introduction
The memristor is widely viewed as a potential device in 
neuromorphic systems as its analog resistive switching 
(RS) process is suitable to simulate the weight update 
of a biological synapse (bio-synapse), after showing its 
developing advantage in recognizing the digital state of 
storage [1–4] and analog states of computational fields 
[5–10]. Nearly a decade of research has reinforced the 
realizability of memristors in this application area. In 
these neural morphic applications, the memristor needs 
to exhibit an analog RS behavior (having multi-resistance 
states) rather than binary resistance states, and some of 
its non-ideal properties lead to a negative influence on 
the learning accuracy of the neuromorphic system [11–13]. 
The focus of this review is on the performance optimiza-
tion of a memristor, and the optimization object is the 
non-ideal characteristic of the conductance modulation 
of the memristor. The key sections of the review are Sec-
tions 2 and 3, which discuss the theory and mechanism 
of supporting the optimization object and the feasible 
schemes from the external conditions to achieve optimi-
zation, respectively.

To make a clear comparison between the memris-
tor and the bio-synapse, a model diagram of these two 
concepts is shown in Figure 1. The weight update of the 
bio-synapse is the basis for transmitting and processing 
information [14–16], and the continuous conductivity 
state switching of memristors can mimic this function of a 
bio-synapse by enabling the distribution of multiple con-
ductance states [17–21]. So a common concept, non-line-
arity (NL for short) of the state distribution, becomes the 
key point. Within this article, all of the non-linear terms 
we are talking about refer to NL in conductance modula-
tion of a memristor, also known as the NL in the weight 
update of a synaptic device. A memristor with an ideal NL 
(=0) can simplify the weight update process and hardware 
circuit, and improve the learning accuracy [22] in a neu-
romorphic system. The most intuitive expression of the 
device with a higher NL (close to 1) is the phenomenon of 
two stages in conductance modulation curves [23–28], and 
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a detailed explanation of NL is given in the second part of 
this article.

Metal oxide memristors usually have a typical metal-
insulator-metal (MIM) structure, and its insulator layer 
(also known as the RS layer) is made by binary metal 
oxides (e.g. TiO2 [28–31], WOx [32, 33], TaOx [34–42], HfO2 
[43–47], etc.), perovskite metal oxides [48, 49], chalco-
genes [50, 51], and others. Although the RS mechanism 
of a memristor does not have a unified conclusion so far, 
the conductive filament (CF) model based on ion/vacan-
cies migration in many research conclusions can give 
a good degree of coverage of the corresponding experi-
mental data. For example, Shigeoka et  al. [52] showed 
the work on a memristor based on Ta2O5 by using the CF 
model. Bousoulas et al. [53] demonstrated its research on 
Ti/TiO2−x-based memory devices based on the CF mech-
anism. Qu et  al. [33] demonstrated the reason for the 
existence of CFs using the experimental results of a WOx-
based memristor. In addition, migration of ions/vacan-
cies in the RS layer is thought to be associated with NL [5, 
37–39, 54, 55], and further calculations of particle migra-
tion provide theoretical support using the Mott theory 
and the finite element method (FEM) [56–58]. The Mott 
theory was the cornerstone of research related to parti-
cle migration. The FEM uses the mathematical method 
to simulate the real physical system and is used as the 
model basis for the internal state analysis of memristors. 
Kim et al. [59–63] used this model in a series of research 
related to memristors in recent years. Based on these the-
ories, scientists focused much of their attention on the 
optimization scheme of NL based on the ion transport of 
an RS material, such as doping and the multi RS layer 
[64, 65].

For other optimization schemes of NL, using smarter 
stimulus signals are suggested, which looks for a series 
of signals that balances the device between NL and fea-
sibility. In this review, Section 2 is about NL optimization 
in a simple one-dimensional (1D) rigid point ion model 

proposed by Mott and Gurney [66], which results in a 
self-consistent solution of three partial differential equa-
tions (PDEs). Two kinds of NL optimization schemes, the 
smarter stimulus signal and the multi RS layer, are stated 
in Sections 3 and 4, respectively. In Section 5, we summa-
rize the optimization schemes, from the four aspects of NL 
optimization, feasibility, novelty degree, and consump-
tion. In Section 6, we summarize the direct and indirect 
effects of NL change on learning accuracy in a neuromor-
phic system.

2  �Causes of the two-stage 
phenomenon

2.1  �The two-stage phenomenon

The I-V curve cluster is the most common form of graphic 
used in characterizing a multi-state modulation of a mem-
ristor, which is taken by applying voltage sweeps with a 
certain value of the termination voltage (Vstop) or a certain 
value of the complaint current (Icc). The I-V curves are the 
basic characterization method in the field of memristor 
research. At the same time, in order to study the analog 
RS behavior of the memristor, especially its linearity of 
the conductance modulation, the characteristic curve that 
indicates the conductance to change with the increase 
in the external stimulus loading time becomes the main 
means, as shown in Figure 2.

Figure 2A shows the corresponding experimental 
results of the I-V relationship based on the TE/HfOx/AlOx/BE 
memristor device, by Kim et al. [59]. In order to obtain more 
intuitive expression of conductance distribution, the con-
ductance-cycle number (or time) curves are necessary. 
A high-degree fitting results of the experiment is introduced 
here to prove the phenomenon of segmentation (Figure 2C), 
by Wang et  al. [67], by applying a pulse sequence with a 

Figure 1: Comparison between the bio-synapses and the artificial synapses (memristors).
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constant value in amplitude and frequency (called identical 
pulse), based on the Ta/TaOx/TiO2/Ti memristor.

Figure 3 lists several conductance modulation curves 
for a memristor with different materials or structures. 
Not only is this found in the usual two-terminal mem-
ristor, a similar phenomenon also occurs in the three-
terminal memory transistors [61, 63, 71–78]. Zhu et  al., 
from Beijing University, developed the WSe2-based syn-
aptic transistors. This device shows good performance, 
especially in terms of conductivity modulation linearity 
and low energy consumption [61]. In this work, there are 
no obvious two-stage phenomena in the conductance 
modulation curve, and the ultralow energy consumption 
of ≈30 fJ per spike is achieved. The conductance modula-
tion curves show different forms, especially in the aspect 
of the slope. Based on these results, it can be concluded 
that the slope of the curve shows a segmentation phe-
nomenon. The segmentation of the slope of the curve in 
conductance modulation curves of a memristor device 
is not a special case, but occurs in the vast majority of 
experiments. Das et al. [79] found the segmentation phe-
nomenon at the Y2O3-based memristor. Banerjee et  al. 
[80] found this phenomenon for the TiOx/Al2O3-based 
memristor. Guangyang et  al. [72] found this phenom-
enon at the SnO2-based memristor. The segmentation 

phenomenon is described as a two-stage phenomenon 
here in the aspect of the metal oxide memristor.

For a two-stage phenomenon, the slope of the curve 
is usually segmented to a clear two stages, as the initial 
stage is significantly higher than the tail, as shown in 
Figure  2C. In detail, the abrupt change in the adjacent 
conductance value(∆G) occurs in the first stage, and the 
gentle change reaches the saturation conductance value 
(Gmax) in the second stage. Either memristors exhibit a 
continuous increase or a continuous decrease in conduct-
ance value upon a stimulation pulse with an opposite 
polarity, corresponding to the characteristics of bio-
synapses, and these two behaviors can be called long-
term potentiation (LTP) and long-term depression (LTD), 
respectively [81–84]. In order for this phenomenon to be 
effectively analyzed, the concept of NL proposed by Wang 
et al. in 2016 [85] was adopted.

	
( ) ( )  ,    1, 2, 3, ,  LTP LTDNL Max G n G n n N= − = � � (1)

Eq. (1): GLTP(n) and GLTD(n) are the conductance values 
after the nth LTP-pulse and LTD-pulse, respectively. N is 
the number of LTP-pulse/LTD-pulse.

This concept is based on the image representa-
tion shown in Figure 2B, in which the LTP and LTD are 
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Figure 2: Multi-level RS behavior and the two-stage phenomenon in conductance modulation in the memristor. (A) Mult-ilevel resistive 
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Blue, the set process; red, the reset process. Adapted with permission from Ref. [25]. Copyright 2011 Applied Physics A Materials Science and 
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symmetrically characterized in one dialog, for facilitating 
the conformance of NL, and NL is defined as Eq. (1).

2.2  �Theoretical basis

As a key research direction of memristors in the aspect 
of internal mechanism, particle migration has been con-
tinuously appearing in related research papers. This 
foundation provides theoretical support for other optimi-
zation work. Kim et al. [57, 59], Prezioso et al. [29, 86–88], 
and Matveyev et al. [10, 89–91] used this as a support to 
propose NL optimization. Sung et al. [92] worked on opti-
mization on the I-V linearity. Garbin et al. [93] worked on 
optimization on variability. It is worth mentioning that 
Mott first proposed the theory of particle migration in 
1948 [94], called the Mott theory, shown as Eqs. (2) and 
(3), to describe particle migration. Here, a is the effective 
escape distances, and Ea is the activation energy for the 
hopping process, and they are all determined by the kind 
of particle and the kind of material in which the particles 
migrate.

	

2 2
0

1 1exp  ,  
2 2

aED a f D a f
kT

 
= − =  

� (2)

	
exp sinhaE aqEv af

kT kT
   

= −      � (3)

Eqs. (2) and (3): D is the ion diffusivity, f is the attempt-
to-escape frequency, Ea is the activation energy for the 
hopping process, a is the effective hopping distance, T 
is the local temperature, E is the local electric field, v is 
the drift velocity, k is the Boltzmann constant, and q is the 
charge quantity.

Larentis et al. [95] used three partial differential equa-
tions to establish a physical model of a memristor driven 
by particle migration in their paper in 2012. In recent 
research, this method was followed and optimized by other 
researchers. In 2014, Kim et al. [60] proved this method by 
comparing the experimental data from a TaOx-based mem-
ristor. After that, they divided the internal state variables 
w (used to describe the size-doped area) into g (length of 
CFs) and r (radius of CFs) because of the appearance of 
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the CFs model. This work led researchers to analyze mem-
ristors using second-order or even higher-order models. 
Dipesh et  al. [96] made the numerical modeling as the 
theoretical basis of heat transfer. Sadi et al. [97] made this 
theory the simulation methodology in their work based on 
SiOx. For exploring the resistive switching mechanism of a 
memristor, it is necessary to investigate the activity track 
and law of carriers in the memristor device bulk. Thus, 
the simulation of the RS process requires the PDEs: (1) a 
drift/diffusion continuity equation for VO transport, (2) a 
current continuity equation for electrical conduction, and 
(3) a Fourier equation for Joule heating, as shown in Eqs. 
(4–6).
Vo transport

	
( )D

D D D

n
D n vn DSn T

t
∂

= ∇⋅ ∇ − + ∇
∂

� (4)

Current continuity

	 0σ Ψ∇⋅ ∇ = � (5)

Joule heating

	

2

p th
TC T
t

µ κ γ σ Ψ
∂ − ∇⋅ ∇ = ⋅ ∇
∂ � (6)

Eqs. (4–6): nD is the concentration of VO, ψ is the 
potential, and T is the temperature.

A simulation of this theory can be achieved through 
the establishment of an effective model based on the 
finite element method (FEM), in which the value of nD, 
ψ, and T can be calculated within a numerical solver. 
The establishment of the model requires a one-to-one 
correspondence with the structure of the memristor. In 
particular, the multi-layer RS layers of different materi-
als cannot be mixed together for discussion. In order to 
facilitate the explanation of this theory, the CF model of a 
memristor with a simple structure based on FEM is given 
here (Figure 4A, B). All of the meanings and units of the 
variables or constants, involved in the Mott theory and the 
three PDEs, are summarized in Table 1.

Ion migration is described by a flux in units (cm−2 s−1), 
including diffusion (jdiff) and drift (jdrift) [57, 95] components, 
as the Mott theory elaborates. Both these two processes 
rely on ion hopping. External electric field stimulation will 
change the difficulty of particle migration. Specifically, 
in the direction of the electric field, the barrier of particle 
migration decreases, and particles migrate easier toward 
the same direction. On the contrary, particle migration 
becomes more difficult in the opposite direction of the exter-
nal electric field. This process results in a directional ion 
drift (Figure 4C). On the other hand, the diffusion process 
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Figure 4: Model of memristor based on the FEM and the particle transition model. (A) 3D CF model of a memristor with a simple structure 
based on FEM. (B) 2D CF model of a memristor. (C) Particle transition model.
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of ions depends on both the temperature gradient and the 
carrier concentration gradient. Therefore, calculating the 
carrier concentration distribution in the device bulk is of 
great significance for investigating the RS mechanism of it.

To solve the three PDEs, boundary conditions of ψ and 
an approximately maximum carrier density are needed, 
as shown in Table 1. A model for electrical conductivity 
in the RS layer and in CFs is considered to be thermally 
activated, as shown in Table 1.When making calculations, 
the researchers assume that σ0, EAC, and kth are linearly 
related to nD, and the relevant starting and ending values 
are related to the material of the RS layer. It must be said 
that such assumptions have been verified [56, 58, 95] as 
not affecting the validity of the calculations. In the early 
simulations, the factor of temperature in the memristor 

device bulk was generally ignored. The specific operation 
was to set the device bulk temperature equal to room tem-
perature (T0), and regard the heat transfer or divergence. 
It has been verified [57, 98] that such assumptions lead to 
large differences between the calculated and experimen-
tal results. The Joule heating [62, 99–102], caused by CF 
connectivity in the device, causes a significant tempera-
ture change in the device when it is in the RS process, 
affecting particle diffusion process, so as for the conduc-
tivity of the device.

2.3  �Particle migration in two stages

From the perspective of the CF morphological changes 
in the memristor alone, conclusions that are consistent 
with the three PDEs simulation results can be obtained. 
Alessandro et al. [103] used the CF model to be the expla-
nation of their experimental results. Lu et al. [104] made 
their research based on the CF model and showed the two-
stage phenomena in the forming process of the CFs. Zhu 
et al. [65] used simulated 2D maps to indicate the oxygen 
vacancy (VO) concentration distributions in a memristor, 
in which there is significant expanded phenomena in the 
horizontal direction about the CFs. In order to more intui-
tively demonstrate the impact of particle migration on the 
RS behavior, we summarized and made a diagram of it 
shown in Figure 5. VOs are present as doping in PDE simu-
lation and are considered as constituent substances of the 
CFs. Similarly, the continuation of the conclusion by Gao 
et al. [24, 105] in this subsection places the VOs as the main 
object. It acts as a carrier in the memristor device bulk, 
and there is migration within the device so that the device 
can complete the RS process.

The reason for the two-stage phenomenon discussed 
in this review is analyzed with the features of the conduct-
ance modulation curves. The model shown in Figure  5 
shows the direction of the CF growth in the memristor 
device and the effects of the migration of the VOs in differ-
ent stages of stimulation. The memristor is initially in an 
off state, which means a high resistance state (HRS), and 
there are no CFs in the body. Forming process promotes 
the formation of CFs by applying external stimuli in the 
form of voltage that is slightly higher than the RS voltage. 
At the end of this process, which is to remove the voltage 
stimulus, there are incomplete CFs formed in the memris-
tor device. At this moment, the device is in the HRS state, 
and a gap [106–109] exists inside it. By applying external 
stimuli to the device, the gap will be filled with VOs, and 
the CFs grow to connect the cathode and anode eventu-
ally, which is called the set process. At this moment, the 

Table 1: The detailed information of the three PDE-related parameters.

Char.   Unit   Meaning

Parameters in constants
 a   Nm   Hopping distance
 Ea   eV   Ion migration energy barrier
 f   Hz   Escape attempt frequency
 γ   –   γ = 1 for DC
      γ = 2 for AC
Parameters from measurements and assumption
 g   Nm   Length of the CF
 r   Nm   Radius of the CF
 rm   nm  
 ρ   S/cm   Resistivity of the CF
 σ   Ω−1 cm−1   Electrical conductivity
 σ0   Ω−1 cm−1   Electrical conductivity pre-exponential factor
 EAC   eV   Activation energy for conduction
Dependent variables
 nD   cm−3   Concentration of VO

 T   K   Temperature
 ψ   V   Potential
Parameters about particle migration
 v   cm s−1   Drift velocity
 D   cm2 s−1   Diffusivity
 S   K−1   Soret diffusion coefficient
Flux
 D∇nD   Fick diffusion flux
 V nD   Fick drift flux
 D S nD∇T   Soret diffusion flux
Parameters for current
 I0   A   –
 V0   V  
 gm   nm  
Parameters determined by materials
 μ   kg/cm3   Ion mobility
 Cp   J K−1 cm−3   Heat capacitance
 kth   W cm−1 k−1  Thermal conductance
 δ   –   Heat dissipation factor
 H   –   Temporal heat factor
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device is in the low-resistance state (LRS). Conversely, 
when voltage stimulus with opposite polarity is provided 
in the on state, the VOs migrate in the opposite direction. 
The CFs break after this processing, and the device returns 
to the off state with incomplete CFs, which is called the 
reset process.

In the set process, the morphological changes of 
CFs have different trends with the increase in stimulus 
loading time. The memristor device is in the first stage at 
the beginning, when the identical pulse is applied to it. 
Before the CFs are complete, there is a high electric field 
in the gap area, and the VO (or ion) transmission will be 
controlled by the drift process, which is driven by an elec-
tric field effect, along the VO concentration gradient. The 
main change in the CFs is their length [110], as shown in 
Figure 5B, which leads to rapid increase in the conduct-
ance of the device so that the conductance modulation 
curve shows a higher slope and the conductance state dis-
tribution is sparse. Another important feature in the first 
stage is that although the conductance value of the mem-
ristor can achieve a substantial increase within a smaller 
number of pulses, it is unsaturated. The reason is that Vos 
in the area near the CFs step into the reduction reaction in 
the first stage [60], and VOs in the area farther away from 
the CFs need to migrate for a long distance before it, which 
happens in the second stage. In the first stage, there is just 
part of the VOs that can participate in the formation of the 
CFs, and the CFs are not strong enough. When the curve 
steps into the second stage, the CFs become complete, 
and the device tends to be metalized. The complete CFs 

resulted in the reduction of the local electric field, which 
results in the suppression of the drift process, through the 
Mott theory shown in Eqs. (2) and (3).

In the second stage, there are obvious differences in 
the internal changes of the device from the first stage, 
which must be paid attention to. Several studies simu-
lated the temperature changes inside the device during 
the RS process and obtained the temperature distribution 
results with a consistent trend – the areas near the CFs 
have a higher temperature. Kim et al., from the University 
of Michigan, worked in this area [56]. Larentis et al., from 
the University of Texas, did relevant work [95]. Jeong et al. 
did this work in 2015, and here, we quote their work as 
shown in Figure 6 [104]. The Joule heating caused by the 
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connected CFs results in a significant temperature gradi-
ent that leads to an increased local temperature, as shown 
in Figure 6. Therefore, the particle diffusion process was 
enhanced in the second stage, so the CFs can expand in 
the horizontal direction. Especially, this partial migration 
process is dominated by the temperature gradient rather 
than the concentration gradient. In detail, the local tem-
perature of the area where the CFs are located is higher 
than those of the other areas, which leads to particles 
migrating toward the CFs. This process can be named as 
the thermophoresis process as a result of the temperature 
gradient. The diffusion of the VOs promotes the expan-
sion of the CFs in the horizontal direction [56, 72, 98, 111], 
which leads to stronger CFs. The reason for the saturated 
state in this stage is that the VOs inside the device bulk that 
can reach the area where the CFs are located are gradu-
ally depleted. Therefore, at the end of the set process, 
conductance is saturated, and there is no more significant 
increase when the VOs in the area, even if far away from 
the CFs, is exhausted.

3  �The smarter stimulus signal
Spikes were the first to be chosen as a signal source in 
the memristor stimulus that exists to mimic the type of 
stimulus signal that a bio-synapse accepts [87, 100, 112, 
113]. The device can exhibit LTP and LTD features similar 

to bio-synapses under continuous spiking stimulation. 
In addition, stimulated by paired spikes, the memristor 
device can also achieve the paired-pulse facilitation (PPF) 
[72], that is, the paired signal is processed by the device 
to show that the state of the second signal amplitude is 
greater than the first one. In recent years, in order to sim-
plify the peripheral signal generator circuit, the rectangu-
lar pulse signal source is used in the simulation of research 
about the analog memristor device [114–118]. The ampli-
tude of the pulse signal determines whether the device can 
achieve RS or not and the value of ∆G in the RS process. 
The frequency of the pulse signal determines whether the 
conductance value caused by the previous pulse can be 
maintained until the next pulse arrives at the device.

3.1  �Identical pulse

In the simplest form, a pulse sequence with a constant 
amplitude and frequency, here called the identical pulse, 
is used as a signal source for stimulating the device 
(Figure 7A), which is also the signal form commonly used 
in research in recent years. Stimulated by this signal 
source, the device generally shows segmented phenome-
non in the distribution of conductance value. We collected 
research data related to an analog RS behavior in the field 
of memristors in recent years and summarized the experi-
mental results based on the identical pulse, as shown 
in Table 2. The data in the table shows that the material 
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Figure 7: Identical pulse and the response of the memristor to the pulse. (A) Identical pulse. (B) Conductance modulation curves of the 
programming pulse with different amplitudes based on the Pd/Ta2O(5−x)/TaOy/Pd memristor device. Adapted with permission from Ref. [104]. 
Copyright 2015 Applied Physics Letters. (C) Multiple memory model. (D) Conductance modulation curves of the programming pulse with 
different amplitudes and tpp based on the Ta2O(5−x)-based memristor device. Adapted with permission from Ref. [98]. Copyright 2015 Nano letters.
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Table 2: Summary of response of conductivity distribution to identical pulse scheme in memristor devices.

Materials  
 

Programming pulse   Nc (#)  ∆Gtotal   Ref.  Year

RS layer   TE   BE A (V)   Width   N (#)

Ta2O5−x/TaOy   Pd   Pd   −0.9   100 μs   150   ≤25  ~0.2 mS   [60]  2014
      1.1   10 μs     –  ~0.2 mS    

Si2.7%: Ta2O5−x/TaOy       −0.9   100 μs     ≤25  ~0.3 mS    
      1.1   10 μs     –  ~0.7 mS    

Si4.2%: Ta2O5−x/TaOy       −0.9   100 μs     ≤25  ~0.5 mS    
      1.1   10 μs     –  ~0.5 mS    

Ta2O5−x/TaOy   Pd   Pd   −1   100 ns   20   ≤5  ~1.5 mS   [90]  2015
      −0.9         ~1 mS    
      −1.3         ~2.5 mS    

TaOx/TiO2   Ta   Ti   8.7   50 μs   20   ≤10  ~90 nS   [67]  2015
      −7         ~130 nS    
      −10         ~120 nS    
      9.5         ~130 nS    
      9.2         ~120 nS    
      −8         ~130 nS    

TaOx/TiO2   Ta   Ti   3   5 ms   70   ≤10  ~60 nS   [86]  2016
      3     50     ~50 nS    
      −3     50     ~50 nS    

Ta2O5−x/TaOy   Pt   Pt   0.9   5 μs   100   ≤25  ~0.4 mS   [65]  2017

TiO2:Ag   Ag   Pt   0.4   200 ns   30   ≤20  ~0.8 mS   [119]  2018
        300 ns     ≤16  ~1.8 mS    
        500 ns     ≤8  ~3.8 mS    
      0.6   200 ns     ≤15  ~3.9 mS    
      0.8       ≤5  ~4.0 mS    

HfO2   TiN   TiN   1.5   10 μs   300   ≤25  ~0.4 mS   [89]  2015
      1.2       ≤50  ~0.15 mS    
      −2       ≤25  ~0.85 mS    

HfO2   TiN   TiN   0.85   1.5 μs   150   –  0   [90]  2015
      1       ≤25  ~20 μS    
      1.2       ≤10  ~90 μS    
      −1.2       –  0    
      −1.6       ≤50  ~80 μS    

HfO2   Ti/TiN   TiN   0.8   100 ms   100   ≤10  ~200 μS   [120]  2016
      0.8   1 μs     ≤10  ~50 μS    
      −1   1 μs     –  ~50 μS    
      −1.1   1 μs     ≤50  ~150 μS    
      0.9   10 ms   60   ≤20  ~50 μS    
        10 μs     ≤10  ~20 μS    

HfOx/HfO2   Ti   TiN   0.8   100 ms   100   ≤10  ~200 μS   [121]  2016
      −1.1   1 μs     ≤25  ~175 μS    
      −1   1 μs     –  ~50 μS    

HfOx/ZnOx   Pt   TiN   −0.2   100 ms   125   ↑  ~0.4 mS   [68]  2017
      1   100 ms     ↓  ~0.6 mS    

Nb2O5   Al   Al   1.5   10 μs   100   ≤10  ~90 mS   [122]  2014

WOx   W   Pd   3   400 μs   50   ≤10  ~20 μS   [123]  2014

ZnO   Ti   Pt   5   180 ms   60   ↑  ~5 mS   [124]  2016
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Materials  
 

Programming pulse   Nc (#)  ∆Gtotal   Ref.  Year

RS layer   TE   BE A (V)   Width   N (#)

TiOx   Pt   TiN   3   1 ms   100   ≤40  ~600 nS   [125]  2016
      2.5       –  ~200 nS    
      −3       ≤20  ~600 nS    
      −2.5       ≤40  ~400 nS    

FeOx   Pt   Pt   1.6   100 μs   50   ≤10  ~0.4 mS   [126]  2016
        10 μs     ≤5  ~0.3 mS    
        1μs     ≤10  ~0.2 mS    
      1.5   10 μs   50   ≤10  ~0.2 mS    
      1.45       ≤20  ~0.1 mS    
      1.3       –  0    

Y2O3   Al   n-Si   2   50 ms   100   ≤10  ~10 μS   [79]  2018
      2   100 ms     ≤10  ~15 μS    
      2.5   100 ms     ≤40  ~830 μS    

PEDOT:PSS   Ag   Ta   2   50 ms   50   ↑  ~600 mS   [127]  2013

PCMO   Al   …   1   1 ms   100   ≤10  ~9 nS   [22]  2013

      2         ~5 nS    
      −2.5         ~0.4 nS    
      −4         ~100 nS    

PCMO   Pt/TiN   Pt   3   1 ms   100   ≤25  ~80 nS   [128]  2014
        100 ms     ≤25  ~100 nS    
      −3   1 ms     ≤25  ~120 nS    
        100 ms     ≤25  ~1 mS    

EV(ClO4)2 + PEO/TPy-Fe   Ta   ITO   3   10 ms   50   ↑  ~1.5 nS   [129]  2016
      −2       ↓  ~0.75 nS    

EV(ClO4)2/TPA-PI   Ta   Pt   0.5   10 ms   90   ↑  ~6 mS   [70]  2016
      −0.5       ↓  ~6 mS    

AgInSbTe   Ta   Ag   0.6   5 μs   50   ≤10  ~8 mS   [130]  2017
      −0.6       ≤10  ~8 mS    

Lignin   Au   ITO   0.7   100 ms   50   ≤20  ~30 μS   [131]  2017
      −0.7       ≤20  ~30 μS    

–, there is no obvious two-stage phenomenon; ↑↓, apparent linearity; A, the pulse amplitude; N, the total number of the programming 
pulse; Nc, the pulse number at the critical point; ∆Gtotal, the difference between the maximum conductance and the minimum conductance.

Table 2 (continued)

composition of the memristor and the amplitude and the 
width of the identical pulse signal all have an effect on 
the experimental data. Based on the data in Table 2, we 
determine the factors that influence the optimization of 
NL in the composition of the external stimulus signal and 
the material composition of the memristor.

An obvious conclusion can be drawn from Table 2 
that most binary metal oxide-based memristors have a 
two-stage phenomenon of conductance modulation. From 
the aspect of the stimulus signal, the intensity of the two-
segment phenomenon is closely related to the amplitude 
and width of the stimulus signal.

The amplitude of the identical pulse signal is the 
value of the extra voltage applied on the device or the 

electric field that forces the particle migration inside the 
device. According to the Mott theory in the second part of 
this review, the applied electric field is the main influence 
factor of the process of particle drift [104, 110], which is 
enough to affect the formation rate of CFs at the begin-
ning of a complete CF formation. A simple change in this 
eigenvalue of the identical pulse signal (from one con-
stant to another) was verified to change the state distribu-
tion of the memristor device. This change manifests itself 
as an increase in Gmax and a steeper conductivity modula-
tion curve [22, 104] (Figure 7B). In detail, the blue curve 
with the lowest pulse amplitude in this graph shows the 
lowest NL and Gmax, and the red curve with highest pulse 
amplitude in this graph shows the highest NL and Gmax. 
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For features of the red, the reason is that the increased 
electric field, caused by the increase in the pulse ampli-
tude, promotes particle drift, so as to increase the number 
of VOs forming the CFs in the initial state. The conduct-
ance value increases because of that, which results in an 
increase in NL. In short, it is useless to optimize the NL 
by changing the amplitude of the identical pulse signal. 
The timing characteristics of the stimulus signal include 
the duration (called the pulse width (twidth) in the pulse 
signal) and time interval (tinterval) of the signal. Both have 
an impact on the conductance modulation process.

In biology, the frequency of the external stimuli is 
the key to the human brain’s ability to produce memory. 
According to the multiple memory model proposed by 
Atkinson and Shiffrin, the biological brain can produce 
short-term memory (STM) and long-term memory (LTM) 
as the frequency of the external stimuli to which the 
bio-synapses are subjected increases [132] (Figure 7C). 
In experiments and simulations based on memristor 
devices, conclusions about similar features have also been 
obtained [32, 133]. Such a feature explains the biologi-
cal basis for the characteristic that the memristor device 
exhibits a gradual increase in conductance with continu-
ous external stimulation and provided evidence of a pre-
diction that the frequency of stimulation signals affected 
the conductance distribution. Figure 7D shows the distri-
bution of the conductance of the memristor device when 
pulse signals with different tintervals are applied as external 
stimuli. Stimulated by a pulse signal with a longer tinterval, 
the device has a denser conductance distribution than the 
one with shorter tinterval over the same range of conductance 
values. From the analysis of the intuitive characteristic of 
the device such as current-voltage (I-V) characteristics, 
when the tinterval of the stimulus signal is long enough, 
the state of the device caused by the previous stimulus 
signal has enough time to decay back to the state before 
the stimulus. Conversely, when the stimulus signal tinter-

val is sufficiently short, the state of the device caused by 
the previous stimulus signal cannot be returned to its 
pre-stimulus state even if decay has occurred, when the 
next stimulus signal arrives. Such a process results in the 
device being able to maintain a continuous state change.

Analyzing from the perspective of the PDEs model, in 
conjunction with the calcium ion (Ca2+) model in biology 
[134, 135] related to synaptic weights update, a second-
order memristor model was established by Kim et al. [98]. 
In this model, the temperature in the device bulk (T), 
which affected the first-order internal state variable w, 
while being affected by w, is considered as a second-order 
internal state variable. In this model, T is no longer consid-
ered as a non-critical constant, but rather Joule heating is 

considered as a major contributor to particle diffusion in 
the device bulk in the RS process. In fact, Stefano et al. [95] 
obtained the result that T would be different in the process 
of the CFs forming by simulation in 2012. Goodwill et al. 
[136] carried out simulations and experiments to indicate 
that the VO flow would be affected by T. Both the fitting 
results between the calculation data with experimental 
data and the similarity between the device and bio-syn-
apses do have better results in this model. The device has 
spontaneous heat dissipation in the device bulk, result-
ing from heat exchange between the device bulk and the 
outside or heat release from the electrodes. When the tinterval 
is long, Joule heating due to the complete process of the 
CFs cannot form heat accumulation in the device bulk. As 
a result, the heat generated within the device bulk cannot 
promote the particle diffusion process inside. Therefore, 
the complete process of the CFs is mainly driven by ion 
drift, and the RS process of the device will tend to be flat. 
On the contrary, a great number of heat accumulation leads 
to the enhancement of the particle diffusion process, so 
that the CFs in the device quickly enters the complete state. 
In addition, for twidth, a pulse signal of appropriate length 
allows the device to be controlled with a continuous RS 
process. When twidth is too long, a long time external voltage 
is loaded on the device, and as a result, the RS process of 
the device tends to be digitized and uncontrollable.

3.2  �Abnormal pulse

One of the important means to study the response char-
acteristics and performance optimization of the memris-
tor is to not change the material of the RS layer and the 
structural composition of the memristor. Changing the 
characteristic parameters of the external stimulus signal, 
such as amplitude, width, signal time interval, and so on, 
is the main research method. In investigating the NL of 
the conductance modulation of the device, for this non-
ideal feature, the researchers found that the response of 
the memristor to the programming pulse tends to be intel-
ligent, which means the NL can be optimized by apply-
ing a smarter programming pulse. Jeong et al. [104, 137], 
Wang et al. [34, 85], and Park et al. [9, 138] are researchers 
who have done research in this area. After reading the rel-
evant articles in this research direction, we divided the NL 
optimization based on external stimuli into two catego-
ries, namely, the combined pulse and the feedback pulse, 
mainly according to the shape of the stimulation pulse, 
and we summarized them in the form of a map in Figure 8.

The combined pulse breaks the characteristic of a 
single pulse in a single cycle, and the small-amplitude 
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pulse, called the weak pulse here, is attached with the 
programming pulse into one cycle as the extra stimulus 
signal. Figure 8A and B shows this kind of stimulating 
signal, and the weak pulse of different polarities has a 
different influence on the weight update of the memris-
tor. When a weak signal is a polar opposite to the pro-
gramming pulse, called the weak anti-pulse, the effect 
is to offset the ΔG caused by the programming pulse in 
the previous input cycle. On the contrary, when the weak 
signal is of the same polarity as the programming pulse, 
called the heating element, the weak signal is conducive 
to enhancing the particle diffusion in the device, thus, 
increasing the Gmax. As shown in Figure  8C and D, the 
feedback pulse uses feedback to process the amplitude 
and width of the stimulus signal in increments. Each 
feedback adjusts the next programming pulse according 
to the previous weight update results to obtain a conduct-
ance curve with the lowest NL value. The detail about 
these two kinds of programming pulse will be explained 
in sections 3.2.1 and 3.2.2. In schemes of stimulus signal, 
it is very important to note that the number of stimulus 
signal has no effect on the characteristic parameters of the 
memristor response. Enough stimulation cycle make the 
data more complete, more conducive to data processing 
and analyzing. According to the data expression of rele-
vant references, the number of signal periods or the time 
of signal action is used as the abscissa cycle in the study 
of conductance modulation characteristics. In this review, 

the action of the cycle numbers is the same as that of the 
time as the Abscissa.

3.2.1  �Combined pulse signal

3.2.1.1  The weak anti-pulse
Figure 8A shows a typical combined pulse signal, whose 
feature is the use of the weak pulses with opposite polar-
ity (the weak anti-pulse) [60, 85, 120] to offset the abrupt 
∆G caused by the training pulse in the first stage, which 
is the key of this scheme. In this scheme, training pulses 
are followed by pulses with lower amplitude and duration 
than the original pulse, whose polarity is opposite to that 
of the original pulse. It is feasible to achieve the NL opti-
mization and preservation on an on/off ratio by taking the 
appropriate value of the conductance offset (Goffset), which 
is a concept pointed out by Wang et al. [85] in 2016. There 
is an equation that explains the relationship between real-
time conductance (G(n)) and Goffset (Eq. (7)) [85]. In order to 
record the conductance value of the memristor after the 
effect of the previous programming pulse, reading pulses 
with very small amplitudes are applied after each pro-
gramming pulse in the study. The number of pulses is 
used as the time axis to record the conductance value at 
the corresponding time. By processing the conductance 
value, and the difference conductance values, means 
that the ∆Gs of each state change are obtained. The ∆G is 
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included in Eq. (7), in f(G), and the f(G) means a fit func-
tion related to the experimental results.

	 initial offset( ) ( )G n G f G G= + + � (7)

Eq. (7): G(n) is the conductance value after the nth 
pulse, Ginitial is the initial conductance before training, 
and  Goffset is the offset value induced by the weak 
anti-pulse.

The reason why the pulse signal with the weak anti-
pulse is useful in reducing the value of ∆G is that the weak 
anti-pulse can offset part of the accumulated charges, 
caused by the previous training pulse, at the interface 
between the electrodes and the RS layer, which results in 
the reduction of the electric field. The weakened electric 
field not only inhibits the process of ion drift but also 
suppresses the ions that are farther away from the CFs 
in the interface, and because of that the slope of con-
ductance modulation curve in the first stage eventually 
becomes slower and slower (Figure 9A). The NL value, 
as defined in Eq. (1), of the identical programming pulse 
sequence, is about 0.6~0.81, which is about 0.42~0.54 of 
the optimized one. This result proves that the combined 
pulse signal with the weak anti-pulse has a practical sig-
nificance for the optimization of NL. As shown in Figure 

9B, both Gmax and NL are all infected by the value of Goffset. 
Goffset has a value of 0, which means that the identical 
pulse is applied to the memristor device as the stimulus 
signal. Goffset has a maximum value of 27 nS, because the 
maximum value of ∆G is 27nS when applied to the iden-
tical pulse. The conclusion drawn from Figure 9C is that 
the greater the value of Goffset is, the smaller is the NL of 
the device.

The conclusion that should be drawn from the men-
tioned results is that in order to get the overall improve-
ment of the properties of a memristor when optimizing 
on NL, it is very important to select the weak anti-pulse 
with appropriate parameters. In addition to the value of 
Goffset, the time interval between the weak anti-pulse and 
the programming pulse (tpw), the time interval between 
two pulse pairs (tpp) and the duration of the weak anti-
pulse (tw) should all be considered as influencing factors 
in the optimization process. Considering that the energy 
consumption and the space of the system are pointed 
as the focus object when the researchers implement 
the neuromorphic calculation, the NL optimization of 
the memristor device should be as close as possible 
to this point. The implementation of this signal is not 
complicated, which only needs to use a two-pulse signal 
generator [85].
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3.2.1.2  �The heating element pulse
Figure 8B shows another kind of combined pulse signal, 
whose feature is the use of the weak pulses with the same 
polarity (the heating element) to enhance the particle dif-
fusion process by rising the local temperature in the device 
bulk at the beginning of extra stimulation. Specifically, the 
pulse signal in this scheme consists of a heating element 
with lower amplitude and a programming element with 
a higher amplitude. The heating element will not lead to 
the RS process [85], and the RS behavior happens until the 
programming element arrives. Because of the considera-
tions of temperature in the memristor device bulk in the 
second-order memristor model, the separation of stimula-
tion signals for the two elements is considered as a kind of 
optimized scheme in NL.

The reason why this scheme works is that, in the case 
of applying an identical pulse on the device, the ions in 
the area near the CFs and farther away from the CFs are 
already exhausted, and the ions in the area far away from 
the CFs have difficulty in migrating to the area where the 
CFs are located, which limits further expansion of the CFs. 
However, in the case of applying a state-separated pulse, 
they promote the ions in the area far away from the CFs 
to migrate to the area where the CFs are located because 
of the enhanced diffusion process, which can further 
expand the CFs. The enhanced diffusion process is caused 
by a heating element, which leads to the local tempera-
ture rise. So the value of Gmax can be improved, and the NL 
can be optimized by the scheme here.

In this scheme, the frequency characteristics of the 
pulse pair signal are important. Among them, the time 
interval between the heating element and the program-
ming element (thp), the time interval between two pulse 

pairs (tpp), and the width of heating element (th) are 
all considered as influencing factors in the optimized 
results. Only when thp is small enough does the heating 
element have a connection to the programming element, 
driving the memristor to a better state with higher con-
ductance. Therefore, in Figure 8B, the thp is shown as 
zero. Figure 10A demonstrates that as the tpp decreases, 
the range of ΔG becomes larger, and the slope difference 
between the two-stage tends to be smaller. The th must be 
longer than or equal to the time constant [98, 104] of the 
device, which means the duration or time required for 
the device to reach a thermally stable state. The applica-
tion of a heating element with the duration longer than 
the time constant would not lead to a further increase in 
local temperature and measurable differences in the RS 
behavior. However, the duration being shorter than the 
time constant would lead to the result that the heating 
element cannot complete the task of reducing NL to the 
maximum extent. Yeon Jeong et  al. [104] applied the 
pulse signal involved in this section for the NL optimi-
zation results. The conductance modulation curve of the 
memristor device, stimulated by the pulse signal with 
heating element, has a higher value of Gmax and a smaller 
difference in slope than the one with identical pulse 
(Figure 10B).

3.2.2  �The feedback pulse signal

Another type of abnormal pulse signal is the one that is 
practically suitable, called the feedback pulse signal [15, 
37, 48, 140], because it requires a complicated signal gen-
eration circuit as a peripheral circuit of the memristor 
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device. However, it is worth noting that, in theory, it has 
the best optimization effect on the NL optimization prob-
lems (Figure 11). Neeraj et al. [131] showed in their article 
that the PCMO-based two-terminal memristor in their 
experiment had an NL of approximately 0 under pulsed 
feedback stimuli. Similar effects can be achieved with 
similar strategies based on the TaOx [41] memristor. Con-
ductance of the memristor device obtained by applying 
an identical pulse is not predictable, as related to current 
conductance state. Therefore, the NL can be optimized by 
setting the parameters of the next programming pulse by 
judging the current response. The scheme in this section 
is called the programming scheme based on pulse feed-
back, which can be divided into the amplitude feedback 
pulse and the width feedback pulse. The purpose is to get 
a consistent ΔG by applying a training pulse sequence 
with different parameters in each pulse cycle, so that the 
slope of the conductance modulation curve tends to be 
consistent. A pulse with shorter duration (or lower ampli-
tude) corresponds to a larger ΔG in the original scheme, 
and the pulse with a longer duration (or higher ampli-
tude) corresponds to a smaller ΔG. Both the two strate-
gies can achieve optimization on NL.

For its shortage on complex peripheral circuits, at 
least one additional computing unit and a special signal 
generator are needed to comply with the input. A system 
with a synaptic array cannot achieve parallel weight 
updates because of feedback. Therefore, the space occu-
pied, the circuit delay, and the energy consumption of the 
system will be significantly increased, which is not condu-
cive to achieve a large-scale system. Only in theory, have 
these kinds of schemes any research value.

4  �Memristor with the multi-RS layer
The original memristor had a simple sandwich structure 
that contained only one dielectric layer and only one kind 
of element except the element oxygen or the element 
nitrogen. Although the traditional structure is easy to 
implement in the process, it cannot achieve the desired 
performance for the current pursuit of device optimiza-
tion. With the development of research, researchers tend 
to make a dielectric layer diversification by doping or 
making a multi-layer. The same approach is used in the NL 
optimization direction, and the desired effect can also be 
achieved. Xiao et al. [114] had different experimental results 
by doping in the RS layer. Matveyev et al. [10, 90] got it by 
making a multi RS layer. Gaba et al. [123] got it by making a 
multi RS layer, too. With the deepening of research, it has 
been gradually found that two or three layers of different 
kinds of dielectric layers have various degrees of optimiza-
tion effects on the performance of the device. The use of 
materials with different oxygen contents as a component 
of the multi-RS layer has proven to be effective in confining 
the location where the CFs break down to smaller areas in 
the device bulk so that the performance of the device espe-
cially the stability is improved. A similar approach can be 
achieved on the issue of NL optimization. The difference is 
that in the NL optimization problem, from a material point 
of view, researchers need to consider the particle migra-
tion state inside, including drift speed and thermal diffu-
sion. The combination of materials have different particle 
migration effects as the multi-RS layer of the device is veri-
fied to achieve the goal of controlling the device conduct-
ance distribution [102, 141, 142].
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In detail, from Eqs. (2) and (3) derived from the Mott 
theory, particle migration is largely affected by the envi-
ronment where the particles are located [143, 144]. There-
fore, it is feasible to reduce the number of particles that 
participate at the beginning of conductance modulation 
by limiting the rate of particle migration, to achieve the 
purpose of slowing down the process of forming complete 
CFs. A viable program is to insert one or more layers with 
materials that can suppress particles migrating between 
the basic RS layer and the top electrode (Figure 12). 
Layers inserted are called the migration limit layer (MLL). 
Zongwei et al. [36] named their insert layer as an ion diffu-
sion-limiting layer (DLL).

The PDE model shows that in the set process, under 
the stimulation of a directed external voltage, the jdrift and 
jdiff are in the same direction at the beginning, and the 
diffusion process promotes more particles to participate 
in the process of CF completeness. With the extension of 
stimulation time, due to the gradient distribution of the 
carrier concentration, the direction of jdiff is perpendicu-
lar to the direction of jdrift, as shown in Figure 5, resulting 
in the horizontal expansion of the CFs. The main influ-
ence of the drift process is the applied voltage stimulus. 
Therefore, from a material point of view, by controlling 
the diffusion process, the number of particles that previ-
ously participated in the RS process at the beginning can 
be limited. The purpose of doing so is to depress the high 
slope of the conductance modulation curve in the first 
stage, prompting NL optimization.

From the equation D = D0 exp (−Ea/kT) for the diffusion 
coefficient, the diffusion coefficient of oxygen (Dv) can 
be obtained. The materials of the MLL tend to choose the 
one with Dv less than that of the basic RS layer to achieve 
the NL optimization. In addition to the temperature of the 
device bulk, the two main influencing factors for Dv are “a” 
and “Ea”. The former is usually assumed in the calcula-
tion, the hypothesis is set at 0.05 nm ~0.5 nm [56], and the 
final simulated value depending on the fitting results of 
the calculation data and experiment data. “a” appears as 
a hypothetical value in the calculation. In the PDEs model 
ignoring the effect of the electrode heat release on the tem-
perature in the device bulk, Kim et  al. [56] drew a set of 
conclusions based on a series of reasonable assumptions, 
excluding the effect of electrode heat release on the tem-
perature in the device. The calculation curves in the con-
clusion show that the larger the value of a, the more the 
device tends to be digitized, which means the larger the NL 
degree. This trend is unfavorable to the application in the 
field of the neuromorphic system. Table 3 lists the hypo-
thetical values used in the calculation of several materi-
als for reference. The latter is the activation energy for the 
hopping process, and the greater its value, the harder it 
is for the particles in the material to transition. Similarly, 
Table 3 lists the values of Ea for several materials. SiO2 is 
a typical semiconductor material with an Ea value in the 
range of 0.92 eV–1.71 eV and an average level higher than 
the other oxide semiconductors in Table 3. The Dv of SiO2 is 
about 10−24–10−20 cm2/s [55, 72] at room temperature, which 
is one or more orders of magnitude lower than that of other 
binary metal oxides. For example, it is lower by one to six 
orders of magnitude compared to TaOx [140, 149]. Zongwei 
et  al. [36] inserted SiO2 as the MLL on the basic layer of 
TaOx in a memristor device. After comparing the memristor 

Figure 12: Model of the memristor with the MLL.

Table 3: Summarization of diffusion constants of some dielectric 
layers corresponding to an oxygen.

Assumption value Material Reference

a (nm)
 0.1 TaOx [56]
 0.1 HfOx [94]
 0.15 WOx [145]
 0.3 Al2O3 [146]
 –
Ea (eV)
 0.4 WOx [145]
 0.85 TaOx [69]
 0.9 Al2O3 [146]
 1 HfOx [147, 148]
 0.92~1.71 SiO2 [69]
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devices with different thicknesses of SiO2 (1  nm, 2  nm, 
4  nm), they concluded that the NL of the device is obvi-
ously optimized when the MLL of SiO2 is 2 nm (Figure 13).

Finding the right kind of MLL material is the basis of 
NL optimization. In detail, the MLL with appropriate thick-
ness can weaken the slope of the conductance modulation 
curve in the first stage, which is good for NL optimiza-
tion. As shown in Figure 13A, when the thickness of SiO2 
is 1 nm, the NL of the conductance modulation is signifi-
cantly reduced, and the on/off ratio of the device is about 
0.7, which is not too small compared with that of the device 
with no MLL. However, when the thickness is 4 nm, the Gmax 
is about 25% of the no MLL device, and the on/off ratio is 
only about 20%. As the thickness of the MLL increases, the 
length of the area where CF growth is limited increases. 
This results in an increase in the distance where particles 
need to move in a limited area. Over-thick MLL inhibits the 
diffusion process and the horizontal expansion process of 
the CFs in the memristor device. Therefore, the Gmax of the 
device is significantly reduced. Although the decrease in 
the Gmax will lead to a reduction in energy consumption of 
the device [96], there is a significant reduction in the on/
off ratio, which is inconsistent with the purpose of device 
optimization. Furthermore, the SiO2 thin film formed by 

sputter deposition has a poor microscopic density com-
pared with that formed by evaporation deposition [54]. The 
poor microscopic density results in a larger ion migration 
rate to give a more obvious effect on NL optimization.

5  �Summary of the optimization 
scheme

The optimization schemes on the conductance modulation 
of the memristor in this review are mainly divided into two 
categories: applying a smarter programming pulse and 
changing the structure of the memristor. These schemes 
have different NL optimization effects, and there are dif-
ferences in the ease of implementation. In order to make 
the paper more directive and intuitive, the advantages and 
disadvantages of the schemes are classified and summa-
rized in this section. Objects are summarized in addition 
to the optimization schemes in the review and also those 
outside the scope of discussion but contributing to the 
direction of NL optimization. The above schemes are clas-
sified from three aspects: NL optimization, feasibility, and 
novelty degree.
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For an identical pulse scheme, it is also possible to 
obtain a lower NL by changing the initial conductance, 
the pulse amplitude, or the pulse width. It is important 
to note that methods such as increasing the number of 
pulses have no effects on NL optimization. From a realiz-
able point of view, uplifting the initial conductance can 
significantly reduce NL while largely reducing the on/off 
ratio. It is pointed out that optimizing NL by increasing 
the amplitude of the input pulse is useless, the results of 
which will be an increase in the maximum ΔG, not the NL 
optimization.

In the four kinds of pulse schemes mentioned above, 
the combined pulse schemes have obvious advantages 
over the feedback pulse schemes in terms of feasibility, 
which are mainly manifested in the stimulus signal gen-
eration module. The feedback schemes can get the most 
suitable stimulus signal by processing the response gen-
erated after each cycle and feeding back to the stimulus 
signal-generating module. Therefore, the complex stimu-
lus signal generation and processing module is needed, 
and the feasibility is low. However, because of this, the 
feedback schemes can achieve almost an ideal NL opti-
mization. Because the generating module of the stimulus 
signal requires extra consumption, the pulse scheme is 
weaker than the structural scheme in terms of feasibility 
and energy consumption. From the perspective of novelty, 
the pulse optimization scheme depends on the optimiza-
tion of the three PDEs in theory. For example, the first-
order memristor model is optimized to the second-order 
memristor model, which is dependent on T and w. It is of 
great significance to the performance optimization and 
theoretical model of the memristor.

Schemes with a multi-RS layer are immature; they 
has an advantage in simplifying the weight update 
process and the peripheral circuits compared to the other 
schemes, and it is feasible to achieve NL optimization by 
choosing suitable TE materials. In the aspect of feasibility, 
this scheme is superior to the pulse optimization schemes. 
The materials and structures of the RS layer of memristors 
are the main means of research in this field, which can 
achieve different optimization effects. Therefore, in these 
schemes, the novelty is attributed to the pulse optimiza-
tion schemes.

This review focuses on memristors based on binary 
metal oxides, but there are also some related studies on 
NL optimization in the types of memristors outside this 
range. As shown in Table 2, it is worth noting that organic 
compound-based memristors, one of the main research 
directions of memristors, have NLs with excellent value, 
although their other aspects (like the on/off ratio) do not 
reach the same level as the metal oxide-based memristors. 

With the deepening of research, more and more research 
on memristors is using polymetallic oxides as materials of 
the RS layer, to achieve the goal of device optimization. 
Among them, Nili et al. from RMIT University conducted  
research on Nb-doping STO-based memristors [150]. In 
their research, Nb:a-STOx-based memristors show a high 
degree of uniformity and durability, and a lower NL of 
the conductance modulation results can be obtained by 
adjusting the partial bias amplitudes. It is worth noting 
that this study places the temperature and thermal effects 
of the device in an important position, which is the current 
research trend. As the upgrade structure of the two-termi-
nal memristors, the three-terminal device [61, 63, 72–78] 
can achieve a good balance in NL optimization and other 
aspects, like energy consumption.

6  �Application on neuromorphic 
learning

Synaptic circuits are used as a connection layer between 
two neuronal layers, which can use the memristor as the 
basic unit, to be components of a neuromorphic system 
[12, 151]. A hardware circuit system combines correspond-
ing algorithms, like sparse coding algorithm, to achieve 
tasks [26, 138, 152–158] like image recognition. In the 
image recognition system, binary black and white images 
are made as the training objects. The system can store it 
after training, which means learning under stimulation 
from a training pulse.

In such an identification system, learning accuracy 
[11] is an important parameter to demonstrate the ability 
of such neuromorphic systems to accept and correctly 
identify what they learned, and conductance maps of the 
system can give a direct impression about it. The factors 
that may affect the learning accuracy include the NL of the 
weight update, the on/off ratio, and the device variations 
at the device level. In this section, the improvement of 
learning accuracy at the system level caused by optimized 
NL at the device level is analyzed.

Figure 14A shows the simulation results of a recogni-
tion system with 8  ×  8 synapse cells [85]. The purpose of 
the system is to identify an 8  ×  8 binary alphabetic “B” 
pattern with 10% error bits in each 8  ×  8 training pattern. 
This indicates the initial state when the training period 
is 0. The initial weights of the synapses, which means 
the initial conductance of the synaptic memristors, are 
randomly distributed, as shown in Figure 14A. When the 
synaptic elements have an ideal linear weight update, 
the learning results gradually become obvious with an 
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increase in the training cycles. After 60 training cycles, the 
learning process is completed with a learning accuracy of 
100%, which has no error bit.

When the synaptic elements are in the memristor 
device with a vertical double-layer structure based on tan-
talum oxide [159], the learning results are shown as fast 
close to saturation. However, the learning accuracy is only 
about 78% at the end of the stimulation, in which there 
are many error bits, as shown in Figure 14B. The reason 
for the higher learning outcome after the fifth training 
cycle, as shown in the second column in Figure 14A, can 
be attributed to the abrupt RS behavior of the synaptic 
device initially. As shown in Section 3, the scheme with 
the weak anti-pulse can reduce the NL level of the syn-
aptic device by one level. The third column in Figure 14A 

shows the learning results based on this scheme. This 
shows a gradual situation, and the number of error bits is 
gradually reduced.

Compared with the learning accuracy based on the 
memristor synaptic devices with a different NL, it can 
be concluded that the learning accuracy of the system is 
affected by the NL of the device, as shown in Figure 14B.

However, optimization on NL would also change other 
performances [11] like the on/off ratio. Therefore, the 
above results can only indicate that the NL has an impact 
on the learning accuracy, but cannot explain which factor 
causes it specifically.

Figure 15A shows a map of the learning accuracy in a 
neuromorphic system [11] based on the NL-level table as 
shown in the inset of the graph. In the case of a perfectly 
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symmetrical distribution of the LTP and LTD, when the 
NL level increases from 0 to 4, the learning accuracy of 
the system decreases gradually. When the NL level con-
tinues to rise to level 5, there is a slight increase in the 
learning accuracy. When it rises to level 6, there is a sig-
nificant reduction in the learning accuracy. Figure 15B 
shows that in this system, when the on/off ratio of the 
device is reduced to less than 25, the learning accuracy 
of the system is significantly reduced. However, there is 
no obvious change. Although these results are based on a 
certain algorithm, we can give the following inspiration: 
(1) The on/off ratio of device has a threshold that deter-
mines the learning accuracy of the system. (2) There is a 
key point where NL is the main factor causing the learning 
accuracy optimization or deterioration.

In summary, the NL of the weight update has direct 
and indirect effects on the learning accuracy of a neuro-
morphic system. The indirect effects are caused by the 
properties associated with NL. Optimized NL will inevi-
tably change the other properties of the device, which 
will result in the improvement in the system learning 
accuracy.

7  �Summary and prospect
Although there is no uniform standard for the RS mecha-
nism yet, its scope has been gradually narrowing down 
along with more and more research about memristors 
turning up in recent years, and the non-ideal features of 
the memristor are more unignorable in the exploration of 
the RS mechanism. Especially, a lower NL of a conductance 
modulation is found to be helpful not only in establish-
ing a mathematical model of the memristor with a higher 
fitting degree [67, 144, 159] but also in helping to improve 
the recognition accuracy of the neuromorphic system. The 
ultimate goal of doing optimization at the device level is 
to achieve systems with excellent performance. Based 
on this purpose, optimization on a device needs to find 
balance between all the associated properties.

Using the Mott theory and the three PDE models as 
a theoretical support for the RS process of the memristor 
device, we analyzed the reason for the NL based on the 
particle migration theory. Based on these theories, the 
formation process of the CFs inside the memristor has 
obvious stage phenomena. We do work summarizing the 
NL optimization scheme into two categories, applying 
smarter programming pulse and changing structure of 
the memristor, through the related experimental research, 
and analyzed their advantages.

The programming pulse signal has a significant influ-
ence on the CF formation process and internal temperature 
change and particle migration inside the memristor. In the 
aspect of NL optimization, the intensity parameters and 
timing parameters of a pulse signal have a certain influ-
ence on ΔG and Gmax. However, when the identical signals 
are as a stimulus, these parameters have no real impact on 
NL optimization. Therefore, the abnormal signals become 
more and more common in the related research. It is impor-
tant to find a suitable extra pulse for the scheme for using 
the combined pulse signal. The design of this kind of signal 
is based on the three PDEs, and its experimental results can 
prove the correctness of the three PDEs while optimizing 
its solution process to obtain the simulation result with a 
higher fitting degree. The feedback pulse signal is another 
kind of optimization scheme, and it is achievable to obtain 
the optimal degree of NL using this programming pulse 
signal in the simulation. However, in the actual research, 
to realize this simulation physically, it is necessary to solve 
the problem of simplification of the complex degree of the 
signal-generation module, or the scheme has no practical 
application or value at the system level. NL optimization 
from the perspective of changing the component struc-
ture of the memristor has the same substantive effect. The 
main basis of this kind of scheme is to restrict the distance 
and speed of the particles moving inside the memristor by 
doping or MLL. One of the things that needs special atten-
tion in both scenarios is that changes in NL optimization 
may cause changes in its associated object, such as the on/
off ratio or circuit complexity.

The final beneficiary for optimization at the device 
level should be the system. It is important to note that 
NL is an important factor that cannot be ignored in the 
field of application of neuromorphic systems, and we call 
it the relationship between the learning accuracy of the 
system, based on the memristor synaptic device, and the 
NL of the memristor. It has both a direct relationship and 
an indirect relationship. In the case of different systems 
and algorithms, NL has a different proportion of influ-
ence on learning accuracy, and its associated objects to 
the system will be different. It can be hypothesized that 
there are thresholds in NL optimization. When proper-
ties associated with the NL are lower than a threshold, NL 
optimization may be meaningless. At the system level, the 
stability, large-scale miniaturization, and low power con-
sumption are the main research directions now. Therefore, 
optimization on a device must consider them. As regards 
NL optimization, doing optimization in the structure of 
the memristor is better considering space and energy. 
However, in both, the two categories of schemes in NL 
optimization, still more work that is valuable needs to be 
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done in the future. Other non-ideal properties of the mem-
ristor also have limitations on its development and the 
neuromorphic system. Research on optimization needs to 
be continued in the future.
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