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Abstract: Shrinking transistor sizes and power dissipa-
tion are the major barriers in the development of future
computational circuits. At least when the transistor size
approaches the atomic scale, duplication of transistor
density according to Moore’s law will not be possible.
Physical limits, like quantum effects and nondetermin-
istic behavior of small currents, and technological limits,
such as high power consumption and design complexity,
may hold back the future program of microelectronic con-
ventional circuit scaling. Hence, an alternative technol-
ogy is required for future design. Quantum dot-cellular
automata (QCA) is a transistor-less, very promising nano-
technology that can be used to build nanocircuits. The
conventional computer is an irreversible one; i.e. once a
logic block generates the output bits, the input bits are
lost. A possible solution is reversible computing, where no
bit is lost during computation. Hence, logically reversible
circuit can consume less energy than any conventional
circuit. In this paper, a brief review on evolution of the
QCA in reversible computing is discussed. Various revers-
ible gates that are designed using QCA technology as well
as the modification of those designs that are made in latter
works are highlighted.
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1 Introduction

In 1961, Rolf Landauer of IBM defined a revolutionary
principle that when the output of any logical circuit does
not uniquely define its input, then the device is said to
be logically irreversible and it will dissipate energy [1].
Logical irreversibility means that any outputs from a logic
gate can be obtained from more than one set of inputs. For
example, the logic gate AND (A, B)=Y that maps two input
bits, A and B, into a single bit, Y, is logically irreversible
because an output Y=0 (false) could be accounted for by
any of the three input pairs (A=0, B=0), (A=0, B=1), and
(A=1, B=0). Hence, for this particular output, the input is
ambiguous and the operation is said to be logically irre-
versible. According to the second law of thermodynamic
consequences, whenever a logically irreversible operation
is performed, energy must be dissipated, in the amount of
k,TIn2 J per bit erased [1], where k, is the Boltzmann con-
stant and T=300 K. This value is equivalent to ~2.9x10% ]
at room temperature. This was also experimentally proven
by Bérut et al. [2]. When bit is destroyed inside the circuit,
entropy of the physical system increases according to the
second law of thermodynamics. Thus, heat dissipation
in a circuit can be expressed by Shannon entropy (H) as
z p,Inp,, where p, is the probability of state during com-
putation. If AH measures the logical entropy changes in
bits, then minimum heat dissipated is AE=k TIn2-(AH).
If total change of entropy of system and the surrounding
is >0, then a physical system cannot run in reverse. Thus,
the system is called thermodynamically irreversible. The
energy E bit required for a binary transition is given by
the Shannon-Von Neumann-Landauer (SNL) expression
in [1, 2] as follows:

EDbit>E SNL=k,TIn2=0.017 eV. 1)

This amount is small but not negligible for a large
circuit. Also, at low temperatures (T—0 K), this will be
very low. Also, from the Heisenberg uncertainty relation,
the size of the device should be ~1.5 nm at room tempera-
ture for low loss [3]. Hence, a nanoscale circuit is required
for lossless computing in the future. The solution for
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this energy loss can be obtained by introducing revers-
ible computing. In order to eliminate the problem of bit
loss, reversible computing came into practice. Bennett
first proposed the principle of logical reversibility. He
showed that, asymptotically, zero-power dissipation in
logic circuit is possible only if the circuits are composed
of reversible gates [4]. There are two types of reversible
elements: one without memory, which is usually called a
reversible logic gate, and the other with memory, which
is called rotary element [5]. In this article, reversible logic
elements are discussed. According to the theory of revers-
ibility, any reversible logic gate will follow the following

principles:
1. For n bits of inputs, there should be equal n bits of
output.

2. The input combination will be reflected at the output
but not necessarily in the same order.
3. Fan-outis not possible in reversible systems.

Thus, reversible gates do not erase any information, and
consequently, a computation based on reversible logic can
be run forward to obtain an answer as well as the answer
copied, and then the whole computation is undone to
recover almost all the energy expended. A reversible gate
has an inverse, that is, a gate that “undoes” the logic func-
tion [6]. A logic gate is said to be self-invertible if the gate
is equal to its own inverse. For example, a gate G is self-
invertible if, for every input x, G(G(x))=x [6]. The unused
outputs are used to maintain the reversibility of the cir-
cuits and are known as the garbage outputs. However, the
inputs that are regenerated at the outputs are not consid-
ered as the garbage [7]. The constant inputs in the revers-
ible circuits are called the ancilla. Numerous reversible
logic gates have been proposed in following years, out
of which some of the notable ones are Fredkin gate and
Toffoli gate proposed by Fredkin and Toffoli [7], Feynman
gate (FyG) [8], TSG gate [9].

Boolean logic gates are arguably the most important
elements of modern computers and switching networks.
At the same time, numerous contributors to electronic
Boolean logic gates have revolutionized the world by
keeping Moore’s law alive. However, it is obvious that
such an exponential growth of transistor density on some
square millimeters must reach its limits in the future — at
least when the miniaturization reaches a level where a
single transistor size approaches the atomic scale. Thus,
some researchers think that in 2020 to 2025, duplica-
tion of transistor density will not be possible any longer.
Computers today are based on electronics, but ohmic
loss (PR) happens when electron moves through wire.
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Increase in power consumption is becoming a limiting
factor in high-performance digital circuit and systems.
In electronics, Ohmic loss cannot be avoided. Quantum
dot-cellular automata (QCA) was first proposed by Lent
et al. in 1993 in their paper [10, 11]. QCA is a transistor-
less technology, and beyond CMOS technology, it will
play a vital role in future supercomputing [12, 13]. It is
based on the principle of quantum confinement. When
a low-bandgap material is confined in three dimensions
(3D confinement) by another high-bandgap material,
then quantum dot (QD) is formed. QD is a 0D structure,
where carries are restricted to a specific set of completely
quantized energy states. A QCA cell consists of four QDs,
out of which two dots are injected with extra electrons.
Depending upon the position of the electrons, the QCA
cell gains its polarization. The basic advantages of QCA
are the following:
1. It is a transistor-less technology; as a result, it does
not face short channel effects.
2. QCA is a charge confined protocol, so it does not have
the disadvantage of charge dissipation.
3. QCA circuit operates at a speed of terahertz frequency
range.
4. QCAs have high packing density.

This paper is organized as follows, Section 2 will provide
a brief overview of QCA cell structure, majority voters
(MVs), and clocking. In Section 3, we will focus on dif-
ferent approaches made to design many reversible logic
gates. Comparative analysis of all those designs is given in
Section 4. Finally, a conclusion of the review is drawn in
Section 5, followed by references.

2 Background of QCA

Lent et al. [10, 11] were the first to propose the concept of
QCA. QCA is a transistor-less technology. It is based on
the concept of charge quantization. QDs are produced by
forming semiconductor heterostructure. A QCA cell will
consist of four such QDs. Electrons are injected in the QDs,
which occupy the corner-most dots of the cell. Depending
upon the position of the cell, the polarization of a QCA cell
can be determined with three different cell-polarization
states, as shown in Figure 1A, viz. P=0 (null state), P=-1
(binary O state), and P=+1 (binary 1 state), respectively.

The polarization of electrons can be described with
respect to quantum mechanics. The polarization P is
defined as follows:
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Figure 1: Basic QCA cells. (A) Different QCA cell polarization,
(B) data flow in QCA wire.
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Here, o, is the expected value of number operator of
site i. For the ground state Eigen functions:

o, =y, lnly,), €)

where [y ) represents the ground state. According to
polarization P, the electrons are positioned with applied
strong stimulation such as heat, voltage, or photons. This
can change the electron polarization of the cell due to
“kink” the energy. From Coulomb’s law, it is known that
the potential energy (E,-,;) between two charges g, and q;
separated by distance r, is given by Eq. (4).

1 _kqg,

i 4aee, |1-r | 49,= T

(4)

&, =permittivity of free space
g,and ql.=e1ectrica1 charges of i and j, respectively
Irl.-r].|=ri).=distance between two electrons

k= =Coulomb constant=9x10°

4ate |

Considering the values of k, g,, and g, kq,g;=9x10°x
(1.6)2x1038=23.04x10®=A is obtained [14-16]. The
energy represented by Eq. (4) is minimum when
two neighboring cells have same polarization and is
maximum when they are in opposite polarization. The
difference between this maximum and minimum energy
is called kink energy, i.e. Ek‘“k—(E )IM, -(E; )| E;
can be calculated using Eq. (4) and can show how data
are transferred through the QCA wire, which is QCA cells
placed side by side. Here, data or the cell polarization is

T. Purkayastha et al.: QCA-based reversible logic circuits =—— 377

transferred through the wire without having any charge
transfer. A cell wire is composed of a finite number
of cells (say N), all lined up forming a linear array. At
the initial condition, i.e. when the system is in ground
state, all the cells have the same polarization. Suppose,
then, the cell in one extremity of the wire is externally
forced to change its polarization, and suddenly a kink in
polarizations appears between the first and the second
cells of the array. This kink must then propagate through
the array until it reaches the other extremity. Figure 1B
shows a simple QCA wire having three QCA cells. Here,
each dot of QCA cells is numbered from E, to E, . Navi
et al. [17, 18] have proposed a physical proof of the func-
tionality of QCA devices. They calculated the potential
energy of electrons in each dot in a cell with respect to
the potential energy of the electron in the previous cell
[17, 18]. It was observed that in order to achieve more
stability, the electrons in each cell should be placed in
such a manner so that their potential energy reaches
minimum level.

Total potential energy=U, = (E, )
=1

Here, the cell size is considered 18 nmx18 nm, and
there is a 2-nm gap in between two cells. Let the first left-
most cell at polarization be P=+1. At first, we can calcu-
late the potential energy existing between electrons E,, E,,
E, and E, and E.. Based on the calculation, the position
of electrons in cell 2 is defined. Let the potential energy
between E, and E, be (E1,5)1 and so on. Therefore, the poten-
tial energies are calculated as follows:

A 23.04x107%

E )=—= ~1.15x107°
( 15)1 r15 20 % 1009 I
29
(E,, )—i quleo”]
r, 2x10”
(. )-A___ 2 04x10% 23.04x10”
27 J(18)24+(20)? x10% 26.90x10
= .856><102°]
(E,.),= _ A 23.04x10%  23.04x10”
s Ts \/(18)2+(2)2><1009 18.11x10”
~1.27x10% ]

Hence,

Ulez(Ei,j )1:[( El,S )l+( E2,5 )2 +( E3,5 )3 +( E4,5 )4]
=1
=14.796x107J.
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In the same way, the potential energy (U,) of
electron E, with E,, E,, E,, and E, as (E ),=0.57x107 J,
(E,(),=1.04x10™J, (E,(),=0.50x10""J, and (E,,),
=0.61x10" J, respectively, is calculated. Hence,
UTZ:[(E1’6)1+(EZ’6)2+(E3’6)3+(E4,6)4]:2.72><10'20 J. So,
U,<U,,. So, electron E, is much more stable than E,. Simi-
larly, it is shown that electron E, is much more stable than
E,. So, the second cell will be the polarization P=+1; i.e.
data are transferred to the second cell. In the same manner
by calculation of potential energies for each electron, we
can physically determine the polarizations for each cell.
In this way, data transfer through QCA wire can happen.

2.1 Types of QCA

There are four types of QCA reported so far. These are as
follows:

Types of QCA

Molecular QCA Metal dot QCA Semiconductor QCA Magnetic QCA

[19-21] [22-24] [25-32] [33-39]

2.1.1 Molecular QCA

In [19], Lent et al. produced a QD at the redox center
of the proposed molecule 1(1,4-diallyl butane radical
cation). In [20], Lent et al. proposed another three-dot
molecule based on the same principle as in [19]. The
molecule proposed in [20] has three allyl groups con-
nected in a “V”-like structure by alkyl bridges. It rep-
resents a “QCA half-cell,” which can be in the state 1,
0, or NULL as shown in Figure 2. The isopotential sur-
faces of three states, i.e. state 1, state 0, and null, are
shown in Figure 2. The lump indicates the occupancy
of excess positive charge or hole on an allyl group. In
[21], an unsymmetrical Ru-Fc complex QCA cell is pre-
pared and synthesized. Further XPS and spectrographic
studies are performed to support the experimental
observations.

2.1.2 Metal Dot QCA

Several works are proposed in metal dot QCA cell.
The metal dot QCA cell fabricated by Orlov et al. [22] is
shown in Figure 3. It consists of four metals connected
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Figure 2: Charge configuration of the molecules proposed

in [20]. This molecular structure has 3 allyl groups (shown by
three circles by A1, A2 and A3 respectively in ‘V’ shape). Among
them, two are neutral and one is positive. In this case positive
charge (hole, shown by filled circle) transferred between differ-
ent dots, creates three states (‘NULL’, ‘Binary-0’ and ‘Binary-1’
respectively).

by Al-AlO -Al tunnel junctions. The fabrication is done by
electron beam lithography method and shadow evapo-
ration techniques at 15 K temperature. A magnetic field
of 1 T is required to generate superconductivity of the
metal. Electron transfer between dots creates polariza-
tion change. Gate electrodes (on which external voltage
is applied) force to tunnel an electron to switch from one
dot to the other.

In the metal dot QCA paradigm, the dot is basically a
metal island. T6th and Lent [23] show the quasi-adiabatic
switching of a metallic half-cell consisting of three metal
islands. Here, the top and bottom islands will correspond
for the polarization of the cell, whereas the null state will
be associated with the middle island. A leadless QCA
double dot cell had been fabricated by Amlani et al. [24].
Here, the metal island is made of aluminum. The area of
the tunnel junction fabricated is 60x60 nm? and electron
temperature is 70 mK. The fabrication here is also done by
electron beam lithography.

2.1.3 Semiconductor QCA

A QCA cell can be realized in silicon system [25-27]. In a
semiconductor material like GaAs/AlGaAs, four QDs can
be fabricated with a high-mobility 2D electron gas (2DEG)
below the surface. The idea of patterning electrons con-
fined in 2DEG using metal top gate has been implemented
to develop semiconductor QCA system. The 2DEG is formed
at the interface of a semiconductor substrate and dielectric
layer. The preferable semiconductor materials are silicon-
silicon dioxide or III-V heterojunction materials. Electric
field is applied through the metal top gate, which depletes
the electrons in the 2DEG. Finally, metal gates are etched
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Figure 3: Schematic of metal dot QCA.

away to form QDs at the exposed surfaces. In [28], Lent and
Tougaw have proposed the possible fabrication of semicon-
ductor QCA system with this technique. Further, the authors
in [28] have modified the structure to develop a sharper
QD. This is by using dual metal top gates. The fabricated
layout demonstrated by Lent and Tougaw [28] is shown in
Figure 4. Here, two top metal gates (G1 and G2) control the
occupancy of electrons in p-type Si substrate. A lower metal
gate is used to deplete holes near the surface of the metal
substrate where QDs are not desired. Using this approach,
dots can be made to hold a single electron. This design can
be fabricated with scanning tunneling lithography [29, 30].

QDs are formed by 3D confinements of semiconduc-
tor materials with different lattice structures [31]. There
are two types of semiconductor junctions, viz. homo-
junction and hetero-junction. Homo-junctions are formed
at the interface of two semiconductors of similar lattice
structures, whereas hetero-junctions are formed at the
interface of two dissimilar crystalline semiconductors.
The thickness of the layer at which the QDs are formed is
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Figure 4: Schematic of semiconductor QCA by Lent and Tougaw
[28].

known as critical thickness, ¢ . When monolayers of het-
ero-junctions are deposited, then at a certain point, the
layer thickness t becomes greater than critical thickness
t . At this time, a very thin semiconductor film buckles
due to stress of having different lattice structures from
those of the material upon which the films are grown. This
huge pressure of the newly formed layer forces the inner
layer to pop up to relieve stress, which forms the QD. The
formation of QD occurs at t>t_. The density of state equa-
tion for QD is

penergy:2 z 6( E-Enx,ny,nz )’

YlX,Yly,nz

()

where Penergy 1S the energy density and is given as

Penergy ™ dE
QDs are fabricated by the following three methods:

a) Electron beam lithography

b) Molecular beam epitaxy (MBE)

c) Metalorganic vapor phase epitaxy

and E
n,n,n

vz

is the finite carrier energy.

Among these, MBE is the most used technique today.
MBE takes place in ultra-high vacuum (10 Pa) environ-
ment. The deposition rate of MBE is typically less than
3000 nm per h [32]. MBE allows epitaxial growth of films.
The ultra-high vacuum environment is required for high
purity of the grown films. The reflection high-energy elec-
tron diffraction method is used to monitor the growth of
the crystal layers. QDs are formed by 3D confinements
of different bandgap materials. In a semiconductor, in
crystallites whose diameter is smaller than the size of its
exciton Bohr radius, the excitons are squeezed, leading to
electron confinement.

The thickness of each layer down to a single atom
layer is controlled by a computer-controlled shutter. In
this way, structures of layers of different materials are
fabricated. With the help of such control, development of
structures where the electrons can be confined in space
are achieved, which results in the formation of QDs.
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2.1.4 Magnetic QCA

It is observed that magnetic phenomenon is utilized for
data storage, whereas electronic phenomenon for infor-
mation processing. Thus, ferromagnetism is nonvolatile
in nature. Power dissipation has become a challenging
issue for present CMOS circuits. As a result, logic imple-
mentation using nanomagnets are being researched upon
[40-42]. This is because of the following two major advan-
tages of nanomagnet logic:
i. The nonvolatile nature results in zero standby power
dissipation.
ii. Switching energy of magnetic devices is much less
compared to CMOS gates [41].

Nanomagnets are nanoscale magnets that have single
magnetization state, viz. up (T) or down ({). Such nano-
magnets have size scales of tens to hundreds of nanom-
eters. This is because if the length is too large, the
magnetization state will break up into multiple internal
domains, whereas if the length is too small, the magneti-
zation state can be switched by random thermal fluctua-
tions and will no longer be stable.

The array of nanomagnets can be placed in either
antiferromagnetic (T!) or ferromagnetic (——) positions
[41]; here, the arrow denotes the direction of the poles of
the magnets. It is observed that in the antiferromagnetic
position, the direction of the poles gets reversed.

Porod et al. [41] have designed a QCA system using
nanomagnets. This kind of logic is termed as magnetic
QCA or nanomagnetic logic. Hu et al. [41] have termed a
single nanomagnet as a magnetic island, and the mag-
netic islands are fabricated from 30-nm thin film of per-
malloy using EBL and standard liftoff technique. Here,
four major works done in the MQCA domain have been
cited. In the magnetic domain, QCA cells are formed
by nanosized ferromagnetic materials. Csaba et al. [33]
proposed that information can be propagated through
an array of magnetic dots due to dot-dot interactions.
Depending on the spin of the magnetic dot, the polariza-
tion of a MQCA cell can be determined. Csaba et al. [33]
show how signal processing and various logic functions
can be realized by the interaction between neighbor-
ing magnetic dots. In [33], it was shown how nanowire
can be realized by proper placement of nanomagnets,
shown in Figure 5A. Here, clock (discussed in Section
2.3) is a periodic oscillating external magnetic field (H).
It drives the system initially (Figure 5A), then controls
the relaxation of the system to ground state. H turns the
magnetic moments of all nanomagnets horizontally,
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Figure 5: Operating principles of MQCA.

as shown in Figure 5A. When H is removed, i.e. H=0,
the nano magnets relax into an antiferromagnetic
order (shown in Figure 5D). Clocking system is done by
induced magnetic field created by applying current (I)
[33-37].

Latter in 2004, magnetic cellular automata was pro-
posed by Parish and Forshaw [38] based on the principle
of data storage using nanomagnets. One of the advantages
of MQCA is that is can be operated at room temperature.
Bernstein et al. [39] carried an experimental demonstra-
tion of designing of nanomagnet at room temperature.
They also proposed how QCA wire and majority gates can
be realized using nanomagnets.

2.1.5 Room temperature fabrication of QCA

Very recently, Dilabio et al. [43] have experimentally fab-
ricated QCA cell at 293 K. This invention is expected to
remove the major obstacle for QCA realization in room
temperature. The QCA device has been fabricated by spa-
tially controlled formation of dangling bonds (DBs) over
silicon surface <100>. The silicon atom in the surface
shared three bonds with other silicon atom. The unshared
atom is bonded with hydrogen atom to form a DB. Each DB
has a separation of one atom. Finally, additional electron
has been provided inside the DB such that there exists
at least one unoccupied DB for each additional electron.
Such a cell has a “self-biasing” effect. The binary state of
the cell is electrostatically controlled. The most impor-
tant feature is that the device operates at room tempera-
ture (293 K) and largely immune to stray electrostatic
perturbation [43].
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2.2 QCA basic gates
2.2.1 Majority voter

In QCA technology, data transfer as well as computa-
tion operations take place with the help of columbic
interactions. There is no concept of charge transfer
through wire, like traditional CMOS technology. This is
because of the fact that charges remain confined in the
QCA cell and ideally do not dissipate. Here, the concept
of polarizations comes in, which means that the place-
ment of QCA cells is the a particular manner is required
to design any QCA logic gates or QCA wire. The funda-
mental QCA logic circuit is majority voter (MV) gate. MV
is a logic gate whose output is the state of the majority
of the inputs [10, 19, 20]. Eq. (6) gives the logic func-
tion of a three-input MV, where A, B, and C are the three
inputs.

MV (A, B, C)=AB+BC+CA (6)

The QCA layout of the MV gate is shown in Figure 6a.
From the figure, it is seen that there are three input cells,
viz. A, B, and C, and one output cell M. Apart from these
three cells, there is another cell in the middle. This cell is
known as a device cell. The input cells may have different
polarizations, i.e. +1 or -1. But as there are three of them,
there will always be either two +1 or two -1 polarizations
or, in other words, majority of any one of the polariza-
tions will be seen at any point of time. The device cell
will simply attain the polarization that is in excess in the
input cells. Finally, the output cell will simply reflect the
polarization of the device cell due to columbic effect. This
is the fundamental operation of the QCA MV gate. The
block diagram of an MV gate is also shown in Figure 6b.
MYV can be used to perform AND as well as OR operations
by making one of the inputs, say C, fixed to logic 0, i.e.
polarization -1, also known as fixed polarization, and as
an OR gate by making one of the inputs fixed to logic 1,
i.e. polarization +1 as

a ig b oAb
Bl do do gM M
S M(A, B, )

C

Figure 6: Majority voter circuit. (a) QCA layout; (b) its block diagram.
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MV (A, B, C)=AB+BC+CA
MV (A, B, 0)=AB
MV (A, B, 1)=AB+B+A=A+B

2.2.2 QCA Inverter or NOT

Another interesting QCA gate is the QCA inverter. Until
now, we are familiar of the fact that any logic operation
or data transfer in QCA technology is basically driven by
Columbic interaction between the electrons of adjacent
QCA cells. The same principle holds true in the case of
designing QCA inverters. The basic idea is to have cell(s)
at the corner(s) of the output cell. The first figure in Figure
7A shows that the output cell X" has cell at one of its
corners. This kind of orientation will force the output cell
to attain the polarization opposite of that of the corner
cell. A similar operation takes place in the second figure in
Figure 7A, but in this case, the output cell has cells in both
of its corners. The only difference in this layout is that
it will attain a much stable output. For example, in this
case, the corner cells are in +1 polarization, so the output
cell can never be in +1 polarization due to Columbic inter-
action and thus will be forced to be in -1 polarization. Two
standard cells in a diagonal orientation are designed as
QCA inverter. Two types of designs can be possible for
QCA inverter or NOT gate. The QCA layout of these invert-
ers is shown in Figure 7A. Also, its logic symbol is shown
in Figure 7B.

2.2.3 QCA tile structure

The defect in QCA structures depends highly on the place-
ment of the QCA cell. There are two types of placement
defect in QCA structures, viz. misplaced cell defects and
missing cell defects. In the first case, the cell might be
wrongly fabricated in a misaligned manner, whereas in
the second case, the cell might not be fabricated at all.
In both cases, the output will be erroneous. In order to
cope up with the misplaced/missing cell defect of QCA

Figure 7: Inverter/NOT circuit. (A) QCA layout; (B) its logic symbol.
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Figure 8: QCA tile structure. (A) Grid representation of 3x3 tile.

(B) Block diagram of MV circuit using 3x3 orthogonal tile. (C) A 3x3
baseline tile showing coplanar crossing.

cells, QCA tile structure was proposed by Das and De in
their paper [44]. Here, a number of QCA cells are placed
closely packed with each other; thus, the probable error
of misplacement can be rectified to a large extent. Among
various tile structures, the 3x3 tile is found to be most
popular because of its versatility. In Figure 8A, a grid rep-
resentation of the 3x3 tile is presented. It has a total of
nine positions for cell placement. The positions for cell
placement are marked from 1to 9. A 3x3 tile-based MV is
much more stable and fault tolerant than ordinary three-
input MV, as discussed in Section 2.2.1 for the presence
of diagonal cells (1, 3, 7, and 9) [44] and the radius effect
[45]. Having the grid structure for MV will strengthen the
output polarization and will make it more stable. Further,
if any of the cell gets misplaced or missing, the adjacent
cells of the grid will cope up for it. In this way, the place-
ment problem can be eliminated. The grid structures are
not quite favorable for smaller designs because they will
increase the cell count of the design, but in bigger cir-
cuits, it will be highly beneficial. A block diagram of an
MV circuit using a 3x3 tile is shown in Figure 10B. The
tile structure shown in Figure 8B is known as 3x3 orthog-
onal tile [46]. There is another variety of 3x3 tile that is
known as 3x3 baseline tile (shown in Figure 8C). The most
significant feature of the 3x3 baseline tile is that it sup-
ports coplanar crossing without using rotated cells. From
Figure 8C, it is seen that polarization of A passes through
F2, whereas polarization of input B passes through F1
without mutual interaction. This tile structure is used to
design QCA-based Fredkin gate [46]. The detailed struc-
ture of the Fredkin gate is discussed in Section 3.1.1.

DE GRUYTER

A ‘I B

) —

I

1

Figure 9: QCA crossovers: (A) coplanar crossover, (B) multilayer
crossover.

2.2.4 QCA crossover

Crossover is required to carry data through a QCA wire
without affecting the other data inside the circuit. There
are two types of QCA crossovers, viz. single layer, as shown
in Figure 9A, and multilayer, as shown in Figure 9B. Sin-
gle-layer or coplanar crossings use only one layer but
require using two types of QCAs, i.e. regular and rotated.
The regular cell and the rotated cell do not interact with
each other when they are properly placed, so rotated
cells can be used for coplanar crossings. The interaction
between a regular QCA wire and a rotated QCA wire is very
interesting. Consider the QCA layout in Figure 9A; there
are two regular QCA cells on both sides of a rotated QCA
cell. In this case, the Coulombic effect of both the regular
QCA cells will nullify each other. As a result, the interac-
tion will not take place and the polarization of the rotated
cell will be affected only by the upper rotated cell. Multi-
layer crossovers utilize the concept of multilayered con-
ventional integrated circuits. It consists of the main cell
layer, via layers and the interconnection layer. In case of
multilayer crossover, as shown in Figure 9B, the crossings
of the two QCAs do not take place at the same layer. While
one of the wires, marked in white in the figure, passes
through the base layer, also known as the main cell layer,
the other wire, marked in brown in the figure, crosses the
previous wire through a different layer above the main cell
layer. This new layer is known as the via layer, and there
are interconnection layers that connect the via layer with
the main cell layer.

2.3 Clocking in QCA circuits

Clocking is required for a QCA circuit to synchronize and
for information flow control. If we switch a large array of
cells at the same time, then data get stuck because electric
field (kink energy) never reaches the ground state. Hence,
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error occurs at the output. To overcome this problem,

various cell arrays are divided into four clocking zones,

i.e. CO, C1, C2 and C3.

— Itmust follow a particular order, viz. C0—C1—C2—C3.

— If the length of any QCA wire is greater than El.’}./ kT,
then the wire is further partitioned into separate clock
zones.

Generally, four multiphase clocking signals of phase lagging

of /2 are applied, as shown in Figure 10A. This type of

clocking system is called the Laundauer type [47]. During a

complete cycle, each zone goes through the four phases.

— Switch phase: The QCA cell starts to move from an
unpolarized state to a polarized state and the barriers
of the dots are raised. The electrons start tunneling
through dots as the dots are influenced by the elec-
tron of its neighbor cell.

— Hold phase: The barrier of the cell is in the high value,
electrons cannot tunnel through dots, and cells main-
tain their current states, i.e. fixed polarization.

— Release phase: The barrier is lowered, electrons can
tunnel through dots, and states of the cell become
unpolarized.

— Relax phase: The barrier remains lowered and cells
stay in the unpolarized state.

Also, Lent et al. proposed another type of clocking signals
for reversible circuit, which is Bennett-type clocking
[47, 48]. The waveform of Bennett clocking is shown in
Figure 12B. The principle of this clocking is to first compute
the results by latching the cell array from input to output
and then uncomputing by latching array to relax to an
unpolarized state from output to input. From Figure 10A
and B, we see that Bennett clocking requires more than
twice the number of clock fractions than does the Laun-
dauer clocking scheme [48].

Figure 10: Clocking used in QCA circuit. (A) Laundauer clocking
waveform, (B) Bennett clocking waveform. S, switch phase; H, hold
phase; Re, release phase; Rx, relax phase.
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3 Reversible computation in QCA

In 1993, Lent et al. introduced reversibility in QCA-based
circuit design [10]. In the following years, several authors
have proposed several reversible gates in QCA. In the chart
given below, some of the important designs of revers-
ible logic gates based on QCA are highlighted. All these
designs are further modified and proposed in latter work.

QCA based reversible logic gates

v v

Fredkin gate 1st Toffoli gate Feynman gate CLG proposed
proposed in [46] proposed in [46] proposed in [49] in [50]

3.1 Basic reversible logic gates

In this section, we will discuss various reversible gates
that have been proposed in QCA.

3.1.1 Fredkin gate

One of the most used reversible logic gates is the Fredkin
gate, or controlled SWAP gate. It is a 3x3 reversible gate.
If A, B, and C are the inputs, then P, Q, and R will be the
outputs such that P=A, Q=AB+AC, and R=AC+AB. This will
be clear by the truth table of the Fredkin gate in Table 1.
From the truth table, it is observed that outputs
Q and R will reflect the inputs B and C when input A is
0. But when A becomes 1, swapping will take place, i.e.
the output Q will reflect input C and output R will reflect
input B. From this truth table, the change in entropy (AH)

Table 1: Truth table of the Fredkin gate.

Input Output
A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1
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Figure 11: A QCA-based Fredkin gate circuit as proposed by (a) Ma et al. [49], (b) Thapliyal and Ranganathan [50], and (c) Das and De [46]

(3x3 T: 3x3 tile-based MV).

by calculating H, and H_, is calculated. It is found that
H =H t=-8~lln(lj and AH=H _-H_ =0. So energy dis-
mn oul 8 8 n oul

sipation is AE=k,TIn2-(AH)=0. Ma et al. [49] was the first
to design a QCA-based Fredkin gate; the QCA layout of the
circuit is shown in Figure 11a. In Figure 11a, A, B, C are the
inputs and P, Q, R are the outputs. The layout is analyzed
using the following equations:

MV3 (A, C, -1)=AC; MV3is the three-input MV, -1=-1 fixed
polarization at the third input. In Section 2.2.1, we have dis-
cussed how MV can be used to design AND and OR gates.

Q=MV3 (MV3_1,MV3_2,1)
MV3 (A, B, -1)=AB
MV3 (A, C,-1)=AC
R=MV3 (MV3, MV3, 1)
P=R
They use coplanar crossing in their design, so cell
count is reduced to a large extent. Moreover, the output of

the Fredkin gate can be obtained in one clock cycle delay.
But the design uses four extra ancilla inputs. These bits
are destroyed, so actual heat dissipation is 4k,TIn2]. Also,
the number of the fan-out is 8.

In the same year, in 2009, another paper was pub-
lished by Thapliyal and Ranganathan [50], where the
design approach of the QCA-based Fredkin gate is basi-
cally same as in [49], shown in Figure 11b. Their design
used six extra ancilla inputs. These bits are destroyed, so
actual heat dissipation is 6k,TIn2 J. Also, the number of
fan-out is 6.

In 2010, another significant modification of the QCA-
based Fredkin gate design was reported by Das and De
[46]. The Fredkin gate proposed [46] is based on the QCA
3x3 orthogonal and baseline tile structure. The tile struc-
ture helps in implementing versatile logic functions and
is highly area efficient. The proposed Fredkin gate QCA
layout is given in Figure 11c. The circuit has four extra
ancilla inputs, which is equivalent to heat dissipation of



DE GRUYTER

Table 2: Truth table of the Toffoli gate.

Input Output
A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

4k,TIn2 ] and six fan-outs. In Figure 11c, a 3x3 orthogo-
nal tile structure is used as majority gates, whereas a 3x3
baseline tile is used for coplanar crossover. The majority
equation of this design is same as of the other two.

3.1.2 Toffoli gate

The Toffoli gate is also a 3x3 reversible gate. The truth
table of the Toffoli gate is given in Table 2, which gives
the logical expressions for outputs as P=A, R=C, and

Q:E+B (A®C). Here, it is found AH=0; i.e. energy dis-
sipation is asymptotically zero. The Toffoli gate is known as
controlled NOT gate because the output R will be the inverse
of input C when both inputs A and B are 1. The QCA-based
circuit of Toffoli gate was also first proposed by Ma et al.
[49], which is shown in Figure 12. It has two extra ancilla
inputs, equivalent to heat dissipation 2k TIn2 ] and six fan-
outs. The majority equation for Figure 12 is shown below:

P=A

R=C

MV (B, A, -1)=BA

MV (C, A, 1)=C+A

MV (A, B, C)=AB+BC+CA

Q=MV (MV (B, A, -1), MV ((C, A, 1), MV(A, B, C))

=MV (AB, A+C, AB+BC+CA)

=AB C+ABC+ABC+ ABC

=AB+BAC+BAC

=AB+B (A®C)

3.1.3 Reversible universal gate

Sen et al. [51] proposed the reversible universal gate
(RUG), which is shown in Figure 13. The logical expres-
sions of the outputs are as follows:
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Figure 12: Schematic diagram of the Toffoli gate proposed by Ma
et al. [49].
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Schematic diagram of the RUG gate proposed by Sen

X=M (A, B, C)

=AB+BC+CA

Y=MV [MV (A, C, -1), MV (A, B, -1), 1]
=AB+AC

Z=MV [MV (B, C, -1), MV(C, B, -1), 1]
=BC.

It has six extra ancilla inputs, equivalent to heat dis-
sipation 6k,TIn2 ] and eight fan-outs.
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Figure 14: Schematic diagram of (a) FyG and (b) double FyG proposed by Bahar et al. [53].

3.1.4 Feynman gate

The FyG is a 2x2 reversible logic gate. The logical expres-
sion of two outputs are P=A and Q=A®B, where A and
B are two inputs. If B=0, then Q=A®0=A; i.e. it copies
the inputs into two without crating fan-out and bit erase.
Hence, this reversible gate reduced fan-out. In [52], Thap-
liyal and Ranganathan have proposed a QCA-based FyG.
The schematic diagram of QCA layout of a FyG is shown in
Figure 14a. Here, it is seen that there are three extra ancilla
inputs in the circuit, which is equivalent to heat dissipa-
tion 3k,TIn2 ] as these bits are lost during operation. Also
the number of fan-out is three.

In [53], Bahar et al. proposed a modification on the
FyG. The authors proposed a QCA-based double FyG. The
double FyG is a 3x3 structure with A, B, and C as inputs and
P, Q, and R as outputs such that P=A, Q=A®B, and R=A®C.

The truth table of the double FyG proposed in [53] is
given in Table 3. It is seen from the truth table that the
input combination is uniquely represented at the output,
which supports the reversibility of the proposed gate.
Here, it has also been found that AH=0, and Figure 14b
shows that there are six extra ancilla inputs in the circuit,
which is equivalent to heat dissipation 6k,TIn2 ] as these
bits are lost during operation.

Table 3: Truth table of the double FyG.

Input Output
A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 0 0

3.1.5 CQCA gate

The CQCA gate was proposed by Thapliyal and Rangana-
than [50]. The schematic diagram of the proposed CQCA
gate is shown in Figure 15. The proposed CQCA gate per-
forms the output logic expressions, P=A, Q=AB+BC+CA,
and R=AB+BC+A. CQCA is a conservative logic gate. The
circuit has no ancilla inputs and also AH=0; hence, the-
oretically, it does not dissipate energy. The number of
fan-out is four.

3.1.6 CLG gate

Another 3x3 conservative logic gate with reversible prop-
erty was proposed by Das and De [46]. The logic expres-
sion of CLG is P=C, Q=AB+BC+CA, R=CB+AB+CA. This is
basically a similar type of CQCA gate. The QCA circuit of
the CLG gate is shown in Figure 16. Here, they used 3x3
tile-based MV gates. CLG has both bit preservation as well

A B C

NOT

Mv —R

P

Figure 15: Schematic diagram of the reversible CQCA gate proposed
by Thapliyal and Ranganathan [50].
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Figure 16: Schematic QCA layout of the CLG gate proposed by Das
and De [46]. 3x3 T: 3x3 tile-based MV.

as parity preservation properties. As a result, CLG can be
used as both reversible and conservative logic. Due to the
use of tile structure, the design can be achieved in a single
layer; also, the stability of the output is much higher.
Here, no ancilla inputs occurred, no bit loss happens, and
also AH=0. So, theoretically, it does not dissipate energy,
but the circuit has three fan-outs.

3.2 Complexreversible logic circuit design
using basic reversible logic gates

3.2.1 Reversible full adder

Any complex circuit designed with basic reversible gates
are also reversible in nature. Bruce et al. [6] designed a
full-adder circuit using four Fredkin gates as shown in
Figure 17. Total ancilla inputs are two and the number of
garbage outputs is three.

Here, from the logical expressions of Fredkin gate, the
logical expressions of the different outputs can be written
as

P1=X, Q1=X, R1=X

Q2=YQI+YRI=Y X +Y X =X ®Y,,
R2=YR1+YQI=Y X +Y X =X @Y, P3=Q2=X @Y, P4=C,
C,,=Q2-P1+Q2-P4=Q2-P1+Q2.C,=(X ®Y,) X +( X, ®Y,)C,
—XY +(X, ®Y,)CS =Ci-P3+C R2=Ci( X, ®Y,)+C,( X ®Y,)
~(X,®Y.®C,)

3.2.2 Reversible latches

Thapliyal and Ranganathan proposed the reversible D
latch and J-K latch using Fredkin gates in their article
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Figure 17: Reversible full-adder circuit proposed by Bruce et al. [6].
FG, Fredkin gate.

[54]. In Figure 18A and B, the block diagrams D latch
and J-K latch are shown respectively. The characteris-
tic equations of such latches are QD_lmch:DE+ED and
Qi uen=UQ+KQ)E+EQ [54]. The D latch has two garbage
outputs and the J-K latch has seven garbage outputs and
four Ancilla inputs.

3.2.3 Reversible CED circuit

Thapliyal and Ranganathan used FyG to design a revers-
ible comparator for concurrent error detection (CED),
where the authors used FyG to avoid the fan-out con-
straints [52]. The schematic block diagram of CED is shown
in Figure 19. Here, R is a reversible gate that maps input
vector X to output vector Y and R is the inverse reversible
gate of R, which maps input vector Y to output vector X.
Now, if R and R are cascaded together, the input vector can
go back at the end. Thus, by comparing the original input
vector with the regenerated ones, any error that occurred
can be analyzed. Here, the authors have cascaded R with
R and the garbage outputs of R are directly passed as the
inputs of R, whereas each primary output of R is passed
through a FyG, with its second input being 0. As shown in
Figure 19, the primary output Yk is passed through FyG. As
a result, two copies of the primary outputs are obtained,
one of which is passed to the input of R to perform CED.
Finally, the original input vector and the regenerated
input vector are passed through a comparator to generate
the error signal.

4 Comparative study

In this section, we present a comparative study of all the
different QCA-based reversible logic gate designs that
have been highlighted in Section 3. The comparison of the
QCA circuits is done on the basis of cell count, number
of MVs, area, number of layers used, clock cycles, and
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Figure 18: Reversible latches. (A) Reversible D-latch and (B) reversible JK-latch proposed by Thapliyal and Ranganathan [54]. FG, Fredkin gate.

Table 5: Comparative analysis of the QCA-based Toffoli gate pro-
posed in [49] and RUG proposed in [51].

Y1
X1— , X1
Input Xi— | Yi - i Xi Input
sequence i R : : R i q e
Xk—!— “Yk . — Xk preserved
Xn——| 1 v [ ——Xn

n bit t nl}k jn bit

Comparator

Error signal

Figure 19: Block diagram of the error detection scheme proposed
by Thapliyal and Ranganathan [52].

Table 4: Comparative analysis of the QCA-based Fredkin gate
proposed in [49] and [46].

Proposed Cell Mvs Area Layer Latency Key design

by count aspect

Ma et al. 185 6 0.54 um? 1 Oneclock  Use of both

[49] cycle (four  90° and 45°
clock zones) cells

Dasand De 246 6 0.33 um? 1 Oneclock  Useof3x3

[46] cycle (four  orthogonal

clock zones) tile

latency. In Table 4, the comparative studies of the two
types of the design of Fredkin gate that are proposed in
[49] and [46], respectively, are presented. From Table 4, it

Proposed Cell MVs Area Layer Latency Key design
by count aspect
Maetal. 167 4 0.558um? 1 1 clock cycle Use of both
[49] (four clock  90° and 45°
zones) cells
Senetal. =298 7 - 1 1.75clock  Use of both
[51]. cycles (seven 90° and 45°

clock zones) cells

is observed that by using QCA tile structure as discussed
in Section 2.2.3, the area of the circuit can be significantly
reduced, although the cell count gets higher to some
extent, whereas the other factors, like number of layers
and latency, remain the same. Another interesting factor
that can be observed from Table 4 is that the tile structure
uses only 90° cells; thus, it is much more stable in com-
parison to the other design [42].

Next, in Table 5, a comparison between the Toffoli
gate proposed by Ma et al. [49] and RUG proposed by Sen
et al. [51] are shown. The reason we chose to compare
these two designs is that both are similar designs and RUG
is actually a modified version of the Toffoli gate.

Table 6 provides a comparative analysis of three new
reversible gates designed in QCA. These are the double
FyG proposed in [53], the CQCA gate proposed in [50], and
the CLG gate proposed in [46]. Among all the designs, the

Table 6: Comparative analysis of the QCA-based double FyG proposed in [53], CQCA proposed in [50], and CLG proposed in [46].

Proposed by Gate Cell count MVs Area Layer Latency Key design aspect
proposed
Baharetal.[53] Double 51 fortype1and 6 0.06 um?for type 1 0.5 clock cycle (two clock zones) Single layer design by
FyG 96 for type 2 1 and 0.094 um? for type 1 and 0.75 clock cycle  using only 90° cells
for type 2 (three clock zones) for type 2
Thapliyal and CQCA 117 2 0.11 um? 1 0.5 clock cycle (two clock zones) Use of both 90° and 45°
Ranganathan [50] cells
Dasand De [46] CLG 94 3 0.11 um? 1 0.5 clock cycle (2 clockzones)  Use of both 90° and 45°

cells
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Figure 20: Comparison of (A) cell count, (B) area, and (C) latency of
different QCA-based reversible gates.

CLG design has both cell count, area, and latency bene-
fits because it has the same latency and also a coplanar
design, but cell count and MV count are less compared
to other designs. Thus, CLG is beneficial to use in various
complex QCA-based reversible logic designs.

In Figure 20A, B, and C, the cell count, area and
latency of the various QCA-based reversible gates dis-
cussed in Section 3 are shown graphically.

In general, evaluation of the RLGs can be compre-
hended easily with the help of one main factor, which
is circuit complexity. This parameter can be obtained by
counting the number of logical calculations (T) [55, 56],
which is shown in Table 7. Here we consider
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Table 7: Complexity of different reversible logic gates.

Reversible logic gate Number of Total logical
inputs/outputs calculations
Fredkin gate (FG) 3 20+46+20
Toffoli gate (TG) 3 at+p
RUG 3 5a+10p3
FyG 2 a
Double FyG (Fy2G) 3 2a
CQCA 3 5a+9p+30
CLG 3 5a+9p3+30
T3
o [ L
ol
i3
L | | =
Q(J
t1
)
B W L
T - s 1 0
; P D=7
= °
01 234 567 8910

i

Figure 21: Different gate number («, 3, 0) variations for different
reversible logic gates.

a=a two-input EXOR gate calculation
B=a two-input AND gate calculation
d=a NOT gate calculation

If we plot the three parameters «, §, and ¢ in Figure 21,
we can easily say that the CLG or CQCA gate has more
logical calculations and FyG has less. Also, SCL complex-
ity is twice the TG. According to the complexity order, we
can write, RUG>CQCA=CLG>TG>Fy2G>FyG.

5 Conclusion

This paper presents review work on various reversible
logic gates that have been designed in the QCA paradigm.
QCA is one of the most promising candidates of post-CMOS
design. Various techniques by which QCA cells have been
fabricated are shown in this paper. Although it is not pos-
sible to fabricate all of the QCA cells in room temperature,
magnetic and semiconductor QCA cells are successfully
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fabricated in room temperature. The fabrication process
has been described. Different variations in the design
done on basic reversible gates like the Fredkin gate, Toffoli
gate, and FyG are studied. Also, some of the modifica-
tions done on earlier gates as well as some new reversible
gates that have been proposed in latter literature are high-
lighted. By the comparative study, major variations in the
cell count of the different QCA-based reversible gates have
been observed. However, the latencies of all the designs
discussed in this paper are more or less equal.
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