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Abstract: Copper (Cu) is a vital trace element involved in
various physiological and biochemical processes. How-
ever, animals can only absorb a small fraction of Cu and
the most is excreted, contaminating soil and aquatic
environment. Hence, the use of this mineral as a growth
promoter is today one of the crucial health and envi-
ronmental concerns. In recent years, many studies have
reported Cu nanoparticles (Cu-NP) as a promising alter-
native to antibacterial reagents and a growth promoter.
Depending on the size, shape, dose and animal spe-
cies, Cu-NP exhibit a variety of effects on animal perfor-
mance. Apart from being highly bioavailable, reports have
already pointed out the growth-promoting, antibacterial
and immune-modulatory effects of Cu-NP. Toxicological
studies provide varied results in animal models. However,
other studies being undertaken in different animal spe-
cies have shown the promise of Cu-NP supplementation.
Therefore, there is a need to optimise the dose and dura-
tion of Cu-NP supplementation for livestock, depending
on their biological effects. Moreover, the bioavailability of
Cu-NP in livestock still needs further confirmation. In this
review, we summarise the benefits and hazardous effects
of Cu-NP and the possibility of using Cu-NP as a feed sup-
plement in different animals, in general, and in poultry
particularly.
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1 Introduction

Copper (Cu) is a crucial trace element in animals; however,
it cannot be stored in the body, thus, a regular dietary sup-
plement is required. In addition, feed ingredients are com-
monly deficient in Cu; hence, the commercial diet should
provide the essential amount of Cu in a biologically
dynamic form, which depends on the physical and chemi-
cal properties of the form of the supplement in which the
Cu is given in the diet [1].

Cu sulphate (CuSO,) is the main Cu source in the diet
of chickens and other animals; however, the inorganic
salt shows poor bioavailability caused by the presence of
ingredients that can inhibit absorption. Thus, inorganic
mineral administration in animal feed poses a risk to the
environment, as excretion of high mineral levels contami-
nates the soil and water.

Organic sources of Cu show a reduction in excretion
compared to inorganic forms, due to greater bioavail-
ability and stability in the upper gastrointestinal tract of
chickens; however, due to high cost and lower supple-
mentation doses than inorganic Cu, results are still not
consistent [2]. Therefore, efforts have been made to find
alternative sources of Cu to increase bioavailability and
absorption, and to avoid causing harmful effects on the
health and performance of chickens.

Different sources such as Cu chloride, Cu oxide, Cu
citrate, Cu sulphate and tribasic Cu chloride at different
concentrations have been applied in poultry feed, depend-
ing on Cu bioavailability [3]. However, the feed industry
still prefers CuSO, for economic reasons.

Nanotechnology has modernised the commercial
application of nanosized minerals, which have been used
recently as a tool in the fields of biology, biotechnology,
mineral nutrition, physiology, reproduction and pharma-
cology in animals [4].

Nanoparticles refer to a particle size of 1-100 nm, in
which the physical, chemical and biological properties
of materials differ fundamentally from their bulk form
[5]. Furthermore, their small size increases the potency
of active ingredients and potentially reduces the applied
quantity [6].
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The use of Cu nanoparticles (Cu-NP) has recently
received much attention due to their high electrical and
melting points, low electrochemical migration behaviour,
high bioavailability and relatively low cost of production [7].

The reduced size and increased surface area of Cu-NP
compared to the bulk material improve thermoconductiv-
ity and fluid viscosity, leading to a variety of applications
like chemosensors, surfactants and antimicrobials [8].
However, little work has been done to explore the efficacy
of Cu-NP as feed additives in animal feeding and particu-
larly in poultry. It was hypothesised that Cu-NP, because
of their high physical reactivity, could be used as an alter-
native, effective health and growth promoters in much
smaller doses than bulk minerals in animal feed [9-11],
in consequence, significantly reducing the excretion of
these minerals into the environment. Moreover, Cu-NP
are effective antibacterial, antifungal and antiviral agents
[12]. However, their size might affect their toxicity by
helping the cellular uptake and translocation of the par-
ticles in the animal’s body [13]. Therefore, the objectives
of the review are to present the current knowledge about
Cu-NP physicochemical properties, nutritional charac-
teristics, antimicrobial activity, immunological and toxic
effects, and the possibility of using Cu-NP as an alterna-
tive growth-promoting supplement in animal diets.

2 The importance of Cu in the diet

Cu is a key element required for animal growth and devel-
opment of bones, connective tissue, the heart and several
other organs [14]. Furthermore, Cu is involved in the stim-
ulation of the immune system to combat infections and
repair injured tissues [15]. Additionally, it supports neu-
tralisation of free radicals that cause severe injury to cells
[16]. Cu is shown to be absorbed partially by the stomach;
however, the majority is absorbed in the small intestine.
Cu is mostly excreted via bile that is released into the gas-
trointestinal tract (GIT), with marginal Cu reabsorbed by
intestinal cells [17].

The biological functions of Cu are associated with
Cu’s role in the active site of metalloenzymes. Cu is found
in a large number of metalloenzymes such as cytochrome
oxidase, superoxide dismutase (SOD), lysyl oxidase, dopa-
mine hydroxylase and tyrosinase [18]. Cu is also needed
for the development of antibodies and white blood cells,
in addition to antioxidant enzyme production [19].

Ceruloplasmin is a Cu transport protein, which pro-
vides Cu to the cells and performs as an enzyme, which
possesses oxidative activity [20]. However, organisms
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have developed a variety of antioxidant defences that
include metal-sequestering proteins to protect against
oxidative damage, using compounds such as vitamins C
and E, and specified antioxidant enzymes [21].

A study conducted on mink [22] showed that Cu affects
the regulation of ceruloplasmin concentration, SOD activ-
ity and the digestion of dietary fat. The SOD enzyme
helps in removing the damage caused by reactive oxygen
species (ROS) by catalysing the dismutation of two super-
oxide radicals to hydrogen peroxide and oxygen [20].

Cu is also important in the body as a component of
enzyme systems involved in iron metabolism, red blood
cell formation and immune function. Moreover, Cu sup-
ports the formation of connective tissues such as collagen
and elastin, and enhances nervous system development
by synthesis of dopamine [23].

Cu is involved in cellular respiration, energy pro-
duction, synthesis of collagen, uptake and utilisation of
other trace minerals, antioxidant activity, cardiac func-
tion, bone formation, keratinisation and pigmentation of
tissue and myelination of the spinal cord [24]. In addition,
it contributes to the regulation of glucose and cholesterol
metabolism [23].

A deficiency of Cu supplementation in the diet can
cause disturbances in reproduction and development of
sperm, high mortality of embryos during hatching, poor
pigmentation of feathers, slow growth and a reduction
in body weight [23]. Furthermore, it may result in muscle
weakness, anaemia, bone alterations that resemble
scurvy, defective connective tissue synthesis, impaired
myelinisation of nerve tissues and neurological defects,
altered lipid metabolism and cardiac malfunction [23].
However, it has been demonstrated that ceruloplasmin
mRNA in the liver is not affected by a dietary deficiency
of Cu [25].

An excess of Cu may also have adverse effects on
chicken performance [26]. Therefore, Cu must be provided
to livestock in optimal concentrations and according to
requirements that change during the growth and develop-
ment of the animal.

The essentiality of Cu depends on the ability of Cu
atoms to gain and lose electrons to form cuprous Cu*' and
cupric Cu* states. Therefore, this alteration is crucial for
enzymes to support the metabolism of all major substrates
such as proteins, lipids and carbohydrates [27].

The oxidation of cuprous to cupric Cu can generate
free radicals from the oxidation of lipids, proteins and
nucleic acids, causing extensive functional damage in
tissues and organs. Consequently, organisms have devel-
oped systems involving specific protein carriers, which
regulate the absorption, distribution, use and excretion of
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Cu, thereby, controlling the production of free Cu ions and
minimising the risk of oxidative damage [27].

The assessment of Cu status in chickens can be exam-
ined using several methods. However, the most subtle
indicator of Cu status is the concentration of Cu in the
liver [28]. Liver Cu concentration in animals is correlated
to the bioavailability of Cu in the diet [29]. In addition,
when Cu intake is below physiological need, the stored Cu
in the liver is released; thus, a reduction in liver Cu can be
a sign of low Cu intake. The concentrations of Cu in feed
ingredients and their bioavailability vary because of the
differences in agronomic conditions and processing [30].
Thus, various sources of supplemental Cu (oxide, citrate,
sulphate and tribasic Cu chloride) have been included in
animal diets [31, 32].

The bioavailability of trace minerals for animals is
defined as the degree to which the ingested trace minerals
from a particular source are absorbed in a form that can
be metabolised by the animal [33]. The emphasis on the
bioavailability of Cu has become a concern of research-
ers because the use of CuSO, as the main source in feed
brings some adverse effects like the interaction with other
ingredients, some physicochemical problems owing to
high hygroscopicity and chemical reactivity [34]. Fur-
thermore, it is an acidic compound and a strong electron
acceptor. Hence, these properties can lead to solidifica-
tion of the mixture in addition to oxidation, destroying its
value and integrity. In chicken feed, the moisture content
is about 20%, which can make CuSO, crystal surfaces
more concentrated for reactions that break down labile
organic compounds such as vitamins, enzymes, fats and
oils [35]. Many studies have compared the bioavailability
of different Cu forms to CuSO,. It has been suggested that
Cu citrate is more efficient than CuSO, [36]. Moreover,
Ledoux et al. [37] showed the relative bioavailability
of cupric oxide, cupric carbonate and cupric sulphate,
using supplementation levels of 150, 300 and 450 mg Cu/
kg feed, based on Cu levels in the liver; the relative bio-
logical availability was estimated to be 88.5%, 54.3% and
0% for the sulphate, carbonate and oxide, respectively.
Feeding supplementation up to 390 mg/kg feed [38] sug-
gested that tribasic Cu chloride (TBCC) has a relative
value of 134% compared to CuSO,, while Miles et al. [39]
proposed a value of 112% for TBCC. In terms of liver Cu
accumulation, TBCC was 109% as valuable as sulphate
[34], which suggests that TBCC is less harmful to vitamins
both in the feed and within the bird. The liver and plasma
vitamin E levels were higher in birds fed TBCC compared
to sulphate using a diet of 36 IU/kg. Additionally, TBCC
and cupric sulphate (220 and 180 mg Cu/kg feed, respec-
tively) equally improved the carcass weight of broiler
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chickens after 45 days of feeding, compared to the control
group (30 mg Cu/kg) [40].

Alternatively, the organic form of Cu (chelated with
amino acids, peptides, or proteins) appears to provide
a pathway for minimising Cu level in the excreta [41]. It
has been suggested that chelated Cu is better absorbed
and metabolised, and may prevent antagonism of Cu with
other minerals [42]. Furthermore, it has been investigated
that chelated Cu can replace CuSO, as a growth promoter
for pigs [43].

Cu absorption in the stomach is lower than in the
intestine and is further delayed by binding with phytic
acid and forming insoluble compounds. This was reported
when CuSO, added at 250 mg/kg of feed caused a reduc-
tion in phosphor retention in broilers, by forming an
insoluble Cu-phytate chelate complex [44]. In addition, it
was demonstrated that organic Cu is more effective than
CuSO, in decreasing the plasma cholesterol of broilers
[45]; however, a few studies have found that organic Cu is
less efficient than CuSO, [46].

Another way of predicting Cu availability in chickens
was investigated by the solubility of different Cu combina-
tions in several solutions for their ability in chicken liver
[47]; the authors found that solubility at pH 2 was the best
predictor. The same authors found that Cu chelated with
lysine or amino acid is more bioavailable than CuSO,.

It has been demonstrated that supplementation with
4 mg/kg feed of Cu as a cupric chelate of amino acid
hydrate may be sufficient for normal broiler growth to
29 days of age [48], while Jegede et al. [49] demonstrated
a significantly higher daily weight gain in broilers fed Cu
proteinate compared to cupric sulphate supplementation.
Moreover, supplementation (4-8 mg/kg) with Cu glycine
chelate did not affect the Cu concentration in the liver,
but reduced the Cu concentration in the broiler faeces
compared to CuSO, [50].

Assessing the bioavailability of Cu proteinate rela-
tive to CuSO, in broilers was studied by Liu et al. [51]. The
estimated relative bioavailability of Cu proteinate was
78.8% and 79.3%, respectively, compared to that of CuSO,;
however, the differences were not significant. Further-
more, it was demonstrated that the substitution of CuSO,
with Cu proteinate in chicken diet positively affects body
gain and feed conversion ratio [52].

The outcome [53] indicated that Cu proteinate, com-
pared to CuSO,, may enhance the detrimental effect of
aflatoxicosis on broiler chickens, improving the growth
performance by feeding a diet containing a high level of
aflatoxin.

Assessing 100 mg/kg feed (cumethionine or cupro-
teinate) as an alternative to antibiotics in broiler diet
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showed that both Cu sources improved the growth perfor-
mance of broilers, and the enhancement was comparable
with supplementation of an antibiotic (avilamycin), which
increased populations of lactobacilli while decreasing
Escherichia coli in the intestine [54]. On the other hand,
Kwiecien et al. [55] did not reveal any differences in per-
formance indices of chickens supplemented with CuSO, or
Cu glycinate chelate, but organic Cu positively affected the
biomechanical properties of femur bones.

Diet supplementation with 50, 100 and 150 mg/kg
levels of Cu proteinate or CuSO, had no significant effect
on growth; however, Cu proteinate decreased plasma cho-
lesterol, low-density lipoprotein and triglyceride in com-
parison to CuSO, in pullets [56].

Moreover, the comparison between CuSO, and Cu-
lysine added to duck diet (4, 8, 12 and 150 ppm Cu) showed
that the Cu source had no significant effect on weight
gain, while feed intake was increased and feed efficiency
was degraded by dietary organic Cu lysine. Compared to
CuSO,, Cu lysine increased Cu excretion, Cu concentra-
tion in the liver and plasma cholesterol concentration,
but decreased plasma triglycerides. Although organic Cu
showed some improvement in chicken performance com-
pared to inorganic forms, the results were not always con-
sistent [57].

The effect of different dietary Cu sources on serum
trace mineral and cholesterol status in broiler chick-
ens revealed that higher Cu content with lower iron and
manganese content in serum was noticed by increasing
Cu levels in the diet [58]. Furthermore, the Cu propionate
source had a significantly higher serum Cu compared to
CuS0,. The provision of CuSO, brought significantly higher
serum zinc compared to that of Cu propionate; however,
the total cholesterol content in serum was not affected by
Cu diets. Excess Cu supplementation in broiler chickens
showed that Cu increased haemoglobin, decreased plasma
cholesterol and triglyceride significantly, decreased plasma
proteins and its fraction did not change due to Cu supple-
mentation [59]. From the studies mentioned above, it can
be determined that Cu supplementation has an effect on
the blood levels and erythropoietic system of the chicken,
which could be used as an indicator of the impact of its tox-
icity in chickens. Furthermore, changes in the peripheral
blood enable more accurate evaluation and explanation of
the effect of Cu on the chicken’s body.

The growth-promoting function of Cu is related to the
growth hormone axis [60] and hypothalamic appetite-
regulating genes [61]. Moreover, it has been shown that
adding Cu stimulates mitogen activity and also enhances
the growth hormone (GH) mRNA level in the pituitary
glands of pair-fed pigs. However, the production of GH is
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known to be affected by many factors. The influence of Cu
on GH gene expression can be through either direct action
on pituitary cells or indirect action on the factors influ-
encing GH gene expression [62]. Therefore, stimulation of
growth in chickens by GH association with Cu deficiency
is still not clear.

It can be concluded that Cu is present within chicken
tissues in very small and regular amounts, but it plays
an essential role in chicken growth, acting as a catalyst
in enzyme systems within cells [63]. However, a relatively
constant concentration of Cu in the body of chickens sug-
gests that the content of Cu increases with increasing body
weight [2]. A deficiency of Cu will certainly affect chicken
growth, while an excess of Cu is not recommended
because either it will be excreted or will have an adverse
effect on performance.

3 Physicochemical characteristics
of Cu-NP

The Cu-NP possesses ultraviolet-visible sensitivity and
electrical, catalytic, thermal and antibacterial proper-
ties due to their large surface-to-volume ratio [64]. Many
atoms are present on the surface due to the smaller par-
ticle size. The surface-to-volume ratio of particles differs
and depends on the shape and size of the nanoparticles.
The characterisation of Cu-NP including the electronic
energy levels, electron affinity, electronic transitions,
magnetic properties, phase transition temperature,
melting point and affinity for polymers, biological and
organic molecules depends on the change in the surface
area [65]. Consequently, functional activities such as the
chemical, catalytic, or biological effects of nanoparticles
are profoundly influenced by the particle size of the nano-
metals [66].

Quantum effects are due to a combination of quan-
tum-size and Coulomb-charging effects that impart the
charge to nanoparticles. When the Coulomb-charge effect
is coupled with the quantum size, a range of properties
are obtained that are not observed for the same bulk mate-
rial. Quantum effects are prominent in spherical particles
and in particles with sharp edges [67].

The Cu-NP can be characterised by different methods
such as ultraviolet-visible absorption spectroscopy, X-ray
diffraction [68], directly by scanning electron micros-
copy [69] for relatively coarse powders or transmission
electron microscopy for fine powders [70, 71], atomic
force microscopy [72, 73] and infrared spectroscopy. In
addition, other methods have shown convenient ways of
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characterising Cu-NP such as dynamic light scattering,
X-ray scattering at small angles and ultraviolet-visible
spectroscopy (UVS) [12]. UVS is used because the absorp-
tion peak positions are dependent upon particle size
and shape [74]. Cu-NP is normally absorbed from 280 to
360 nm. Ascorbic acid, a common reducing agent, pro-
vides a shorter peak from 240 to 280 nm. Nanoparticles
are characterised by absorption spectroscopy with a
peak at 580 nm. Infrared spectroscopy is used to charac-
terise biomolecules interacting with Cu-NP [75]. Particles
prepared by microwave irradiation are typically spheri-
cal and show surface plasmon resonance at 535 nm [76].
Moreover, Cu-NP prepared by microwave irradiation are
influenced by the irradiation time; a linear relationship
is observed between particle size and time [76]. In addi-
tion, ethers, alcohols and carbon-hydrogen bonds are
responsible for the interaction of nanoparticles with
biomolecules [77].

Many studies have shown different correlations
between the various physicochemical properties of
mineral nanoparticles linked with the health effects; the
diversity of nanomaterials in terms of size, shape, aggre-
gation and surface chemistry poses a challenge to those
who are trying to characterise the animal health and
environmental risks associated with incidental and unin-
tentional exposure [78]. Evidence from several studies
has revealed that several factors associated with sonica-
tion, such as temperature, sonication time, sonication
methods, sonication power output, sample volume and
concentration can influence the physicochemical proper-
ties of nanoparticle suspensions [79, 80]. In addition,
other parameters like coating and surface roughness,
solvent conditions, composition and crystalline structure
will change depending on the nanoparticle preparation
technique and the stage of formation [81, 82].

However, there are inconsistent reports of physico-
chemical properties of Cu-NP such as particulate core
and outer shell chemical composition, surface oxidation
state, surface charge, singlet and agglomerate sizes in
relevant carriers, shape, solubility and surface area [83].
These properties could impact on the nanomaterial dose
that reaches target organs. Moreover, it is believed that
the surface properties are expected to change when Cu-NP
enter the body and during transportation.

The morphology of Cu-NP is highly affected by the
type of Cu salt used for synthesis. The Cu-NP is crystalline
in nature and has strong antimicrobial activity against
both, Gram-positive and Gram-negative bacteria. The
different shape, size and strong antimicrobial activity of
Cu-NP have higher prospective in the field of biomedical
and food packaging [75].
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The reducing agent affects the size of Cu-NP, as high
concentrations may decrease the size while maintain-
ing the concentration of the precursor [84]. It has been
reported that an increasing concentration of a reducing
agent causes a reduction in monodispersity and increases
the number of nanoparticles [85]. Furthermore, it has
been shown that the stabilising agent also affects the
size of the nanoparticles. Micelle formation stabilises
nanoparticles and makes the system monodispersive and
stable in air.

The pH is the most important factor that affects the
size of the nanoparticles, which increases with increas-
ing pH of the reaction mixture. A marked increase in size
appears above pH 5. It has been reported that the Cu-NP
have a high solubility in an acidic environment (pH 5.5)
with a high positive { potential [86, 87]. Cu-NP are not
present at a higher pH; rather, the oxide form of the Cu-NP
is present due to excess hydroxide. Further increases in
pH produce Cu hydroxide without nanoparticle formation
[85]. However, some works have reported the formation
of Cu-NP at pH from 9 to 11. As the pH is increased, the
concentration of the hydroxide increases, leading to the
formation of Cu hydroxide. This explains the formation of
Cu-NP in basic solution.

It has been revealed that various biological mecha-
nisms including cellular uptake and efficiency of particle
processing in the endocytic pathway are dependent on
the size of the material [88-90]. The size and surface area
of the particles will dictate how the system responds to,
distributes and eliminates the materials [81]. However, the
size of the Cu-NP could be also their main disadvantage,
and it represents a challenge for the scientific community
to achieve adequate physical and chemical characterisa-
tion [91].

The surface of the Cu-NP can influence cellular
uptake, clearance and biocompatibility [77] and also the
agglomeration of nanoparticles. Furthermore, the surface
chemistry also determines in vivo dissolution rates and,
therefore, contributes to distribution, retention and toxic-
ity. Moreover, the surface composition of the Cu-NP can
affect the generation of ROS via redox or catalytic activ-
ity [88, 92]. It has been found that the Cu-NP with longer
chain ligands have surfaces that are better protected from
oxidation and a corresponding lower ROS-generating
capacity than the particles with shorter chain ligands. On
the other hand, the Cu-NP with a greater surface oxida-
tion also have a higher ROS-generating capacity [93]. The
Cu-NP with high oxidant and cytotoxic potential may have
more significant effects at the initial site of deposition
and may also be cleared more rapidly due to an influx of
inflammatory cells.
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The surface charge of nanoparticles will influence
nonspecific interactions with proteins that are present in
the environment. These observations illustrate the diffi-
culty in predicting nanoparticle uptake as a function of a
single property.

The surface energy affects nanoparticle interaction
with biomolecules and tissues [94]. Low-energy sur-
faces (hydrophobic) are particularly prone to nonspecific
adsorption as proteins unfold to expose their hydropho-
bic core, which may disorganise the lipid components of
cell membranes and enhance epithelial penetration [95].
High-energy surfaces (hydrophilic), particularly those
that carry a weak negative or neutral charge, are ideal for
resisting protein adsorption and cell uptake [96].

Different aspects of nanomaterials like selective
adsorption of nanoparticles [97], colloidal behaviour,
plasma protein binding [98], blood-brain barrier integrity
and transmembrane permeability are primarily regulated
by the surface charge of nanoparticles [99]. It is noteworthy
that positively charged nanoparticles show significant cel-
lular uptake compared to negatively charged and neutral
nanoparticles, owing to their enhanced opsonisation by
plasma proteins. As the surface charge is the main deter-
minant of colloidal behaviour, it will affect the organism’s
response upon exposure to nanoparticles by changing
their shape and size through agglomerate formation [97].

The biological activity of Cu-NP depends directly on
the physical and chemical properties that include size,
shape, concentration, surface and charge [100]. However,
these parameters change depending on the nanoparticle
preparation technique and the stage of formation [101].

Cu-NP can be synthesised either by the mechanical
grinding of bulk metals (physical method) or via chemi-
cal reduction of metal salts (nucleation and growth of
metallic atoms). Recently, the green synthesis of Cu-NP
has also emerged as a novel method and is gaining more
importance among researchers [102, 103]. However, the
synthesis of Cu-NP needs a variety of stabilisers like donor
ligands, polymers and surfactants to prevent agglomera-
tion [71].

In this regard, it is necessary to know the physical
and chemical properties and antibacterial influence of the
obtained Cu-NP to standardise this nanomaterial during
subsequent use as a feed supplement for animals. In addi-
tion, the physicochemical characteristics of Cu-NP may
affect the epithelial barrier penetration and have emerged
as important determinants, including size, surface charge
and surface energy [104]. Furthermore, the Cu-NP solubil-
ity and protein-binding capacity also play a key factor in
the passage of the Cu-NP across epithelial barriers, cellu-
lar uptake, cytotoxicity and biodistribution [105, 106].
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4 Biological properties of Cu-NP

4.1 Nutritional and physiological
characteristics

The small size of the Cu-NP can increase the uptake from
the GIT and, hence, make them more effective than the
bulk Cu at lower doses [107]. In the animal body, the
Cu-NP interacts more effectively with organic and inor-
ganic materials due to their larger surface area [108]. The
Cu-NP has the capability to cross the small intestine and
distribute into the blood, brain, heart, kidney, spleen, liver
and intestine [109]. In order to reach the target organs, the
Cu-NP will interact first with the protective barriers of the
GIT. Hence, those nanoparticles that reach the physiologi-
cal barriers are highly determined by the properties of the
particles and the barriers themselves [83]. Other properties
of the Cu-NP like the composition, solubility and protein-
binding capacity also play a significant role in the passage
of the nanoparticles across the epithelial barriers, cellu-
lar uptake, cytotoxicity and biodistribution. However, the
current understanding regarding the passage of the Cu-NP
across the epithelial tissue and the mechanisms of distri-
bution and elimination is lacking.

The advantage of the Cu-NP is to prevent mineral dis-
sociation with other nutrients and subsequently avoid
antagonism. It is assumed that supplementing chicken
feed with an adequate level of Cu-NP will help to reduce
the Cu levels in the excreta, thereby, reducing environ-
mental contamination. Many studies have compared the
availability of the Cu-NP to CuSO, when supplemented
in the animal diet [110, 111], suggesting that the Cu-NP is
better than CuSO, in enhancing the growth and perfor-
mance of animals.

Generally, nanoparticles can enter the GIT in many
ways, such as ingestion directly from food and water,
administration of therapeutic nanodrugs and oral delivery
into the GIT; inhaled nanoparticles can also be swallowed
and enter the GIT following clearance from the respiratory
tract [112]. The uptake of particles in the GIT depends on dif-
fusion and accessibility through mucus and contact with the
cells of the GIT. Smaller particles will diffuse faster through
the GIT mucus to reach the cells of the intestinal lining, fol-
lowed by uptake through the GIT barrier to reach the blood.
Uptake occurs variously by passive diffusion across the
mucosal cells, via active transport mechanisms and inter-
cellular [113]. It has been suggested that smaller particles
that are capable of being taken up by the villus epithelium
may directly enter the bloodstream, thereafter, being pre-
dominantly scavenged by the liver and the spleen [114].
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Depending on the mass of insoluble nanoparticles,
they can be more readily taken up across the intestinal
barrier; therefore, they will be more bioavailable than
their micro or macro equivalents [115]. However, the mech-
anism by which nanoparticles enter the cell has important
implications for their impact on biological systems, and
the challenge is to identify how an organism responds to
these nanoparticles [116].

Nanoparticles can enter cells by transcytosis; par-
ticles are engulfed by Kupffer cells, of sizes 50-100 nm,
resulting in smaller (2 nm) nanoparticles being filtrated
out of the liver via the kidneys, whereas bigger particles
(40 nm) are retained in the Kupffer cells [117].

According to the physicochemical characteristics of
Cu-NP, uptake may occur via one of the different forms
of endocytosis [106]. However, there is no evidence that
those nanoparticles are taken up individually, and one
may doubt the technical ability to capture this event. In
the case of small nanoparticles, it is expected that uptake
occurs only when a critical density is reached [118]. It
has been reported that nanoparticles with a diameter up
to several hundreds of nanometres preferentially enter
cells via pino- or macropinocytosis; in addition, clathrin-
dependent uptake is a route for nanoparticles on whose
surface serum proteins are adsorbed. Finally, negatively
charged nano-objects enter mostly by caveolin- or clath-
rin-mediated endocytosis [106, 119].

Small drug molecules enter the cell through passive
diffusion, whereas most nanomaterials are taken up by
active processes such as phagocytosis or pinocytosis
depending on a dynamic series of physicochemical prop-
erties [120].

The uptake of nanoparticles is determined by particle
solubility, concentration and size. However, the passive
uptake of particles has been shown to occur trans-
cellularly via the intestinal lining and, to a lesser extent,
between epithelial cells [121].

Nevertheless, it is not known whether Cu-NP remain
in the intestinal tract unabsorbed and are excreted in
the faeces or go into the body system readily [122]. Some
evidence indicates that particles smaller than 100 nm
are absorbed in various tissues and organs [123]. Uptake
of Cu-NP across these defensive barriers occurs through
various transport mechanisms including receptor-medi-
ated endocytosis and adsorptive endocytosis [124].

Particles taken by the villus epithelium can enter the
bloodstream and, then, mostly will be foraged by the liver
and spleen [114, 125].

Increasing the uptake of Cu-NP in the GIT might have
an impact on the growth and health of animals. Cu-NP
have been reported to enhance growth performance and
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improve feed utilisation compared to CuSO, when pro-
vided as a feed supplement for piglets, poultry and fish
[9, 126, 127]. The improvement was attributed to the better
bioavailability of Cu-NP compared with CuSO, salts.
However, the mechanism behind this improvement is still
not clear. Some studies indicated that the effect of Cu-NP
can be ascribed to their antibacterial properties [40], while
others suggested the better digestibility of energy and fat
[9, 11]. Furthermore, some studies demonstrated that the
activity of SOD was enhanced with Cu-NP supplementa-
tion in animal diet [128, 129].

It was reported that adding Cu-loaded chitosan nan-
oparticles to broiler feed enhanced growth performance
and immunological capacity, influenced intestinal micro-
biota and improved protein synthesis [130]. Further, it has
been reported that there is a connection between arginine
levels in the liver and the growth of chickens, which was
improved after one intramuscular injection with Cu-NP
[131]. Moreover, in ovo injection of Cu-NP to chicken eggs
has been found to improve the performance of chickens
in the finishing period [110]. A similar effect was shown in
fish treated with 2 and 4 mg/kg of Cu-NP [127].

Generally, there is some alteration in blood biomark-
ers after Cu provision in the animal diet. Accordingly, an
increase in albumin, alanine transferase (ALT) and uric
acid, but a reduction in alkaline phosphatase, was shown
in chickens fed 100-400 mg/kg of CuSO, [132]. Similarly,
it was observed that in ovo injection of 50 mg/kg of Cu-NP
decreased the levels of ALT, glucose and cholesterol
[23]. The same author demonstrated a non-significant
increase in calcium, magnesium and phosphorus levels
in both Cu-NP and CuSO, groups compared to the control.
However, Scott et al. [11] did not indicate any significant
alteration in the blood of hatchlings after administering
50 mg/kg of both forms of Cu.

Compared to CuSO,, dietary supplementation with
Cu-NP causes a significant reduction in glucose levels in
fish [127]. Additionally, Canli and Canli [133] revealed that
5 mg/kg of oxide Cu-NP significantly decreased glucose,
total cholesterol and triglyceride levels in rats following
oral administration compared to the control. This could
be attributed to hyperglycaemia resulting from cortisol-
mediated gluconeogenesis [134].

The reduction of cholesterol levels after adding Cuto a
poultry diet [135, 136] can be explained by Cu supplemen-
tation regulating cholesterol biosynthesis indirectly by
decreasing the reduced form of glutathione and increas-
ing the oxidised form of glutathione [137, 138].

Blood urea also shows some reduction with Cu sup-
plementation in the diet. This might be an indicator that
amino acids are utilised more efficiently for growth [139].
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Similarly, it has been shown that supplementation of Cu-
loaded chitosan nanoparticles in broiler feed alters the
concentration of urea in the blood [130], which could be
an indicator of the rate of protein synthesis [140].

A study by Mroczek-Sosnowska et al. [23] showed
that in ovo injection of CuSO, increased counts of white
blood cells (WBCs), lymphocytes and eosinophils com-
pared to Cu-NP. However, Cu-NP decreased the number
of leucocytes compared to the CuSO, group. Additionally,
adding Cu significantly altered the number of erythro-
cytes in the peripheral blood of the birds. Similar results
were observed in turkeys treated with Cu-lysine chelate
in drinking water; however, it caused a reduction in the
levels of haematocrit and haemoglobin [141].

Additionally, the concentration of haemoglobin was
increased, which allowed the birds to keep oxygen trans-
port at an appropriate level [23]. The increased level of
haemoglobin could be due to its continued synthesis by
erythrocytes already circulating in the peripheral blood.
It is also likely that the increased level of haemoglobin
could be linked with the homeopathic function of Cu. Cu
has been shown to directly stimulate erythrocyte synthe-
sis, as it determines iron absorption into the body and its
incorporation in haemoglobin [142].

On the other hand, it was demonstrated that CuSO,
reduced the percentage of monocytes, which suppressed
the metabolic activity of these cells. A reduction in phago-
cytic activity was also observed in the chickens, which
indicates that CuSO, could contribute to accelerated
damage of phagocytes and inhibit the metabolic activity
of the cells [23], while the administration of Cu-NP caused
an increase in the blood level of uric acid.

The addition of the oxide form of Cu-NP to broiler
chicken feed indicated that haemoglobin and albumin
concentrations were reduced in comparison to the non-
treated group [143]. However, the same authors showed
some protein denaturation, which suggests that the oxide
form of Cu-NP might have a toxic effect on blood proteins.

4.2 Antibacterial activity of Cu-NP

Chickens frequently receive additional Cu as a growth-
promoting supplement. However, it has been shown that
bacteria can develop resistance to Cu inside a chicken’s
body, particularly enterococci, which are often associated
with resistance to antimicrobial drugs like macrolides
and glycopeptides [144]. Such resistant bacteria can be
transferred from food-producing animals to humans. The
resistance is more frequent at high Cu levels. Therefore,
Cu supplementation for growth promotion is, today, one
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of the crucial health and environmental concerns that
should be optimised. Although the misuse of antibiotics
in animal feed is partially liable for the increased level of
antibiotic resistance in bacteria, exposure to trace metals
may also contribute to antibiotic resistance, even in the
absence of the antibiotics, themselves [145]. However,
information regarding mechanisms for inducing Cu resist-
ance in bacteria and the dose-response relationship is
limited.

Therefore, with the most concerning issue of microor-
ganism resistance to antibiotics, developing new nanoag-
ents with antibacterial effects is of great theoretical and
practical concern.

Previously, the bactericidal effects of Cu-NP on
strains of E. coli and Staphylococcus aureus were dem-
onstrated [146]. Furthermore, the antibacterial activity
of Cu-NP depends on the physical characteristics of the
nanomaterial [101].

Cu-NP have been used for a long period as disinfect-
ants due to their antibacterial properties [147]. Although
the mechanism of action as an antibacterial agent has still
not been clarified, reports have suggested that the mecha-
nism of antibacterial activity of Cu-NP could be the same
as that of silver nanoparticles [70].

Nanoparticles are capable of attaching to the bacte-
rial membrane by electrostatic interaction and disturbing
its integrity [148]. Thus, the antibacterial activity of nano-
particles is generally triggered by inducing ROS following
the administration of Cu-NP [149]. Generally, three mecha-
nisms of action of nanoparticles have been hypothesised.
First, the accumulation of nanoparticles in the bacterial
membrane, changing its permeability, with subsequent
release of lipopolysaccharides, membrane proteins and
intracellular biomolecules and dissipation of the proton
motive force across the plasma membrane [150, 151].
Second, generating ROS and their corresponding ions
from nanoparticles, with subsequent oxidative damage to
cellular structures [152, 153]. Finally, the uptake of metal-
lic ions derived from nanoparticles into the cells, followed
by depletion of intracellular ATP production and disrup-
tion of DNA replication [154, 155].

The filamentation is caused by Cu-NP-mediated
depolarisation of the cell membrane, while cell damage
is caused by Cu-NP-mediated ROS generation in cells,
resulting in lipid peroxidation, protein oxidation and DNA
degradation [156].

The linoleic acid-capped Cu-NP are highly bactericidal
for S. aureus, E. coli and Bacillus subtilis, suggesting that
Cu-NP can be used as effective growth inhibitors in various
microorganisms, making them applicable in diverse
medical devices and antimicrobial control systems [157].



DE GRUYTER

Based on oxidative stress, Chang et al. [149] discussed
the coordination and non-homeostasis effects of Cu oxide
nanoparticle toxicity on eukaryotic cells. The authors
described that nanoparticles can diffuse into the cell
directly through the pores present in the cell membrane
or through ion channels and transporter proteins present
on the plasma membrane, while other nanoparticles may
enter the cells via endocytosis. Eventually, the nanopar-
ticles that enter the cell may directly interact with other
organelles.

The Cu-NP showed the most efficient form among
the different Cu forms for antimicrobial activity due to
their high surface area [158, 159]. Besides that, the crystal
morphology of the Cu-NP results in several reactive sites,
which simplifies the interaction between the Cu-NP and
the microbial cell membrane [160]. Therefore, many
studies have pointed out the antibacterial action of the
metal nanoparticles [161-165].

Many investigations have focused on the bactericidal
activity mechanism of the Cu-NP [156, 166]. They indicated
that the antibacterial activity of the Cu-NP results from the
ions released by the nanostructures. However, Ruparelia
et al. [70] showed that Cu* ions are released because of a
reaction with the nutrient components, suggesting that Cu
ion release may be related to reaction with chloride from
the nutrient or to the presence of a thin oxide layer on the
nanoparticle surface.

The bactericidal activity of Cu-NP results not only
from their particle size, high specific surface value and
close interaction with microbial membranes but also from
the formation of leached cuprum-peptide complexes that
lead to an increase in ROS generation and decreased cell
viability [167].

Lately, a study demonstrated that the antimicrobial
properties of chitosan implanted with Cu-NP reduce gut
bacteria such as E. coli, Enterococcus faecalis, S. aureus
and, particularly, Lactobacillus fermentum, which is one
of the primary targets of antibiotic growth promoters, sug-
gesting that the Cu-NP could be used to minimise unde-
sirable levels of microbial populations without causing
cytotoxicity [168].

The antimicrobial activity of Cu seems to be similar to
that of antibiotics, altering the gut microbiota and, hence,
reducing fermentation loss of nutrients [169]. The reduced
level of bacteria in the proximal part of the GIT may benefit
the chicken by allocating more feed components for its
growth performance. CuSO, reduces the quantity of coli-
form in the large intestine, which might be a part of other
mechanisms such as the inhibition of specific pathogens
and inducing resistance of the chicken to pathogen adhe-
sion and invasion as well as toxins [170].
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Supplementing chicken diet with additional Cu
reduces the population of clostridia in the GIT of chick-
ens. Generally, the concentration of Cu salts that affect
the populations of coliform bacteria is higher (up to
200 mg/kg) than Cu-NP (below 50 mg/kg). While the
population of lactobacilli in the GIT contents was stimu-
lated by 150 mg/kg of Cu, the higher concentration did
not reveal any effect [27].

Cu may be toxic to bacteria; however, this depends on
the solubility of the metal compounds under physiologi-
cal conditions. To avoid cellular toxicity, bacteria have
developed mechanisms of metal tolerance [171]. Further-
more, antimicrobial agents have more proficiency than
antibiotics to support a co-selection process, ultimately
selecting for antibiotic resistance [172].

Cu-NP is effective against Gram-positive and Gram-
negative bacteria [173, 174].

Further, Cu-NP inhibits the growth of S. aureus, B.
subtilis and E. coli bacteria [175], Micrococcus luteus, Kleb-
siella pneumoniae and Pseudomonas aeruginosa [176].
The subsistence rate of E. coli and B. subtilis bacteria is
decreased by increasing Cu-NP concentrations [177].
However, higher susceptibility is shown to Gram-negative
strains [178]. Furthermore, the activity of Cu-NP against
E. coli has been demonstrated [179, 180].

The activity of Cu-NP depends on temperature, aera-
tion, pH and concentration of nanostructures [181]. The
main biocidal activity of Cu-NP is caused by oxidative
damage to cellular structures and inhibition of DNA rep-
lication and amino acid synthesis in microorganisms
[182]. The mechanism relates to the dissipation of the cell
membrane under the influence of nanoparticle accumu-
lation or the generation of ROS by highly concentrated
Cu* ions [156].

A study by Ramyadevi et al. [176] carried out with M.
luteus, S. aureus, E. coli, K. pneumoniae and P. aeruginosa,
as well as the fungi Aspergillus flavus, Aspergillus niger
and Candida albicans, indicated that the Cu-NP is more
toxic to bacteria than fungi. Another study revealed the
antibacterial activity of polyethylene-Cu nanoparticles
against E. coli. The result revealed a complete suppression
of the number of live bacteria, and the nanocomposites
damaged the plasma membrane of the bacteria, revealing
a bacteriolytic effect [183].

The bacteria in the chicken’s body may develop resist-
ance to Cu and the resistance gene to this trace element is
recognised in some bacterial species from animals. Resist-
ance genes to Cu are often located on the plasmids, which
may be transferable to other bacteria species [144].

From these findings, it can be concluded that the
smallest nanoparticles, the highest antibacterial activity
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Table1 (continued)

Reference

Effect

Concentration and size

Type of Cu used

Bacteria species

Sportelli et al.

[165]

Cu-NP had an inhibitory effect on the growth of targeted

microorganisms

Dilution 1:100 and

1:1000

Cu-NP

E. coli ATCC 25922, S. aureus FDA 209P,

Kluyveromyces marxianus CBS 608

Ramyadevi et al.

[176]

Cu-NP showed more inhibitory activity in bacteria than fungi,

50 ul, 580 nm

Cu-NP

M. luteus, S. aureus, E. coli, K. pneumoniae, P.

and it also showed a larger zone of inhibition in E. coli (26 mm)

than in C. albicans (23 mm)

aeruginosa; fungi: A. flavus, A. niger, C. albicans

Usman et al. [194]

Cu-NP inhibited the growth of the targeted microorganisms

2-350 nm

Cu-NP

S. aureus, B. subtilis, P. aeruginosa, Salmonella

choleraesuis, C. albicans
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and Cu-NP have a better impact on bacteria than the other
forms of Cu. In addition, the antibacterial activity of
Cu-NP can allow more nutrient to be digested in the GIT,
consequently improving the growth of chickens.

An overview of the antibacterial activity of the differ-
ent forms of Cu is shown in Table 1.

4.3 Immunological effects

Here, we primarily focus on the immunological impact of
the most studied Cu-NP. The interactions of Cu-NP with
the immune system are a key issue to guide the future use
of Cu-NP in animal feed and medicine.

Exposure to nanoparticles may induce immune
stimulation or suppression; inadvertent suppression of
immunological function leads to infectious diseases. In
contrast, inappropriate enhancement of immune reaction
can result in autoimmune diseases [195]. To date, many
studies have demonstrated that Cu-NP are involved in
promoting inflammatory responses, due to their physico-
chemical properties. However, it has been demonstrated
that smaller nanoparticles (less than 70 nm) are not able
to be recognised as foreign particles and are possibly
later translocated through the capillary blood flow [196]
and the lymphatic system [197] to the lymph nodes for
antigen presentation [198]. While the recognised nanopar-
ticles will be cleared by macrophage-mediated clearance,
phagocytosed nanoparticles may be destroyed within the
lysosomes of phagocytic cells [199]. If the nanoparticles
exceed the size of the engulfing phagocyte, they take
too long to be phagocytosed. Later, they may induce an
inflammatory response, including cytokines, chemokines
and ROS, which can result in inflammation [200] and
DNA damage [201]. From the lymphatic and circulatory
systems, nanoparticles may distribute to organs includ-
ing the kidneys, from where partial or total clearance may
occur. Inflammation in mice is increased when exposed
to Cu-NP through inhalation [202]. Exposure to Cu-NP via
inhalation and instillation in mice induces pro-inflam-
matory cytokines and recruitment of neutrophils, and it
is expected that Cu ions at high Cu-NP doses lead to an
increase in inflammatory response [54, 202]. However, in
ovo studies with a chicken embryo model, Cu-NP injected
into chicken embryos did not show immune stimulatory
properties, which may be due to the Cu-NP not being
recognised by antigen-presenting cells (APCs) [11, 203],
as immune responses depend on nanoparticle uptake
by APCs. Exposure to nanoparticles may induce toxicity,
resulting in detrimental effects on the immune function.
A study by Wang et al. [204] on fish reported that IL-1 and
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TNF-o expression increased in intestine samples with an
increased concentration of Cu-NP, and also, IgM concen-
tration was decreased with Cu-NP concentration.

4.4 Toxicological effects

The predominant processes underlying nanoparticle-
mediated toxicity includes oxidative stress, inflammation,
DNA damage and inhibition of cell division and death.
Despite the toxicity of bulk Cu being affected mainly by
the salt composition, in the case of Cu-NP, additional
physicochemical properties such as size, surface area,
surface chemistry, surface roughness, dispersion medium
and ability to agglomerate play a vital role in determining
their toxicity [13].

There are many studies reporting on the toxicity of
Cu-NP [205]. However, we could not find results regard-
ing Cu-NP toxicity in chickens. The intranasal instillation
of Cu-NP (23.5 nm) in mice resulted in the accumulation
of Cu-NP in the liver and lung tissues, decreased body
weight and dose-dependent lesions in the lung and liver
[206]. Further, it was reported that Cu-NP induced apopto-
sis in the intestine of juvenile Epinephelus coioides via the
mitochondrial pathway [207]. The toxicity may be due to
the Cu-NP and released Cu ions [208]. Furthermore, it was
demonstrated that the smaller Cu-NP are more toxic than
the larger Cu-NP in zebrafish embryos [209]. The Cu-NP
caused membrane damage and ROS formation in lung
cells (A549 type II) [210] and mammalian cell lines (H4IIE
and HepG2) [211]. The Cu-NP (10 pg/ml) also induced DNA
strand breaks [212]. The cell viability effect of the Cu-NP
embedded in the polymer matrices (hydrogel and polypro-
pylene) strongly depends on the polymer characteristics,
as hydrogels showed cytotoxicity at concentrations higher
than 0.5% of that of the Cu-NP, whereas polypropylene did
not show any effect even at higher concentrations (20% of
Cu-NP) [213]. It was concluded that Cu-NP toxicity is eluci-
dated by Cu ions released from the composites.

Many studies have pointed out the cytotoxicity effect
of Cu-NP, depending on the animal species, delivery, con-
centration and size. An overview of the toxic effects of
Cu-NP is shown in Table 2.

5 Potential use of Cu-NP in animal
diet

The main reason for considering the Cu-NP as an alterna-
tive growth and health promoter is the overuse of Cu in
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animal diets, causing severe environmental pollution. In
addition, the objective of using nanoparticles in animal
feed is to decrease the numbers of harmful bacteria and
stimulate the growth of beneficial bacteria, which may
improve growth performance of animals [221]. Herein, we
provide an overview of the research on the potential use
of mineral nanoparticles as poultry feed additives and
propose novel strategies for nanoparticle use in animal
nutrition. The hypothesis behind growth improvement
with Cu-NP supplementation may be related to better
absorption of nutrients, i.e. with Cu-NP more nutrients
will be available in the GIT for absorption. Hence, using
Cu-NP as a supplement in chicken diet might have benefi-
cial effects on growth, feed efficiency and chicken health
by causing damage to pathogens, effecting a reduction in
the production of bacterial toxins, increasing the synthe-
sis of vitamins and other growth factors, improving the
absorption of nutrients by reducing the thickness of the
intestinal epithelium and reducing intestinal mucosal epi-
thelial cell turnover and motility [222].

Reduction in the size of materials to the nanorange
increases the absorption of nutrients, as shown for iron
and selenium [223]. Selenium nanoparticles are more effec-
tive and showed better performance of broilers supplied
with 0.3 ppm [224] and 0.5 ppm [225] compared to both
organic and inorganic selenium sources [226]. Feeding
zinc nanoparticles to chickens have produced encourag-
ing responses in growth, immunity and reproduction.
These nanoparticles enhance growth and improve feed
efficiency in piglets and poultry [227-229]. Chromium
nanoparticles reduce heat stress in chickens, improve
feed conversion and provoke hepatic-related alterations
[230]. Silver nanoparticles have antibacterial activity in
chickens and pigs [231, 232]. Furthermore, Sawosz et al.
[233] showed that silver nanoparticles potentially improve
muscle morphology without affecting broiler performance
at embryo growth. Moreover, a concentration of 50 mg/kg
silver nanoparticles chelated with amino acids, threonine
and cysteine improved immune competence in embryos
and chickens [234]. Other metals have been synthesised
as nanoparticles and supplemented to poultry feed. For
example, metal oxide nanoparticles have shown antibac-
terial activity against Salmonella sp.: Al.O,, Fe O,, CeO,,
Zr0O, and MgO [235]. The above studies of metal nanopar-
ticles focused on reducing antibacterial activity and, to
some extent, on their influence on animal performance.
However, the application of Cu-NP as a feed additive
appears to be in the development phase.

Cu-NP administered through in ovo injection at levels
of 4, 8, 12 and 16 ug/egg did not have an adverse effect
on embryo growth [10]. However, a concentration of



DE GRUYTER

A. Scott et al.: Copper nanoparticles as an alternative feed additive in poultry diet

82

[o€1] "l 10 Suem

[or72] "le 10 Suem

[st72] 1e 1@ NIUSO

[7%¢] 1219 lueIsanies

[evc] "le1d uey

[evc] 1e 18 uey

[o%7Z] e 18 Jedjuesieinyy
[szT] eI
©){SMOUS0S-]3Z0II

[6] & 10 BINS3-s31RZU0Y

[1€1] 1819 AoS{IuysOIW

[01] "1e 33 enysof
[oT1] e 1
BYSMOUSO0S-)3ZI01 N

[T1] 1B 19 BOOS

$13]101q JO B101QOIDIW |BIILI PUB SISAYIUAS
uiazoid ‘walsAs sunwuwy ‘ymolS panoidu|
pasealdul alam WnLId}Ipqopifig pue snjjiapqoanT
INq ‘pasealdap /)07 °F JO Junowe Y| ‘wnajl

pue wnuaponp jo yidap 3dA1d passaidap

nqg “yS1ay snjjIA pasealdu| “oljes ujes:pasy
parosdwi pue ayejul paa) pue gy pasealdu|
uondiosqe

u04| 32344 JOU SI0P INQ “dUIZ pue Wnid|ed Jo
uolydiosqe sadInpal SauUlISAUL BY3 U] Pajenwndde
n) ‘@sowlayiing "spiiq ay3 jo ewsejd poojq ayy ui
JUIU0D N pasealdul dN-nD Jo 19Ad] 1saySiy ayL
PaAIRSqo d19M dduewioyad yimois

pue sjuauInu jo A)1q13sasSip ul SaduaIaip ON
©)S981p ul SaljIAIe

awAzua panosdw| ‘wnajl pue wnuaponp jo yidap
1dA1d passaidap inq aySiay snj)IA paseasdu|
wnaaed Jo

JUBWUOJIAUD pUB BJOIGOIIIW PIJUBYUD ‘||BIBAQ
-e3s981p wndaed uj ajelAing pue ajeuold ‘Hd
pasealdu| ‘asepisoloe|es-g pue asepisoloejes-y
40 AJIA130R pasealdu) Ing ‘@sepruoindn)s-g

40 AJIAIoe passaldap ‘oQqy pasealdu|

[SLETIE]

aAjesau pey 8y/Sw 08-0% 3)iym ‘3% /3w 0

yum Ajia13oe swAzus ansasdip ‘ymols panorduw|
9)osnw }sealq ayj ul ssa) pue suedio uasjds pue
J3AI) 3Y} Ul PAAI3SCO N JO UOIJRINWNIIE. }S3}BIID
$929B}) U] N) pajnpai ‘ASIaud pue jej apnid

J0 Auiqnsasip pue aduew.oyiad yimolS panosdu|
wnJas poojq ul urajoid

pue n) ‘uiqojSowaey ‘|aA3] 1192 pal pasealdul
‘saSueyd d1j0qe}aW pue Yimols pajejnwils
889/M 1 jo uo13da(ur yum 3)dsnw isealq 1saysiy
‘fauaidiyye pasy pasealdul ‘“Ayjiqeydiey aduanjjul
jou pip ‘soAiqua Suido)anap 0} |njwiey JoN
s9)asnw S9) pue Jsealq Jo aSejusdtad taysiy

pue asuew.oylad 321Yd pasuanijul AjaAiisod
juswdojanap oAiquia

U0 123449 |njwiey ou ‘d3el 21)0ge}dW Pasealdu|

Wu 0T F56
/8w 05T ‘00T ‘05

Wwu 6°TZT ‘3Y/3w 001

wu g ‘/8w gt ‘0T ‘S

31/3w 001

Wwu 6°TZT “8Y/8w 09T ‘08

Wwu 6°TZT “8Y/8w 09T ‘08

wu 002
‘3y/3w 08 ‘09 ‘0% ‘0T ‘0T

wdd o9

wu 00T-0T ‘8)/8w 09

wu/g6 pue €01 ‘11 00T

wu gz 883/1M ot ‘T ‘8 ‘Y

wu 0/-9T ‘wdd 05

wu g1-z ‘wdd 09

Suipasy Arelaiq

juawsajddns Aie3aiq

ul uoleAISIuIWpPY

juswajddns Aie3aiq

juswsajddns Asejaig

jusawieasy Aieyaiq

juswajddns Asejaiq
uolyeqnoul
jo T Aep uo uojrafu)

9AI}Ippe pasd

Sujyoey

131e #1 Aep uo
uol3aa(ul JejNISnwesu|

uolyeqnoul
40 8T Aep uo uoydafu)
uolyeqnoul

jo 1 Aep uo uoida|ul
uolyeqnoul

Jo T Aep uo uoi3dalu)

Ajunwwi pue ymolo

ASojoydiow
pue B10}J01d1W |eUI}SIU|

wnid)es pue duiz ‘uodi

jo uondiosqe jeunsau|
yimmois pue

sjuauinu yo Ayiqusasiq
Aya1oe swAzua an13sasip
pue ASojoydiow
aulsajul jlews

ej01qoLdIW
1e29ed 3y} Jo wWsljoqeaw
pue uopisodwo)

sawAzua d1j0qelaw
pue aA13SasIp ‘Yyimoln

SueslI0 uj Juauod N
Aiqisasip yuanu
pue aduew.oyiad ymolo

wisijogelaw pue ymmolo

9ouewloyiad yojey
-3sod pue Ayjiqeydiey

douewioyiad yYdjey-1sod
ajel
J1j0geIaW PUB YIMOID

191019

31d

TENE]IT)

uaddIyd 43j10ig

ey

ey

umeld
uaydIYd Iaj10ig

3id

uaddIYd 1aj101g

oAiquid uaydIyY)

uaydIyd

ofiquid uaydIY)

S3UaI9)3Y

uoISN)2U0d pue 12343

9Z|S pue UOI}RIJUIIUO)

aw) pue adA) A1aanaq

pajesSisanul wajsAg

sapads

‘pasn aSesop pue AJaAllap 9y} 03 Sulp10dde ‘sa1dads |ewiue Jualaylp ul sa)d1edoueu n) Suisn jo sasejueApy :€ alqel



83

A. Scott et al.: Copper nanoparticles as an alternative feed additive in poultry diet

DE GRUYTER

[8%7C] “1e 1e eSsmazsewo]

[t¥2] 1e1e uinseg-)3

[621] e 10 alesay

[TT1] 130 Aanureg-ly

[£Z1] "|e 13 luINSeg-|3

[ez]1e1d
B)SMOUSO0S-)9ZI04\

[2%72] “1e 1o Zsomeg
[ogz] e 10
BY)SMOUS0S-)9ZI0I|

[9z1] e 1
BY}SMOUSO0S-)9ZI0IN

uoljesijelaujw auoq uj agueyd

B SeM 913y3 Jey) anoid sislawesed palpnis ay)
40 sanjeA JaySiy ay] "uol1ejuldIU0d plepuels ay)
Je SSauySno} pue peo) ajew 1} ay} paseatdu|
$S91]S JsuleSe adueI)0)

pue AjAlde JepIDLIa}oeq puR 3sesjoud ‘Juajuod
pidi) pue uiajoid Apoq ‘uorjualas uisjoid pue
ures u1ajoud ‘soryes AHoualdiyye uivlosd pue paay

‘@lejul paay ‘a1el ymous o1y129ds pue uies jysiam

‘yS1am |euly uo 103oe) JURIYIUSIS B SEM dN-ND
aSejuadtad 91fooydwA) pue Junod

1192 poojq pal ‘uiqojSowaey ewse|d pasealou|
dds wniprijso)) pue jod ‘3 ‘eliaydeq d13Aj0aln jo
uoljeindod paseasdap pue Sjunod snjjIpqoInT
pasealdul ‘owAzud asenwsip apixosadns jo
AjAoe pasealdul ‘Jej jeuiwopge pasnpal ‘oljel
UOISIAUOD Pady 191194 ‘IyS1am Apoq jeuly 1aysSiH
13n)) pue S8 ug "osnd

0} pasedwod 1amo] SeM dN-ND JO UOIIR|NWNIIY
wolsAs

9U3JOp Juepixoljue pue asuodsal sunww|
panoidwi @s0on)S ewsejd pasamo) ‘@duewloyiad
131199 pamoys dN-n) Jo 8y /8w 7 pue ¢

S]9A9] 1019153]0Yd puB 3502N|8 padnpay

*sjiydoseq pue sajfdouow ‘sjiydoiaay ‘O1H ‘99H

94 JO S]2A3] P00 U] 3SBIIDU| UB PIYOAS dN-ND
VYNYW gX-4N J0 uoissaidxa
130 JuaAa1d pinod n) /8y jo sapipedoue

uolssaldxa

9UdS pue UOIJRIIUIIUOD YNYW UO 134)3
0SNn) uey) 92183p 19)eaIS B 0} |9A3) d1WISAS
e je saipadoid djuaSoiSue-oid pey dN-nd

R4

wu oy

wrl g/>“8y/Sw ¢

/8w g/ ‘05 ‘st

wu 09-56 ‘1/81 0z

wr g/> Sy /8w g9y ‘g

8/8w 09

3/8w 09

wu g°/¢ /3w 0§

9INniXiW pas4

SaAIPPE Paay

SaAIPPE Pady

aw|8al ainsodx3

juswsaddns Aseyaiq

uoi323(ul on0 uj

uo13ful oro uf

uo123(ul oAo uf

aIn1anis
pue A1}owoas auog ey
9JUBWIO0YRd ysi4
9JUBWIOIR( Jqqey
uolje|nwndoe
1e1aw pue ASojoi1sAyd ysti4
asuodsal
aunwuwi pue juepixoljue
‘a1yoid poo)q ‘ymoln ysi
si9vjlew

poo]q e21WaYd0Iq
pue jediSojojewaey 19)101g

aje)s Alojewweyyul oAiquia uayd1yYd

YSGIIERIENEITTY)

S]aA3] Jejndadjow pue

J1Wa1sAs je sisauasolSuy oAiquia uaydIY)

S9JUalajay

UOISN)2U0d pue 1233

9Z|IS pue uoljeljuaduo)

awy) pue adA) A1aanaq

pajesSiysaul walsAs sapadsg

(penupuod) g 9)qeL



84 —— A.Scottetal.: Copper nanoparticles as an alternative feed additive in poultry diet

50 mg/kg of Cu-NP showed an increase in metabolic rate
with regard to oxygen consumption and heat production,
which are important regulators in the developmental
stages of chicken embryos [11]. The same concentration
was found to exhibit pro-angiogenic properties at a sys-
temic level, with the promotion of blood vessel develop-
ment during embryogenesis and, thereafter, increase the
body weight, improve feed conversion ratio and increase
breast and leg muscles of broiler chickens upon adminis-
tering Cu-NP in ovo [110, 126]. Just recently, it was shown
that in ovo injection of Cu-NP stimulates proliferating cell
nuclear antigen (PCNA)-positive cells in the long bones
of broiler chickens, indicating a stimulatory effect during
embryogenesis [236].

Some studies compared the inorganic forms of Cu
with Cu-NP, and the latter showed an improvement in
the growth performance of piglets [9]. Moreover, Cu avail-
ability was significantly improved, and the faecal Cu level
was reduced compared to CuSO,. Additionally, Cu-NP
improved the digestibility of crude fat and energy in pigs.
Furthermore, IgGy globulin and total globulin protein
levels were improved, and SOD activity increased. The
same authors observed that the Cu level and cholesterol
concentrations in serum were not affected by Cu-NP sup-
plementation. The reason for these improvements may be
attributed to better bioavailability and antibacterial activ-
ity of Cu-NP than CuSO,.

Intramuscular injection of Cu-NP in chickens was
investigated by Miroshnikov et al. [131], and they observed
that Cu-NP stimulated chicken growth, increased red
blood cell and haemoglobin levels, enriched Cu and
protein levels in serum and also increased the arginine
content in the chicken liver.

Another study reported that Cu-NP-loaded chitosan
[130] improved growth performance and immune status,
enhanced protein synthesis and was beneficial to the
caecal microbiota of broiler chickens. Further, Zheng
et al. [237] used Cu silicate nanoparticles in chicken diet
and reported that adding 2 g/kg of Cu silicate nanoparti-
cles could regulate the intestinal microflora, promote the
growth of beneficial bacteria and inhibit harmful ones,
enhance nitrogen metabolism and reduce ammonia emis-
sion from excreta. Recently, Nguyen et al. [238] added
metal nanoparticles of iron, Cu, zinc oxide and selenium
to supplement a chicken diet premix, which resulted in
certain improvements of poultry farming depending on
the quantity of nanocrystalline metal, which replaced
the inorganic mineral component in the feed premix.
The results also confirmed that nanocrystalline metals
are able to decrease inorganic minerals in diet premixes
by at least four times, allowing chickens to absorb feed
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minerals more efficiently and, consequently, decreasing
the risk of environmental pollution. In addition, Cu sili-
cate nanoparticles modified the intestinal microbiota of
chicken, increasing counts of Lactobacillus species and
decreasing E. coli [239].

Several studies have shown the advantages of adding
Cu-NP to fish diet. A study by El Basuini et al. [127] inves-
tigated different concentrations of Cu-NP in fish diet, and
the results demonstrated that 2 and 4 mg/kg of Cu-NP
caused the highest final body weight, better feed effi-
ciency, protein retention, immune response and antioxi-
dant defence system compared to CuSO, and the control
groups. Another study was performed to assess the effect
of Cu-NP on freshwater prawns by Muralisankar et al.
[240]; the results demonstrated that adding 20 mg/kg
of Cu-NP showed an improvement in growth, digestive
enzyme activity, the concentration of biochemical constit-
uents and haemocyte count. However, the same authors
reported that 40-80 mg/kg of Cu-NP had a negative effect
and might be toxic to prawns. Lately, El Basuini et al. [241]
determined the effects of Cu-NP and vitamin C on red sea
bream and found that feed supplemented with 2 mg/kg
of Cu-NP significantly influenced body weight gain, final
body weight, feed intake, feed and protein efficiency
ratios, body protein and lipid content, protease and bac-
tericidal activity and tolerance against stress compared to
the control diet.

There was also a study conducted on rabbits fed diets
supplemented with different concentrations of Cu-NP,
which showed a significantly higher body weight and
better performance in comparison to the control [129].

An overview of the effects of Cu-NP on animal perfor-
mance is shown in Table 3.

6 Conclusions

The main purpose of using Cu-NP as feed additives in
chickens is to improve growth and performance in addi-
tion to reducing the pathogen load to improve health
and reduce the excretion of Cu into the environment.
Their small size and large surface-to-volume ratio make
Cu-NP biologically more active than bulk Cu, allowing
more efficient interaction with biological systems, which
may decrease the amount of Cu used in the diet without
causing an adverse effect on chicken performance and the
environment.

The majority of studies have pointed out the ben-
eficial effects on performance, antibacterial activity
and immune status of Cu-NP as a feed supplement for
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poultry and other animals. Furthermore, much work
has been done regarding the synthesis and stability of
Cu-NP.

However, it is important to control the size and con-
centration in order to achieve maximal benefits from
Cu-NP and avoid their potential toxic effects. More studies
should be conducted to describe the effects of Cu-NP
on gut microbes and metabolite production. Along with
these, studies should include more toxicology, histology
and residue analysis of Cu-NP in the body and excreta
before any wide adoption could take place.

Cu-NP incorporation in animal nutrition, which can
enhance the performance and health of animals, should
be conducted at a lower risk to consumers. However, a
great amount of research is still required to support the
safety of Cu-NP application in animal nutrition, avoid-
ing any harm to livestock, the environment and human
beings.

The inclusion of Cu-NP supplements in poultry feed
seems possible in the near future; however, the use of
Cu-NP is still in its infancy, but encouraging results from
recent studies are driving further investigations.
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