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Abstract: Shrinking transistor sizes and power dissipa-
tion are the major barriers in the development of future 
computational circuits. At least when the transistor size 
approaches the atomic scale, duplication of transistor 
density according to Moore’s law will not be possible. 
Physical limits, like quantum effects and nondetermin-
istic behavior of small currents, and technological limits, 
such as high power consumption and design complexity, 
may hold back the future program of microelectronic con-
ventional circuit scaling. Hence, an alternative technol-
ogy is required for future design. Quantum dot-cellular 
automata (QCA) is a transistor-less, very promising nano-
technology that can be used to build nanocircuits. The 
conventional computer is an irreversible one; i.e. once a 
logic block generates the output bits, the input bits are 
lost. A possible solution is reversible computing, where no 
bit is lost during computation. Hence, logically reversible 
circuit can consume less energy than any conventional 
circuit. In this paper, a brief review on evolution of the 
QCA in reversible computing is discussed. Various revers-
ible gates that are designed using QCA technology as well 
as the modification of those designs that are made in latter 
works are highlighted.

Keywords: nanotechnology; quantum dot cellular autom-
ata; reversible logic circuit.

1  Introduction

In 1961, Rolf Landauer of IBM defined a revolutionary 
principle that when the output of any logical circuit does 
not uniquely define its input, then the device is said to 
be logically irreversible and it will dissipate energy [1]. 
Logical irreversibility means that any outputs from a logic 
gate can be obtained from more than one set of inputs. For 
example, the logic gate AND (A, B) = Y that maps two input 
bits, A and B, into a single bit, Y, is logically irreversible 
because an output Y = 0 (false) could be accounted for by 
any of the three input pairs (A = 0, B = 0), (A = 0, B = 1), and 
(A = 1, B = 0). Hence, for this particular output, the input is 
ambiguous and the operation is said to be logically irre-
versible. According to the second law of thermodynamic 
consequences, whenever a logically irreversible operation 
is performed, energy must be dissipated, in the amount of 
kBTln2 J per bit erased [1], where kB is the Boltzmann con-
stant and T = 300 K. This value is equivalent to ~2.9 × 10-21 J 
at room temperature. This was also experimentally proven 
by Bèrut et al. [2]. When bit is destroyed inside the circuit, 
entropy of the physical system increases according to the 
second law of thermodynamics. Thus, heat dissipation 
in a circuit can be expressed by Shannon entropy (H) as 
- ln ,i i

i
p p∑  where pi is the probability of state during com-

putation. If ΔH measures the logical entropy changes in 
bits, then minimum heat dissipated is ln2 ( ).BE k T H∆ ∆= ⋅  
If total change of entropy of system and the surrounding 
is  > 0, then a physical system cannot run in reverse. Thus, 
the system is called thermodynamically irreversible. The 
energy E bit required for a binary transition is given by 
the Shannon-Von Neumann-Landauer (SNL) expression 
in [1, 2] as follows:

	 bit  SNL ln2 0.017  eV.BE E k T≥ = = � (1)

This amount is small but not negligible for a large 
circuit. Also, at low temperatures (T→0 K), this will be 
very low. Also, from the Heisenberg uncertainty relation, 
the size of the device should be ~1.5 nm at room tempera-
ture for low loss [3]. Hence, a nanoscale circuit is required 
for lossless computing in the future. The solution for 
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this energy loss can be obtained by introducing revers-
ible computing. In order to eliminate the problem of bit 
loss, reversible computing came into practice. Bennett 
first proposed the principle of logical reversibility. He 
showed that, asymptotically, zero-power dissipation in 
logic circuit is possible only if the circuits are composed 
of reversible gates [4]. There are two types of reversible 
elements: one without memory, which is usually called a 
reversible logic gate, and the other with memory, which 
is called rotary element [5]. In this article, reversible logic 
elements are discussed. According to the theory of revers-
ibility, any reversible logic gate will follow the following 
principles:
1.	 For n bits of inputs, there should be equal n bits of 

output.
2.	 The input combination will be reflected at the output 

but not necessarily in the same order.
3.	 Fan-out is not possible in reversible systems.

Thus, reversible gates do not erase any information, and 
consequently, a computation based on reversible logic can 
be run forward to obtain an answer as well as the answer 
copied, and then the whole computation is undone to 
recover almost all the energy expended. A reversible gate 
has an inverse, that is, a gate that “undoes” the logic func-
tion [6]. A logic gate is said to be self-invertible if the gate 
is equal to its own inverse. For example, a gate G is self-
invertible if, for every input x, G(G(x)) = x [6]. The unused 
outputs are used to maintain the reversibility of the cir-
cuits and are known as the garbage outputs. However, the 
inputs that are regenerated at the outputs are not consid-
ered as the garbage [7]. The constant inputs in the revers-
ible circuits are called the ancilla. Numerous reversible 
logic gates have been proposed in following years, out 
of which some of the notable ones are Fredkin gate and 
Toffoli gate proposed by Fredkin and Toffoli [7], Feynman 
gate (FyG) [8], TSG gate [9].

Boolean logic gates are arguably the most important 
elements of modern computers and switching networks. 
At the same time, numerous contributors to electronic 
Boolean logic gates have revolutionized the world by 
keeping Moore’s law alive. However, it is obvious that 
such an exponential growth of transistor density on some 
square millimeters must reach its limits in the future – at 
least when the miniaturization reaches a level where a 
single transistor size approaches the atomic scale. Thus, 
some researchers think that in 2020 to 2025, duplica-
tion of transistor density will not be possible any longer. 
Computers today are based on electronics, but ohmic 
loss (I2R) happens when electron moves through wire. 

Increase in power consumption is becoming a limiting 
factor in high-performance digital circuit and systems. 
In electronics, Ohmic loss cannot be avoided. Quantum 
dot-cellular automata (QCA) was first proposed by Lent 
et al. in 1993 in their paper [10, 11]. QCA is a transistor-
less technology, and beyond CMOS technology, it will 
play a vital role in future supercomputing [12, 13]. It is 
based on the principle of quantum confinement. When 
a low-bandgap material is confined in three dimensions 
(3D confinement) by another high-bandgap material, 
then quantum dot (QD) is formed. QD is a 0D structure, 
where carries are restricted to a specific set of completely 
quantized energy states. A QCA cell consists of four QDs, 
out of which two dots are injected with extra electrons. 
Depending upon the position of the electrons, the QCA 
cell gains its polarization. The basic advantages of QCA 
are the following:
1.	 It is a transistor-less technology; as a result, it does 

not face short channel effects.
2.	 QCA is a charge confined protocol, so it does not have 

the disadvantage of charge dissipation.
3.	 QCA circuit operates at a speed of terahertz frequency 

range.
4.	 QCAs have high packing density.

This paper is organized as follows, Section 2 will provide 
a brief overview of QCA cell structure, majority voters 
(MVs), and clocking. In Section 3, we will focus on dif-
ferent approaches made to design many reversible logic 
gates. Comparative analysis of all those designs is given in 
Section 4. Finally, a conclusion of the review is drawn in 
Section 5, followed by references.

2  Background of QCA
Lent et al. [10, 11] were the first to propose the concept of 
QCA. QCA is a transistor-less technology. It is based on 
the concept of charge quantization. QDs are produced by 
forming semiconductor heterostructure. A QCA cell will 
consist of four such QDs. Electrons are injected in the QDs, 
which occupy the corner-most dots of the cell. Depending 
upon the position of the cell, the polarization of a QCA cell 
can be determined with three different cell-polarization 
states, as shown in Figure 1A, viz. P = 0 (null state), P = -1 
(binary 0 state), and P = +1 (binary 1 state), respectively.

The polarization of electrons can be described with 
respect to quantum mechanics. The polarization P is 
defined as follows:
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transferred through the wire without having any charge 
transfer. A cell wire is composed of a finite number 
of cells (say N), all lined up forming a linear array. At 
the initial condition, i.e. when the system is in ground 
state, all the cells have the same polarization. Suppose, 
then, the cell in one extremity of the wire is externally 
forced to change its polarization, and suddenly a kink in 
polarizations appears between the first and the second 
cells of the array. This kink must then propagate through 
the array until it reaches the other extremity. Figure 1B 
shows a simple QCA wire having three QCA cells. Here, 
each dot of QCA cells is numbered from E1 to E16. Navi 
et al. [17, 18] have proposed a physical proof of the func-
tionality of QCA devices. They calculated the potential 
energy of electrons in each dot in a cell with respect to 
the potential energy of the electron in the previous cell 
[17, 18]. It was observed that in order to achieve more 
stability, the electrons in each cell should be placed in 
such a manner so that their potential energy reaches 
minimum level.

,
1

Total potential ener ) .gy (
n

T i j l
l

U E
=

= =∑

Here, the cell size is considered 18 nm × 18 nm, and 
there is a 2-nm gap in between two cells. Let the first left-
most cell at polarization be P = +1. At first, we can calcu-
late the potential energy existing between electrons E1, E2, 
E3, and E4 and E5. Based on the calculation, the position 
of electrons in cell 2 is defined. Let the potential energy 
between E1 and E5 be (E1,5)1 and so on. Therefore, the poten-
tial energies are calculated as follows:
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Here, σi is the expected value of number operator of 
site i. For the ground state Eigen functions:

	 0 0
ˆ| | ,i nσ ψ ψ=〈 〉 � (3)

where |ψ0〉 represents the ground state. According to 
polarization P, the electrons are positioned with applied 
strong stimulation such as heat, voltage, or photons. This 
can change the electron polarization of the cell due to 
“kink” the energy. From Coulomb’s law, it is known that 
the potential energy (Ei,j) between two charges qi and qj 
separated by distance rij is given by Eq. (4).

	
,

0

1
4 | - |

i j
i j i j

i j ij

kq q
E q q

r r rπε
= =

�
(4)

ε0 = permittivity of free space
qi and qj = electrical charges of i and j, respectively
|ri-rj| = rij = distance between two electrons

0
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4
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Considering the values of k, qi, and qj, kqiqj = 9 × 109 ×  
(1.6)2 × 10-38 = 23.04 × 10-29 = A is obtained [14–16]. The 
energy represented by Eq. (4) is minimum when 
two neighboring cells have same polarization and is 
maximum when they are in opposite polarization. The 
difference between this maximum and minimum energy 
is called kink energy, i.e. kink

, ,( ) | -( ) | .
i j i ji j P P i j P PE E E≠ ==  Ei,j 

can be calculated using Eq. (4) and can show how data 
are transferred through the QCA wire, which is QCA cells 
placed side by side. Here, data or the cell polarization is 

Figure 1: Basic QCA cells. (A) Different QCA cell polarization,  
(B) data flow in QCA wire.
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In the same way, the potential energy (UT2) of 
electron E6 with E1, E2, E3, and E4 as -20

1,6 1( ) 0.57 10  J,E = ×  
-20

2,6 2( ) 1.04 10  J,E = ×  -20
3,6 3( ) 0.50 10  J ,E = ×  and -20

4,6 4( ) 0.61 10  J,E = ×
-20

4,6 4( ) 0.61 10  J,E = ×  respectively, is calculated. Hence, 
-20

2 1,6 1 2,6 2 3,6 3 4,6 4[( ) ( ) ( ) ( ) ] 2.72 10  J.TU E E E E= + + + = ×  So, 
UT2 < UT1. So, electron E6 is much more stable than E1. Simi-
larly, it is shown that electron E7 is much more stable than 
E8. So, the second cell will be the polarization P = +1; i.e. 
data are transferred to the second cell. In the same manner 
by calculation of potential energies for each electron, we 
can physically determine the polarizations for each cell. 
In this way, data transfer through QCA wire can happen.

2.1  Types of QCA

There are four types of QCA reported so far. These are as 
follows:

Types of QCA

Molecular QCA Metal dot QCA Semiconductor QCA Magnetic QCA

[19–21] [22–24] [25–32] [33–39]

2.1.1  Molecular QCA

In [19], Lent et  al. produced a QD at the redox center 
of the proposed molecule 1(1,4-diallyl butane radical 
cation). In [20], Lent et al. proposed another three-dot 
molecule based on the same principle as in [19]. The 
molecule proposed in [20] has three allyl groups con-
nected in a “V”-like structure by alkyl bridges. It rep-
resents a “QCA half-cell,” which can be in the state 1, 
0, or NULL as shown in Figure 2. The isopotential sur-
faces of three states, i.e. state 1, state 0, and null, are 
shown in Figure 2. The lump indicates the occupancy 
of excess positive charge or hole on an allyl group. In 
[21], an unsymmetrical Ru-Fc complex QCA cell is pre-
pared and synthesized. Further XPS and spectrographic 
studies are performed to support the experimental 
observations.

2.1.2  Metal Dot QCA

Several works are proposed in metal dot QCA cell. 
The metal dot QCA cell fabricated by Orlov et  al. [22] is 
shown in Figure 3. It consists of four metals connected 

Figure 2: Charge configuration of the molecules proposed 
in [20]. This molecular structure has 3 allyl groups (shown by 
three circles by A1, A2 and A3 respectively in ‘V’ shape). Among 
them, two are neutral and one is positive. In this case positive 
charge (hole, shown by filled circle) transferred between differ-
ent dots, creates three states (‘NULL’, ‘Binary-0’ and ‘Binary-1’ 
respectively).

by Al-AlOx-Al tunnel junctions. The fabrication is done by 
electron beam lithography method and shadow evapo-
ration techniques at 15 K temperature. A magnetic field 
of 1  T is required to generate superconductivity of the 
metal. Electron transfer between dots creates polariza-
tion change. Gate electrodes (on which external voltage 
is applied) force to tunnel an electron to switch from one 
dot to the other.

In the metal dot QCA paradigm, the dot is basically a 
metal island. Tóth and Lent [23] show the quasi-adiabatic 
switching of a metallic half-cell consisting of three metal 
islands. Here, the top and bottom islands will correspond 
for the polarization of the cell, whereas the null state will 
be associated with the middle island. A leadless QCA 
double dot cell had been fabricated by Amlani et al. [24]. 
Here, the metal island is made of aluminum. The area of 
the tunnel junction fabricated is 60 × 60 nm2 and electron 
temperature is 70 mK. The fabrication here is also done by 
electron beam lithography.

2.1.3  Semiconductor QCA

A QCA cell can be realized in silicon system [25–27]. In a 
semiconductor material like GaAs/AlGaAs, four QDs can 
be fabricated with a high-mobility 2D electron gas (2DEG) 
below the surface. The idea of patterning electrons con-
fined in 2DEG using metal top gate has been implemented 
to develop semiconductor QCA system. The 2DEG is formed 
at the interface of a semiconductor substrate and dielectric 
layer. The preferable semiconductor materials are silicon-
silicon dioxide or III–V heterojunction materials. Electric 
field is applied through the metal top gate, which depletes 
the electrons in the 2DEG. Finally, metal gates are etched 
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known as critical thickness, tcr. When monolayers of het-
ero-junctions are deposited, then at a certain point, the 
layer thickness t becomes greater than critical thickness 
tcr. At this time, a very thin semiconductor film buckles 
due to stress of having different lattice structures from 
those of the material upon which the films are grown. This 
huge pressure of the newly formed layer forces the inner 
layer to pop up to relieve stress, which forms the QD. The 
formation of QD occurs at t > tcr. The density of state equa-
tion for QD is

	
energy , ,

, ,
2 ( - ),

x y z
x y z

n n n
n n n

E Eρ δ= ∑
�

(5)

where ρenergy is the energy density and is given as 

energy
d
dE

ρ
ρ =  and , ,x y zn n nE  is the finite carrier energy.

QDs are fabricated by the following three methods:
a)	 Electron beam lithography
b)	 Molecular beam epitaxy (MBE)
c)	 Metalorganic vapor phase epitaxy

Among these, MBE is the most used technique today. 
MBE takes place in ultra-high vacuum (10-8 Pa) environ-
ment. The deposition rate of MBE is typically less than 
3000 nm per h [32]. MBE allows epitaxial growth of films. 
The ultra-high vacuum environment is required for high 
purity of the grown films. The reflection high-energy elec-
tron diffraction method is used to monitor the growth of 
the crystal layers. QDs are formed by 3D confinements 
of different bandgap materials. In a semiconductor, in 
crystallites whose diameter is smaller than the size of its 
exciton Bohr radius, the excitons are squeezed, leading to 
electron confinement.

The thickness of each layer down to a single atom 
layer is controlled by a computer-controlled shutter. In 
this way, structures of layers of different materials are 
fabricated. With the help of such control, development of 
structures where the electrons can be confined in space 
are achieved, which results in the formation of QDs.

away to form QDs at the exposed surfaces. In [28], Lent and 
Tougaw have proposed the possible fabrication of semicon-
ductor QCA system with this technique. Further, the authors 
in [28] have modified the structure to develop a sharper 
QD. This is by using dual metal top gates. The fabricated 
layout demonstrated by Lent and Tougaw [28] is shown in 
Figure 4. Here, two top metal gates (G1 and G2) control the 
occupancy of electrons in p-type Si substrate. A lower metal 
gate is used to deplete holes near the surface of the metal 
substrate where QDs are not desired. Using this approach, 
dots can be made to hold a single electron. This design can 
be fabricated with scanning tunneling lithography [29, 30].

QDs are formed by 3D confinements of semiconduc-
tor materials with different lattice structures [31]. There 
are two types of semiconductor junctions, viz. homo-
junction and hetero-junction. Homo-junctions are formed 
at the interface of two semiconductors of similar lattice 
structures, whereas hetero-junctions are formed at the 
interface of two dissimilar crystalline semiconductors. 
The thickness of the layer at which the QDs are formed is 

Figure 3: Schematic of metal dot QCA.

Top metal
G1 G2

Dielectric

Lower metal
Oxide

p type - Si
Back contact

Quantum dot formation

Figure 4: Schematic of semiconductor QCA by Lent and Tougaw 
[28].
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2.1.4  Magnetic QCA

It is observed that magnetic phenomenon is utilized for 
data storage, whereas electronic phenomenon for infor-
mation processing. Thus, ferromagnetism is nonvolatile 
in nature. Power dissipation has become a challenging 
issue for present CMOS circuits. As a result, logic imple-
mentation using nanomagnets are being researched upon 
[40–42]. This is because of the following two major advan-
tages of nanomagnet logic:
i.	 The nonvolatile nature results in zero standby power 

dissipation.
ii.	 Switching energy of magnetic devices is much less 

compared to CMOS gates [41].

Nanomagnets are nanoscale magnets that have single 
magnetization state, viz. up (↑) or down (↓). Such nano-
magnets have size scales of tens to hundreds of nanom-
eters. This is because if the length is too large, the 
magnetization state will break up into multiple internal 
domains, whereas if the length is too small, the magneti-
zation state can be switched by random thermal fluctua-
tions and will no longer be stable.

The array of nanomagnets can be placed in either 
antiferromagnetic (↑↓) or ferromagnetic (→→) positions 
[41]; here, the arrow denotes the direction of the poles of 
the magnets. It is observed that in the antiferromagnetic 
position, the direction of the poles gets reversed.

Porod et al. [41] have designed a QCA system using 
nanomagnets. This kind of logic is termed as magnetic 
QCA or nanomagnetic logic. Hu et al. [41] have termed a 
single nanomagnet as a magnetic island, and the mag-
netic islands are fabricated from 30-nm thin film of per-
malloy using EBL and standard liftoff technique. Here, 
four major works done in the MQCA domain have been 
cited. In the magnetic domain, QCA cells are formed 
by nanosized ferromagnetic materials. Csaba et al. [33] 
proposed that information can be propagated through 
an array of magnetic dots due to dot-dot interactions. 
Depending on the spin of the magnetic dot, the polariza-
tion of a MQCA cell can be determined. Csaba et al. [33] 
show how signal processing and various logic functions 
can be realized by the interaction between neighbor-
ing magnetic dots. In [33], it was shown how nanowire 
can be realized by proper placement of nanomagnets, 
shown in Figure 5A. Here, clock (discussed in Section 
2.3) is a periodic oscillating external magnetic field (H). 
It drives the system initially (Figure 5A), then controls 
the relaxation of the system to ground state. H turns the 
magnetic moments of all nanomagnets horizontally, 

Figure 5: Operating principles of MQCA.

as shown in Figure 5A. When H is removed, i.e. H = 0, 
the nano magnets relax into an antiferromagnetic 
order (shown in Figure 5D). Clocking system is done by 
induced magnetic field created by applying current (I) 
[33–37].

Latter in 2004, magnetic cellular automata was pro-
posed by Parish and Forshaw [38] based on the principle 
of data storage using nanomagnets. One of the advantages 
of MQCA is that is can be operated at room temperature. 
Bernstein et al. [39] carried an experimental demonstra-
tion of designing of nanomagnet at room temperature. 
They also proposed how QCA wire and majority gates can 
be realized using nanomagnets.

2.1.5  Room temperature fabrication of QCA

Very recently, Dilabio et al. [43] have experimentally fab-
ricated QCA cell at 293 K. This invention is expected to 
remove the major obstacle for QCA realization in room 
temperature. The QCA device has been fabricated by spa-
tially controlled formation of dangling bonds (DBs) over 
silicon surface  < 100 > . The silicon atom in the surface 
shared three bonds with other silicon atom. The unshared 
atom is bonded with hydrogen atom to form a DB. Each DB 
has a separation of one atom. Finally, additional electron 
has been provided inside the DB such that there exists 
at least one unoccupied DB for each additional electron. 
Such a cell has a “self-biasing” effect. The binary state of 
the cell is electrostatically controlled. The most impor-
tant feature is that the device operates at room tempera-
ture (293 K) and largely immune to stray electrostatic 
perturbation [43].
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2.2.2  QCA Inverter or NOT

Another interesting QCA gate is the QCA inverter. Until 
now, we are familiar of the fact that any logic operation 
or data transfer in QCA technology is basically driven by 
Columbic interaction between the electrons of adjacent 
QCA cells. The same principle holds true in the case of 
designing QCA inverters. The basic idea is to have cell(s) 
at the corner(s) of the output cell. The first figure in Figure 
7A shows that the output cell X′ has cell at one of its 
corners. This kind of orientation will force the output cell 
to attain the polarization opposite of that of the corner 
cell. A similar operation takes place in the second figure in 
Figure 7A, but in this case, the output cell has cells in both 
of its corners. The only difference in this layout is that 
it will attain a much stable output. For example, in this 
case, the corner cells are in +1 polarization, so the output 
cell can never be in +1 polarization due to Columbic inter-
action and thus will be forced to be in -1 polarization. Two 
standard cells in a diagonal orientation are designed as 
QCA inverter. Two types of designs can be possible for 
QCA inverter or NOT gate. The QCA layout of these invert-
ers is shown in Figure 7A. Also, its logic symbol is shown 
in Figure 7B.

2.2.3  QCA tile structure

The defect in QCA structures depends highly on the place-
ment of the QCA cell. There are two types of placement 
defect in QCA structures, viz. misplaced cell defects and 
missing cell defects. In the first case, the cell might be 
wrongly fabricated in a misaligned manner, whereas in 
the second case, the cell might not be fabricated at all. 
In both cases, the output will be erroneous. In order to 
cope up with the misplaced/missing cell defect of QCA 

2.2  QCA basic gates

2.2.1  Majority voter

In QCA technology, data transfer as well as computa-
tion operations take place with the help of columbic 
interactions. There is no concept of charge transfer 
through wire, like traditional CMOS technology. This is 
because of the fact that charges remain confined in the 
QCA cell and ideally do not dissipate. Here, the concept 
of polarizations comes in, which means that the place-
ment of QCA cells is the a particular manner is required 
to design any QCA logic gates or QCA wire. The funda-
mental QCA logic circuit is majority voter (MV) gate. MV 
is a logic gate whose output is the state of the majority 
of the inputs [10, 19, 20]. Eq. (6) gives the logic func-
tion of a three-input MV, where A, B, and C are the three 
inputs.

	 MV (A, B, C) AB BC CA= + + � (6)

The QCA layout of the MV gate is shown in Figure 6a. 
From the figure, it is seen that there are three input cells, 
viz. A, B, and C, and one output cell M. Apart from these 
three cells, there is another cell in the middle. This cell is 
known as a device cell. The input cells may have different 
polarizations, i.e. +1 or -1. But as there are three of them, 
there will always be either two +1 or two -1 polarizations 
or, in other words, majority of any one of the polariza-
tions will be seen at any point of time. The device cell 
will simply attain the polarization that is in excess in the 
input cells. Finally, the output cell will simply reflect the 
polarization of the device cell due to columbic effect. This 
is the fundamental operation of the QCA MV gate. The 
block diagram of an MV gate is also shown in Figure 6b. 
MV can be used to perform AND as well as OR operations 
by making one of the inputs, say C, fixed to logic 0, i.e. 
polarization -1, also known as fixed polarization, and as 
an OR gate by making one of the inputs fixed to logic 1, 
i.e. polarization +1 as

Figure 6: Majority voter circuit. (a) QCA layout; (b) its block diagram. Figure 7: Inverter/NOT circuit. (A) QCA layout; (B) its logic symbol.
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cells, QCA tile structure was proposed by Das and De in 
their paper [44]. Here, a number of QCA cells are placed 
closely packed with each other; thus, the probable error 
of misplacement can be rectified to a large extent. Among 
various tile structures, the 3 × 3 tile is found to be most 
popular because of its versatility. In Figure 8A, a grid rep-
resentation of the 3 × 3 tile is presented. It has a total of 
nine positions for cell placement. The positions for cell 
placement are marked from 1 to 9. A 3 × 3 tile-based MV is 
much more stable and fault tolerant than ordinary three-
input MV, as discussed in Section 2.2.1 for the presence 
of diagonal cells (1, 3, 7, and 9) [44] and the radius effect 
[45]. Having the grid structure for MV will strengthen the 
output polarization and will make it more stable. Further, 
if any of the cell gets misplaced or missing, the adjacent 
cells of the grid will cope up for it. In this way, the place-
ment problem can be eliminated. The grid structures are 
not quite favorable for smaller designs because they will 
increase the cell count of the design, but in bigger cir-
cuits, it will be highly beneficial. A block diagram of an 
MV circuit using a 3 × 3 tile is shown in Figure 10B. The 
tile structure shown in Figure 8B is known as 3 × 3 orthog-
onal tile [46]. There is another variety of 3 × 3 tile that is 
known as 3 × 3 baseline tile (shown in Figure 8C). The most 
significant feature of the 3 × 3 baseline tile is that it sup-
ports coplanar crossing without using rotated cells. From 
Figure 8C, it is seen that polarization of A passes through 
F2, whereas polarization of input B passes through F1 
without mutual interaction. This tile structure is used to 
design QCA-based Fredkin gate [46]. The detailed struc-
ture of the Fredkin gate is discussed in Section 3.1.1.

Figure 8: QCA tile structure. (A) Grid representation of 3 × 3 tile. 
(B) Block diagram of MV circuit using 3 × 3 orthogonal tile. (C) A 3 × 3 
baseline tile showing coplanar crossing.

2.2.4  QCA crossover

Crossover is required to carry data through a QCA wire 
without affecting the other data inside the circuit. There 
are two types of QCA crossovers, viz. single layer, as shown 
in Figure 9A, and multilayer, as shown in Figure 9B. Sin-
gle-layer or coplanar crossings use only one layer but 
require using two types of QCAs, i.e. regular and rotated. 
The regular cell and the rotated cell do not interact with 
each other when they are properly placed, so rotated 
cells can be used for coplanar crossings. The interaction 
between a regular QCA wire and a rotated QCA wire is very 
interesting. Consider the QCA layout in Figure 9A; there 
are two regular QCA cells on both sides of a rotated QCA 
cell. In this case, the Coulombic effect of both the regular 
QCA cells will nullify each other. As a result, the interac-
tion will not take place and the polarization of the rotated 
cell will be affected only by the upper rotated cell. Multi-
layer crossovers utilize the concept of multilayered con-
ventional integrated circuits. It consists of the main cell 
layer, via layers and the interconnection layer. In case of 
multilayer crossover, as shown in Figure 9B, the crossings 
of the two QCAs do not take place at the same layer. While 
one of the wires, marked in white in the figure, passes 
through the base layer, also known as the main cell layer, 
the other wire, marked in brown in the figure, crosses the 
previous wire through a different layer above the main cell 
layer. This new layer is known as the via layer, and there 
are interconnection layers that connect the via layer with 
the main cell layer.

2.3  Clocking in QCA circuits

Clocking is required for a QCA circuit to synchronize and 
for information flow control. If we switch a large array of 
cells at the same time, then data get stuck because electric 
field (kink energy) never reaches the ground state. Hence, 

Figure 9: QCA crossovers: (A) coplanar crossover, (B) multilayer 
crossover.
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3  Reversible computation in QCA
In 1993, Lent et al. introduced reversibility in QCA-based 
circuit design [10]. In the following years, several authors 
have proposed several reversible gates in QCA. In the chart 
given below, some of the important designs of revers-
ible logic gates based on QCA are highlighted. All these 
designs are further modified and proposed in latter work.

QCA based reversible logic gates

Fredkin gate 1st
proposed in [46]

Toffoli gate
proposed in [46]

Feynman gate
proposed in [49]

CLG proposed
in [50]

3.1  Basic reversible logic gates

In this section, we will discuss various reversible gates 
that have been proposed in QCA.

3.1.1  Fredkin gate

One of the most used reversible logic gates is the Fredkin 
gate, or controlled SWAP gate. It is a 3 × 3 reversible gate. 
If A, B, and C are the inputs, then P, Q, and R will be the 
outputs such that P = A, Q = A̅B+AC, and R = A̅C+AB. This will 
be clear by the truth table of the Fredkin gate in Table 1.

From the truth table, it is observed that outputs 
Q and R will reflect the inputs B and C when input A is 
0. But when A becomes 1, swapping will take place, i.e. 
the output Q will reflect input C and output R will reflect 
input B. From this truth table, the change in entropy (ΔH) 

error occurs at the output. To overcome this problem, 
various cell arrays are divided into four clocking zones, 
i.e. C0, C1, C2 and C3.

–– It must follow a particular order, viz. C0→C1→C2→C3.
–– If the length of any QCA wire is greater than Ei,j/kbT, 

then the wire is further partitioned into separate clock 
zones.

Generally, four multiphase clocking signals of phase lagging 
of π/2 are applied, as shown in Figure 10A. This type of 
clocking system is called the Laundauer type [47]. During a 
complete cycle, each zone goes through the four phases.

–– Switch phase: The QCA cell starts to move from an 
unpolarized state to a polarized state and the barriers 
of the dots are raised. The electrons start tunneling 
through dots as the dots are influenced by the elec-
tron of its neighbor cell.

–– Hold phase: The barrier of the cell is in the high value, 
electrons cannot tunnel through dots, and cells main-
tain their current states, i.e. fixed polarization.

–– Release phase: The barrier is lowered, electrons can 
tunnel through dots, and states of the cell become 
unpolarized.

–– Relax phase: The barrier remains lowered and cells 
stay in the unpolarized state.

Also, Lent et al. proposed another type of clocking signals 
for reversible circuit, which is Bennett-type clocking 
[47, 48]. The waveform of Bennett clocking is shown in 
Figure 12B. The principle of this clocking is to first compute 
the results by latching the cell array from input to output 
and then uncomputing by latching array to relax to an 
unpolarized state from output to input. From Figure 10A 
and B, we see that Bennett clocking requires more than 
twice the number of clock fractions than does the Laun-
dauer clocking scheme [48].

Figure 10: Clocking used in QCA circuit. (A) Laundauer clocking 
waveform, (B) Bennett clocking waveform. S, switch phase; H, hold 
phase; Re, release phase; Rx, relax phase.

Table 1: Truth table of the Fredkin gate.

Input   Output

A   B  C P  Q  R

0   0  0  0  0  0
0   0  1  0  0  1
0   1  0  0  1  0
0   1  1  0  1  1
1   0  0  1  0  0
1   0  1  1  1  0
1   1  0  1  0  1
1   1  1  1  1  1
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by calculating Hin and Hout is calculated. It is found that 

in out
1 1-8 ln
8 8

H H
 

= = ⋅     and ΔH = Hin-Hout = 0. So energy dis-

sipation is ΔE = kBTln2·(ΔH) = 0. Ma et al. [49] was the first 
to design a QCA-based Fredkin gate; the QCA layout of the 
circuit is shown in Figure 11a. In Figure 11a, A, B, C are the 
inputs and P, Q, R are the outputs. The layout is analyzed 
using the following equations:

MV3 (A, C, -1) = AC; MV3 is the three-input MV, -1 = -1 fixed 
polarization at the third input. In Section 2.2.1, we have dis-
cussed how MV can be used to design AND and OR gates.

Q MV3 ( MV3 _1, MV3 _2, 1)
MV3 ( A, B, -1) AB
MV3 (A, C, -1) A  C
R MV3 (MV3, MV3, 1)
P R

=
=
=

=
=

They use coplanar crossing in their design, so cell 
count is reduced to a large extent. Moreover, the output of 

the Fredkin gate can be obtained in one clock cycle delay. 
But the design uses four extra ancilla inputs. These bits 
are destroyed, so actual heat dissipation is 4kBTln2 J. Also, 
the number of the fan-out is 8.

In the same year, in 2009, another paper was pub-
lished by Thapliyal and Ranganathan [50], where the 
design approach of the QCA-based Fredkin gate is basi-
cally same as in [49], shown in Figure 11b. Their design 
used six extra ancilla inputs. These bits are destroyed, so 
actual heat dissipation is 6kBTln2 J. Also, the number of 
fan-out is 6.

In 2010, another significant modification of the QCA-
based Fredkin gate design was reported by Das and De 
[46]. The Fredkin gate proposed [46] is based on the QCA 
3 × 3 orthogonal and baseline tile structure. The tile struc-
ture helps in implementing versatile logic functions and 
is highly area efficient. The proposed Fredkin gate QCA 
layout is given in Figure 11c. The circuit has four extra 
ancilla inputs, which is equivalent to heat dissipation of 

Figure 11: A QCA-based Fredkin gate circuit as proposed by (a) Ma et al. [49], (b) Thapliyal and Ranganathan [50], and (c) Das and De [46] 
(3 × 3 T: 3 × 3 tile-based MV).



T. Purkayastha et al.: QCA-based reversible logic circuits      385

X M A, B, C
AB BC CA

Y MV MV A, C, -1 , MV (A, B, -

( )

[ ( ) ]

[ (

1), 1
AB AC

Z MV MV B, C ) (, -1 , MV C, B, -1), 1
BC.

]

=
= + +

=
= +

=
=

It has six extra ancilla inputs, equivalent to heat dis-
sipation 6kBTln2 J and eight fan-outs.

4kBTln2 J and six fan-outs. In Figure 11c, a 3 × 3 orthogo-
nal tile structure is used as majority gates, whereas a 3 × 3 
baseline tile is used for coplanar crossover. The majority 
equation of this design is same as of the other two.

3.1.2  Toffoli gate

The Toffoli gate is also a 3 × 3 reversible gate. The truth 
table of the Toffoli gate is given in Table 2, which gives 
the logical expressions for outputs as P = A, R = C, and 

Q AB B (A C).= + ⊕  Here, it is found ΔH = 0; i.e. energy dis-
sipation is asymptotically zero. The Toffoli gate is known as 
controlled NOT gate because the output R will be the inverse 
of input C when both inputs A and B are 1. The QCA-based 
circuit of Toffoli gate was also first proposed by Ma et al. 
[49], which is shown in Figure 12. It has two extra ancilla 
inputs, equivalent to heat dissipation 2kBTln2 J and six fan-
outs. The majority equation for Figure 12 is shown below:

( )
( C )
( )

( ( B ) (( C )

P A
R C
MV B, A, -1 BA
MV , A, 1 C A
MV A, B, C AB BC CA
Q MV MV , A, -1 , MV , A, 1 , MV A( ))

( AB )
, B, C

MV , A C, AB BC CA
AB C ABC ABC  ABC
A

(
B BAC BAC

AB B A C )

=
=

=
= +
= + +

=

= + + +

= + + +

= + +

= + ⊕

3.1.3  Reversible universal gate

Sen et  al. [51] proposed the reversible universal gate 
(RUG), which is shown in Figure 13. The logical expres-
sions of the outputs are as follows:

Table 2: Truth table of the Toffoli gate.

Input   Output

A   B  C P  Q  R

0   0  0  0  0  0
0   0  1  0  0  1
0   1  0  0  1  0
0   1  1  0  1  1
1   0  0  1  0  0
1   0  1  1  0  1
1   1  0  1  1  1
1   1  1  1  1  0

Figure 12: Schematic diagram of the Toffoli gate proposed by Ma 
et al. [49].

Figure 13: Schematic diagram of the RUG gate proposed by Sen 
et al. [51].
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3.1.4  Feynman gate

The FyG is a 2 × 2 reversible logic gate. The logical expres-
sion of two outputs are P = A and Q = A⊕B, where A and 
B are two inputs. If B = 0, then Q = A⊕0 = A; i.e. it copies 
the inputs into two without crating fan-out and bit erase. 
Hence, this reversible gate reduced fan-out. In [52], Thap-
liyal and Ranganathan have proposed a QCA-based FyG. 
The schematic diagram of QCA layout of a FyG is shown in 
Figure 14a. Here, it is seen that there are three extra ancilla 
inputs in the circuit, which is equivalent to heat dissipa-
tion 3kBTln2 J as these bits are lost during operation. Also 
the number of fan-out is three.

In [53], Bahar et  al. proposed a modification on the 
FyG. The authors proposed a QCA-based double FyG. The 
double FyG is a 3 × 3 structure with A, B, and C as inputs and 
P, Q, and R as outputs such that P = A, Q = A⊕B, and R = A⊕C.

The truth table of the double FyG proposed in [53] is 
given in Table 3. It is seen from the truth table that the 
input combination is uniquely represented at the output, 
which supports the reversibility of the proposed gate. 
Here, it has also been found that ΔH = 0, and Figure 14b 
shows that there are six extra ancilla inputs in the circuit, 
which is equivalent to heat dissipation 6kBTln2 J as these 
bits are lost during operation.

Figure 14: Schematic diagram of (a) FyG and (b) double FyG proposed by Bahar et al. [53].

Table 3: Truth table of the double FyG.

Input   Output

A   B  C P  Q  R

0   0  0  0  0  0
0   0  1  0  0  1
0   1  0  0  1  0
0   1  1  0  1  1
1   0  0  1  1  1
1   0  1  1  1  0
1   1  0  1  0  1
1   1  1  1  0  0 Figure 15: Schematic diagram of the reversible CQCA gate proposed 

by Thapliyal and Ranganathan [50].

3.1.5  CQCA gate

The CQCA gate was proposed by Thapliyal and Rangana-
than [50]. The schematic diagram of the proposed CQCA 
gate is shown in Figure 15. The proposed CQCA gate per-
forms the output logic expressions, P = A, Q = AB+BC+CA, 
and R = A̅B+BC+A̅. CQCA is a conservative logic gate. The 
circuit has no ancilla inputs and also ΔH = 0; hence, the-
oretically, it does not dissipate energy. The number of 
fan-out is four.

3.1.6  CLG gate

Another 3 × 3 conservative logic gate with reversible prop-
erty was proposed by Das and De [46]. The logic expres-
sion of CLG is P = C, Q = AB+BC+CA, R = C̅B+AB+C̅A. This is 
basically a similar type of CQCA gate. The QCA circuit of 
the CLG gate is shown in Figure 16. Here, they used 3 × 3 
tile-based MV gates. CLG has both bit preservation as well 
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[54]. In Figure 18A and B, the block diagrams D latch 
and J-K latch are shown respectively. The characteris-
tic equations of such latches are QD–latch = DE+E̅D and 
QJK–latch = (JQ̅+K̅Q)E+E̅Q [54]. The D latch has two garbage 
outputs and the J-K latch has seven garbage outputs and 
four Ancilla inputs.

3.2.3  Reversible CED circuit

Thapliyal and Ranganathan used FyG to design a revers-
ible comparator for concurrent error detection (CED), 
where the authors used FyG to avoid the fan-out con-
straints [52]. The schematic block diagram of CED is shown 
in Figure 19. Here, R is a reversible gate that maps input 
vector X to output vector Y and R ̅ is the inverse reversible 
gate of R, which maps input vector Y to output vector X. 
Now, if R and R̅ are cascaded together, the input vector can 
go back at the end. Thus, by comparing the original input 
vector with the regenerated ones, any error that occurred 
can be analyzed. Here, the authors have cascaded R with 
R̅ and the garbage outputs of R are directly passed as the 
inputs of R̅, whereas each primary output of R is passed 
through a FyG, with its second input being 0. As shown in 
Figure 19, the primary output Yk is passed through FyG. As 
a result, two copies of the primary outputs are obtained, 
one of which is passed to the input of R̅ to perform CED. 
Finally, the original input vector and the regenerated 
input vector are passed through a comparator to generate 
the error signal.

4  Comparative study
In this section, we present a comparative study of all the 
different QCA-based reversible logic gate designs that 
have been highlighted in Section 3. The comparison of the 
QCA circuits is done on the basis of cell count, number 
of MVs, area, number of layers used, clock cycles, and 

as parity preservation properties. As a result, CLG can be 
used as both reversible and conservative logic. Due to the 
use of tile structure, the design can be achieved in a single 
layer; also, the stability of the output is much higher. 
Here, no ancilla inputs occurred, no bit loss happens, and 
also ΔH = 0. So, theoretically, it does not dissipate energy, 
but the circuit has three fan-outs.

3.2  �Complex reversible logic circuit design 
using basic reversible logic gates

3.2.1  Reversible full adder

Any complex circuit designed with basic reversible gates 
are also reversible in nature. Bruce et  al. [6] designed a 
full-adder circuit using four Fredkin gates as shown in 
Figure 17. Total ancilla inputs are two and the number of 
garbage outputs is three.

Here, from the logical expressions of Fredkin gate, the 
logical expressions of the different outputs can be written 
as
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3.2.2  Reversible latches

Thapliyal and Ranganathan proposed the reversible D 
latch and J-K latch using Fredkin gates in their article 

Figure 16: Schematic QCA layout of the CLG gate proposed by Das 
and De [46]. 3 × 3 T: 3 × 3 tile-based MV.

Figure 17: Reversible full-adder circuit proposed by Bruce et al. [6]. 
FG, Fredkin gate.
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latency. In Table 4, the comparative studies of the two 
types of the design of Fredkin gate that are proposed in 
[49] and [46], respectively, are presented. From Table 4, it 

Figure 19: Block diagram of the error detection scheme proposed 
by Thapliyal and Ranganathan [52].

Table 4: Comparative analysis of the QCA-based Fredkin gate 
proposed in [49] and [46].

Proposed 
by

  Cell 
count

  MVs   Area   Layer  Latency   Key design 
aspect

Ma et al. 
[49]

  185   6   0.54 μm2   1  One clock 
cycle (four 
clock zones)

  Use of both 
90° and 45° 
cells

Das and De 
[46]

  246   6   0.33 μm2   1  One clock 
cycle (four 
clock zones)

  Use of 3 × 3 
orthogonal 
tile

Table 5: Comparative analysis of the QCA-based Toffoli gate pro-
posed in [49] and RUG proposed in [51].

Proposed 
by

  Cell 
count

  MVs   Area   Layer  Latency   Key design 
aspect

Ma et al. 
[49]

  167   4   0.558 μm2   1  1 clock cycle 
(four clock 
zones)

  Use of both 
90° and 45° 
cells

Sen et al. 
[51].

  ≈298   7   –   1  1.75 clock 
cycles (seven 
clock zones)

  Use of both 
90° and 45° 
cells

Table 6: Comparative analysis of the QCA-based double FyG proposed in [53], CQCA proposed in [50], and CLG proposed in [46].

Proposed by   Gate 
proposed

  Cell count   MVs  Area   Layer  Latency   Key design aspect

Bahar et al. [53]   Double 
FyG

  51 for type 1 and 
96 for type 2

  6  0.06 μm2 for type 
1 and 0.094 μm2 
for type 2

  1  0.5 clock cycle (two clock zones) 
for type 1 and 0.75 clock cycle 
(three clock zones) for type 2

  Single layer design by 
using only 90° cells

Thapliyal and 
Ranganathan [50]

  CQCA   117   2  0.11 μm2   1  0.5 clock cycle (two clock zones)  Use of both 90° and 45° 
cells

Das and De [46]   CLG   94   3  0.11 μm2   1  0.5 clock cycle (2 clock zones)   Use of both 90° and 45° 
cells

is observed that by using QCA tile structure as discussed 
in Section 2.2.3, the area of the circuit can be significantly 
reduced, although the cell count gets higher to some 
extent, whereas the other factors, like number of layers 
and latency, remain the same. Another interesting factor 
that can be observed from Table 4 is that the tile structure 
uses only 90° cells; thus, it is much more stable in com-
parison to the other design [42].

Next, in Table 5, a comparison between the Toffoli 
gate proposed by Ma et al. [49] and RUG proposed by Sen 
et  al. [51] are shown. The reason we chose to compare 
these two designs is that both are similar designs and RUG 
is actually a modified version of the Toffoli gate.

Table 6 provides a comparative analysis of three new 
reversible gates designed in QCA. These are the double 
FyG proposed in [53], the CQCA gate proposed in [50], and 
the CLG gate proposed in [46]. Among all the designs, the 

Figure 18: Reversible latches. (A) Reversible D-latch and (B) reversible JK-latch proposed by Thapliyal and Ranganathan [54]. FG, Fredkin gate.
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a two-input EXOR gate calculation
a two-input AND gate calculation
a NOT gate calculation

α

β

δ

=
=
=

If we plot the three parameters α, β, and δ in Figure 21, 
we can easily say that the CLG or CQCA gate has more 
logical calculations and FyG has less. Also, SCL complex-
ity is twice the TG. According to the complexity order, we 
can write, RUG > CQCA = CLG > TG > Fy2G > FyG.

5  Conclusion
This paper presents review work on various reversible 
logic gates that have been designed in the QCA paradigm. 
QCA is one of the most promising candidates of post-CMOS 
design. Various techniques by which QCA cells have been 
fabricated are shown in this paper. Although it is not pos-
sible to fabricate all of the QCA cells in room temperature, 
magnetic and semiconductor QCA cells are successfully 

CLG design has both cell count, area, and latency bene-
fits because it has the same latency and also a coplanar 
design, but cell count and MV count are less compared 
to other designs. Thus, CLG is beneficial to use in various 
complex QCA-based reversible logic designs.

In Figure 20A, B, and C, the cell count, area and 
latency of the various QCA-based reversible gates dis-
cussed in Section 3 are shown graphically.

In general, evaluation of the RLGs can be compre-
hended easily with the help of one main factor, which 
is circuit complexity. This parameter can be obtained by 
counting the number of logical calculations (T) [55, 56], 
which is shown in Table 7. Here we consider

Figure 20: Comparison of (A) cell count, (B) area, and (C) latency of 
different QCA-based reversible gates.

Table 7: Complexity of different reversible logic gates.

Reversible logic gate  Number of 
inputs/outputs

  Total logical 
calculations

Fredkin gate (FG)   3  2α+4β+2δ
Toffoli gate (TG)   3  α+β
RUG   3  5α+10β
FyG   2  α
Double FyG (Fy2G)   3  2α
CQCA   3  5α+9β+3δ
CLG   3  5α+9β+3δ

Figure 21: Different gate number (α, β, δ) variations for different 
reversible logic gates.
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fabricated in room temperature. The fabrication process 
has been described. Different variations in the design 
done on basic reversible gates like the Fredkin gate, Toffoli 
gate, and FyG are studied. Also, some of the modifica-
tions done on earlier gates as well as some new reversible 
gates that have been proposed in latter literature are high-
lighted. By the comparative study, major variations in the 
cell count of the different QCA-based reversible gates have 
been observed. However, the latencies of all the designs 
discussed in this paper are more or less equal.
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